JP2018069435A - Gear machining device and gear machining method - Google Patents

Gear machining device and gear machining method Download PDF

Info

Publication number
JP2018069435A
JP2018069435A JP2016216680A JP2016216680A JP2018069435A JP 2018069435 A JP2018069435 A JP 2018069435A JP 2016216680 A JP2016216680 A JP 2016216680A JP 2016216680 A JP2016216680 A JP 2016216680A JP 2018069435 A JP2018069435 A JP 2018069435A
Authority
JP
Japan
Prior art keywords
tooth
tool
machining
blade
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016216680A
Other languages
Japanese (ja)
Inventor
琳 張
Lin Zhang
琳 張
尚 大谷
Takashi Otani
尚 大谷
中野 浩之
Hiroyuki Nakano
浩之 中野
Original Assignee
株式会社ジェイテクト
Jtekt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト, Jtekt Corp filed Critical 株式会社ジェイテクト
Priority to JP2016216680A priority Critical patent/JP2018069435A/en
Priority claimed from DE102017125602.4A external-priority patent/DE102017125602A1/en
Publication of JP2018069435A publication Critical patent/JP2018069435A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gear machining device and a gear machining method capable of highly efficiently and highly accurately processing teeth surfaces having helix angles provided on one side and the other side, respectively, in a rotation axis direction of a gear.SOLUTION: A gear machining device (1) comprises a machining tool (42) including: a first tool blade (42af) with a rake face (42cf) facing one side in a rotation direction axis L of the machining tool; and a second tool blade (42ab) with a rake face (42cb) facing the other side in the rotation direction axis L of the machining tool. The first tool blade is used for machining secondary teeth surfaces (121f, 122f) provided on the other side in a rotation axis direction of a workpiece, while the machining tool is operated to move relatively to the other side in the rotation axis (Lw) of the workpiece (115). The second tool blade is used for machining secondary teeth surfaces (121b, 122b) provided on the one side in the rotation axis direction of a workpiece, while the machining tool is operated to move relatively to the one side in the rotation axis of the workpiece.SELECTED DRAWING: Figure 5B

Description

本発明は、加工用工具及び加工物を同期回転させて切削加工により歯車を加工する歯車加工装置及び歯車加工方法に関する。   The present invention relates to a gear machining apparatus and a gear machining method for machining a gear by machining by synchronously rotating a machining tool and a workpiece.
車両に用いられるトランスミッションには、円滑な変速操作を行うためにシンクロメッシュ機構が設けられる。図17に示すように、キー式のシンクロメッシュ機構110は、メーンシャフト111、メーンドライブシャフト112、クラッチハブ113、キー114、スリーブ115、メーンドライブギヤ116、クラッチギヤ117、シンクロナイザーリング118等を備える。なお、メーンドライブギヤ116、クラッチギヤ117、シンクロナイザーリング118は、スリーブ115を挟んで両側に配置される。   A transmission used in a vehicle is provided with a synchromesh mechanism in order to perform a smooth shifting operation. As shown in FIG. 17, the key type synchromesh mechanism 110 includes a main shaft 111, a main drive shaft 112, a clutch hub 113, a key 114, a sleeve 115, a main drive gear 116, a clutch gear 117, a synchronizer ring 118, and the like. Prepare. The main drive gear 116, the clutch gear 117, and the synchronizer ring 118 are disposed on both sides of the sleeve 115.
メーンシャフト111とメーンドライブシャフト112は、同軸配置される。メーンシャフト111には、クラッチハブ113がスプライン嵌合され、メーンシャフト111とクラッチハブ113は共に回転する。クラッチハブ113の外周の3か所には、キー114が図略のスプリングで支持される。スリーブ115の内周には、内歯(スプライン)115aが形成され、スリーブ115はキー114とともにクラッチハブ113の外周に形成される図略のスプラインに沿って回転軸線LL方向に摺動する。   The main shaft 111 and the main drive shaft 112 are coaxially arranged. A clutch hub 113 is spline-fitted to the main shaft 111, and the main shaft 111 and the clutch hub 113 rotate together. Keys 114 are supported by springs (not shown) at three locations on the outer periphery of the clutch hub 113. Inner teeth (splines) 115a are formed on the inner periphery of the sleeve 115, and the sleeve 115 slides in the direction of the rotation axis LL along a spline (not shown) formed on the outer periphery of the clutch hub 113 together with the key 114.
メーンドライブシャフト112には、メーンドライブギヤ116が嵌合され、メーンドライブギヤ116のスリーブ115側には、テーパコーン117bが突設されたクラッチギヤ117が一体形成される。スリーブ115とクラッチギヤ117の間には、シンクロナイザーリング118が配置される。クラッチギヤ117の外歯117a及びシンクロナイザーリング118の外歯118aは、スリーブ115の内歯115aと噛み合わせ可能に形成される。シンクロナイザーリング118の内周は、テーパコーン117bの外周と摩擦係合可能なテーパ状に形成される。   A main drive gear 116 is fitted to the main drive shaft 112, and a clutch gear 117 having a tapered cone 117b is integrally formed on the sleeve 115 side of the main drive gear 116. A synchronizer ring 118 is disposed between the sleeve 115 and the clutch gear 117. The outer teeth 117 a of the clutch gear 117 and the outer teeth 118 a of the synchronizer ring 118 are formed so as to be able to mesh with the inner teeth 115 a of the sleeve 115. The inner periphery of the synchronizer ring 118 is formed in a tapered shape that can be frictionally engaged with the outer periphery of the tapered cone 117b.
次に、シンクロメッシュ機構110の図17の左方に動作する場合を説明するが、図17の右方に動作する場合も同様である。図18Aに示すように、図略のシフトレバーの操作により、スリーブ115及びキー114が図示矢印の回転軸線LL方向に移動する。キー114は、シンクロナイザーリング118を回転軸線LL方向に押して、シンクロナイザーリング118の内周をテーパコーン117bの外周に押し付ける。これにより、クラッチギヤ117、シンクロナイザーリング118及びスリーブ115は、同期回転を開始する。   Next, the case where the synchromesh mechanism 110 operates to the left in FIG. 17 will be described, but the same applies to the case where the synchromesh mechanism 110 operates to the right in FIG. As shown in FIG. 18A, the sleeve 115 and the key 114 are moved in the direction of the rotation axis LL indicated by the arrow by the operation of a shift lever (not shown). The key 114 pushes the synchronizer ring 118 in the direction of the rotation axis LL, and presses the inner circumference of the synchronizer ring 118 against the outer circumference of the taper cone 117b. Thereby, the clutch gear 117, the synchronizer ring 118, and the sleeve 115 start synchronous rotation.
そして、図18Bに示すように、キー114は、スリーブ115に押し下げられてシンクロナイザーリング118を回転軸線LL方向にさらに押し付けるので、シンクロナイザーリング118の内周とテーパコーン117bの外周との密着度は増し、強い摩擦力が発生してクラッチギヤ117、シンクロナイザーリング118及びスリーブ115は同期回転する。クラッチギヤ117の回転数とスリーブ115の回転数が完全に同期すると、シンクロナイザーリング118の内周とテーパコーン117bの外周との摩擦力が消滅する。   As shown in FIG. 18B, the key 114 is pushed down by the sleeve 115 and further presses the synchronizer ring 118 in the direction of the rotation axis LL. Therefore, the degree of adhesion between the inner periphery of the synchronizer ring 118 and the outer periphery of the taper cone 117b is As a result, a strong frictional force is generated, and the clutch gear 117, the synchronizer ring 118, and the sleeve 115 rotate synchronously. When the rotation speed of the clutch gear 117 and the rotation speed of the sleeve 115 are completely synchronized, the frictional force between the inner periphery of the synchronizer ring 118 and the outer periphery of the taper cone 117b disappears.
そして、スリーブ115及びキー114が図示矢印の回転軸線LL方向にさらに移動すると、キー114はシンクロナイザーリング118の溝118bに嵌って止まるが、スリーブ115はキー114の凸部114aを越えて移動し、スリーブ115の内歯115aがシンクロナイザーリング118の外歯118aと噛み合う。そして、図18Cに示すように、スリーブ115は図示矢印の回転軸線LL方向にさらに移動し、スリーブ115の内歯115aがクラッチギヤ117の外歯117aと噛み合う。以上により変速が完了する。   Then, when the sleeve 115 and the key 114 further move in the direction of the rotation axis LL indicated by the arrow in the figure, the key 114 fits into the groove 118b of the synchronizer ring 118 and stops, but the sleeve 115 moves beyond the convex portion 114a of the key 114. The inner teeth 115 a of the sleeve 115 mesh with the outer teeth 118 a of the synchronizer ring 118. 18C, the sleeve 115 further moves in the direction of the rotation axis LL indicated by the arrow in the drawing, and the inner teeth 115a of the sleeve 115 mesh with the outer teeth 117a of the clutch gear 117. Thus, the shift is completed.
以上のようなシンクロメッシュ機構110においては、走行中におけるクラッチギヤ117の外歯117aとスリーブ115の内歯115aとのギヤ抜け防止のため、図19及び図20に示すように、スリーブ115の内歯115aにおけるスリーブ115の回転軸線LL方向の一方側(以下、単に、回転軸線一方側Dbという)及び他方側(以下、単に、回転軸線他方側Dfという)には、テーパ状のギヤ抜け防止部120B,120Fが設けられ、各クラッチギヤ117の外歯117a,117aには、ギヤ抜け防止部120B,120Fとテーパ嵌合するテーパ状のギヤ抜け防止部117c,117cが設けられる。   In the synchromesh mechanism 110 as described above, as shown in FIGS. 19 and 20, the inner sleeve 115 has an inner sleeve 115 for preventing gear disengagement between the outer teeth 117 a of the clutch gear 117 and the inner teeth 115 a of the sleeve 115. On one side of the tooth 115a in the direction of the rotational axis LL of the sleeve 115 (hereinafter simply referred to as the rotational axis one side Db) and the other side (hereinafter simply referred to as the rotational axis other side Df) 120B and 120F are provided, and the outer teeth 117a and 117a of the clutch gears 117 are provided with tapered gear removal prevention portions 117c and 117c that are taper-fitted to the gear removal prevention portions 120B and 120F, respectively.
なお、図20では、クラッチギヤ117の外歯117aは、ギヤ抜け防止部120F側のみを示す。本例のギヤ抜け防止部120B,120Fは、内歯115aの頂面におけるスリーブ115の回転軸線LL方向の中央の仮想点に対し点対称形状で形成される。以下の説明では、スリーブ115の内歯115aの図示左側の側面115Aを左側面115Aといい、スリーブ115の内歯115aの図示右側の側面115Bを右側面115Bという。   In FIG. 20, the external teeth 117a of the clutch gear 117 are shown only on the gear disengagement prevention unit 120F side. The gear loss prevention portions 120B and 120F of this example are formed in a point-symmetric shape with respect to a virtual point in the center of the sleeve 115 in the direction of the rotation axis LL on the top surface of the internal teeth 115a. In the following description, the left side surface 115A of the inner teeth 115a of the sleeve 115 is referred to as the left side surface 115A, and the right side surface 115B of the inner teeth 115a of the sleeve 115 is referred to as the right side surface 115B.
そして、スリーブ115の内歯115aの左側面115Aは、左歯面115b(本発明の「第一歯面」に相当)及び左歯面115bとねじれ角が異なるように左側面115Aの回転軸線他方側Dfに設けられる歯面121f(以下、他方側左テーパ歯面121fという、本発明の「第二歯面」に相当)、及び左歯面115bとねじれ角が異なるように左側面115Aの回転軸線一方側Dbに設けられる歯面122b(以下、一方側左テーパ歯面122bという、本発明の「第三歯面」に相当)を有する。   The left side surface 115A of the inner tooth 115a of the sleeve 115 has a rotation axis on the other side of the left side surface 115A so that the twist angle is different from that of the left tooth surface 115b (corresponding to “first tooth surface” of the present invention) and the left tooth surface 115b. The tooth surface 121f (hereinafter referred to as the other side left tapered tooth surface 121f, which corresponds to the “second tooth surface” of the present invention) provided on the side Df and the left side surface 115A is rotated so that the twist angle is different from that of the left tooth surface 115b. It has a tooth surface 122b (hereinafter referred to as one side left tapered tooth surface 122b, which corresponds to the “third tooth surface” of the present invention) provided on one side Db of the axis.
また、スリーブ115の内歯115aの右側面115Bは、右歯面115c(本発明の「第四歯面」に相当)及び右歯面115cとねじれ角が異なるように右側面115Bの回転軸線一方側Dbに設けられる歯面121b(以下、一方側右テーパ歯面121bという、本発明の「第五歯面」に相当)、及び右歯面115cとねじれ角が異なるように右側面115Bの回転軸線他方側Dfに設けられる歯面122f(以下、他方側右テーパ歯面122fという、本発明の「第六歯面」に相当)を有する。   Further, the right side surface 115B of the inner teeth 115a of the sleeve 115 is one of the right axis 115c (corresponding to the “fourth tooth surface” in the present invention) and the right axis 115B so that the twist angle is different from that of the right tooth surface 115c. Rotation of the right side surface 115B so that the helix angle differs from the tooth surface 121b (hereinafter referred to as one side right tapered tooth surface 121b, which corresponds to the “fifth tooth surface” of the present invention) provided on the side Db, and the right tooth surface 115c It has a tooth surface 122f (hereinafter referred to as the other side right tapered tooth surface 122f, which corresponds to the “sixth tooth surface” of the present invention) provided on the other side Df of the axis.
本例では、左歯面115bのねじれ角は0度、他方側左テーパ歯面121f及び一方側右テーパ歯面121bのねじれ角はθf度である。また、右歯面115cのねじれ角は0度、一方側左テーパ歯面122b及び他方側右テーパ歯面122fのねじれ角はθb度である。そして、他方側左テーパ歯面121f及びこの他方側左テーパ歯面121fと左歯面115bを繋ぐ歯面121af(以下、他方側左サブ歯面121afという)、並びに他方側右テーパ歯面122f及びこの他方側右テーパ歯面122fと右歯面115cを繋ぐ歯面122af(以下、他方側右サブ歯面122afという)が、ギヤ抜け防止部120Fを構成する。   In this example, the torsion angle of the left tooth surface 115b is 0 degree, and the torsion angles of the other side left taper tooth surface 121f and the one side right taper tooth surface 121b are θf degrees. Further, the twist angle of the right tooth surface 115c is 0 degree, and the twist angle of the one side left taper tooth surface 122b and the other side right taper tooth surface 122f is θb degree. The other side left taper tooth surface 121f, the tooth surface 121af (hereinafter referred to as the other side left sub tooth surface 121af) connecting the other side left taper tooth surface 121f and the left tooth surface 115b, and the other side right taper tooth surface 122f and A tooth surface 122af (hereinafter referred to as the other side right sub tooth surface 122af) connecting the other side right tapered tooth surface 122f and the right tooth surface 115c constitutes a gear drop prevention portion 120F.
そして、一方側左テーパ歯面122b及びこの一方側左テーパ歯面122bと左歯面115bを繋ぐ歯面122ab(以下、一方側左サブ歯面122abという)、並びに一方側右テーパ歯面121b及びこの一方側右テーパ歯面121bと右歯面115cを繋ぐ歯面121ab(以下、一方側右サブ歯面121abという)が、ギヤ抜け防止部120Bを構成する。なお、ギヤ抜け防止は、他方側左テーパ歯面121fとギヤ抜け防止部117cとがテーパ嵌合することにより、また、一方側右テーパ歯面121bとギヤ抜け防止部117cとがテーパ嵌合することにより達成される。   The one-side left tapered tooth surface 122b, the tooth surface 122ab (hereinafter referred to as one-side left sub-tooth surface 122ab) connecting the one-side left tapered tooth surface 122b and the left tooth surface 115b, and the one-side right tapered tooth surface 121b A tooth surface 121ab (hereinafter referred to as one side right sub tooth surface 121ab) connecting the one side right tapered tooth surface 121b and the right tooth surface 115c constitutes the gear drop prevention portion 120B. In order to prevent gear disengagement, the other side left tapered tooth surface 121f and the gear disengagement prevention portion 117c are taper fitted, and the one side right taper tooth surface 121b and the gear disengagement prevention portion 117c are taper fitted. Is achieved.
このように、スリーブ115の内歯115aの構造は複雑であり、また、スリーブ115は大量生産が必要な部品であるため、一般的に、スリーブ115の内歯115aは、ブローチ加工やギヤシェーパ加工等により形成され、ギヤ抜け防止部120F,120Bは、ローリング加工(特許文献1,2参照)により形成される。しかし、ローリング加工は塑性加工であるため、ギヤ抜け防止部120F,120Bの加工精度は低くなる傾向にある。   As described above, the structure of the inner teeth 115a of the sleeve 115 is complicated, and the sleeve 115 is a component that requires mass production. Therefore, the inner teeth 115a of the sleeve 115 are generally formed by broaching, gear shaper processing, or the like. The gear drop prevention portions 120F and 120B are formed by rolling (see Patent Documents 1 and 2). However, since the rolling process is a plastic process, the processing accuracy of the gear drop prevention portions 120F and 120B tends to be low.
加工精度を高めるには、切削加工が望ましい。しかし、上述のように、ギヤ抜け防止部120B,120Fは、スリーブ115の内歯115aの回転軸線一方側Db及び回転軸線他方側Dfに設けられる。このため、歯車加工装置においては、回転軸線一方側Dbのギヤ抜け防止部120Bを加工するための加工用工具と、回転軸線他方側Dfのギヤ抜け防止部120Fを加工するための加工用工具とを工具交換し、さらに工具毎に位置合わせを行う必要がある。よって、加工時間が長く、また加工精度が低くなる傾向にある。   Cutting is desirable to increase the processing accuracy. However, as described above, the gear disengagement preventing portions 120B and 120F are provided on the rotation axis one side Db and the rotation axis other side Df of the inner teeth 115a of the sleeve 115. For this reason, in the gear machining apparatus, a machining tool for machining the gear loss prevention portion 120B on the one side Db of the rotation axis, and a machining tool for machining the gear loss prevention portion 120F on the other side Df of the rotation axis It is necessary to change the tool and align the position of each tool. Therefore, the processing time tends to be long and the processing accuracy tends to be low.
特許文献3,4には、2つの刃を備える加工用工具が記載されているが、一方の刃は荒加工用であり、他方の刃は仕上げ加工用であるため、1つの当該加工用工具で上述の構成のギヤ抜け防止部120B,120Fを加工することはできない。また、特許文献5には、加工用工具を前進及び後退させてそれぞれ加工を行うことが記載されているが、同一の歯に対して加工を行うものであり、1つの当該加工用工具で上述の構成の2つのギヤ抜け防止部120B,120Fを加工することはできない。   Patent Documents 3 and 4 describe a machining tool having two blades, but one of the blades is for rough machining and the other blade is for finishing machining. Thus, the gear drop prevention portions 120B and 120F configured as described above cannot be processed. Further, Patent Document 5 describes that machining is performed by moving the machining tool forward and backward, but machining is performed on the same tooth. The two gear drop prevention portions 120B and 120F configured as described above cannot be processed.
実開平6−61340号公報Japanese Utility Model Publication No. 6-61340 特開2005−152940号公報JP 2005-152940 A 特開2015−217485号公報Japanese Patent Laying-Open No. 2015-217485 特開2004−160645号公報JP 2004-160645 A 特開2014−172112号公報JP 2014-172112 A
上述のように、歯車加工装置においては、回転軸線一方側Dbのギヤ抜け防止部120Bを加工するための加工用工具と、回転軸線他方側Dfのギヤ抜け防止部120Fを加工するための加工用工具とを工具交換し、さらに工具毎に位置合わせを行う必要がある。よって、加工時間が長く、また加工精度が低くなる傾向にある。   As described above, in the gear machining apparatus, a machining tool for machining the gear drop prevention portion 120B on the rotation axis one side Db and a machining tool for machining the gear drop prevention portion 120F on the rotation axis other side Df. It is necessary to replace the tool with the tool and to perform alignment for each tool. Therefore, the processing time tends to be long and the processing accuracy tends to be low.
本発明は、このような事情に鑑みてなされたものであり、歯車の回転軸線方向の一方側及び他方側にそれぞれ設けられるねじれ角が異なる歯面を高効率且つ高精度に加工できる歯車加工装置及び歯車加工方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a gear machining apparatus capable of machining a tooth surface having different torsion angles provided on one side and the other side in the rotation axis direction of a gear with high efficiency and high accuracy. And a gear machining method.
本発明の歯車加工装置は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動操作して歯車を加工する歯車加工装置であって、前記歯車の歯の側面は、主となる歯面に対しねじれ角が異なる複数の従となる歯面を、前記側面における前記加工物の回転軸線方向の一方側及び他方側にそれぞれ有し、前記加工用工具は、すくい面が前記加工用工具の回転軸線方向の一方側を向く第一工具刃と、すくい面が前記加工用工具の回転軸線方向の他方側を向く第二工具刃とを有し、前記第一工具刃は、前記加工用工具を前記加工物の回転軸線方向の他方側に相対的に移動操作させて、前記加工物の回転軸線方向の他方側に設けられる前記従となる歯面を加工する場合に用いられ、前記第二工具刃は、前記加工用工具を前記加工物の回転軸線方向の一方側に相対的に移動操作させて、前記加工物の回転軸線方向の一方側に設けられる前記従となる歯面を加工する場合に用いられる。   A gear machining apparatus according to the present invention uses a machining tool having a rotation axis inclined with respect to a rotation axis of a workpiece, and relatively rotates the machining tool in a rotation axis direction of the workpiece while rotating the machining tool synchronously with the workpiece. A gear machining apparatus for machining a gear by moving to a tooth side of the gear, wherein the side surface of the gear has a plurality of slave tooth surfaces having different torsion angles with respect to a main tooth surface, and the workpiece on the side surface. The machining tool has a first tool blade whose rake face faces one side in the rotation axis direction of the machining tool, and the rake face is the machining tool. A second tool blade facing the other side in the rotation axis direction of the first tool blade, the first tool blade is operated to move the processing tool relative to the other side in the rotation axis direction of the workpiece, The slave provided on the other side of the workpiece in the rotation axis direction. The second tool blade moves the machining tool relative to one side in the rotational axis direction of the workpiece, and moves the second tool blade in the rotational axis direction of the workpiece. It is used when machining the slave tooth surface provided on one side.
これにより、歯車加工装置は、1つの加工用工具で加工物の両端面側にそれぞれねじれ角が異なる複数の歯面を形成できるので、従来必要であった2つの加工用工具の工具交換や位置合わせを行う必要はなく、加工効率を向上でき、加工精度を高めることができる。   As a result, the gear machining apparatus can form a plurality of tooth surfaces with different torsion angles on the both end surfaces of the workpiece with one machining tool. There is no need to perform alignment, the processing efficiency can be improved, and the processing accuracy can be increased.
本発明の歯車加工方法は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具で歯車を切削加工する歯車加工方法であって、前記歯車の歯の側面は、主となる歯面に対しねじれ角が異なる複数の従となる歯面を、前記側面における歯車の回転軸線方向の一方側及び他方側にそれぞれ有し、前記加工用工具は、すくい面が前記加工用工具の回転軸線方向の一方側を向く第一工具刃と、すくい面が前記加工用工具の回転軸線方向の他方側を向く第二工具刃とを有し、前記歯車加工方法は、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向の他方側にて当該回転軸線方向に相対的に移動操作して、前記加工物の回転軸線方向の他方側に設けられる前記従となる歯面を前記第一工具刃で加工する第一工程と、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向の一方側にて当該回転軸線方向に相対的に移動操作して、前記加工物の回転軸線方向の一方側に設けられる前記従となる歯面を前記第二工具刃で加工する第二工程と、を備える。これにより、上述した歯車加工装置における効果と同様の効果を奏する。   The gear machining method of the present invention is a gear machining method for cutting a gear with a machining tool having a rotation axis that is inclined with respect to the rotation axis of the workpiece, and the side surfaces of the gear teeth are the main tooth surfaces. A plurality of slave tooth surfaces having different torsion angles on one side and the other side in the rotational axis direction of the gear on the side surface, and the rake surface of the machining tool is the rotational axis of the machining tool. A first tool blade that faces one side of the direction, and a second tool blade whose rake face faces the other side in the rotational axis direction of the machining tool, and the gear machining method includes: The slave tooth surface provided on the other side in the rotation axis direction of the workpiece by performing a relative movement operation in the rotation axis direction on the other side in the rotation axis direction of the workpiece while synchronously rotating with the workpiece. The first step of machining with the first tool blade, Provided on one side of the workpiece in the direction of the rotation axis by moving the tool for rotation relative to the direction of the axis of rotation of the workpiece while rotating the tool in synchronization with the workpiece. A second step of machining the slave tooth surface with the second tool blade. Thereby, there exists an effect similar to the effect in the gear processing apparatus mentioned above.
本発明の実施の形態に係る歯車加工装置の全体構成を示す図である。It is a figure which shows the whole structure of the gear processing apparatus which concerns on embodiment of this invention. 図1の制御装置による工具設計処理を説明するためのフローチャートである。It is a flowchart for demonstrating the tool design process by the control apparatus of FIG. 図1の制御装置による工具状態設定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the tool state setting process by the control apparatus of FIG. 図1の制御装置による加工制御処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process control processing by the control apparatus of FIG. 図1の制御装置による加工制御処理を説明するための図4Aのフローの続きを示すフローチャートである。It is a flowchart which shows the continuation of the flow of FIG. 4A for demonstrating the process control process by the control apparatus of FIG. 加工用工具の概略構成を工具端面側から回転軸線方向に見た図である。It is the figure which looked at schematic structure of the processing tool from the tool end surface side in the direction of a rotation axis. 図5Aの加工用工具の概略構成を径方向に見た一部断面図である。FIG. 5B is a partial cross-sectional view of the schematic configuration of the processing tool in FIG. 5A viewed in the radial direction. 図5Bの加工用工具の工具刃の拡大図である。It is an enlarged view of the tool blade of the processing tool of FIG. 5B. 加工用工具を構成するカラーを示す斜視図である。It is a perspective view which shows the color | collar which comprises the processing tool. 加工用工具を工具ホルダ及び回転主軸に組み付けた状態を示す図である。It is a figure which shows the state which assembled | attached the tool for a process on the tool holder and the rotating main shaft. 加工用工具の第一工具を設計する際の加工用工具と加工物との寸法関係を示す第一の図である。It is a 1st figure which shows the dimensional relationship between the tool for a process at the time of designing the 1st tool of the tool for a process, and a workpiece. 加工用工具の第一工具を設計する際の加工用工具と加工物との位置関係を示す第一の図である。It is a 1st figure which shows the positional relationship of the tool for a process at the time of designing the 1st tool of the tool for a process, and a workpiece. 加工用工具の第一工具を設計する際の加工用工具と加工物との寸法関係を示す第二の図である。It is a 2nd figure which shows the dimensional relationship between the tool for a process at the time of designing the 1st tool of the tool for a process, and a workpiece. 加工用工具の第一工具を設計する際の加工用工具と加工物との位置関係を示す第二の図である。It is a 2nd figure which shows the positional relationship of the tool for a process at the time of designing the 1st tool of the tool for a process, and a workpiece. 加工用工具の刃先幅及び刃厚を求める際に使用する加工用工具の各部位を示す図である。It is a figure which shows each site | part of the processing tool used when calculating | requiring the blade edge | tip width and blade thickness of a processing tool. 加工用工具の第一工具(第二工具)の概略構成を径方向に見た図である。It is the figure which looked at schematic structure of the 1st tool (2nd tool) of the tool for a process to radial direction. 加工用工具の回転軸線の方向の工具位置を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship of the tool for processing, and a workpiece when changing the tool position of the direction of the rotating shaft line of a tool for processing. 軸線方向位置を変更したときの加工状態を示す第一の図である。It is a 1st figure which shows the processing state when an axial direction position is changed. 軸線方向位置を変更したときの加工状態を示す第二の図である。It is a 2nd figure which shows the processing state when an axial direction position is changed. 軸線方向位置を変更したときの加工状態を示す第三の図である。It is a 3rd figure which shows the processing state when an axial direction position is changed. 加工物の回転軸線に対する加工用工具の回転軸線の傾斜を表す交差角を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship of the processing tool and a workpiece when changing the crossing angle showing the inclination of the rotation axis of the processing tool with respect to the rotation axis of a workpiece. 交差角を変更したときの加工状態を示す第一の図である。It is a 1st figure which shows the processing state when changing an intersection angle. 交差角を変更したときの加工状態を示す第二の図である。It is a 2nd figure which shows the processing state when changing an intersection angle. 交差角を変更したときの加工状態を示す第三の図である。It is a 3rd figure which shows the processing state when changing an intersection angle. 加工用工具の回転軸線方向位置及び交差角を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship of the tool for processing, and a workpiece when changing the rotation axis direction position and crossing angle of a tool for processing. 軸線方向位置及び交差角を変更したときの加工状態を示す第一の図である。It is a 1st figure which shows a processing state when an axial direction position and a crossing angle are changed. 軸線方向位置及び交差角を変更したときの加工状態を示す第二の図である。It is a 2nd figure which shows a processing state when an axial direction position and a crossing angle are changed. 他方側左テーパ歯面を加工する前の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for processing before processing the other side left taper tooth surface in the diameter direction. 他方側左テーパ歯面を加工するときの加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for a process when processing the other side left taper tooth surface in the radial direction. 他方側左テーパ歯面を加工した後の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for processing after processing the other side left taper tooth surface in the diameter direction. 加工用工具の第二工具を設計する際の加工用工具と加工物との寸法関係を示す第二の図である。It is a 2nd figure which shows the dimensional relationship between the tool for a process at the time of designing the 2nd tool of the tool for a process, and a workpiece. 加工用工具の第二工具を設計する際の加工用工具と加工物との位置関係を示す第二の図である。It is a 2nd figure which shows the positional relationship of the tool for a process at the time of designing the 2nd tool of the tool for a process, and a workpiece. 一方側左テーパ歯面を加工する前の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for processing before processing one side left taper tooth surface in the diameter direction. 一方側左テーパ歯面を加工するときの加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for processing when processing one side left taper tooth surface in the diameter direction. 一方側左テーパ歯面を加工した後の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the tool for processing after processing one side left taper tooth surface in the diameter direction. 加工物であるスリーブを有するシンクロメッシュ機構を示す断面図である。It is sectional drawing which shows the synchromesh mechanism which has the sleeve which is a workpiece. 図17のシンクロメッシュ機構の作動開始前の状態を示す断面図である。It is sectional drawing which shows the state before the operation | movement start of the synchromesh mechanism of FIG. 図17のシンクロメッシュ機構の作動中の状態を示す断面図である。FIG. 18 is a cross-sectional view showing a state during operation of the synchromesh mechanism of FIG. 17. 図16のシンクロメッシュ機構の作動完了後の状態を示す断面図である。It is sectional drawing which shows the state after the completion | finish of operation | movement of the synchromesh mechanism of FIG. 加工物であるスリーブのギヤ抜け防止部を示す斜視図である。It is a perspective view which shows the gear omission prevention part of the sleeve which is a workpiece. 図18のスリーブのギヤ抜け防止部を径方向から見た図である。It is the figure which looked at the gear omission prevention part of the sleeve of FIG. 18 from radial direction.
(1.歯車加工装置の機械構成)
本実施形態では、歯車加工装置の一例として、5軸マシニングセンタを例に挙げ、図1を参照して説明する。つまり、当該歯車加工装置1は、駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)及び2つの回転軸(X軸線に平行なA軸、A軸線に直角なC軸)を有する装置である。
(1. Machine configuration of gear processing device)
In the present embodiment, a five-axis machining center will be described as an example of a gear machining apparatus and will be described with reference to FIG. That is, the gear machining apparatus 1 has three linear axes (X, Y, Z axes) orthogonal to each other and two rotation axes (A axis parallel to the X axis, C axis perpendicular to the A axis as drive axes. ).
ここで、背景技術で述べたように、ギヤ抜け防止部120B,120Fは、ブローチ加工やギヤシェーパ加工等により形成されたスリーブ115の内歯115aに対し、2つの加工用工具で切削加工を行うことで形成されるため、工具交換及び工具毎の位置合わせが必要となり、加工時間が長く、また加工精度が低くなる傾向にある。そこで、上述の歯車加工装置1では、先ず、ブローチ加工やギヤシェーパ加工等によりスリーブ115の内歯115aを形成し、次に、後述する2つの工具刃(第一工具刃42af,第二工具刃42ab(図5B参照))を有する1つの加工用工具42による切削加工でスリーブ115の内歯115aに対しギヤ抜け防止部120F,120Bをそれぞれ形成する。   Here, as described in the background art, the gear drop prevention portions 120B and 120F cut the inner teeth 115a of the sleeve 115 formed by broaching or gear shaper processing with two processing tools. Therefore, it is necessary to change tools and align each tool, and the machining time tends to be long and the machining accuracy tends to be low. Therefore, in the gear machining apparatus 1 described above, first, the inner teeth 115a of the sleeve 115 are formed by broaching or gear shaper machining, and then two tool blades (first tool blade 42af, second tool blade 42ab described later) are formed. (See FIG. 5B)), the gear disengagement prevention portions 120F and 120B are respectively formed on the inner teeth 115a of the sleeve 115.
すなわち、内歯115aが形成されたスリーブ115と加工用工具42とを同期回転させ、加工用工具42の第一工具刃42afを回転軸線他方側Dfから回転軸線一方側Dbに加工物Wの回転軸線Lw方向に送って切削加工することによりギヤ抜け防止部120Fを形成し、加工用工具42の第二工具刃42abを回転軸線一方側Dbから回転軸線他方側Dfに加工物Wの回転軸線Lw方向に送って切削加工することによりギヤ抜け防止部120Bを形成する。これにより、工具交換及び工具毎の位置合わせが不要となり、ギヤ抜け防止部120F,120Bの加工時間を従来より短縮でき、ギヤ抜け防止部120F,120Bの加工精度を従来より向上できる(図19及び図20参照)。   That is, the sleeve 115 on which the inner teeth 115a are formed and the machining tool 42 are rotated synchronously, and the first tool blade 42af of the machining tool 42 is rotated from the rotation axis other side Df to the rotation axis one side Db. The gear drop prevention portion 120F is formed by cutting in the direction of the axis Lw, and the second tool blade 42ab of the machining tool 42 is rotated from the rotation axis one side Db to the rotation axis other side Df. The gear drop prevention portion 120B is formed by cutting in the direction. This eliminates the need for tool replacement and positioning for each tool, shortens the machining time of the gear loss prevention portions 120F and 120B, and improves the machining accuracy of the gear loss prevention portions 120F and 120B as compared to the conventional technology (see FIG. 19 and FIG. 19). FIG. 20).
図1に示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、加工物保持具80と、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられる。   As shown in FIG. 1, the gear machining apparatus 1 includes a bed 10, a column 20, a saddle 30, a rotation spindle 40, a table 50, a tilt table 60, a turntable 70, and a workpiece holder 80. And the control device 100 and the like. Although not shown, a known automatic tool changer is provided along with the bed 10.
ベッド10は、ほぼ矩形状からなり、床上に配置される。このベッド10の上面には、コラム20をX軸線に平行な方向に駆動するための、図略のX軸ボールねじが配置される。そして、ベッド10には、X軸ボールねじを回転駆動するX軸モータ11cが配置される。   The bed 10 has a substantially rectangular shape and is disposed on the floor. An unillustrated X-axis ball screw for driving the column 20 in a direction parallel to the X-axis line is disposed on the upper surface of the bed 10. The bed 10 is provided with an X-axis motor 11c that rotationally drives the X-axis ball screw.
コラム20のY軸線に平行な側面(摺動面)20aには、サドル30をY軸線に平行な方向に駆動するための、図略のY軸ボールねじが配置される。そして、コラム20には、Y軸ボールねじを回転駆動するY軸モータ23cが配置される。   An unillustrated Y-axis ball screw for driving the saddle 30 in a direction parallel to the Y-axis is disposed on a side surface (sliding surface) 20a parallel to the Y-axis of the column 20. The column 20 is provided with a Y-axis motor 23c that rotates the Y-axis ball screw.
回転主軸40は、加工用工具42を支持し、サドル30内に回転可能に支持され、サドル30内に収容された主軸モータ41により回転される。加工用工具42は、図略の工具ホルダに保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20及びサドル30の移動に伴ってベッド10に対してX軸線に平行な方向及びY軸線に平行な方向に移動する。なお、加工用工具42の詳細は後述する。   The rotation spindle 40 supports a machining tool 42, is rotatably supported in the saddle 30, and is rotated by a spindle motor 41 accommodated in the saddle 30. The machining tool 42 is held by a tool holder (not shown) and fixed to the tip of the rotation main shaft 40, and rotates along with the rotation of the rotation main shaft 40. Further, the machining tool 42 moves in the direction parallel to the X axis and the direction parallel to the Y axis with respect to the bed 10 as the column 20 and the saddle 30 move. Details of the machining tool 42 will be described later.
さらに、ベッド10の上面には、テーブル50をZ軸線に平行な方向に駆動するための、図略のZ軸ボールねじが配置される。そして、ベッド10には、Z軸ボールねじを回転駆動するZ軸モータ12cが配置される。   Further, a Z-axis ball screw (not shown) for driving the table 50 in a direction parallel to the Z-axis line is disposed on the upper surface of the bed 10. The bed 10 is provided with a Z-axis motor 12c that rotationally drives the Z-axis ball screw.
テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられる。そして、チルトテーブル支持部63には、チルトテーブル60がA軸線に平行な軸線回りで回転(揺動)可能に設けられる。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。   A tilt table support portion 63 that supports the tilt table 60 is provided on the upper surface of the table 50. The tilt table support portion 63 is provided with a tilt table 60 that can rotate (swing) about an axis parallel to the A axis. The tilt table 60 is rotated (swinged) by an A-axis motor 61 housed in the table 50.
チルトテーブル60には、ターンテーブル70がC軸線に平行な軸線回りで回転可能に設けられる。ターンテーブル70には、加工物としてスリーブ115を保持する加工物保持具80が装着される。ターンテーブル70は、スリーブ115及び加工物保持具80とともにC軸モータ62により回転される。   The tilt table 60 is provided with a turntable 70 that is rotatable about an axis parallel to the C axis. A workpiece holder 80 that holds a sleeve 115 as a workpiece is attached to the turntable 70. The turntable 70 is rotated by the C-axis motor 62 together with the sleeve 115 and the workpiece holder 80.
制御装置100は、加工制御部101と、工具設計部102と、工具状態演算部103と、記憶部104等とを備える。ここで、加工制御部101、工具設計部102、工具状態演算部103及び記憶部104は、それぞれ個別のハードウエアにより構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。   The control device 100 includes a machining control unit 101, a tool design unit 102, a tool state calculation unit 103, a storage unit 104, and the like. Here, the machining control unit 101, the tool design unit 102, the tool state calculation unit 103, and the storage unit 104 may be configured by individual hardware, or may be configured by software.
加工制御部101は、主軸モータ41を制御して、加工用工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61及びC軸モータ62を制御して、スリーブ115と加工用工具42とをX軸線に平行な方向、Z軸線に平行な方向、Y軸線に平行な方向、A軸線に平行な軸線回り及びC軸線に平行な軸線回りに相対移動することにより、スリーブ115の切削加工を行う。   The machining control unit 101 controls the spindle motor 41 to rotate the machining tool 42 and controls the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62. The sleeve 115 and the machining tool 42 are relatively moved in a direction parallel to the X axis, a direction parallel to the Z axis, a direction parallel to the Y axis, an axis parallel to the A axis, and an axis parallel to the C axis. As a result, the sleeve 115 is cut.
工具設計部102は、詳細は後述するが、加工用工具42の第一工具刃42af及び第二工具刃42abのねじれ角β、本例では第一工具刃42af及び第二工具刃42abは同一形状であり同一ねじれ角β(図5C参照)等を求めて加工用工具42を設計する。詳細は後述するが、加工用工具42は、第一工具刃42afを有する第一工具42F及び第一工具42Fと同一形状の第二工具刃42abを有する第二工具42Bを一体化して構成される。
工具状態演算部103は、詳細は後述するが、スリーブ115に対する加工用工具42の相対的な位置及び姿勢である工具状態を演算する。
The tool design unit 102 will be described in detail later, but the twist angle β of the first tool blade 42af and the second tool blade 42ab of the machining tool 42, in this example, the first tool blade 42af and the second tool blade 42ab have the same shape. The machining tool 42 is designed by obtaining the same helix angle β (see FIG. 5C) and the like. Although details will be described later, the processing tool 42 is configured by integrating a first tool 42F having a first tool blade 42af and a second tool 42B having a second tool blade 42ab having the same shape as the first tool 42F. .
The tool state calculation unit 103 calculates a tool state which is a relative position and posture of the machining tool 42 with respect to the sleeve 115, as will be described in detail later.
記憶部104には、第一工具42F及び第二工具42Bに関する工具データ、すなわち刃先円直径da、基準円直径d、刃末のたけha、モジュールm、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αa、及びスリーブ115の切削加工を行うための加工データは予め記憶される。また、記憶部104は、第一工具42F及び第二工具42Bを設計する際に入力される第一工具刃42af及び第二工具刃42abの刃数Z等を記憶し、また、工具設計部102で設計された第一工具42F及び第二工具42Bの形状データや工具状態演算部103で演算された工具状態を記憶する。   The storage unit 104 stores tool data relating to the first tool 42F and the second tool 42B, that is, the cutting edge circle diameter da, the reference circle diameter d, the blade edge ha, the module m, the dislocation coefficient λ, the pressure angle α, and the front pressure angle. αt, cutting edge pressure angle αa, and machining data for cutting the sleeve 115 are stored in advance. The storage unit 104 stores the number of blades Z of the first tool blade 42af and the second tool blade 42ab input when designing the first tool 42F and the second tool 42B, and the tool design unit 102. The shape data of the first tool 42F and the second tool 42B designed in the above and the tool state calculated by the tool state calculation unit 103 are stored.
(2.加工用工具)
図5A及び図5Bに示すように、加工用工具42は、第一工具42F、第二工具42B及び第一工具42Fと第二工具42Bに挟持されるカラー44を備え、本例では第一工具42F及び第二工具42Bは同一形状の工具である。加工用工具42は、第一工具42Fの第一工具刃42afのすくい面42cfが加工用工具42の工具軸線(回転軸線)L方向の一方側を向くように第一工具42Fを配置するとともに、第二工具42Bの第二工具刃42abのすくい面42cbが加工用工具42の工具軸線L方向の他方側を向くように第二工具42Bを配置し、第一工具42Fと第二工具42Bの間にカラー44を配置した構成となっている。
(2. Machining tools)
As shown in FIGS. 5A and 5B, the machining tool 42 includes a first tool 42F, a second tool 42B, and a collar 44 sandwiched between the first tool 42F and the second tool 42B. 42F and the second tool 42B are tools having the same shape. The machining tool 42 is arranged with the first tool 42F so that the rake face 42cf of the first tool blade 42af of the first tool 42F faces one side in the tool axis (rotation axis) L direction of the machining tool 42, The second tool 42B is arranged so that the rake face 42cb of the second tool blade 42ab of the second tool 42B faces the other side in the tool axis L direction of the machining tool 42, and between the first tool 42F and the second tool 42B. In this configuration, the collar 44 is arranged.
図5Aに示すように、加工用工具42を第一工具42Fの工具端面42M側から工具軸線L方向に見たときの第一工具刃42af(第二工具刃42ab)の形状は、本例ではインボリュート曲線形状と同一形状に形成される。そして、図5Bに示すように、第一工具42Fの第一工具刃42af及び第二工具42Bの第二工具刃42abには、工具端面42M側に工具軸線Lと直角な平面に対し、角度γ傾斜したすくい角が設けられ、工具周面42N側に工具軸線Lと平行な直線に対し、角度δ傾斜した前逃げ角が設けられる。そして、図5Cに示すように、第一工具刃42af(第二工具刃42ab)の刃すじ42bf(42bb)は、工具軸線Lと平行な直線に対し、角度β傾斜したねじれ角を有する。   As shown in FIG. 5A, the shape of the first tool blade 42af (second tool blade 42ab) when the processing tool 42 is viewed in the tool axis L direction from the tool end surface 42M side of the first tool 42F is, in this example, It is formed in the same shape as the involute curve shape. 5B, the first tool blade 42af of the first tool 42F and the second tool blade 42ab of the second tool 42B have an angle γ with respect to a plane perpendicular to the tool axis L on the tool end surface 42M side. An inclined rake angle is provided, and a front clearance angle inclined by an angle δ with respect to a straight line parallel to the tool axis L is provided on the tool peripheral surface 42N side. As shown in FIG. 5C, the blade stripe 42bf (42bb) of the first tool blade 42af (second tool blade 42ab) has a twist angle inclined by an angle β with respect to a straight line parallel to the tool axis L.
図6に示すように、カラー44は、円筒状に形成され、カラー44の両端面には、180度間隔で径方向に延びる直方体状の回り止め用の2つのキー44aがそれぞれ設けられる。図7に示すように、加工用工具42を工具ホルダ45に組み付けるときは、先ず、工具ホルダ45の先端側の工具取付軸45aに、第二工具42Bを第二工具刃42abが工具ホルダ45の本体45b側を向くように挿入し、次にカラー44を挿入する。   As shown in FIG. 6, the collar 44 is formed in a cylindrical shape, and two rectangular parallelepiped anti-rotation keys 44 a extending in the radial direction at intervals of 180 degrees are provided on both end faces of the collar 44. As shown in FIG. 7, when the machining tool 42 is assembled to the tool holder 45, first, the second tool 42 B is attached to the tool mounting shaft 45 a on the tip side of the tool holder 45, and the second tool blade 42 ab is attached to the tool holder 45. It is inserted so as to face the main body 45b side, and then the collar 44 is inserted.
次に、第一工具42Fを第一工具刃42afが工具取付軸45aの先端側(外側)を向くように挿入し、最後に工具取付軸45aの先端に設けられるねじ穴45cにワッシャ付きボルト45dを締結する。このとき、カラー44の各キー44aは、第一工具42Fの軸部42dfに設けられるキー溝42ef及び第二工具42Bの軸部42dbに設けられるキー溝42ebに嵌め込まれる。これにより、第一工具42Fの第一工具刃42af及び第二工具42Bの第二工具刃42abは、同位相で回転可能となる。   Next, the first tool 42F is inserted so that the first tool blade 42af faces the tip side (outside) of the tool mounting shaft 45a, and finally a bolt 45d with a washer is inserted into a screw hole 45c provided at the tip of the tool mounting shaft 45a. Conclude. At this time, each key 44a of the collar 44 is fitted into a key groove 42ef provided in the shaft portion 42df of the first tool 42F and a key groove 42eb provided in the shaft portion 42db of the second tool 42B. Thereby, the first tool blade 42af of the first tool 42F and the second tool blade 42ab of the second tool 42B can be rotated in the same phase.
加工用工具42が取り付けられた工具ホルダ45は、自動工具交換装置の工具ストッカに格納され、加工開始前に自動工具交換装置の工具交換アームで工具ストッカから取り出されて回転主軸40に取り付けられる。このとき、工具ホルダ45に設けられるキー45eは、回転主軸40に設けられるキー溝40aに嵌め込まれる。工具ホルダ45のキー45eと回転主軸40のキー溝40aとの間にはガタがあるが、工具交換アームで加工用工具42が取り付けられた工具ホルダ45を保持したまま回転主軸40を回転させることで、上記ガタが詰まって加工用工具42の回転主軸40に対する回転位相が設定される。その後、回転主軸40において工具ホルダ45をクランプし、工具交換アームによる工具ホルダ45の保持を解除する。   The tool holder 45 to which the machining tool 42 is attached is stored in the tool stocker of the automatic tool changer, and is taken out of the tool stocker by the tool changer arm of the automatic tool changer and attached to the rotary spindle 40 before starting the machining. At this time, the key 45e provided in the tool holder 45 is fitted into the key groove 40a provided in the rotation main shaft 40. There is play between the key 45e of the tool holder 45 and the key groove 40a of the rotary spindle 40, but the rotary spindle 40 is rotated while holding the tool holder 45 to which the machining tool 42 is attached by the tool changing arm. Thus, the play is clogged and the rotation phase of the machining tool 42 relative to the rotation spindle 40 is set. Thereafter, the tool holder 45 is clamped on the rotary spindle 40, and the holding of the tool holder 45 by the tool changing arm is released.
ここで、第一工具42F(第二工具42B)でねじれ角が異なる他方側左テーパ歯面121f(一方側右テーパ歯面121b)及び他方側右テーパ歯面122f(一方側左テーパ歯面122b)を切削加工する場合、第一工具刃42af(第二工具刃42ab)の左刃面と右刃面のねじれ角が異なる加工用工具42を用いる方法と、第一工具刃42af(第二工具刃42ab)の左刃面と右刃面のねじれ角が同一の加工用工具42を用いる方法が考えられる。   Here, the other side left taper tooth surface 121f (one side right taper tooth surface 121b) and the other side right taper tooth surface 122f (one side left taper tooth surface 122b) having different twist angles in the first tool 42F (second tool 42B). ), The first tool blade 42af (second tool blade 42ab) and the first tool blade 42af (second tool blade 42ab) It is conceivable to use a machining tool 42 in which the left and right blade surfaces of the blade 42ab) have the same twist angle.
本例では、第一工具刃42af(第二工具刃42ab)の左刃面と右刃面のねじれ角が同一の加工用工具42を用いて切削加工する場合を説明する。この場合、他方側左テーパ歯面121f(一方側右テーパ歯面121b)を切削加工するときの第一工具42F(第二工具42B)の交差角φfと、他方側右テーパ歯面122f(一方側左テーパ歯面122b)を切削加工するときの第一工具42F(第二工具42B)の交差角φbを異ならせる必要がある。以下では、第一工具42Fを設計する場合について説明するが、第二工具42Bを設計する場合も同様であるので、詳細な説明は省略する。   In this example, a case will be described in which the first tool blade 42af (second tool blade 42ab) is cut using the machining tool 42 having the same helix angle between the left blade surface and the right blade surface. In this case, the crossing angle φf of the first tool 42F (second tool 42B) when cutting the other side left tapered tooth surface 121f (one side right tapered tooth surface 121b) and the other side right tapered tooth surface 122f (one side). It is necessary to make the crossing angle φb of the first tool 42F (second tool 42B) different when cutting the side left tapered tooth surface 122b). Hereinafter, the case where the first tool 42F is designed will be described, but the same applies to the case where the second tool 42B is designed, and detailed description thereof will be omitted.
上述のように、スリーブ115の他方側左テーパ歯面121fは、既に形成されたスリーブ115の内歯115aに対し、第一工具42Fで切削加工を行うことで形成される。このため、第一工具42Fの第一工具刃42afは、内歯115aを切削加工中に隣り合う内歯115aに干渉せずに、他方側左サブ歯面121afを含む他方側左テーパ歯面121fを確実に切削加工できる形状にすることが必要となる。   As described above, the other-side left tapered tooth surface 121f of the sleeve 115 is formed by cutting the already-formed inner teeth 115a of the sleeve 115 with the first tool 42F. For this reason, the first tool blade 42af of the first tool 42F does not interfere with the adjacent inner teeth 115a during the cutting process of the inner teeth 115a, and the other side left tapered tooth surface 121f including the other side left sub tooth surface 121af. It is necessary to make the shape that can be reliably cut.
具体的には、図8Aに示すように、第一工具刃42afが、他方側左テーパ歯面121fの歯すじ長ff分だけ切削したとき、第一工具刃42afの刃先幅Saが、他方側左サブ歯面121afの歯すじ長gfより大きく、且つ第一工具刃42afの基準円Cb上の刃厚Ta(図9参照)が、他方側左テーパ歯面121fとこの他方側左テーパ歯面121fに対向する他方側右テーパ歯面122fの開放端部との距離Hf(以下、歯面間隔Hfという)より小さくなるように第一工具刃42afを設計することが必要となる。このとき、第一工具刃42afの耐久性、例えば欠損等も考慮して第一工具刃42afの刃先幅Sa及び第一工具刃42afの基準円Cb上の刃厚Taを設定する。   Specifically, as shown in FIG. 8A, when the first tool blade 42af is cut by the tooth length ff of the other side left tapered tooth surface 121f, the cutting edge width Sa of the first tool blade 42af is the other side. The tooth thickness Ta (see FIG. 9) on the reference circle Cb of the first tool blade 42af is larger than the tooth length gf of the left sub tooth surface 121af, and the other side left taper tooth surface 121f and the other side left taper tooth surface. It is necessary to design the first tool blade 42af to be smaller than a distance Hf (hereinafter referred to as a tooth surface interval Hf) from the open end portion of the other-side right tapered tooth surface 122f facing 121f. At this time, in consideration of durability of the first tool blade 42af, for example, a defect, the blade width Sa of the first tool blade 42af and the blade thickness Ta on the reference circle Cb of the first tool blade 42af are set.
この第一工具刃42afの設計には、図8Bに示すように、先ず、他方側左テーパ歯面121fのねじれ角θfと第一工具刃42afのねじれ角βとの差で表される交差角φf(以下、加工用工具42の交差角φfという)を設定する必要がある。他方側左テーパ歯面121fのねじれ角θfは、既知の値であり、加工用工具42の交差角φfは、歯車加工装置1によって設定可能範囲が設定されているので、作業者は任意の交差角φfを暫定的に設定する。   In designing the first tool blade 42af, as shown in FIG. 8B, first, the crossing angle represented by the difference between the twist angle θf of the other-side left tapered tooth surface 121f and the twist angle β of the first tool blade 42af. It is necessary to set φf (hereinafter referred to as a crossing angle φf of the machining tool 42). The twist angle θf of the other-side left tapered tooth surface 121f is a known value, and the intersecting angle φf of the machining tool 42 has a settable range set by the gear machining apparatus 1, so that the operator can arbitrarily cross The angle φf is provisionally set.
次に、既知の他方側左テーパ歯面121fのねじれ角θf及び設定した加工用工具42の交差角φfから第一工具刃42afのねじれ角βを求め、第一工具刃42afの刃先幅Sa及び第一工具刃42afの基準円Cb上の刃厚Taを求める。以上の処理を繰り返すことで、他方側左テーパ歯面121fを切削加工するための最適の第一工具刃42afを有する第一工具42Fを設計する。以下に、第一工具刃42afの刃先幅Sa及び第一工具刃42afの基準円Cb上の刃厚Taを求めるための演算例を説明する。   Next, the torsion angle β of the first tool blade 42af is obtained from the known twist angle θf of the other left tapered tooth surface 121f and the set crossing angle φf of the machining tool 42, and the cutting edge width Sa and the first tool blade 42af are determined. The blade thickness Ta on the reference circle Cb of the first tool blade 42af is obtained. By repeating the above processing, the first tool 42F having the optimal first tool blade 42af for cutting the other-side left tapered tooth surface 121f is designed. Below, the example of a calculation for calculating | requiring the blade edge | tip width Sa of the 1st tool blade 42af and the blade thickness Ta on the reference | standard circle Cb of the 1st tool blade 42af is demonstrated.
図9に示すように、第一工具刃42afの刃先幅Saは、刃先円直径da及び刃先円刃厚の半角Ψaで表される(式(1)参照)。   As shown in FIG. 9, the cutting edge width Sa of the first tool blade 42af is expressed by a cutting edge circle diameter da and a half angle Ψa of the cutting edge circular blade thickness (see Expression (1)).
刃先円直径daは、基準円直径d及び刃末のたけhaで表され(式(2)参照)、さらに、基準円直径dは、第一工具刃42afの刃数Z、第一工具刃42afの刃すじ42bfのねじれ角β及びモジュールmで表され(式(3)参照)、刃末のたけhaは、転位係数λ及びモジュールmで表される(式(4)参照)。   The cutting edge circle diameter da is represented by the reference circle diameter d and the edge ha of the blade edge (see formula (2)). Further, the reference circle diameter d is the number of blades Z of the first tool blade 42af, the first tool blade 42af. The twist angle β of the blade streak 42bf and the module m (see equation (3)), and the edge ha of the blade edge is represented by the dislocation coefficient λ and the module m (see equation (4)).
刃先円刃厚の半角Ψaは、第一工具刃42afの刃数Z、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αaで表される(式(5)参照)。なお、正面圧力角αtは、圧力角α及び第一工具刃42afの刃すじ42bfのねじれ角βで表すことができ(式(6)参照)、刃先圧力角αaは、正面圧力角αt、刃先円直径da及び基準円直径dで表すことができる(式(7)参照)。   The half angle ψa of the blade edge circular blade thickness is represented by the number Z of blades of the first tool blade 42af, the dislocation coefficient λ, the pressure angle α, the front pressure angle αt, and the blade edge pressure angle αa (see formula (5)). The front pressure angle αt can be represented by the pressure angle α and the torsion angle β of the blade 42bf of the first tool blade 42af (see formula (6)), and the blade edge pressure angle αa is the front pressure angle αt, the blade edge. It can be represented by a circle diameter da and a reference circle diameter d (see formula (7)).
また、第一工具刃42afの刃厚Taは、基準円直径d及び刃厚Taの半角Ψで表される(式(8)参照)。   Further, the blade thickness Ta of the first tool blade 42af is represented by a half angle ψ of the reference circle diameter d and the blade thickness Ta (see formula (8)).
基準円直径dは、第一工具刃42afの刃数Z、第一工具刃42afの刃すじ42bfのねじれ角β及びモジュールmで表される(式(9)参照)。   The reference circle diameter d is expressed by the number Z of blades of the first tool blade 42af, the twist angle β of the blade stripe 42bf of the first tool blade 42af, and the module m (see formula (9)).
刃厚Taの半角Ψは、第一工具刃42afの刃数Z、転位係数λ及び圧力角αで表される(式(10)参照)。   The half angle ψ of the blade thickness Ta is expressed by the number Z of blades of the first tool blade 42af, the dislocation coefficient λ, and the pressure angle α (see formula (10)).
以上により、図10に示すように、第一工具42Fは、工具端面42Mを図示下方に向けて工具軸線Lに直角な方向から見たとき、第一工具刃42afの刃すじ42bfは、左下方から右上方に傾斜するねじれ角βを有するように設計される。以上の第一工具42F及び第二工具42Bの設計は、制御装置100の工具設計部102において行われるものであり、その処理の詳細は後述する。   Thus, as shown in FIG. 10, when the first tool 42F is viewed from the direction perpendicular to the tool axis L with the tool end surface 42M facing downward in the drawing, the blade stripe 42bf of the first tool blade 42af is It is designed to have a torsion angle β inclined upward to the right. The design of the first tool 42F and the second tool 42B described above is performed in the tool design unit 102 of the control device 100, and details of the processing will be described later.
(3.歯車加工装置における加工用工具の工具状態)
次に、設計した加工用工具42を歯車加工装置1に適用し、加工用工具42の工具状態として加工用工具42の工具軸線Lの方向の工具位置(以下、加工用工具42の軸線方向位置という)や加工用工具42の交差角φfを変化させて、他方側左テーパ歯面121fを切削加工したときの加工精度について検討する。なお、他方側右テーパ歯面122fを切削加工したときの加工精度も同様であるので、詳細な説明は省略する。
(3. Tool status of machining tools in gear machining equipment)
Next, the designed machining tool 42 is applied to the gear machining apparatus 1, and the tool position in the direction of the tool axis L of the machining tool 42 (hereinafter referred to as the axial position of the machining tool 42) as the tool state of the machining tool 42. The machining accuracy when the other left tapered tooth surface 121f is cut by changing the crossing angle φf of the machining tool 42 will be examined. In addition, since the processing accuracy when the other-side right tapered tooth surface 122f is cut is the same, detailed description is omitted.
例えば、図11Aに示すように、加工用工具42の軸線方向位置、すなわち加工用工具42の工具端面42Mと工具軸線Lとの交点Pが、スリーブ115の回転軸線Lw上に位置する場合(オフセット量0)、加工用工具42の工具軸線L方向に距離+dだけオフセットした場合(オフセット量+d)、及び加工用工具42の工具軸線L方向に距離−dだけオフセットした場合(オフセット量−d)で他方側左テーパ歯面121fを加工した。なお、加工用工具42の交差角φfは全て一定とした。   For example, as shown in FIG. 11A, when the axial position of the machining tool 42, that is, the intersection P between the tool end surface 42 </ b> M of the machining tool 42 and the tool axis L is located on the rotation axis Lw of the sleeve 115 (offset). 0), when offset by a distance + d in the tool axis L direction of the machining tool 42 (offset amount + d), and when offset by a distance -d in the tool axis L direction of the machining tool 42 (offset amount -d) The other side left taper tooth surface 121f was processed. The crossing angle φf of the machining tool 42 is all constant.
その結果、他方側左テーパ歯面121fの加工状態は、図11B、図11C、図11Dに示すようになった。なお、図中、太い実線Eは、設計上の他方側左テーパ歯面121fのインボリュート曲線を直線に変換して表したもので、ドット部分Dは、切削除去部分を表す。   As a result, the processing state of the other-side left tapered tooth surface 121f is as shown in FIGS. 11B, 11C, and 11D. In the drawing, a thick solid line E represents the design of the involute curve of the other left tapered tooth surface 121f converted into a straight line, and a dot portion D represents a cutting removal portion.
図11Bに示すように、オフセット量0では、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に近い形状で加工される。一方、図11Cに示すように、オフセット量+dでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれた形状で加工され、図11Dに示すように、オフセット量−dでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に対し、図示左方向(点線矢印方向)、すなわち反時計回りのピッチ円方向にずれた形状で加工される。よって、他方側左テーパ歯面121fの形状は、加工用工具42の工具軸線L方向位置を変更することにより、ピッチ円方向にずらすことができる。   As shown in FIG. 11B, when the offset amount is 0, the machined left taper tooth surface 121f is machined in a shape close to the designed involute curve. On the other hand, as shown in FIG. 11C, when the offset amount is + d, the processed left side taper tooth surface 121f is in the right direction (in the direction of the dotted line arrow) with respect to the designed involute curve, that is, in the clockwise pitch circle direction. 11D, with the offset amount −d, the processed left taper tooth surface 121f is processed in the left direction (in the direction of the dotted arrow) with respect to the design involute curve. That is, it is processed in a shape shifted in the counterclockwise pitch circle direction. Therefore, the shape of the other-side left tapered tooth surface 121f can be shifted in the pitch circle direction by changing the position in the tool axis L direction of the machining tool 42.
また、例えば、図12Aに示すように、加工用工具42の交差角が、角度φf、φb、φcの各場合で他方側左テーパ歯面121fを加工した。なお、各角度の大小関係は、φf>φb>φcである。その結果、他方側左テーパ歯面121fの加工状態は、図12B、図12C、図12Dに示すようになった。   For example, as shown in FIG. 12A, the left taper tooth surface 121f on the other side is machined when the crossing angle of the machining tool 42 is an angle φf, φb, or φc. Note that the magnitude relationship between the angles is φf> φb> φc. As a result, the machining state of the other-side left tapered tooth surface 121f is as shown in FIGS. 12B, 12C, and 12D.
図12Bに示すように、交差角φfでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に近い形状で加工される。一方、図12Cに示すように、交差角φbでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工され、図12Dに示すように、交差角φcでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)にさらに狭まり、歯元の幅がピッチ円方向(実線矢印方向)にさらに拡がった形状で加工される。よって、他方側左テーパ歯面121fの形状は、加工用工具42の交差角を変更することにより、歯先のピッチ円方向の幅及び歯元のピッチ円方向の幅を変更できる。   As shown in FIG. 12B, at the intersection angle φf, the machined left taper tooth surface 121f is machined in a shape close to the designed involute curve. On the other hand, as shown in FIG. 12C, at the crossing angle φb, the processed other-side left tapered tooth surface 121f has a tooth tip width narrower in the pitch circle direction (solid arrow direction) than the designed involute curve. As shown in FIG. 12D, the other side left taper tooth surface 121f is processed with a design involute curve at the crossing angle φc as shown in FIG. 12D. On the other hand, the tooth tip width is further narrowed in the pitch circle direction (solid arrow direction), and the tooth root width is further expanded in the pitch circle direction (solid arrow direction). Therefore, the shape of the other-side left tapered tooth surface 121f can change the width of the tooth tip in the pitch circle direction and the width of the tooth root in the pitch circle direction by changing the crossing angle of the machining tool 42.
また、例えば、図13Aに示すように、加工用工具42の軸線方向位置、すなわち加工用工具42の工具端面42Mと工具軸線Lとの交点Pが、スリーブ115の回転軸線Lw上に位置し(オフセット量0)、且つ加工用工具42の交差角が、φfの場合、及び加工用工具42の工具軸線L方向に距離+dだけオフセットし(オフセット量+d)、且つ交差角φbの場合で他方側左テーパ歯面121fを加工した。その結果、他方側左テーパ歯面121fの加工状態は、図13B、図13Cに示すようになった。   Further, for example, as shown in FIG. 13A, the axial position of the machining tool 42, that is, the intersection P between the tool end surface 42 </ b> M of the machining tool 42 and the tool axis L is located on the rotation axis Lw of the sleeve 115 ( The other side when the offset amount is 0) and the crossing angle of the machining tool 42 is φf, and when the machining tool 42 is offset by a distance + d in the tool axis L direction (offset amount + d) and the crossing angle φb The left tapered tooth surface 121f was processed. As a result, the machining state of the other-side left tapered tooth surface 121f is as shown in FIGS. 13B and 13C.
図13Bに示すように、オフセット量0且つ交差角φfでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に近い形状で加工される。一方、図13Cに示すように、オフセット量+d且つ交差角φbでは、加工された他方側左テーパ歯面121fは、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれ、且つ歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工される。よって、他方側左テーパ歯面121fの形状は、加工用工具42の軸線方向位置、及び加工用工具42の交差角を変更することにより、ピッチ円方向にずらし、歯先の周方向の幅及び歯元のピッチ円方向の幅を変更できる。   As shown in FIG. 13B, when the offset amount is 0 and the intersection angle φf, the processed other-side left tapered tooth surface 121f is processed in a shape close to the designed involute curve. On the other hand, as shown in FIG. 13C, at the offset amount + d and the crossing angle φb, the processed left-side tapered tooth surface 121f is in the right direction (in the direction of the dotted arrow), that is, clockwise with respect to the designed involute curve. , The tooth tip width is narrowed in the pitch circle direction (solid arrow direction), and the tooth root width is widened in the pitch circle direction (solid arrow direction). Therefore, the shape of the other-side left tapered tooth surface 121f is shifted in the pitch circle direction by changing the axial position of the machining tool 42 and the crossing angle of the machining tool 42, and the circumferential width of the tooth tip and The width of the pitch circle direction at the root can be changed.
以上により、加工用工具42は、歯車加工装置1においてオフセット量0且つ交差角φfでセットされることで、他方側左テーパ歯面121fを高精度に切削加工できる。加工用工具42の工具状態の設定は、制御装置100の工具状態演算部103において行われるものであり、その処理の詳細は後述する。   As described above, the machining tool 42 is set with the offset amount 0 and the intersection angle φf in the gear machining apparatus 1, so that the other-side left tapered tooth surface 121 f can be cut with high accuracy. The setting of the tool state of the machining tool 42 is performed in the tool state calculation unit 103 of the control device 100, and details of the processing will be described later.
(4.制御装置の工具設計部による処理)
次に、制御装置100の工具設計部102による第一工具42Fの設計処理について、図2、図8A、図8B、図8C及び図8Dを参照して説明する。なお、ギヤ抜け防止部120Fに関するデータ、すなわち他方側左テーパ歯面121fのねじれ角θf及び歯すじ長ff、他方側左サブ歯面121afの歯すじ長gf及び歯面間隔Hfと、他方側右テーパ歯面122fのねじれ角θb及び歯すじ長fr、他方側右サブ歯面122afの歯すじ長gr及び歯面間隔Hrは、記憶部104に予め記憶されているものとする。さらに、第一工具42Fに関するデータ、すなわち刃数Z、刃先円直径da、基準円直径d、刃末のたけha、モジュールm、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αaは記憶部104に予め記憶されているものとする。
(4. Processing by the tool design department of the control device)
Next, the design process of the first tool 42F by the tool design unit 102 of the control device 100 will be described with reference to FIGS. 2, 8A, 8B, 8C, and 8D. It should be noted that the data regarding the gear missing prevention portion 120F, that is, the twist angle θf and the tooth trace length ff of the other side left tapered tooth surface 121f, the tooth line length gf and the tooth surface interval Hf of the other side left sub tooth surface 121af, and the other side right It is assumed that the torsion angle θb and the tooth trace length fr of the tapered tooth surface 122f, the tooth trace length gr and the tooth surface interval Hr of the other right sub tooth surface 122af are stored in the storage unit 104 in advance. Further, data on the first tool 42F, that is, the number of blades Z, the cutting edge diameter da, the reference circular diameter d, the cutting edge ha, the module m, the dislocation coefficient λ, the pressure angle α, the front pressure angle αt, and the cutting edge pressure angle αa. Are stored in the storage unit 104 in advance.
制御装置100の工具設計部102は、記憶部104から他方側左テーパ歯面121fのねじれ角θfを読み込む(図2のステップS1)。そして、工具設計部102は、作業者により入力される他方側左テーパ歯面121fを切削加工するときの加工用工具42の交差角φfと、読み込んだ他方側左テーパ歯面121fのねじれ角θfとの差を、第一工具42Fの第一工具刃42afの刃すじ42bfのねじれ角βとして求める(図2のステップS2)。   The tool design unit 102 of the control device 100 reads the twist angle θf of the other-side left tapered tooth surface 121f from the storage unit 104 (step S1 in FIG. 2). Then, the tool design unit 102 inputs the crossing angle φf of the machining tool 42 when cutting the other side left tapered tooth surface 121f inputted by the operator and the twist angle θf of the read other side left tapered tooth surface 121f. Is obtained as the twist angle β of the blade stripe 42bf of the first tool blade 42af of the first tool 42F (step S2 in FIG. 2).
工具設計部102は、記憶部104から第一工具42Fの刃数Z等を読み込み、読み込んだ第一工具42Fの刃数Z等及び求めた第一工具刃42afの刃すじ42bfのねじれ角βに基づいて、第一工具刃42afの刃先幅Sa及び刃厚Taを求める(図2のステップS3)。そして、工具設計部102は、記憶部104から他方側左サブ歯面121afの歯すじ長gfを読み出し、求めた第一工具刃42afの刃先幅Saが他方側左サブ歯面121afの歯すじ長gfより大きいか否かを判断する(図2のステップS4)。   The tool design unit 102 reads the number of teeth Z and the like of the first tool 42F from the storage unit 104 and sets the read number Z and the like of the first tool 42F and the obtained twist angle β of the blade stripe 42bf of the first tool blade 42af. Based on this, the blade edge width Sa and the blade thickness Ta of the first tool blade 42af are obtained (step S3 in FIG. 2). Then, the tool design unit 102 reads the tooth stripe length gf of the other left sub tooth surface 121af from the storage unit 104, and the obtained blade edge width Sa of the first tool blade 42af is the tooth line length of the other left sub tooth surface 121af. It is determined whether it is larger than gf (step S4 in FIG. 2).
工具設計部102は、求めた第一工具刃42afの刃先幅Saが他方側左サブ歯面121afの歯すじ長gf以下のときは、ステップS2に戻って上述の処理を繰り返す。一方、求めた第一工具刃42afの刃先幅Saが他方側左サブ歯面121afの歯すじ長gfより大きくなったら、記憶部104から歯面間隔Hfを読み出し、求めた第一工具刃42afの刃厚Taが他方側左テーパ歯面121f側の歯面間隔Hfより小さいか否かを判断する(図2のステップS5)。   When the obtained cutting edge width Sa of the first tool blade 42af is equal to or less than the tooth length gf of the other left sub tooth surface 121af, the tool design unit 102 returns to step S2 and repeats the above-described processing. On the other hand, when the obtained cutting edge width Sa of the first tool blade 42af becomes larger than the tooth trace length gf of the other left sub tooth surface 121af, the tooth surface interval Hf is read from the storage unit 104, and the obtained first tool blade 42af is obtained. It is determined whether or not the blade thickness Ta is smaller than the tooth surface interval Hf on the other side left tapered tooth surface 121f side (step S5 in FIG. 2).
工具設計部102は、求めた第一工具刃42afの刃厚Taが他方側左テーパ歯面121f側の歯面間隔Hf以上のときは、ステップS2に戻って上述の処理を繰り返す。一方、工具設計部102は、求めた第一工具刃42afの刃厚Taが他方側左テーパ歯面121f側の歯面間隔Hfより小さくなったら、記憶部104から他方側右テーパ歯面122fのねじれ角θbを読み込む(図2のステップS6)。そして、工具設計部102は、ステップS2で求めた第一工具42Fの第一工具刃42afの刃すじ42bfのねじれ角βと、読み込んだ他方側右テーパ歯面122fのねじれ角θbとの差を、他方側右テーパ歯面122fを切削加工するときの加工用工具42の交差角φbとして求める(図2のステップS7)。   When the obtained blade thickness Ta of the first tool blade 42af is equal to or greater than the tooth surface interval Hf on the other side left tapered tooth surface 121f side, the tool design unit 102 returns to step S2 and repeats the above processing. On the other hand, when the obtained blade thickness Ta of the first tool blade 42af becomes smaller than the tooth surface interval Hf on the other side left tapered tooth surface 121f side, the tool design unit 102 determines from the storage unit 104 to the other side right tapered tooth surface 122f. The twist angle θb is read (step S6 in FIG. 2). Then, the tool design unit 102 calculates the difference between the twist angle β of the blade streaks 42bf of the first tool blade 42af of the first tool 42F obtained in step S2 and the twist angle θb of the read right taper tooth surface 122f on the other side. The crossing angle φb of the machining tool 42 when cutting the other-side right tapered tooth surface 122f is obtained (step S7 in FIG. 2).
工具設計部102は、記憶部104から他方側右サブ歯面122afの歯すじ長grを読み出し、ステップS33で求めた第一工具刃42afの刃先幅Saが他方側右サブ歯面122afの歯すじ長grより大きいか否かを判断する(図2のステップS8)。工具設計部102は、刃先幅Saが他方側右サブ歯面122afの歯すじ長gr以下のときは、ステップS2に戻って上述の処理を繰り返す。一方、刃先幅Saが他方側右サブ歯面122afの歯すじ長grより大きくなったら、記憶部104から歯面間隔Hrを読み出し、刃厚Taが他方側右テーパ歯面122f側の歯面間隔Hrより小さいか否かを判断する(図2のステップS9)。   The tool design unit 102 reads the tooth trace length gr of the other right sub tooth surface 122af from the storage unit 104, and the tooth edge width Sa of the first tool blade 42af obtained in step S33 is the tooth line of the other right sub tooth surface 122af. It is determined whether or not the length is greater than gr (step S8 in FIG. 2). The tool design unit 102 returns to step S2 and repeats the above-described processing when the cutting edge width Sa is equal to or smaller than the streak length gr of the other-side right sub tooth surface 122af. On the other hand, when the tooth edge width Sa becomes larger than the tooth trace length gr of the other side right sub tooth surface 122af, the tooth surface interval Hr is read from the storage unit 104, and the tooth thickness Ta is the tooth surface interval on the other side right taper tooth surface 122f side. It is determined whether it is smaller than Hr (step S9 in FIG. 2).
工具設計部102は、刃厚Taが他方側右テーパ歯面122f側の歯面間隔Hr以上のときは、ステップS2に戻って上述の処理を繰り返す。一方、刃厚Taが他方側右テーパ歯面122f側の歯面間隔Hrより小さくなったら、求めた第一工具刃42afの刃すじ42bfのねじれ角β等に基づいて、第一工具42Fの形状を決定し(図2のステップS10)、決定した第一工具42Fの形状データを記憶部104に記憶し(図2のステップS11)、全ての処理を終了する。以上により、最良の第一工具刃42afを有する第一工具42F(第二工具刃42abを有する第二工具42B)が設計される。   When the blade thickness Ta is equal to or greater than the tooth surface interval Hr on the other-side right tapered tooth surface 122f side, the tool design unit 102 returns to step S2 and repeats the above processing. On the other hand, when the blade thickness Ta becomes smaller than the tooth surface interval Hr on the other-side right tapered tooth surface 122f side, the shape of the first tool 42F is determined based on the obtained twist angle β of the blade stripe 42bf of the first tool blade 42af. (Step S10 in FIG. 2), the determined shape data of the first tool 42F is stored in the storage unit 104 (step S11 in FIG. 2), and all the processes are terminated. Thus, the first tool 42F having the best first tool blade 42af (the second tool 42B having the second tool blade 42ab) is designed.
(5.制御装置の工具状態演算部による処理)
次に、制御装置100の工具状態演算部103による処理について、図3を参照して説明する。この処理は、公知の歯車の創成理論に基づいて、第一工具42Fの第一工具刃42afの軌跡を演算するシミュレーション処理であるため、実加工は不要であり、低コスト化を図ることができる。
(5. Processing by the tool state calculation unit of the control device)
Next, processing by the tool state calculation unit 103 of the control device 100 will be described with reference to FIG. Since this process is a simulation process for calculating the trajectory of the first tool blade 42af of the first tool 42F based on a known gear generation theory, actual machining is unnecessary, and the cost can be reduced. .
制御装置100の工具状態演算部103は、記憶部104から他方側左テーパ歯面121fの切削加工を行うときの加工用工具42の軸線方向位置等の工具状態を読み込み(図3のステップS11)、シミュレーション回数nとして1回目であることを記憶部104に記憶し(図3のステップS12)、加工用工具42を読み込んだ工具状態に設定する(図3のステップS13)。   The tool state calculation unit 103 of the control device 100 reads the tool state such as the axial position of the machining tool 42 when cutting the other left tapered tooth surface 121f from the storage unit 104 (step S11 in FIG. 3). The first simulation number n is stored in the storage unit 104 (step S12 in FIG. 3), and the machining tool 42 is set to the read tool state (step S13 in FIG. 3).
そして、工具状態演算部103は、記憶部104から読み込んだ第一工具42Fの形状データに基づいて、他方側左テーパ歯面121fを加工するときの工具軌跡を求め(図3のステップS14)、加工後の他方側左テーパ歯面121fの形状を求める(図3のステップS15)。そして、工具状態演算部103は、求めた加工後の他方側左テーパ歯面121fの形状と、設計上の他方側左テーパ歯面121fの形状とを比較し、形状誤差を求めて記憶部104に記憶し(図3のステップS16)、シミュレーション回数nに1を加算する(図3のステップS17)。   And the tool state calculating part 103 calculates | requires the tool locus | trajectory when processing the other side left taper tooth surface 121f based on the shape data of the 1st tool 42F read from the memory | storage part 104 (step S14 of FIG. 3), The shape of the other side left tapered tooth surface 121f after processing is obtained (step S15 in FIG. 3). Then, the tool state calculation unit 103 compares the obtained shape of the other-side left tapered tooth surface 121f after machining with the designed shape of the other-side left tapered tooth surface 121f, obtains a shape error, and stores the storage unit 104. (Step S16 in FIG. 3), and 1 is added to the number of simulations n (step S17 in FIG. 3).
そして、工具状態演算部103は、シミュレーション回数nが予め設定した回数nnに達したか否かを判断し(図3のステップS18)、シミュレーション回数nが設定回数nnに達していないときは、加工用工具42の工具状態のうち例えば加工用工具42の軸線方向位置を変更し(図3のステップS19)、ステップS14に戻って上述の処理を繰り返す。一方、シミュレーション回数nが設定回数nnに達したときは、工具状態演算部103は、記憶した形状誤差のうち最小の誤差となる加工用工具42の軸線方向位置を選択して記憶部104に記憶し(図3のステップS20)、全ての処理を終了する。   Then, the tool state calculation unit 103 determines whether or not the number of simulations n has reached a preset number nn (step S18 in FIG. 3). If the number of simulations n has not reached the set number nn, machining is performed. For example, the position of the machining tool 42 in the axial direction of the tool state of the tool 42 is changed (step S19 in FIG. 3), and the process returns to step S14 to repeat the above processing. On the other hand, when the simulation number n reaches the set number nn, the tool state calculation unit 103 selects the axial position of the machining tool 42 that has the smallest error among the stored shape errors and stores it in the storage unit 104. (Step S20 in FIG. 3), and all the processes are terminated.
なお、上述の処理では、複数回のシミュレーションを行って最小の誤差となる加工用工具42の軸線方向位置を選択するようにしたが、予め許容形状誤差を設定しておき、ステップS16において算出した形状誤差が許容形状誤差以下となったときの加工用工具42の軸線方向位置を選択してもよい。また、ステップS19においては、加工用工具42の軸線方向位置を変更する代わりに、加工用工具42の交差角を変更し、もしくは加工用工具42の軸線回り方向位置を変更し、又は、交差角、軸線方向位置、軸線回り方向位置の任意の組み合わせを変更するようにしてもよい。   In the above-described process, the simulation is performed a plurality of times to select the axial position of the machining tool 42 that has the minimum error. However, an allowable shape error is set in advance and calculated in step S16. The axial direction position of the machining tool 42 when the shape error is equal to or less than the allowable shape error may be selected. In step S19, instead of changing the position of the machining tool 42 in the axial direction, the crossing angle of the machining tool 42 is changed, or the position of the machining tool 42 around the axis is changed, or the crossing angle is changed. Any combination of the axial position and the axial direction position may be changed.
(6.制御装置の加工制御部による処理)
次に、制御装置100の加工制御部101による処理について、図4A及び図4Bを参照して説明する。ここで、作業者は、工具設計部102で設計した第一工具42F及び第二工具42Bの各形状データに基づいて、第一工具42F及び第二工具42Bを製作し、工具ホルダ45に組み付けて歯車加工装置1の自動工具交換装置の工具ストッカに格納しているものとする。また、スリーブ115は、歯車加工装置1の加工物保持具80に装着され、旋削加工もしくはブローチ加工などにより内歯115aが形成されているものとする。
(6. Processing by the processing control unit of the control device)
Next, processing by the processing control unit 101 of the control device 100 will be described with reference to FIGS. 4A and 4B. Here, the worker manufactures the first tool 42F and the second tool 42B based on the shape data of the first tool 42F and the second tool 42B designed by the tool design unit 102, and assembles them to the tool holder 45. It is assumed that it is stored in the tool stocker of the automatic tool changer of the gear machining device 1. Further, it is assumed that the sleeve 115 is mounted on the workpiece holder 80 of the gear machining apparatus 1 and the internal teeth 115a are formed by turning or broaching.
制御装置100の加工制御部101は、自動工具交換装置で前の加工工程(旋削加工もしくはブローチ加工など)の加工用工具を加工用工具42に交換する(図4AのステップS21)。そして、加工制御部101は、工具状態演算部103で求めたスリーブ115の他方側左テーパ歯面121fを加工する際の加工用工具42の工具状態となるように加工用工具42及びスリーブ115を配置する(図4AのステップS22)。具体的には、図8Bに示すように、回転主軸40に保持された加工用工具42の第一工具42Fが、加工物保持具80に保持されたスリーブ115と対向し、且つ加工用工具42が、工具状態演算部103で求めた他方側左テーパ歯面121fを形成するときの加工用工具42の軸線方向位置(例えばオフセット量0)及び交差角φfとなるように配置する。   The machining control unit 101 of the control device 100 exchanges the machining tool of the previous machining process (such as turning or broaching) with the machining tool 42 using the automatic tool changer (step S21 in FIG. 4A). Then, the machining control unit 101 causes the machining tool 42 and the sleeve 115 to be in the tool state of the machining tool 42 when machining the other left tapered tooth surface 121f of the sleeve 115 obtained by the tool state calculation unit 103. Arrange (step S22 in FIG. 4A). Specifically, as shown in FIG. 8B, the first tool 42F of the machining tool 42 held on the rotating spindle 40 faces the sleeve 115 held on the workpiece holder 80, and the machining tool 42. However, it arrange | positions so that it may become the axial direction position (for example, offset amount 0) and crossing angle (phi) f of the processing tool 42 when forming the other side left taper tooth surface 121f calculated | required in the tool state calculating part 103. FIG.
加工制御部101は、加工用工具42をスリーブ115と同期回転させながら第一工具42F側をスリーブ115に向かってスリーブ115の回転軸線Lw方向に送り操作し、内歯115aを切削加工して内歯115aに他方側左サブ歯面121afを含む他方側左テーパ歯面121fを形成する(図4AのステップS23)。   The machining controller 101 feeds the first tool 42F toward the sleeve 115 in the direction of the rotation axis Lw of the sleeve 115 while rotating the machining tool 42 in synchronism with the sleeve 115, and cuts the internal teeth 115a to perform internal processing. The other side left tapered tooth surface 121f including the other side left sub tooth surface 121af is formed on the tooth 115a (step S23 in FIG. 4A).
すなわち、図14A−図14Cに示すように、第一工具42Fは、スリーブ115の回転軸線Lw方向への1回もしくは複数回の切削動作で、内歯115aに他方側左サブ歯面121afを含む他方側左テーパ歯面121fを形成する。このときの第一工具42Fは、送り動作及び送り動作と反対方向の戻し動作を行う必要があるが、図14Cに示すように、この反転動作は慣性力が働く。このため、第一工具42Fの送り動作は、他方側左サブ歯面121afを含む他方側左テーパ歯面121fを形成できる他方側左テーパ歯面121fの歯すじ長ffより所定長短い点Qにおいて終了し、戻し動作に移行する。この送り終了点Qは、センサなどによって計測して求めることができるが、必要な加工精度に対して、送り量の精度が十分な場合には、計測しなくても送り量で調整することができる。つまり、点Qまで加工できるように送り量などを調整して、切削加工をすることで、精度良く加工できる。   That is, as shown in FIGS. 14A to 14C, the first tool 42F includes the other-side left sub tooth surface 121af on the inner tooth 115a by one or more cutting operations in the rotation axis Lw direction of the sleeve 115. The other side left tapered tooth surface 121f is formed. At this time, the first tool 42F needs to perform a feed operation and a return operation in the direction opposite to the feed operation. However, as shown in FIG. For this reason, the feeding operation of the first tool 42F is performed at a point Q that is shorter by a predetermined length than the tooth strip length ff of the other side left tapered tooth surface 121f that can form the other side left tapered tooth surface 121f including the other side left sub tooth surface 121af. End and move to return operation. The feed end point Q can be obtained by measuring with a sensor or the like. However, if the feed amount is sufficient for the required machining accuracy, it can be adjusted by the feed amount without measurement. it can. That is, it can be processed with high accuracy by adjusting the feed amount so that processing can be performed up to the point Q and cutting.
そして、加工制御部101は、他方側左テーパ歯面121fの切削加工が完了したら(図4AのステップS24)、工具状態演算部103で求めたスリーブ115の他方側右テーパ歯面122fを加工する際の加工用工具42の工具状態となるように加工用工具42及びスリーブ115を配置する(図4AのステップS25)。具体的には、図8Dに示すように、回転主軸40に保持された加工用工具42の第一工具42Fが、加工物保持具80に保持されたスリーブ115と対向し、且つ加工用工具42が、工具状態演算部103で求めた他方側右テーパ歯面122fを形成するときの加工用工具42の軸線方向位置(例えばオフセット量0)及び交差角φbとなるように配置する。   Then, when the machining of the other side left tapered tooth surface 121f is completed (step S24 in FIG. 4A), the machining control unit 101 processes the other side right tapered tooth surface 122f of the sleeve 115 obtained by the tool state calculation unit 103. The machining tool 42 and the sleeve 115 are arranged so as to be in the tool state of the machining tool 42 at that time (step S25 in FIG. 4A). Specifically, as shown in FIG. 8D, the first tool 42F of the machining tool 42 held by the rotary spindle 40 is opposed to the sleeve 115 held by the workpiece holder 80, and the machining tool 42 is used. However, it arrange | positions so that it may become the axial direction position (for example, offset amount 0) and crossing angle (phi) b of the processing tool 42 when forming the other side right taper tooth surface 122f calculated | required in the tool state calculating part 103. FIG.
加工制御部101は、加工用工具42をスリーブ115と同期回転させながら第一工具42F側をスリーブ115に向かってスリーブ115の回転軸線Lw方向に送り操作し、内歯115aを切削加工して内歯115aに他方側右サブ歯面122afを含む他方側右テーパ歯面122fを切削形成する(図4AのステップS26)。   The machining controller 101 feeds the first tool 42F toward the sleeve 115 in the direction of the rotation axis Lw of the sleeve 115 while rotating the machining tool 42 in synchronism with the sleeve 115, and cuts the internal teeth 115a to perform internal processing. The other side right tapered tooth surface 122f including the other side right sub tooth surface 122af is cut and formed on the tooth 115a (step S26 in FIG. 4A).
そして、加工制御部101は、他方側右テーパ歯面122fの切削加工が完了したら(図4AのステップS27)、スリーブ115の一方側のギヤ抜け防止部120Bの加工が完了したか否かを判断する(図4AのステップS28)。そして、加工制御部101は、スリーブ115の一方側のギヤ抜け防止部120Bの加工が完了したと判断したら全ての処理を終了する。一方、加工制御部101は、スリーブ115の一方側のギヤ抜け防止部120Bの加工が完了していないと判断したら、加工用工具42をスリーブ115の回転軸線Lw方向に送り操作し、スリーブ115の内周を通過させ(図4AのステップS29)、図4BのステップS30に進む。   Then, when the machining of the other-side right tapered tooth surface 122f is completed (step S27 in FIG. 4A), the machining control unit 101 determines whether or not the machining of the gear drop prevention unit 120B on one side of the sleeve 115 is completed. (Step S28 in FIG. 4A). Then, when the processing control unit 101 determines that the processing of the gear drop prevention unit 120B on one side of the sleeve 115 has been completed, all the processing ends. On the other hand, when the processing control unit 101 determines that the processing of the gear drop prevention unit 120B on one side of the sleeve 115 has not been completed, the processing control unit 101 feeds the processing tool 42 in the direction of the rotation axis Lw of the sleeve 115, and The inner circumference is passed (step S29 in FIG. 4A), and the process proceeds to step S30 in FIG. 4B.
そして、加工制御部101は、工具状態演算部103で求めたスリーブ115の一方側右テーパ歯面121bを加工する際の加工用工具42の工具状態となるように加工用工具42及びスリーブ115を配置する(図4BのステップS30)。具体的には、図15Aに示すように、回転主軸40に保持された加工用工具42の第二工具42Bが、加工物保持具80に保持されたスリーブ115と対向し、且つ加工用工具42が、工具状態演算部103で求めた一方側右テーパ歯面121bを形成するときの加工用工具42の軸線方向位置(例えばオフセット量0)及び交差角φfとなるように配置する。   Then, the machining control unit 101 causes the machining tool 42 and the sleeve 115 to be in the tool state of the machining tool 42 when machining the one-side right tapered tooth surface 121b of the sleeve 115 obtained by the tool state calculation unit 103. Arrange (step S30 in FIG. 4B). Specifically, as shown in FIG. 15A, the second tool 42 </ b> B of the machining tool 42 held on the rotary spindle 40 faces the sleeve 115 held on the workpiece holder 80, and the machining tool 42. However, it arrange | positions so that it may become the axial direction position (for example, offset amount 0) and crossing angle (phi) f of the processing tool 42 when forming the one side right taper tooth surface 121b calculated | required in the tool state calculating part 103. FIG.
加工制御部101は、加工用工具42をスリーブ115と同期回転させながら第二工具42B側をスリーブ115に向かってスリーブ115の回転軸線Lw方向に戻し操作し、内歯115aを切削加工して内歯115aに一方側右サブ歯面121abを含む一方側右テーパ歯面121bを形成する(図4BのステップS31)。   The machining control unit 101 rotates the machining tool 42 synchronously with the sleeve 115 to return the second tool 42B side toward the sleeve 115 in the direction of the rotation axis Lw of the sleeve 115, and cuts the internal teeth 115a to perform internal processing. The one-side right tapered tooth surface 121b including the one-side right sub tooth surface 121ab is formed on the tooth 115a (step S31 in FIG. 4B).
すなわち、図16A−図16Cに示すように、第二工具42Bは、スリーブ115の回転軸線Lw方向への1回もしくは複数回の切削動作で、内歯115aに一方側右サブ歯面121abを含む一方側右テーパ歯面121bを形成する。このときの第二工具42Bは、戻し動作及び送り動作を行う必要があるが、図16Cに示すように、この反転動作は慣性力が働く。このため、第二工具42Bの戻し動作は、一方側右サブ歯面121abを含む一方側右テーパ歯面121bを形成できる一方側右テーパ歯面121bの歯すじ長ffより所定長短い点Rにおいて終了し、送り動作に移行する。この戻し終了点Rは、センサなどによって計測して求めることができるが、必要な加工精度に対して、送り量の精度が十分な場合には、計測しなくても送り量で調整することができる。つまり、点Rまで加工できるように送り量などを調整して、切削加工をすることで、精度良く加工できる。   That is, as shown in FIGS. 16A to 16C, the second tool 42B includes the one-side right sub tooth surface 121ab on the inner tooth 115a in one or more cutting operations in the rotation axis Lw direction of the sleeve 115. One side right taper tooth surface 121b is formed. At this time, the second tool 42B needs to perform a returning operation and a feeding operation. As shown in FIG. 16C, an inertia force acts on the reversing operation. For this reason, the returning operation of the second tool 42B is performed at a point R that is shorter by a predetermined length than the tooth strip length ff of the one side right tapered tooth surface 121b that can form the one side right tapered tooth surface 121b including the one side right sub tooth surface 121ab. End and move to feed operation. The return end point R can be obtained by measuring with a sensor or the like. However, if the feed amount is sufficient for the required machining accuracy, it can be adjusted by the feed amount without measurement. it can. That is, it can be processed with high accuracy by adjusting the feed amount so that it can be processed up to the point R and cutting.
そして、加工制御部101は、一方側右テーパ歯面121bの切削加工が完了したら(図4BのステップS32)、工具状態演算部103で求めたスリーブ115の一方側左テーパ歯面122bを加工する際の加工用工具42の工具状態となるように加工用工具42及びスリーブ115を配置する(図4BのステップS33)。具体的には、図15Bに示すように、回転主軸40に保持された加工用工具42の第二工具42Bが、加工物保持具80に保持されたスリーブ115と対向し、且つ加工用工具42が、工具状態演算部103で求めた一方側左テーパ歯面122bを形成するときの加工用工具42の軸線方向位置(例えばオフセット量0)及び交差角φbとなるように配置する。   And the process control part 101 will process the one side left taper tooth surface 122b of the sleeve 115 calculated | required in the tool state calculating part 103, if the cutting process of the one side right taper tooth surface 121b is completed (step S32 of FIG. 4B). The processing tool 42 and the sleeve 115 are arranged so as to be in the tool state of the processing tool 42 at that time (step S33 in FIG. 4B). Specifically, as shown in FIG. 15B, the second tool 42 </ b> B of the processing tool 42 held on the rotation main shaft 40 faces the sleeve 115 held on the workpiece holder 80, and the processing tool 42. However, it arrange | positions so that it may become the axial direction position (for example, offset amount 0) and crossing angle (phi) b of the tool 42 for a process when forming the one side left taper tooth surface 122b calculated | required in the tool state calculating part 103. FIG.
加工制御部101は、加工用工具42をスリーブ115と同期回転させながら第二工具42B側をスリーブ115に向かってスリーブ115の回転軸線Lw方向に戻し操作し、内歯115aを切削加工して内歯115aに一方側左サブ歯面122abを含む一方側左テーパ歯面122bを切削形成する(図4BのステップS34)。そして、加工制御部101は、一方側左テーパ歯面122bの切削加工が完了したら(図4BのステップS35)、スリーブ115の他方側のギヤ抜け防止部120Fの加工が完了したか否かを判断する(図4BのステップS36)。そして、加工制御部101は、スリーブ115の他方側のギヤ抜け防止部120Fの加工が完了していないと判断したら、加工用工具42をスリーブ115の回転軸線Lw方向に送り操作し、スリーブ115の内周を通過させ(図4BのステップS37)、図4AのステップS22に進む。一方、加工制御部101は、スリーブ115の他方側のギヤ抜け防止部120Fの加工が完了したと判断したら、全ての処理を終了する。   The machining control unit 101 rotates the machining tool 42 synchronously with the sleeve 115 to return the second tool 42B side toward the sleeve 115 in the direction of the rotation axis Lw of the sleeve 115, and cuts the internal teeth 115a to perform internal processing. The one-side left tapered tooth surface 122b including the one-side left sub tooth surface 122ab is cut and formed on the tooth 115a (step S34 in FIG. 4B). Then, when the machining of the one-side left tapered tooth surface 122b is completed (step S35 in FIG. 4B), the machining control unit 101 determines whether or not the machining of the gear drop prevention unit 120F on the other side of the sleeve 115 is completed. (Step S36 in FIG. 4B). When the machining control unit 101 determines that the machining of the gear drop prevention unit 120F on the other side of the sleeve 115 has not been completed, the machining control unit 101 feeds the machining tool 42 in the direction of the rotation axis Lw of the sleeve 115, and The inner circumference is passed (step S37 in FIG. 4B), and the process proceeds to step S22 in FIG. 4A. On the other hand, if the processing control unit 101 determines that the processing of the gear drop prevention unit 120F on the other side of the sleeve 115 has been completed, all processing ends.
(7.その他)
上述の例では、第一工具42F及び第二工具42Bを別々に形成し、第一工具42Fと第二工具42Bの間にカラー44を挟持して加工用工具42としたが、第一工具刃42af及び第二工具刃42abを有する同一材の加工用工具42としてもよい。これにより、当該加工用工具42の工具ホルダ45への組み付けが容易となる。
(7. Others)
In the above example, the first tool 42F and the second tool 42B are formed separately, and the collar 44 is sandwiched between the first tool 42F and the second tool 42B to form the machining tool 42. It is good also as the processing tool 42 of the same material which has 42af and the 2nd tool blade 42ab. This facilitates the assembly of the processing tool 42 to the tool holder 45.
また、上述の例では、ギヤ抜け防止部120F,120Bは、加工用工具42による切削加工でスリーブ115の既加工済みの内歯115aに対し形成する場合を説明した。しかし、ギヤ抜け防止部120F,120Bは、ローリング加工でスリーブ115の既加工済みの内歯115aに対し仕上げ代を残して荒加工した後、加工用工具42で仕上げ代を切削加工して仕上げ加工することで形成するようにしてもよい。よって、加工用工具42は、ギヤ抜け防止部120F,120Bを高精度に切削加工できる。   In the above-described example, the case where the gear drop prevention portions 120F and 120B are formed on the already-processed internal teeth 115a of the sleeve 115 by cutting with the processing tool 42 has been described. However, the gear drop prevention portions 120F and 120B are subjected to roughing with the machining tool 42 cutting the finishing allowance after the roughing is performed on the already-processed internal teeth 115a of the sleeve 115 by rolling. By doing so, you may make it form. Therefore, the machining tool 42 can cut the gear drop prevention portions 120F and 120B with high accuracy.
また、上述の例では、スリーブ115の内歯115aをブローチ加工やギヤシェーパ加工等により形成する場合を説明したが、内歯115aの形成が可能な加工用工具及び加工用工具42による切削加工でスリーブ115の内歯115a及びギヤ抜け防止部120F,120Bを全て形成するようにしてもよい。また、内歯に対し加工する場合を説明したが、外歯に対しても同様に加工可能である。また、加工物としてシンクロメッシュ機構110のスリーブ115としたが、円筒形状、円盤形状の加工物でよく、内周(内歯)、外周(外歯)のいずれか一方又は両方に複数の歯面(異なる複数の歯すじ、歯形(歯先、歯元))を同様に加工可能である。また、クラウニング、レリービングなどの連続変化する歯すじ、歯形(歯先、歯元)も同様に加工可能である。   In the above example, the case where the inner teeth 115a of the sleeve 115 are formed by broaching, gear shaper processing, or the like has been described. However, the sleeve can be cut by a machining tool capable of forming the inner teeth 115a and the machining tool 42. The 115 internal teeth 115a and the gear loss prevention portions 120F and 120B may all be formed. Moreover, although the case where it processes with respect to an internal tooth was demonstrated, it can process similarly with respect to an external tooth. Further, although the sleeve 115 of the synchromesh mechanism 110 is used as a workpiece, a cylindrical or disk-shaped workpiece may be used, and a plurality of tooth surfaces may be provided on one or both of the inner circumference (inner teeth) and the outer circumference (outer teeth). (A plurality of different tooth streaks and tooth shapes (tooth tips, tooth roots)) can be processed in the same manner. Further, continuously changing tooth streaks and tooth shapes (tooth tips, tooth bases) such as crowning and relieving can be processed in the same manner.
また、上述の例では、5軸マシニングセンタである歯車加工装置1は、スリーブ115をA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、加工用工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。   In the above-described example, the gear machining apparatus 1 that is a five-axis machining center enables the sleeve 115 to turn on the A axis. On the other hand, the 5-axis machining center may be configured as a vertical machining center so that the machining tool 42 can turn on the A axis. Further, although the case where the present invention is applied to a machining center has been described, the present invention can be similarly applied to a dedicated gear machining machine.
(実施形態の効果)
本実施形態の歯車加工装置1は、加工物(スリーブ115)の回転軸線Lwに対し傾斜した回転軸線Lを有する加工用工具42を用い、加工用工具42を加工物115と同期回転させながら加工物115の回転軸線L方向に相対的に移動操作して歯車を加工する歯車加工装置1であって、歯車の歯115aの左側面115A、右側面115B(側面)は、左歯面115b、右歯面115c(主となる歯面)に対しねじれ角が異なる複数の他方側左テーパ歯面121f,一方側左テーパ歯面122b、他方側右テーパ歯面122f,一方側右テーパ歯面121b(従となる歯面)を、左側面115A、右側面115B(側面)における加工物115の回転軸線Lw方向の一方側及び他方側にそれぞれ有し、加工用工具42は、すくい面42cfが加工用工具42の回転軸線L方向の一方側を向く第一工具刃42afと、すくい面42cbが加工用工具42の回転軸線L方向の他方側を向く第二工具刃42abとを有する。
(Effect of embodiment)
The gear machining apparatus 1 according to the present embodiment uses a machining tool 42 having a rotation axis L inclined with respect to the rotation axis Lw of the workpiece (sleeve 115), and machining the machining tool 42 while rotating in synchronization with the workpiece 115. A gear machining apparatus 1 for machining a gear by relatively moving it in the direction of the rotation axis L of the object 115, the left side surface 115A and the right side surface 115B (side surface) of the gear teeth 115a are the left tooth surface 115b, the right side Plural other-side left taper tooth surface 121f, one-side left taper tooth surface 122b, other-side right taper tooth surface 122f, and one-side right taper tooth surface 121b (with different twist angles with respect to tooth surface 115c (main tooth surface) Secondary tooth surfaces) are provided on the left side 115A and the right side 115B (side surfaces) on one side and the other side in the direction of the rotation axis Lw of the workpiece 115, and the machining tool 42 is a rake face 42cf. It has a first tool edge 42af facing the one side of the rotation axis L direction of the processing tool 42, and a second tool blade 42ab which rake face 42cb faces the other side of the rotation axis L direction of the processing tool 42.
そして、第一工具刃42afは、加工用工具42を加工物115の回転軸線Lw方向の他方側に相対的に移動操作させて、加工物115の回転軸線Lw方向の他方側に設けられる他方側左テーパ歯面121f、他方側右テーパ歯面122f(従となる歯面)を加工する場合に用いられ、第二工具刃42abは、加工用工具42を加工物115の回転軸線Lw方向の一方側に相対的に移動操作させて、加工物115の回転軸線Lw方向の一方側に設けられる一方側左テーパ歯面122b、一方側右テーパ歯面121b(従となる歯面)を加工する場合に用いられる。   The first tool blade 42af moves the machining tool 42 relatively to the other side of the workpiece 115 in the rotation axis Lw direction, and is provided on the other side of the workpiece 115 in the rotation axis Lw direction. Used when machining the left taper tooth surface 121f and the other side right taper tooth surface 122f (secondary tooth surface), the second tool blade 42ab uses the machining tool 42 in the direction of the rotation axis Lw of the workpiece 115. When the one side left taper tooth surface 122b and the one side right taper tooth surface 121b (secondary tooth surface) provided on one side in the rotation axis Lw direction of the workpiece 115 are processed by relatively moving to the side. Used for.
これにより、歯車加工装置1は、1つの加工用工具42で加工物115の両端面側にそれぞれねじれ角が異なる他方側左テーパ歯面121f,他方側右テーパ歯面122f、一方側右テーパ歯面121b,一方側左テーパ歯面122b(複数の歯面)を形成できるので、従来必要であった2つの加工用工具の工具交換や位置合わせを行う必要はなく、加工効率を向上でき、加工精度を高めることができる。   As a result, the gear machining apparatus 1 has the other left taper tooth surface 121f, the other right taper tooth surface 122f, and the one right taper tooth on the both end surfaces of the workpiece 115, each having a different twist angle, with one machining tool 42. Since the surface 121b and the one-side left tapered tooth surface 122b (a plurality of tooth surfaces) can be formed, there is no need to replace or align the two processing tools, which has been necessary in the past, and the processing efficiency can be improved. Accuracy can be increased.
また、歯車の歯115aの左側面115A、右側面115B(側面)は、主となる左歯面115b(第一歯面)、左歯面115b(第一歯面)における加工物115の回転軸線Lw方向の他方側に設けられる従となる他方側左テーパ歯面121f(第二歯面)、及び左歯面115b(第一歯面)における加工物115の回転軸線Lw方向の一方側に設けられる従となる一方側左テーパ歯面122b(第三歯面)を有し、第一工具刃42afの刃すじ42bfは、予め加工された左歯面115b(第一歯面)に対し他方側左テーパ歯面121f(第二歯面)を加工可能なように、他方側左テーパ歯面121f(第二歯面)のねじれ角θf及び加工物115の回転軸線Lwと加工用工具42の回転軸線Lとの交差角φfに基づいて設定されたねじれ角βを有し、第二工具刃42abの刃すじ42bbは、予め加工された左歯面115b(第一歯面)に対し一方側左テーパ歯面122b(第三歯面)を加工可能なように、一方側左テーパ歯面122b(第三歯面)のねじれ角θb及び加工物115の回転軸線Lwと加工用工具42の回転軸線Lとの交差角φbに基づいて設定されたねじれ角βを有する。   Further, the left side 115A and the right side 115B (side surfaces) of the gear teeth 115a are the rotation axes of the workpiece 115 on the main left tooth surface 115b (first tooth surface) and left tooth surface 115b (first tooth surface). Provided on one side in the rotation axis Lw direction of the workpiece 115 on the other side left tapered tooth surface 121f (second tooth surface) and the left tooth surface 115b (first tooth surface) provided on the other side in the Lw direction. The left side tooth taper surface 122b (third tooth surface) is a slave side, and the blade stripe 42bf of the first tool blade 42af is on the other side with respect to the previously processed left tooth surface 115b (first tooth surface). The rotation angle Lw of the workpiece 115 and the rotation axis Lw of the workpiece 115 and the rotation of the machining tool 42 so that the left tapered tooth surface 121f (second tooth surface) can be machined. Twist set based on the crossing angle φf with the axis L The edge stripe 42bb of the second tool blade 42ab has an angle β, and can process the left taper tooth surface 122b (third tooth surface) on one side with respect to the previously processed left tooth surface 115b (first tooth surface). As described above, the twist angle θb set based on the twist angle θb of the one-side left tapered tooth surface 122b (third tooth surface) and the intersection angle φb between the rotation axis Lw of the workpiece 115 and the rotation axis L of the machining tool 42. has β.
これにより、第一工具刃42afは、他方側左テーパ歯面121f(第二歯面)の加工の際に、加工対象の左歯面115b(第一歯面)に隣接する歯115aと干渉しない形状に設計でき、第二工具刃42abは、一方側左テーパ歯面122b(第三歯面)の加工の際に、加工対象の左歯面115b(第一歯面)に隣接する歯115aと干渉しない形状に設計できる。   Thereby, the first tool blade 42af does not interfere with the tooth 115a adjacent to the left tooth surface 115b (first tooth surface) to be processed when the other left tapered tooth surface 121f (second tooth surface) is processed. The second tool blade 42ab can be designed to have a shape, and the tooth 115a adjacent to the left tooth surface 115b (first tooth surface) to be processed when the one side left tapered tooth surface 122b (third tooth surface) is processed. It can be designed in a shape that does not interfere.
また、歯車の歯115aの左側面115A(一方側の側面)は、主となる左歯面115b(第一歯面)、左歯面115b(第一歯面)における加工物115の回転軸線Lw方向の一方側に設けられる従となる他方側左テーパ歯面121f(第二歯面)、及び左歯面115b(第一歯面)における加工物115の回転軸線Lw方向の他方側に設けられる従となる一方側左テーパ歯面122b(第三歯面)を有し、歯車の歯の右側面115B(他方側の側面)は、主となる右歯面115c(第四歯面)、右歯面115c(第四歯面)における加工物115の回転軸線Lw方向の一方側に設けられる従となる一方側右テーパ歯面121b(第五歯面)、及び右歯面115c(第四歯面)における加工物115の回転軸線Lw方向の他方側に設けられる従となる他方側右テーパ歯面122f(第六歯面)を有する。   Further, the left side surface 115A (one side surface) of the gear teeth 115a is the rotation axis Lw of the workpiece 115 on the main left tooth surface 115b (first tooth surface) and left tooth surface 115b (first tooth surface). The other side left tapered tooth surface 121f (second tooth surface) and the left tooth surface 115b (first tooth surface) provided on one side in the direction are provided on the other side in the direction of the rotation axis Lw of the workpiece 115. It has a slave side left tapered tooth surface 122b (third tooth surface), and the gear tooth right side surface 115B (the other side surface) is the main right tooth surface 115c (fourth tooth surface), right One side right tapered tooth surface 121b (fifth tooth surface) and right tooth surface 115c (fourth tooth) provided on one side of the tooth surface 115c (fourth tooth surface) in the rotation axis Lw direction of the workpiece 115. Surface) of the workpiece 115 on the other side of the rotation axis Lw direction. The slave other side right tapered tooth surface 122f having a (sixth tooth surface).
そして、第一工具刃42afの一方側の刃すじ42bfは、予め加工された左歯面115b(第一歯面)に対し他方側左テーパ歯面121f(第二歯面)を加工可能なように、他方側左テーパ歯面121f(第二歯面)のねじれ角θf及び加工物115の回転軸線Lwと加工用工具42の回転軸線Lとの第二歯面121f用の交差角φfに基づいて設定されたねじれ角βを有し、第一工具刃42afの他方側の刃すじ42bfは、第一工具刃42afの一方側の刃すじ42bfのねじれ角βと同一角度のねじれ角βを有し、第二工具刃42abの一方側の刃すじ42bbは、予め加工された左歯面115b(第一歯面)に対し一方側左テーパ歯面122b(第三歯面)を加工可能なように、一方側左テーパ歯面122b(第三歯面)のねじれ角θb及び加工物115の回転軸線Lwと加工用工具42の回転軸線Lとの一方側左テーパ歯面122b(第三歯面)用の交差角φbに基づいて設定されたねじれ角βを有し、第二工具刃42abの他方側の刃すじ42bbは、第二工具刃42abの一方側の刃すじ42bbのねじれ角βと同一角度のねじれ角βを有する。   The one-side blade stripe 42bf of the first tool blade 42af can process the other-side left tapered tooth surface 121f (second tooth surface) with respect to the previously processed left tooth surface 115b (first tooth surface). Further, based on the twist angle θf of the other left tapered tooth surface 121f (second tooth surface) and the intersection angle φf for the second tooth surface 121f between the rotation axis Lw of the workpiece 115 and the rotation axis L of the machining tool 42. The blade angle 42bf on the other side of the first tool blade 42af has a twist angle β that is the same as the twist angle β of the blade strand 42bf on the one side of the first tool blade 42af. The one side streak 42bb of the second tool blade 42ab can process the left taper tooth surface 122b (third tooth surface) on the one side with respect to the previously processed left tooth surface 115b (first tooth surface). Torsion angle θ of one side left tapered tooth surface 122b (third tooth surface) And a twist angle β set based on the intersection angle φb for the one-side left tapered tooth surface 122b (third tooth surface) between the rotation axis Lw of the workpiece 115 and the rotation axis L of the machining tool 42, The blade stripe 42bb on the other side of the second tool blade 42ab has a twist angle β that is the same as the twist angle β of the blade stripe 42bb on one side of the second tool blade 42ab.
そして、加工用工具42は、予め加工された左歯面115b(第一歯面)に対し第一工具刃42afで他方側左テーパ歯面121f(第二歯面)を加工する際、他方側左テーパ歯面121f(第二歯面)用の交差角φfに設定され、予め加工された右歯面115c(第四歯面)に対し第一工具刃42afで他方側右テーパ歯面122f(第六歯面)を加工する際、他方側右テーパ歯面122f(第六歯面)のねじれ角θb及び第一工具刃42afの他方側の刃すじ42bfのねじれ角βとに基づいて求まる他方側右テーパ歯面122f(第六歯面)用の交差角φbに設定され、加工用工具42は、予め加工された左歯面115b(第一歯面)に対し第二工具刃42abで一方側左テーパ歯面122b(第三歯面)を加工する際、一方側左テーパ歯面122b(第三歯面)用の交差角φbに設定され、予め加工された右歯面115c(第四歯面)に対し第二工具刃42abで一方側右テーパ歯面121b(第五歯面)を加工する際、一方側右テーパ歯面121b(第五歯面)のねじれ角θf及び第二工具刃42abの他方側の刃すじ42bbのねじれ角βとに基づいて求まる一方側右テーパ歯面121b(第五歯面)用の交差角φfに設定される。   Then, when the processing tool 42 processes the other side left tapered tooth surface 121f (second tooth surface) with the first tool blade 42af on the previously processed left tooth surface 115b (first tooth surface), the other side is processed. The crossing angle φf for the left taper tooth surface 121f (second tooth surface) is set to the right tooth surface 115c (fourth tooth surface) processed in advance, and the other side right taper tooth surface 122f (with the first tool blade 42af). When machining the sixth tooth surface), the other is obtained based on the twist angle θb of the other side right tapered tooth surface 122f (sixth tooth surface) and the twist angle β of the blade streak 42bf on the other side of the first tool blade 42af. The crossing angle φb for the side right taper tooth surface 122f (sixth tooth surface) is set, and the machining tool 42 is one side with a second tool blade 42ab against the pre-machined left tooth surface 115b (first tooth surface). When processing the side left taper tooth surface 122b (third tooth surface), one side left taper One side right taper tooth surface 121b (fifth tooth) with a second tool blade 42ab with respect to a pre-machined right tooth surface 115c (fourth tooth surface) set to the intersection angle φb for the surface 122b (third tooth surface) 1 side right taper determined based on the torsion angle θf of the one side right taper tooth surface 121b (fifth tooth surface) and the torsion angle β of the blade streak 42bb on the other side of the second tool blade 42ab. The intersection angle φf for the tooth surface 121b (fifth tooth surface) is set.
これにより、第一工具刃42afは、他方側左テーパ歯面121f(第二歯面)の加工の際に、加工対象の左歯面115b(第一歯面)に隣接する歯115aと干渉しない形状に設計できるとともに、他方側右テーパ歯面122f(第六歯面)の加工の際に、加工対象の右歯面115c(第四歯面)に隣接する歯115aと干渉しない形状に設計できる。第二工具刃42abは、一方側左テーパ歯面122b(第三歯面)の加工の際に、加工対象の左歯面115b(第一歯面)に隣接する歯115aと干渉しない形状に設計できるとともに、一方側右テーパ歯面121b(第五歯面)の加工の際に、加工対象の右歯面115c(第四歯面)に隣接する歯115aと干渉しない形状に設計できる。   Thereby, the first tool blade 42af does not interfere with the tooth 115a adjacent to the left tooth surface 115b (first tooth surface) to be processed when the other left tapered tooth surface 121f (second tooth surface) is processed. It can be designed in a shape, and can be designed in a shape that does not interfere with the tooth 115a adjacent to the right tooth surface 115c (fourth tooth surface) to be processed when the other right taper tooth surface 122f (sixth tooth surface) is processed. . The second tool blade 42ab is designed to have a shape that does not interfere with the tooth 115a adjacent to the left tooth surface 115b (first tooth surface) to be processed when the one side left tapered tooth surface 122b (third tooth surface) is processed. In addition, when the one-side right taper tooth surface 121b (fifth tooth surface) is processed, the shape can be designed so as not to interfere with the tooth 115a adjacent to the right tooth surface 115c (fourth tooth surface) to be processed.
また、歯車は、シンクロメッシュ機構110のスリーブ115であり、従となる歯面は、スリーブ115の内周歯に設けられるギヤ抜け防止部120F,120Bの他方側左テーパ歯面121f,一方側左テーパ歯面122b、他方側右テーパ歯面122f,一方側右テーパ歯面121b(歯面)である。これにより、ギヤ抜け防止部120F,120Bを構成する他方側左テーパ歯面121f,一方側左テーパ歯面122b、他方側右テーパ歯面122f,一方側右テーパ歯面121b(歯面)は、切削加工により加工精度が高くなるので、ギヤ抜けを確実に防止できる。   Further, the gear is the sleeve 115 of the synchromesh mechanism 110, and the secondary tooth surface is the left taper tooth surface 121f on the other side of the gear drop prevention portions 120F and 120B provided on the inner peripheral teeth of the sleeve 115, and the left side on the one side. The taper tooth surface 122b, the other side right taper tooth surface 122f, and the one side right taper tooth surface 121b (tooth surface). Thereby, the other side left taper tooth surface 121f, the one side left taper tooth surface 122b, the other side right taper tooth surface 122f, and the one side right taper tooth surface 121b (tooth surface) constituting the gear drop prevention portions 120F and 120B are: Since machining accuracy is increased by cutting, gear loss can be reliably prevented.
また、第一工具刃42afの刃すじ42bfと第二工具刃42abの刃すじ42bbは、同一角度のねじれ角βを有するので、工具コストを低減できる。また、加工用工具42の交差角を変更するのみで、ねじれ角が異なる歯面を形成できる。   Further, since the blade stripe 42bb of the first tool blade 42af and the blade stripe 42bb of the second tool blade 42ab have the same twist angle β, the tool cost can be reduced. Further, tooth surfaces having different torsion angles can be formed only by changing the crossing angle of the machining tool 42.
また、加工物115の回転軸線Lwに対し傾斜した回転軸線Lを有する加工用工具42で歯車を切削加工する歯車加工方法であって、歯車の歯の左側面115A、右側面115B(側面)は、左歯面115b、右歯面115c(主となる歯面)に対しねじれ角が異なる複数の他方側左テーパ歯面121f,一方側左テーパ歯面122b、他方側右テーパ歯面122f,一方側右テーパ歯面121b(従となる歯面)を、左側面115A、右側面115B(側面)における歯車の回転軸線Lw方向の一方側及び他方側にそれぞれ有し、加工用工具42は、すくい面42cfが加工用工具42の回転軸線L方向の一方側を向く第一工具刃42afと、すくい面42cbが加工用工具42の回転軸線L方向の他方側を向く第二工具刃42abとを有する。   Further, the gear machining method is a gear machining method in which the gear is cut by the machining tool 42 having the rotation axis L inclined with respect to the rotation axis Lw of the workpiece 115, and the left side surface 115A and the right side surface 115B (side surface) of the gear teeth are , Left tooth surface 115b, right tooth surface 115c (main tooth surface), a plurality of other left taper tooth surfaces 121f, one left taper tooth surface 122b, one right taper tooth surface 122f, one side Side right taper tooth surface 121b (secondary tooth surface) is provided on each of one side and the other side in the direction of rotation axis Lw of the gear on left side surface 115A and right side surface 115B (side surface). A first tool blade 42af whose surface 42cf faces one side of the machining tool 42 in the rotation axis L direction and a second tool blade 42ab whose rake face 42cb faces the other side of the machining tool 42 in the rotation axis L direction are provided. That.
そして、歯車加工方法は、加工用工具42を加工物115と同期回転させながら加工物115の回転軸線Lw方向の他方側にて当該回転軸線Lw方向に相対的に移動操作して、加工物115の回転軸線Lw方向の他方側に設けられる他方側左テーパ歯面121f、他方側右テーパ歯面122f(従となる歯面)を第一工具刃42afで加工する第一工程と、加工用工具42を加工物115と同期回転させながら加工物115の回転軸線Lw方向の一方側にて当該回転軸線Lw方向に相対的に移動操作して、加工物115の回転軸線Lw方向の一方側に設けられる一方側左テーパ歯面122b、一方側右テーパ歯面121b(従となる歯面)を第二工具刃42abで加工する第二工程と、を備える。これにより、上述の歯車加工装置1と同様の効果が得られる。   In the gear machining method, while the machining tool 42 is rotated synchronously with the workpiece 115, the workpiece 115 is relatively moved in the rotation axis Lw direction on the other side of the workpiece 115 in the rotation axis Lw direction. A first step of machining the other-side left tapered tooth surface 121f and the other-side right tapered tooth surface 122f (secondary tooth surface) provided on the other side in the direction of the rotation axis Lw with the first tool blade 42af, and a machining tool 42 is rotated on one side of the workpiece 115 in the direction of the rotational axis Lw while being rotated synchronously with the workpiece 115, and is provided on one side of the workpiece 115 in the direction of the rotational axis Lw. And a second step of machining the one-side left tapered tooth surface 122b and the one-side right tapered tooth surface 121b (secondary tooth surface) with the second tool blade 42ab. Thereby, the effect similar to the above-mentioned gear processing apparatus 1 is acquired.
1:歯車加工装置、 42:加工用工具、 42F:第一工具、 42B:第二工具、 42af:第一工具刃、 42ab:第二工具刃、 42bf,42bb:刃すじ、 100:制御装置、 101:加工制御部、 102:工具設計部、 103:工具状態演算部、 104:記憶部、 115:スリーブ(加工物)、 115a:歯、 115A:左側面、 115B:右側面、 115b:左歯面(主となる歯面、第一歯面)、 115c:右歯面(主となる歯面、第四歯面)、 121f:他方側左テーパ歯面(従となる歯面、第二歯面)、 122f:他方側右テーパ歯面(従となる歯面、第六歯面)、 121b:一方側右テーパ歯面(従となる歯面、第五歯面)、 122b:一方側左テーパ歯面(従となる歯面、第三歯面)、 β:刃すじのねじれ角、 θf,θb:歯面のねじれ角、 φf,φb:交差角   1: gear machining device, 42: machining tool, 42F: first tool, 42B: second tool, 42af: first tool blade, 42ab: second tool blade, 42bf, 42bb: blade stripe, 100: control device, 101: Processing control unit, 102: Tool design unit, 103: Tool state calculation unit, 104: Storage unit, 115: Sleeve (workpiece), 115a: Teeth, 115A: Left side, 115B: Right side, 115b: Left tooth Surface (main tooth surface, first tooth surface), 115c: right tooth surface (main tooth surface, fourth tooth surface), 121f: left taper tooth surface on the other side (secondary tooth surface, second tooth) Surface), 122f: other side right tapered tooth surface (secondary tooth surface, sixth tooth surface), 121b: one side right tapered tooth surface (secondary tooth surface, fifth tooth surface), 122b: one side left Tapered tooth surface (secondary tooth surface, third tooth surface), β: blade Twist angle of line, θf, θb: Torsion angle of tooth surface, φf, φb: Crossing angle

Claims (6)

  1. 加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動操作して歯車を加工する歯車加工装置であって、
    前記歯車の歯の側面は、主となる歯面に対しねじれ角が異なる複数の従となる歯面を、前記側面における前記加工物の回転軸線方向の一方側及び他方側にそれぞれ有し、
    前記加工用工具は、すくい面が前記加工用工具の回転軸線方向の一方側を向く第一工具刃と、すくい面が前記加工用工具の回転軸線方向の他方側を向く第二工具刃とを有し、
    前記第一工具刃は、前記加工用工具を前記加工物の回転軸線方向の他方側に相対的に移動操作させて、前記加工物の回転軸線方向の他方側に設けられる前記従となる歯面を加工する場合に用いられ、
    前記第二工具刃は、前記加工用工具を前記加工物の回転軸線方向の一方側に相対的に移動操作させて、前記加工物の回転軸線方向の一方側に設けられる前記従となる歯面を加工する場合に用いられる、歯車加工装置。
    Using a machining tool having a rotation axis that is inclined with respect to the rotation axis of the workpiece, the gear is processed by moving the machining tool relative to the workpiece while moving the tool in synchronization with the workpiece. A gear machining device for
    The side surfaces of the gear teeth have a plurality of slave tooth surfaces having different torsion angles with respect to the main tooth surface on one side and the other side in the rotational axis direction of the workpiece on the side surfaces, respectively.
    The machining tool includes a first tool blade whose rake face faces one side in the rotation axis direction of the machining tool, and a second tool blade whose rake face faces the other side in the rotation axis direction of the machining tool. Have
    The first tool blade is a slave tooth surface provided on the other side in the rotation axis direction of the workpiece by causing the machining tool to move relative to the other side in the rotation axis direction of the workpiece. Used when processing
    The second tool blade is a slave tooth surface provided on one side in the rotational axis direction of the workpiece by causing the machining tool to relatively move to one side in the rotational axis direction of the workpiece. Gear machining device used when machining.
  2. 前記歯車の歯の側面は、主となる第一歯面、前記第一歯面における前記加工物の回転軸線方向の他方側に設けられる従となる第二歯面、及び前記第一歯面における前記加工物の回転軸線方向の一方側に設けられる従となる第三歯面を有し、
    前記第一工具刃の刃すじは、予め加工された前記第一歯面に対し前記第二歯面を加工可能なように、前記第二歯面のねじれ角及び前記加工物の回転軸線と前記加工用工具の回転軸線との交差角に基づいて設定されたねじれ角を有し、
    前記第二工具刃の刃すじは、予め加工された前記第一歯面に対し前記第三歯面を加工可能なように、前記第三歯面のねじれ角及び前記加工物の回転軸線と前記加工用工具の回転軸線との交差角に基づいて設定されたねじれ角を有する、請求項1に記載の歯車加工装置。
    The side surfaces of the teeth of the gear are the primary first tooth surface, the secondary second tooth surface provided on the other side of the first tooth surface in the rotational axis direction of the workpiece, and the first tooth surface. Having a slave third tooth surface provided on one side in the rotational axis direction of the workpiece;
    The blade line of the first tool blade has a twist angle of the second tooth surface, a rotation axis of the workpiece, and the work piece so that the second tooth surface can be processed with respect to the first tooth surface processed in advance. Having a twist angle set based on the intersection angle with the rotation axis of the machining tool;
    The blade streaks of the second tool blade have a twist angle of the third tooth surface, a rotation axis of the workpiece, and the workpiece so that the third tooth surface can be processed with respect to the first tooth surface processed in advance. The gear machining apparatus according to claim 1, wherein the gear machining apparatus has a torsion angle set based on an intersection angle with a rotation axis of the machining tool.
  3. 前記歯車の歯の一方側の側面は、主となる第一歯面、前記第一歯面における前記加工物の回転軸線方向の一方側に設けられる従となる第二歯面、及び前記第一歯面における前記加工物の回転軸線方向の他方側に設けられる従となる第三歯面を有し、
    前記歯車の歯の他方側の側面は、主となる第四歯面、前記第四歯面における前記加工物の回転軸線方向の一方側に設けられる従となる第五歯面、及び前記第四歯面における前記加工物の回転軸線方向の他方側に設けられる従となる第六歯面を有し、
    前記第一工具刃の一方側の刃すじは、予め加工された前記第一歯面に対し前記第二歯面を加工可能なように、前記第二歯面のねじれ角及び前記加工物の回転軸線と前記加工用工具の回転軸線との前記第二歯面用の交差角に基づいて設定されたねじれ角を有し、
    前記第一工具刃の他方側の刃すじは、前記第一工具刃の一方側の刃すじのねじれ角と同一角度のねじれ角を有し、
    前記第二工具刃の一方側の刃すじは、予め加工された前記第一歯面に対し前記第三歯面を加工可能なように、前記第三歯面のねじれ角及び前記加工物の回転軸線と前記加工用工具の回転軸線との前記第三歯面用の交差角に基づいて設定されたねじれ角を有し、
    前記第二工具刃の他方側の刃すじは、前記第二工具刃の一方側の刃すじのねじれ角と同一角度のねじれ角を有し、
    前記加工用工具は、予め加工された前記第一歯面に対し前記第一工具刃で前記第二歯面を加工する際、前記第二歯面用の交差角に設定され、予め加工された前記第四歯面に対し前記第一工具刃で前記第六歯面を加工する際、前記第六歯面のねじれ角及び前記第一工具刃の他方側の刃すじのねじれ角とに基づいて求まる前記第六歯面用の交差角に設定され、
    前記加工用工具は、予め加工された前記第一歯面に対し前記第二工具刃で前記第三歯面を加工する際、前記第三歯面用の交差角に設定され、予め加工された前記第四歯面に対し前記第二工具刃で前記第五歯面を加工する際、前記第五歯面のねじれ角及び前記第二工具刃の他方側の刃すじのねじれ角とに基づいて求まる前記第五歯面用の交差角に設定される、請求項1に記載の歯車加工装置。
    One side surface of the gear teeth is a primary first tooth surface, a secondary second tooth surface provided on one side of the first tooth surface in the rotational axis direction of the workpiece, and the first tooth surface. A slave third tooth surface provided on the other side of the rotation axis direction of the workpiece in the tooth surface;
    The side surface on the other side of the teeth of the gear includes a main fourth tooth surface, a slave fifth tooth surface provided on one side of the fourth tooth surface in the rotation axis direction of the workpiece, and the fourth tooth surface. Having a slave sixth tooth surface provided on the other side of the tooth surface in the rotational axis direction of the workpiece;
    The one side of the first tool blade has a twist angle of the second tooth surface and rotation of the workpiece so that the second tooth surface can be processed with respect to the first tooth surface processed in advance. A twist angle set based on an intersection angle for the second tooth surface between an axis and a rotation axis of the machining tool;
    The blade line on the other side of the first tool blade has a twist angle equal to the twist angle of the blade line on one side of the first tool blade,
    The blade streak on one side of the second tool blade has a twist angle of the third tooth surface and a rotation of the workpiece so that the third tooth surface can be processed with respect to the previously processed first tooth surface. A twist angle set based on an intersection angle for the third tooth surface between an axis and a rotation axis of the machining tool;
    The blade line on the other side of the second tool blade has a twist angle equal to the twist angle of the blade line on one side of the second tool blade,
    The machining tool is set to an intersection angle for the second tooth surface and processed in advance when the second tooth surface is processed with the first tool blade with respect to the first tooth surface processed in advance. When processing the sixth tooth surface with the first tool blade with respect to the fourth tooth surface, based on the twist angle of the sixth tooth surface and the twist angle of the blade stripe on the other side of the first tool blade Is set to the intersection angle for the sixth tooth surface obtained,
    The machining tool is set to an intersection angle for the third tooth surface and processed in advance when the third tooth surface is processed with the second tool blade with respect to the first tooth surface processed in advance. When processing the fifth tooth surface with the second tool blade with respect to the fourth tooth surface, based on the twist angle of the fifth tooth surface and the twist angle of the blade thread on the other side of the second tool blade. The gear machining apparatus according to claim 1, wherein the gear machining apparatus is set to an intersection angle for the fifth tooth surface to be obtained.
  4. 前記歯車は、シンクロメッシュ機構のスリーブであり、
    前記従となる歯面は、前記スリーブの内周歯に設けられるギヤ抜け防止部の歯面である、請求項1−3の何れか一項に記載の歯車加工装置。
    The gear is a sleeve of a synchromesh mechanism;
    The gear processing apparatus according to any one of claims 1 to 3, wherein the slave tooth surface is a tooth surface of a gear drop prevention portion provided on an inner peripheral tooth of the sleeve.
  5. 前記第一工具刃の刃すじと前記第二工具刃の刃すじは、同一角度のねじれ角を有する、請求項1−4の何れか一項に記載の歯車加工装置。   The gear machining apparatus according to any one of claims 1 to 4, wherein the blade stripe of the first tool blade and the blade stripe of the second tool blade have the same twist angle.
  6. 加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具で歯車を切削加工する歯車加工方法であって、
    前記歯車の歯の側面は、主となる歯面に対しねじれ角が異なる複数の従となる歯面を、前記側面における歯車の回転軸線方向の一方側及び他方側にそれぞれ有し、
    前記加工用工具は、すくい面が前記加工用工具の回転軸線方向の一方側を向く第一工具刃と、すくい面が前記加工用工具の回転軸線方向の他方側を向く第二工具刃とを有し、
    前記歯車加工方法は、
    前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向の他方側にて当該回転軸線方向に相対的に移動操作して、前記加工物の回転軸線方向の他方側に設けられる前記従となる歯面を前記第一工具刃で加工する第一工程と、
    前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向の一方側にて当該回転軸線方向に相対的に移動操作して、前記加工物の回転軸線方向の一方側に設けられる前記従となる歯面を前記第二工具刃で加工する第二工程と、を備える歯車加工方法。
    A gear machining method for cutting a gear with a machining tool having a rotation axis inclined with respect to a rotation axis of a workpiece,
    The side surfaces of the teeth of the gear have a plurality of secondary tooth surfaces having different twist angles with respect to the main tooth surface on one side and the other side in the rotational axis direction of the gear on the side surface,
    The machining tool includes a first tool blade whose rake face faces one side in the rotation axis direction of the machining tool, and a second tool blade whose rake face faces the other side in the rotation axis direction of the machining tool. Have
    The gear machining method includes:
    Provided on the other side in the rotation axis direction of the workpiece by moving the machining tool relative to the rotation axis direction on the other side in the rotation axis direction of the workpiece while rotating in synchronization with the workpiece. A first step of machining the slave tooth surface to be processed with the first tool blade;
    Provided on one side of the workpiece in the direction of the rotation axis by relatively moving the tool for machining in the direction of the axis of rotation of the workpiece while rotating the tool in synchronization with the workpiece. And a second step of machining the slave tooth surface with the second tool blade.
JP2016216680A 2016-11-04 2016-11-04 Gear machining device and gear machining method Pending JP2018069435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216680A JP2018069435A (en) 2016-11-04 2016-11-04 Gear machining device and gear machining method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016216680A JP2018069435A (en) 2016-11-04 2016-11-04 Gear machining device and gear machining method
DE102017125602.4A DE102017125602A1 (en) 2016-11-04 2017-11-02 Gear processing device and gear processing method
CN201711063747.1A CN108015361B (en) 2016-11-04 2017-11-02 Gear machining device and gear machining method
US15/803,241 US20180126472A1 (en) 2016-11-04 2017-11-03 Gear machining device and gear machining method

Publications (1)

Publication Number Publication Date
JP2018069435A true JP2018069435A (en) 2018-05-10

Family

ID=62113036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216680A Pending JP2018069435A (en) 2016-11-04 2016-11-04 Gear machining device and gear machining method

Country Status (1)

Country Link
JP (1) JP2018069435A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603826B1 (en) * 1976-02-02 1977-06-08 Helmut Droeschel Shift sleeve with rectified rear joints
JPS5924915A (en) * 1982-07-28 1984-02-08 Fuji Tekkosho:Kk Reverse tapered cutting by gear shaver
JPS62114816A (en) * 1985-11-13 1987-05-26 Mitsubishi Heavy Ind Ltd Gear shaper cutter capable of reciprocation gear cutting
JPH03149115A (en) * 1989-08-25 1991-06-25 Maag Zahnraeder & Mas Ag Manufacture of profiled workpiece
EP0522453A1 (en) * 1991-07-06 1993-01-13 PRÄWEMA WERKZEUGMASCHINENFABRIK GmbH Method for producing inside deepening undercuts on internal gear tooth systems
JPH09155635A (en) * 1995-12-12 1997-06-17 Aichi Kiki Kk Partial cut cutting structure of tooth surface of bore teeth
US20110174589A1 (en) * 2005-11-11 2011-07-21 Volvo Lastvagnar Ab System for preventing gear hopout in a tooth clutch in a vehicle transmission
JP2012127434A (en) * 2010-12-16 2012-07-05 O-Oka Corp Dog clutch tooth with asymmetrical right and left tooth flanks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603826B1 (en) * 1976-02-02 1977-06-08 Helmut Droeschel Shift sleeve with rectified rear joints
JPS5924915A (en) * 1982-07-28 1984-02-08 Fuji Tekkosho:Kk Reverse tapered cutting by gear shaver
JPS62114816A (en) * 1985-11-13 1987-05-26 Mitsubishi Heavy Ind Ltd Gear shaper cutter capable of reciprocation gear cutting
JPH03149115A (en) * 1989-08-25 1991-06-25 Maag Zahnraeder & Mas Ag Manufacture of profiled workpiece
EP0522453A1 (en) * 1991-07-06 1993-01-13 PRÄWEMA WERKZEUGMASCHINENFABRIK GmbH Method for producing inside deepening undercuts on internal gear tooth systems
JPH09155635A (en) * 1995-12-12 1997-06-17 Aichi Kiki Kk Partial cut cutting structure of tooth surface of bore teeth
US20110174589A1 (en) * 2005-11-11 2011-07-21 Volvo Lastvagnar Ab System for preventing gear hopout in a tooth clutch in a vehicle transmission
JP2012127434A (en) * 2010-12-16 2012-07-05 O-Oka Corp Dog clutch tooth with asymmetrical right and left tooth flanks

Similar Documents

Publication Publication Date Title
US9440299B2 (en) Method of manufacturing multiple identical gears using a gear cutting machine
CA2641361C (en) Apparatus and method for machining bevel gears in a pitching method with complete pitch error compensation
CN101282810B (en) Manufacturing straight bevel gears
KR20130043660A (en) Elbow formed by cutting and method for manufacturing same
US20100221080A1 (en) Device for generation machining a workpiece clamped in a machine tool and a method for manufacturing a workpiece having a gearing
JP2018079558A (en) Gear processing device and gear processing method
US11033974B2 (en) Gear machining apparatus and gear machining method
CN108015361B (en) Gear machining device and gear machining method
US20190201992A1 (en) Power skiving pressure angle correction without tool geometry change
WO2013076030A1 (en) Semi-completing skiving method with two intersection angles of axes and use of a corresponding skiving tool for semi-completing skiving
CN107755826B (en) Method for machining a tooth flank of a surface-coupled workpiece
JP2018069435A (en) Gear machining device and gear machining method
US20190024729A1 (en) Machining device and machining method
US11077508B2 (en) Gear machining apparatus and gear machining method
JP2019123030A (en) Gear processing device and gear processing method
JP2019018334A (en) Gear processing device and gear processing method
JP2019118977A (en) Gear processor and gear processing method
JP2019018335A (en) Processing device and processing method
JP6500486B2 (en) Gear processing apparatus and gear processing method
JP2021010961A (en) Gear processing method
JP2021115657A (en) Gear processing equipment and gear processing method
JP2021024012A (en) Skiving cutter and skiving device
JP6622044B2 (en) Gear processing machine and method
JP6610791B2 (en) Gear processing method and processing apparatus
JP6871675B2 (en) Gear processing equipment and gear processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528