JP2018064301A - Image pick-up device, image reading apparatus, and image forming apparatus - Google Patents

Image pick-up device, image reading apparatus, and image forming apparatus Download PDF

Info

Publication number
JP2018064301A
JP2018064301A JP2018010063A JP2018010063A JP2018064301A JP 2018064301 A JP2018064301 A JP 2018064301A JP 2018010063 A JP2018010063 A JP 2018010063A JP 2018010063 A JP2018010063 A JP 2018010063A JP 2018064301 A JP2018064301 A JP 2018064301A
Authority
JP
Japan
Prior art keywords
power supply
light receiving
image
receiving elements
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010063A
Other languages
Japanese (ja)
Other versions
JP6485561B2 (en
Inventor
直喜 麻場
Naoki Asaba
直喜 麻場
吉男 紺野
Yoshio Konno
吉男 紺野
政元 中澤
Masamoto Nakazawa
政元 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018010063A priority Critical patent/JP6485561B2/en
Publication of JP2018064301A publication Critical patent/JP2018064301A/en
Application granted granted Critical
Publication of JP6485561B2 publication Critical patent/JP6485561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an image pick-up device that can prevent power supply voltages supplied to light receiving devices from being different due to the positions of pixels arranged for every color.SOLUTION: An image pick-up device comprises: a plurality of light receiving devices that are arranged in one direction for every color and perform photoelectric conversion; and a plurality of power supply wires that supply power supply voltages from a power supply source to the plurality of light receiving devices. The plurality of power supply wires are formed in substantially the same shape from the power supply source to the light receiving devices at least for every color.SELECTED DRAWING: Figure 4

Description

本発明は、撮像素子、画像読取装置及び画像形成装置に関する。   The present invention relates to an image sensor, an image reading apparatus, and an image forming apparatus.

スキャナには、原稿からの反射光を光電変換する光電変換素子と、光電変換素子が出力するアナログ画像信号に対してA/D変換等の処理を行うアナログ処理部と、デジタル変換された画像データに対して各種補正を施す画像補正部と、LVDS等によって後段に画像データを転送する画像転送部とを有するものがある。   The scanner includes a photoelectric conversion element that photoelectrically converts reflected light from a document, an analog processing unit that performs processing such as A / D conversion on an analog image signal output from the photoelectric conversion element, and digitally converted image data In some cases, an image correction unit that performs various corrections on the image and an image transfer unit that transfers image data to the subsequent stage using LVDS or the like.

中でも、光電変換素子には従来CCDが多く使われていたが、近年の低電力化要求により、CMOSリニアイメージセンサが注目されている。CMOSリニアイメージセンサは、入射光をフォトダイオード(受光素子)によって光電変換する点ではCCDと同じである。   In particular, a CCD is often used as a photoelectric conversion element, but a CMOS linear image sensor has attracted attention due to the recent demand for low power consumption. A CMOS linear image sensor is the same as a CCD in that incident light is photoelectrically converted by a photodiode (light receiving element).

しかし、CCDが電荷をシフトレジスタによって転送し、転送後に電荷検出部で電荷−電圧変換するのに対し、CMOSリニアイメージセンサは画素内の電荷検出部において電圧信号に変換し、スイッチ、アナログバスを介して出力バッファから後段へ出力する点が異なる。CMOSリニアイメージセンサは、CCDに対して駆動負荷がスイッチのみで済むために低消費電力であることが知られている。   However, the CCD transfers the charge by the shift register, and after the transfer, the charge detection unit converts the charge to the voltage. On the other hand, the CMOS linear image sensor converts the voltage signal to the voltage detection unit in the pixel, and switches and analog buses. Through the output buffer. The CMOS linear image sensor is known to have low power consumption because the driving load for the CCD is only a switch.

また、特許文献1には、複数の単位画素がマトリックス配列をなして構成された画素配列部と、各単位画素で使用される電源電圧を供給する、画素配列部上に配置された複数の電源ラインとを備え、電源ラインが、画素配列部から映像信号を出力するためのスキャン方向と交差する方向に配置されたイメージセンサが開示されている。   Further, Patent Document 1 discloses a pixel array unit in which a plurality of unit pixels are configured in a matrix array, and a plurality of power supplies disposed on the pixel array unit that supplies a power supply voltage used in each unit pixel. And an image sensor in which a power supply line is arranged in a direction intersecting a scan direction for outputting a video signal from a pixel array unit.

しかしながら、従来のCMOSリニアイメージセンサでは、色毎の画素の配列方向に延びるように電源配線が形成され、色毎の画素の配列の一端側から電源電圧が供給されていたため、他端側の受光素子ほど電源電圧が降下してしまい、画像データにムラが発生してしまうという問題があった。   However, in the conventional CMOS linear image sensor, the power supply wiring is formed so as to extend in the pixel arrangement direction for each color, and the power supply voltage is supplied from one end side of the pixel arrangement for each color. There is a problem in that the power supply voltage drops as the element decreases, causing unevenness in the image data.

本発明は、上記に鑑みてなされたものであって、色毎の画素の配列内の位置によって受光素子に供給される電源電圧が異なってしまうことを防止することができる撮像素子、画像読取装置及び画像形成装置を提供することを目的とする。   The present invention has been made in view of the above, and an imaging element and an image reading apparatus that can prevent the power supply voltage supplied to the light receiving element from being different depending on the position in the pixel array for each color. An object of the present invention is to provide an image forming apparatus.

上述した課題を解決し、目的を達成するために、本発明は、一方向に配列されて光電変換を行う画素領域を形成する複数の受光素子と、前記一方向に平行な電源供給元から前記複数の受光素子に対して電源電圧を供給する複数の電源配線とを有し、前記複数の電源配線それぞれは、前記電源供給元から電源電圧を供給し、前記画素領域の前記受光素子それぞれまでの長さが同じ長さに形成されていることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a plurality of light-receiving elements that are arranged in one direction to form a pixel region that performs photoelectric conversion, and a power supply source that is parallel to the one direction. A plurality of power supply lines for supplying a power supply voltage to a plurality of light receiving elements, and each of the plurality of power supply lines supplies a power supply voltage from the power supply source to each of the light receiving elements in the pixel region. The length is formed in the same length.

本発明によれば、色毎の画素の配列内の位置によって受光素子に供給される電源電圧が異なってしまうことを防止することができるという効果を奏する。   According to the present invention, it is possible to prevent the power supply voltage supplied to the light receiving element from being different depending on the position in the pixel array for each color.

図1は、画像形成装置などに実装された撮像素子と周辺の構成を示す構成図である。FIG. 1 is a configuration diagram illustrating the configuration of an image sensor mounted on an image forming apparatus or the like and a peripheral configuration. 図2は、比較例における撮像素子内の電源配線を示す図である。FIG. 2 is a diagram illustrating the power supply wiring in the imaging device in the comparative example. 図3は、図2に示した比較例の撮像素子における主走査方向の電源電圧の分布を示すグラフである。FIG. 3 is a graph showing the distribution of the power supply voltage in the main scanning direction in the image pickup device of the comparative example shown in FIG. 図4は、実施の形態にかかる撮像素子の電源配線の第1例を示す図である。FIG. 4 is a diagram illustrating a first example of the power supply wiring of the image sensor according to the embodiment. 図5は、実施の形態にかかる撮像素子の電源配線の第2例を示す図である。FIG. 5 is a diagram illustrating a second example of the power supply wiring of the image sensor according to the embodiment. 図6は、実施の形態にかかる撮像素子の電源配線の第3例を示す図である。FIG. 6 is a diagram illustrating a third example of the power supply wiring of the image sensor according to the embodiment. 図7は、実施の形態にかかる撮像素子の電源配線の第4例を示す図である。FIG. 7 is a diagram illustrating a fourth example of the power supply wiring of the image sensor according to the embodiment. 図8は、実施の形態にかかる撮像素子の電源配線の第5例を示す図である。FIG. 8 is a diagram illustrating a fifth example of the power supply wiring of the image sensor according to the embodiment. 図9は、撮像素子を有する画像読取装置を備えた画像形成装置の概要を示す図である。FIG. 9 is a diagram illustrating an outline of an image forming apparatus including an image reading apparatus having an image sensor.

以下に添付図面を参照して、撮像素子の実施の形態を詳細に説明する。図1は、例えば画像読取装置又は画像形成装置などに実装された撮像素子10及びその周辺の構成を示す構成図である。撮像素子10は、デジタル出力型のCMOSカラーリニアイメージセンサであり、CPU11の制御に応じて動作する。   Embodiments of an image sensor will be described in detail below with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing a configuration of an image sensor 10 mounted on an image reading apparatus or an image forming apparatus and the periphery thereof. The image sensor 10 is a digital output type CMOS color linear image sensor, and operates according to the control of the CPU 11.

図1に示すように、撮像素子10は、例えば光電変換部12、信号処理部14及び制御部16を有する。光電変換部12は、R,G,B(図示しないフィルタによる)の色毎にそれぞれ一方向に配列されたN個(1〜n)の受光素子(フォトダイオード)120、122、124を有する。また、撮像素子10は、R,G,Bの3つの受光素子120、122、124が1つのカラムに含まれ、カラム毎に光電変換した信号を出力するように構成されている。以下、受光素子120、122、124がそれぞれ配列されている方向を、画像読取装置に撮像素子10が実装された場合の主走査方向(単に主走査方向)と記すことがある。   As illustrated in FIG. 1, the imaging element 10 includes, for example, a photoelectric conversion unit 12, a signal processing unit 14, and a control unit 16. The photoelectric conversion unit 12 includes N (1 to n) light receiving elements (photodiodes) 120, 122, and 124 that are arranged in one direction for each of R, G, and B colors (using filters not shown). The image sensor 10 includes three light receiving elements 120, 122, and 124 of R, G, and B, and is configured to output a photoelectrically converted signal for each column. Hereinafter, the direction in which the light receiving elements 120, 122, and 124 are respectively arranged may be referred to as a main scanning direction (simply the main scanning direction) when the imaging element 10 is mounted on the image reading apparatus.

信号処理部14は、N個のPGA(Programmable Gain Amplifier:増幅部)140、及びN個のA/D変換器(ADC)20を有し、光電変換部12がカラム毎に出力するアナログ信号を増幅し、デジタル信号に変換して出力する。以下、実質的に同一の構成部分には、同一の符号が付してある。   The signal processing unit 14 includes N PGAs (Programmable Gain Amplifiers) 140 and N A / D converters (ADCs) 20, and the analog signal output from the photoelectric conversion unit 12 for each column. Amplify, convert to digital signal and output. Hereinafter, substantially the same components are denoted by the same reference numerals.

次に、撮像素子10の各画素(それぞれ受光素子を含む)に対して電源電圧を供給するチップ内の電源配線について説明する。まず、比較例におけるCMOSリニアイメージセンサ(撮像素子)内の電源配線について説明する。図2は、比較例における撮像素子内の電源配線を示す図である。なお、図2においては、制御信号線等は示していない。   Next, power supply wiring in the chip for supplying a power supply voltage to each pixel (each including a light receiving element) of the image sensor 10 will be described. First, the power supply wiring in the CMOS linear image sensor (imaging device) in the comparative example will be described. FIG. 2 is a diagram illustrating the power supply wiring in the imaging device in the comparative example. In FIG. 2, control signal lines and the like are not shown.

図2に示すように、比較例の撮像素子は、R,G,Bの色毎にそれぞれ一方向に配列されたN個(1〜n)の画素34、32、30(受光素子124、122、120をそれぞれ含む)を有する。電源供給元40は、撮像素子(チップ)内において位置が異なっても電位差がほとんど生じないように十分な面積と幅を有し、外部から供給される電源電圧(Vdd)をチップ内に略均等に供給する。それぞれN個の画素30、32、34は、電源供給元40から色毎に電源配線400を介して電源電圧の供給を受ける。   As shown in FIG. 2, the imaging device of the comparative example has N (1 to n) pixels 34, 32, and 30 (light receiving devices 124 and 122) arranged in one direction for each of R, G, and B colors. , 120 respectively). The power supply source 40 has a sufficient area and width so that a potential difference hardly occurs even if the position is different in the image sensor (chip), and the power supply voltage (Vdd) supplied from the outside is substantially equal in the chip. To supply. Each of the N pixels 30, 32, and 34 is supplied with a power supply voltage from the power supply source 40 via the power supply wiring 400 for each color.

また、図2においては、電源供給元40に近い側からn番目の画素がPixnで表されている。主走査方向の画素数Nは、画像読取装置の所望の読取サイズと読取解像度によって決定されるが、例えばA3サイズの原稿の短辺297mmを600dpi(1インチ当り600ドット)で読み取るためには、およそN=7000画素が必要となる。撮像素子10は、画像読取装置に実装される場合の副走査方向に、Red、Green、Blueの色毎に計3ラインの画素の配列がある。   In FIG. 2, the nth pixel from the side close to the power supply source 40 is represented by Pixn. The number N of pixels in the main scanning direction is determined by a desired reading size and reading resolution of the image reading apparatus. For example, in order to read a short side of 297 mm of an A3 size document at 600 dpi (600 dots per inch), Approximately N = 7000 pixels are required. The image sensor 10 has an array of pixels in a total of three lines for each of Red, Green, and Blue in the sub-scanning direction when mounted on the image reading apparatus.

図2に示したように、画素30、32、34それぞれに対して主走査方向の片側から電源電圧が供給されると、電源供給元40に近いPix1、Pix2から遠ざかるに従って、電源配線400のインピーダンスが増加するために電圧降下が大きくなる。   As shown in FIG. 2, when a power supply voltage is supplied from one side in the main scanning direction to each of the pixels 30, 32, and 34, the impedance of the power supply wiring 400 increases as the distance from Pix1 and Pix2 close to the power supply source 40 increases. As the voltage increases, the voltage drop increases.

図3は、図2に示した比較例の撮像素子における主走査方向の電源電圧Vddの分布を示すグラフである。図2に示した比較例の撮像素子では、図3に示したように、電源供給元40から主走査方向の他端へ進むに従って電圧降下が発生する。つまり、画素特性が電源電圧に依存して変化(悪化)することが考えられ、その場合には電源電圧Vddの降下と共に主走査方向で画像データにムラが発生してしまう。なお、図3に示した電源電圧Vddの分布は、副走査方向に同様の電源配線が構成される場合には、副走査方向にも同様に生じる。   FIG. 3 is a graph showing the distribution of the power supply voltage Vdd in the main scanning direction in the imaging device of the comparative example shown in FIG. In the imaging device of the comparative example shown in FIG. 2, as shown in FIG. 3, a voltage drop occurs as the power supply source 40 advances to the other end in the main scanning direction. That is, it is conceivable that the pixel characteristics change (deteriorate) depending on the power supply voltage. In this case, the image data becomes uneven in the main scanning direction as the power supply voltage Vdd decreases. Note that the distribution of the power supply voltage Vdd shown in FIG. 3 similarly occurs in the sub-scanning direction when the same power supply wiring is formed in the sub-scanning direction.

次に、実施の形態にかかる撮像素子10内の電源配線について説明する。図4は、実施の形態にかかる撮像素子10内の電源配線の第1例を示す図である。なお、図4においては、制御信号線等は示していない。   Next, power supply wiring in the image sensor 10 according to the embodiment will be described. FIG. 4 is a diagram illustrating a first example of the power supply wiring in the image sensor 10 according to the embodiment. In FIG. 4, control signal lines and the like are not shown.

撮像素子10内の電源配線の第1例では、主走査方向の画素位置によらず、画素30、32、34に対する電源配線402の長さを色毎に同じにするために、撮像素子10の主走査方向の長さと同等の長さの電源供給元42が配置されている。なお、電源供給元42等は、いずれも撮像素子(チップ)内において位置が異なっても電位差がほとんど生じないように十分な面積と幅を有し、外部から供給される電源電圧(Vdd)をチップ内に略均等に供給するものとする。   In the first example of the power supply wiring in the image sensor 10, in order to make the length of the power supply wiring 402 for the pixels 30, 32, 34 the same for each color regardless of the pixel position in the main scanning direction, A power supply source 42 having a length equivalent to the length in the main scanning direction is arranged. Each of the power supply sources 42 and the like has a sufficient area and width so that a potential difference hardly occurs even if the position is different in the image pickup device (chip), and supplies a power supply voltage (Vdd) supplied from the outside. It is assumed that the chips are supplied almost evenly.

電源配線402は、主走査方向に配列されたそれぞれN個の画素30、32、34と同じ数となるようにN本形成されている。各電源配線402は、電源供給元42から画素30、32、34(受光素子120、122、124)それぞれまでの形状が色毎に略同じ形状に形成されている。また、各電源配線402は、主走査方向に略平行な電源供給元42の端部から、主走査方向に対して略直交する方向に延びるように形成されている。   N power supply wirings 402 are formed so as to have the same number as the N pixels 30, 32, and 34 arranged in the main scanning direction. Each power wiring 402 is formed so that the shape from the power supply source 42 to each of the pixels 30, 32, 34 (light receiving elements 120, 122, 124) is substantially the same for each color. Each power wiring 402 is formed so as to extend in a direction substantially orthogonal to the main scanning direction from the end of the power supply source 42 substantially parallel to the main scanning direction.

よって、それぞれN個の画素30、32、34は、色毎に電源供給元42からの電源配線402の長さが均等となり、配線インピーダンスが同等となって、主走査方向の電源電圧の分布が均一となる。   Therefore, in each of the N pixels 30, 32, and 34, the length of the power supply wiring 402 from the power supply source 42 is equal for each color, the wiring impedance is equal, and the power supply voltage distribution in the main scanning direction is uniform. It becomes uniform.

図5は、実施の形態にかかる撮像素子10内の電源配線の第2例を示す図である。なお、図5においては、制御信号線等は示していない。   FIG. 5 is a diagram illustrating a second example of the power supply wiring in the image sensor 10 according to the embodiment. In FIG. 5, control signal lines and the like are not shown.

撮像素子10内の電源配線の第2例では、電源供給元42から各画素30、32、34に対し、電源配線404、406、408がそれぞれ独立に設けられている。また、各電源配線404、406、408は、電源供給元42から画素30、32、34(受光素子120、122、124)それぞれまでの形状が色毎に略同じ形状に形成されている。また、各電源配線404、406、408は、主走査方向に略平行な電源供給元42の端部から、主走査方向に対して略直交する方向に延びるように形成されている。   In the second example of the power supply wiring in the image sensor 10, the power supply wiring 404, 406, and 408 are provided independently from the power supply source 42 to each of the pixels 30, 32, and 34. Each of the power supply wires 404, 406, and 408 is formed so that the shape from the power supply source 42 to each of the pixels 30, 32, and 34 (light receiving elements 120, 122, and 124) is substantially the same for each color. Further, each power supply wiring 404, 406, 408 is formed so as to extend from the end of the power supply source 42 substantially parallel to the main scanning direction in a direction substantially orthogonal to the main scanning direction.

よって、撮像素子10内の電源配線の第2例では、ある色の画素が電力消費を行っても、他の色の電源配線にその消費電流が流れることはない。つまり、撮像素子10内の電源配線の第2例は、色間のクロストークを防止することができる。   Therefore, in the second example of the power supply wiring in the image sensor 10, even if a pixel of a certain color consumes power, the consumption current does not flow to the power supply wiring of another color. That is, the second example of the power supply wiring in the image sensor 10 can prevent crosstalk between colors.

図6は、実施の形態にかかる撮像素子10内の電源配線の第3例を示す図である。なお、図6においては、制御信号線等は示していない。   FIG. 6 is a diagram illustrating a third example of the power supply wiring in the image sensor 10 according to the embodiment. In FIG. 6, control signal lines and the like are not shown.

撮像素子10内の電源配線の第3例では、撮像素子10内の電源配線の第2例に示した構成に加えて、各増幅部140及び各A/D変換器20に対しても、それぞれ電源配線410及び電源配線412がそれぞれ独立に設けられている。また、各電源配線410、412は、電源供給元42から増幅部140及びA/D変換器20それぞれまでの形状が略同じ形状に形成されている。また、各電源配線410、412は、主走査方向に略平行な電源供給元42の端部から、主走査方向に対して略直交する方向に延びるように形成されている。   In the third example of the power supply wiring in the image pickup device 10, in addition to the configuration shown in the second example of the power supply wiring in the image pickup device 10, each of the amplification units 140 and each of the A / D converters 20 is also provided. The power supply wiring 410 and the power supply wiring 412 are provided independently. In addition, the power wirings 410 and 412 are formed in substantially the same shape from the power supply source 42 to the amplification unit 140 and the A / D converter 20. Each of the power supply wires 410 and 412 is formed so as to extend from the end of the power supply source 42 substantially parallel to the main scanning direction in a direction substantially orthogonal to the main scanning direction.

図7は、実施の形態にかかる撮像素子10内の電源配線の第4例を示す図である。なお、図7においては、制御信号線等は示していない。   FIG. 7 is a diagram illustrating a fourth example of the power supply wiring in the image sensor 10 according to the embodiment. In FIG. 7, control signal lines and the like are not shown.

撮像素子10内の電源配線の第4例では、電源供給元42に平行に電源供給元44が設けられており、電源供給元42及び電源供給元44から電源配線414、416、418を介して各画素30、32、34に電源電圧Vddが供給される。また、各電源配線414、416、418は、電源供給元42及び電源供給元44から画素30、32、34(受光素子120、122、124)それぞれまでの形状が色毎に略同じ形状に形成されている。また、各電源配線414、416、418は、主走査方向に略平行な電源供給元42の端部及び電源供給元44の端部それぞれから、主走査方向に対して略直交する方向に延びるように形成されている。   In the fourth example of the power supply wiring in the imaging device 10, a power supply source 44 is provided in parallel to the power supply source 42, and the power supply source 42 and the power supply source 44 are connected via the power supply wires 414, 416, and 418. A power supply voltage Vdd is supplied to each of the pixels 30, 32, and 34. In addition, the power supply wires 414, 416, and 418 are formed in substantially the same shape for each color from the power supply source 42 and the power supply source 44 to the pixels 30, 32, and 34 (light receiving elements 120, 122, and 124). Has been. The power supply wires 414, 416, and 418 extend in a direction substantially orthogonal to the main scanning direction from the end of the power supply source 42 and the end of the power supply source 44 that are substantially parallel to the main scanning direction. Is formed.

よって、撮像素子10内の電源配線の第4例では、色間の配線インピーダンスの差異を抑えて電圧降下を抑え、色間の特性差を軽減することができる。   Therefore, in the fourth example of the power supply wiring in the image sensor 10, it is possible to suppress the voltage drop by suppressing the difference in wiring impedance between the colors and reduce the characteristic difference between the colors.

図8は、実施の形態にかかる撮像素子10内の電源配線の第5例を示す図である。なお、図8においては、制御信号線等は示していない。   FIG. 8 is a diagram illustrating a fifth example of the power supply wiring in the image sensor 10 according to the embodiment. In FIG. 8, control signal lines and the like are not shown.

撮像素子10内の電源配線の第5例では、電源供給元46r、46g、46bが色毎に設けられている。また、撮像素子10内の電源配線の第5例では、電源供給元46gの端部がRedの画素列(各画素34)とGreenの画素列(各画素32)との間に形成されている。また、撮像素子10内の電源配線の第5例では、電源供給元46bの端部がGreenの画素列(各画素32)とBlueの画素列(各画素30)との間に形成されている。つまり、電源供給元46g、46bは、画素列(ライン)間の非画素領域に設けられている。電源供給元46r、46g、46bから各画素30、32、34へそれぞれ電源電圧を供給する電源配線420それぞれは、画素毎に独立に設けられている。   In the fifth example of the power supply wiring in the image sensor 10, power supply sources 46r, 46g, and 46b are provided for each color. In the fifth example of the power supply wiring in the image sensor 10, the end of the power supply source 46g is formed between the Red pixel column (each pixel 34) and the Green pixel column (each pixel 32). . Further, in the fifth example of the power supply wiring in the image sensor 10, the end of the power supply source 46b is formed between the Green pixel row (each pixel 32) and the Blue pixel row (each pixel 30). . That is, the power supply sources 46g and 46b are provided in the non-pixel region between the pixel columns (lines). Each of the power supply wirings 420 for supplying the power supply voltage from the power supply sources 46r, 46g, 46b to the respective pixels 30, 32, 34 is provided independently for each pixel.

また、各電源配線420は、電源供給元46r、46g、46bいずれかから画素30、32、34(受光素子120、122、124)それぞれまでの形状が略同じ形状に形成されている。また、各電源配線420は、主走査方向に略平行な電源供給元46r、46g、46bの端部それぞれから、主走査方向に対して略直交する方向に延びるように形成されている。具体的には、全ての画素30、32、34に対し、それぞれ電源配線420の配線インピーダンスが同等であり、かつ独立に電源電圧Vddが供給される。従って、画素30、32、34は、他の画素に流れる電流によって電圧降下が生じることがない。このように、撮像素子10内の電源配線の第5例では、主走査方向と副走査方向のいずれについても電源電圧Vddの分布が均一になる。撮像素子10内の電源配線の第5例は、リニアイメージセンサには画素列(ライン)間にギャップがあるために可能な構成であり、エリアイメージセンサでは効率的に実現できない構成である。   Further, each power supply wiring 420 is formed in substantially the same shape from any one of the power supply sources 46r, 46g, 46b to the pixels 30, 32, 34 (light receiving elements 120, 122, 124). Each power supply wiring 420 is formed to extend in a direction substantially orthogonal to the main scanning direction from each end of the power supply sources 46r, 46g, 46b substantially parallel to the main scanning direction. Specifically, the power supply wiring 420 has the same wiring impedance and the power supply voltage Vdd is independently supplied to all the pixels 30, 32, and 34. Accordingly, the pixels 30, 32, and 34 do not cause a voltage drop due to a current flowing through other pixels. As described above, in the fifth example of the power supply wiring in the image sensor 10, the distribution of the power supply voltage Vdd is uniform in both the main scanning direction and the sub-scanning direction. The fifth example of the power supply wiring in the image sensor 10 is a configuration that is possible because the linear image sensor has a gap between pixel columns (lines), and is a configuration that cannot be efficiently realized by the area image sensor.

なお、撮像素子10内の電源配線の構成は、第1例から第5例に示した構成に限定されることなく、これらを任意に組み合わせた構成であってもよい。   The configuration of the power supply wiring in the image sensor 10 is not limited to the configuration shown in the first example to the fifth example, and may be a configuration in which these are arbitrarily combined.

次に、実施形態にかかる撮像素子10を有する画像読取装置を備えた画像形成装置について説明する。図9は、撮像素子10を有する画像読取装置60を備えた画像形成装置50の概要を示す図である。画像形成装置50は、画像読取装置60と画像形成部70とを有する例えば複写機やMFP(Multifunction Peripheral)などである。   Next, an image forming apparatus including an image reading apparatus having the image sensor 10 according to the embodiment will be described. FIG. 9 is a diagram illustrating an outline of an image forming apparatus 50 including an image reading device 60 having the image sensor 10. The image forming apparatus 50 is, for example, a copying machine or an MFP (Multifunction Peripheral) having an image reading device 60 and an image forming unit 70.

画像読取装置60は、例えば撮像素子10、LEDドライバ(LED_DRV)600及びLED602を有する。LEDドライバ600は、制御部16が出力するライン同期信号などに同期して、LED602を駆動する。LED602は、原稿に対して光を照射する。撮像素子10は、ライン同期信号などに同期して、原稿からの反射光を受光して図示しない複数の受光素子が電荷を発生させて蓄積を開始する。そして、撮像素子10は、AD変換等を行った後に、パラレルシリアル変換回路などを介して画像データを画像形成部70に対して出力する。   The image reading device 60 includes, for example, the image sensor 10, an LED driver (LED_DRV) 600, and an LED 602. The LED driver 600 drives the LED 602 in synchronization with a line synchronization signal output from the control unit 16. The LED 602 irradiates the original with light. The image sensor 10 receives reflected light from the document in synchronization with a line synchronization signal or the like, and a plurality of light receiving elements (not shown) generate electric charges and start accumulation. Then, after performing AD conversion and the like, the image sensor 10 outputs image data to the image forming unit 70 via a parallel-serial conversion circuit or the like.

画像形成部70は、処理部80とプリンタエンジン82とを有し、処理部80とプリンタエンジン82とがインターフェイス(I/F)84を介して接続されている。   The image forming unit 70 includes a processing unit 80 and a printer engine 82, and the processing unit 80 and the printer engine 82 are connected via an interface (I / F) 84.

処理部80は、LVDS800、画像処理部802及びCPU11を有する。CPU11は、撮像素子10などの画像形成装置50を構成する各部を制御する。また、CPU11(又は制御部16)は、各受光素子が受光量に応じて電荷を発生させることを略同時に開始するよう制御する。   The processing unit 80 includes an LVDS 800, an image processing unit 802, and a CPU 11. The CPU 11 controls each part of the image forming apparatus 50 such as the image sensor 10. In addition, the CPU 11 (or the control unit 16) performs control so that the respective light receiving elements start generating charges according to the amount of received light substantially simultaneously.

撮像素子10は、LVDS800に対して例えば画像読取装置60が読取った画像の画像データ、ライン同期信号及び伝送クロックなどを出力する。LVDS800は、受入れた画像データ、ライン同期信号及び伝送クロックなどをパラレル10ビットデータに変換する。画像処理部802は、変換された10ビットデータを用いて画像処理を行い、画像データなどをプリンタエンジン82に対して出力する。プリンタエンジン82は、受入れた画像データを用いて印刷を行う。   The image sensor 10 outputs, for example, image data of an image read by the image reading device 60, a line synchronization signal, a transmission clock, and the like to the LVDS 800. The LVDS 800 converts received image data, a line synchronization signal, a transmission clock, and the like into parallel 10-bit data. The image processing unit 802 performs image processing using the converted 10-bit data, and outputs image data and the like to the printer engine 82. The printer engine 82 performs printing using the received image data.

このように、画像形成装置50は、撮像素子10を有する画像読取装置60を備えているので、少なくとも色毎に電源供給元から各画素への電源配線の長さ(形状)が均等となり、色毎の画素の配列内の位置によって受光素子に供給される電源電圧が異なってしまうことを防止することができる。   As described above, the image forming apparatus 50 includes the image reading device 60 having the image sensor 10. Therefore, the length (shape) of the power supply wiring from the power supply source to each pixel is equalized at least for each color, and the color It is possible to prevent the power supply voltage supplied to the light receiving element from being different depending on the position in the pixel array.

10 撮像素子
11 CPU
12 光電変換部
14 信号処理部
16 制御部
20 A/D変換器
30、32、34 画素
40、42、44、46r、46g、46b 電源供給元
50 画像形成装置
60 画像読取装置
70 画像形成部
120、122、124 受光素子
140 PGA
400〜420 電源配線
10 Image sensor 11 CPU
DESCRIPTION OF SYMBOLS 12 Photoelectric conversion part 14 Signal processing part 16 Control part 20 A / D converter 30, 32, 34 Pixel 40, 42, 44, 46r, 46g, 46b Power supply source 50 Image forming apparatus 60 Image reading apparatus 70 Image forming part 120 , 122, 124 Light receiving element 140 PGA
400-420 Power supply wiring

特開2006−229935号公報JP 2006-229935 A

Claims (10)

一方向に配列されて光電変換を行う画素領域を形成する複数の受光素子と、
前記一方向に平行な電源供給元から前記複数の受光素子に対して電源電圧を供給する複数の電源配線と
を有し、
前記複数の電源配線それぞれは、
前記電源供給元から電源電圧を供給し、前記画素領域の前記受光素子それぞれまでの長さが同じ長さに形成されていること
を特徴とする撮像素子。
A plurality of light receiving elements that form a pixel region that is arranged in one direction and performs photoelectric conversion;
A plurality of power supply wirings for supplying a power supply voltage to the plurality of light receiving elements from a power supply source parallel to the one direction;
Each of the plurality of power supply wirings is
The imaging device is characterized in that a power supply voltage is supplied from the power supply source and the length of the pixel region to each of the light receiving elements is the same.
前記複数の受光素子を色毎にそれぞれ有し、
前記複数の電源配線それぞれは、
前記電源供給元から電源電圧を供給し、前記画素領域の前記受光素子それぞれまでの長さが少なくとも色毎に同じ長さに形成されていること
を特徴とする請求項1に記載の撮像素子。
Each of the plurality of light receiving elements for each color,
Each of the plurality of power supply wirings is
The imaging device according to claim 1, wherein a power supply voltage is supplied from the power supply source, and the length of the pixel region to each of the light receiving elements is the same for at least each color.
前記複数の電源配線は、
前記電源供給元の端部から、前記一方向に対して延びるように形成されていること
を特徴とする請求項1または2に記載の撮像素子。
The plurality of power supply wirings are:
The imaging device according to claim 1, wherein the imaging element is formed so as to extend from the end of the power supply source in the one direction.
前記複数の電源配線は、
前記電源供給元の複数の端部それぞれから、前記一方向に対して延びるように形成されていること
を特徴とする請求項1乃至3のいずれか1項に記載の撮像素子。
The plurality of power supply wirings are:
4. The imaging device according to claim 1, wherein the imaging element is formed so as to extend in the one direction from each of a plurality of ends of the power supply source. 5.
前記電源供給元の端部の少なくともいずれかは、
第1の色の前記一方向に配列されて光電変換を行う前記複数の受光素子の少なくともいずれかと、第2の色の前記一方向に配列されて光電変換を行う前記複数の受光素子の少なくともいずれかとの間に形成されていること
を特徴とする請求項1乃至4のいずれか1項に記載の撮像素子。
At least one of the ends of the power supply source is
At least one of the plurality of light receiving elements arranged in the one direction of the first color to perform photoelectric conversion and at least one of the plurality of light receiving elements arranged in the one direction of the second color to perform photoelectric conversion The imaging device according to claim 1, wherein the imaging device is formed between the heels.
前記複数の電源配線は、
前記複数の受光素子それぞれに対して独立に設けられていること
を特徴とする請求項1乃至5のいずれか1項に記載の撮像素子。
The plurality of power supply wirings are:
The imaging device according to claim 1, wherein the imaging device is provided independently for each of the plurality of light receiving elements.
前記複数の受光素子が光電変換した電気信号をデジタル信号に変換する複数のAD変換器と、
前記電源供給元から前記複数のAD変換器それぞれに対して電源電圧を供給し、それぞれの長さが同じ長さに形成されている他の複数の電源配線と
をさらに有することを特徴とする請求項1乃至6のいずれか1項に記載の撮像素子。
A plurality of AD converters for converting the electrical signals photoelectrically converted by the plurality of light receiving elements into digital signals;
A power supply voltage is supplied to each of the plurality of AD converters from the power supply source, and further includes a plurality of other power supply wirings each having the same length. Item 7. The imaging device according to any one of Items 1 to 6.
前記複数の受光素子が光電変換した電気信号を増幅する複数の増幅部と、
前記電源供給元から前記複数の増幅部それぞれに対して電源電圧を供給し、それぞれの長さが同じ長さに形成されている他の複数の電源配線と
をさらに有することを特徴とする請求項1乃至7のいずれか1項に記載の撮像素子。
A plurality of amplifying units for amplifying electrical signals photoelectrically converted by the plurality of light receiving elements;
The power supply voltage is further supplied to each of the plurality of amplification units from the power supply source, and further includes a plurality of other power supply wirings each having the same length. The imaging device according to any one of 1 to 7.
請求項1乃至8のいずれか1項に記載の撮像素子を有することを特徴とする画像読取装置。   An image reading apparatus comprising the image pickup device according to claim 1. 請求項9に記載の画像読取装置と、
前記画像読取装置が読取った画像を形成する画像形成部と、
を有することを特徴とする画像形成装置。
An image reading apparatus according to claim 9,
An image forming unit for forming an image read by the image reading device;
An image forming apparatus comprising:
JP2018010063A 2018-01-24 2018-01-24 Image sensor, image reading apparatus, and image forming apparatus Active JP6485561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010063A JP6485561B2 (en) 2018-01-24 2018-01-24 Image sensor, image reading apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010063A JP6485561B2 (en) 2018-01-24 2018-01-24 Image sensor, image reading apparatus, and image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014019840A Division JP6281304B2 (en) 2014-02-04 2014-02-04 Image sensor, image reading apparatus, and image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019029339A Division JP7034967B2 (en) 2019-02-21 2019-02-21 Image sensor, image reader and image forming device

Publications (2)

Publication Number Publication Date
JP2018064301A true JP2018064301A (en) 2018-04-19
JP6485561B2 JP6485561B2 (en) 2019-03-20

Family

ID=61966971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010063A Active JP6485561B2 (en) 2018-01-24 2018-01-24 Image sensor, image reading apparatus, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6485561B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057350A (en) * 2001-08-09 2003-02-26 Canon Inc Signal transfer device, photoelectric conversion device, radiation detection device and system
JP2006229935A (en) * 2005-02-14 2006-08-31 Magnachip Semiconductor Ltd Image sensor capable of preventing lowering of voltage of power supply line and disposition method of power supply line of image sensor
JP2007027558A (en) * 2005-07-20 2007-02-01 Canon Inc Optical/electrical converter and multi-chip image sensor
JP2007243093A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Solid-state imaging device, imaging device and signal processing method
JP2008271159A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2009159271A (en) * 2007-12-26 2009-07-16 Panasonic Corp Solid-state imaging device
JP2012147089A (en) * 2011-01-07 2012-08-02 Nikon Corp Imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057350A (en) * 2001-08-09 2003-02-26 Canon Inc Signal transfer device, photoelectric conversion device, radiation detection device and system
JP2006229935A (en) * 2005-02-14 2006-08-31 Magnachip Semiconductor Ltd Image sensor capable of preventing lowering of voltage of power supply line and disposition method of power supply line of image sensor
JP2007027558A (en) * 2005-07-20 2007-02-01 Canon Inc Optical/electrical converter and multi-chip image sensor
JP2007243093A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Solid-state imaging device, imaging device and signal processing method
JP2008271159A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2009159271A (en) * 2007-12-26 2009-07-16 Panasonic Corp Solid-state imaging device
JP2012147089A (en) * 2011-01-07 2012-08-02 Nikon Corp Imaging apparatus

Also Published As

Publication number Publication date
JP6485561B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6281304B2 (en) Image sensor, image reading apparatus, and image forming apparatus
US10721373B2 (en) Image sensing device, image reading device, image forming apparatus and image sensing method
US20190208149A1 (en) Photoelectric conversion element, image reading device, image forming apparatus, and signal control method
US9456158B2 (en) Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device
JP6432332B2 (en) Photoelectric conversion element, image reading apparatus, and image forming apparatus
US9429470B2 (en) Opto-electronic converter, image reading device, and image forming apparatus
US8411185B2 (en) Solid-state imaging apparatus having plural unit cell groups with transfer switches connected to different common output lines
WO2015079597A1 (en) Solid-state image pickup device and image pickup device
KR20060043727A (en) Image pickup element performing image detection of high resolution and high image quality and image pickup apparatus including the same
US7489357B2 (en) Solid-state image pickup element having improved resolution and signal to noise ratio and solid-state image pickup apparatus using the same
US10582142B2 (en) Photoelectric conversion device
US9270914B2 (en) Solid-state imaging apparatus and imaging system
JP6485561B2 (en) Image sensor, image reading apparatus, and image forming apparatus
JP7226495B2 (en) CMOS linear image sensor, image reading device and image forming device
US11172091B2 (en) Photoelectric conversion device, line sensor, image reading device and image forming apparatus
JP2018148359A (en) Solid state image sensor and imaging apparatus
JP6257348B2 (en) Solid-state imaging device, imaging system, and copying machine
JP6551487B2 (en) Image sensor, image reading apparatus, and image forming apparatus
JP6813060B2 (en) Image sensor, image reader and image forming device
TW202013950A (en) Solid-state image capturing device and electronic instrument
JP2019165274A (en) Solid-state imaging device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6485561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151