JP2018063237A - Film inspection method and film production method using the same - Google Patents

Film inspection method and film production method using the same Download PDF

Info

Publication number
JP2018063237A
JP2018063237A JP2017113160A JP2017113160A JP2018063237A JP 2018063237 A JP2018063237 A JP 2018063237A JP 2017113160 A JP2017113160 A JP 2017113160A JP 2017113160 A JP2017113160 A JP 2017113160A JP 2018063237 A JP2018063237 A JP 2018063237A
Authority
JP
Japan
Prior art keywords
resin film
film
light
filter
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017113160A
Other languages
Japanese (ja)
Inventor
慎治 前田
Shinji Maeda
慎治 前田
貴則 西田
Takanori Nishida
貴則 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2018063237A publication Critical patent/JP2018063237A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film inspection method capable of accurately detecting defects of a resin film, and to provide a film production method capable of obtaining a resin film having an excellent film quality including a step of inspecting the resin film using the same.SOLUTION: A film inspection method includes: projecting light from light projection means toward a resin film; taking transmission light penetrating the resin film or reflection light reflected on the surface of the resin film in an area sensor camera; and detecting defects of the resin film. A filter having light-shielding repeated patterns formed on a transmissive base material or a filter having repeated patterns formed of a light-shielding base material is arranged at a position through projection light passes from light projection means between the light projection means and the resin film, and the position of repeating units of the repeated patterns are moved as the position progresses to a traveling direction, and the repeating units have the same shape in the traveling direction of the resin film and the width direction of the resin film.SELECTED DRAWING: Figure 4

Description

本発明は、樹脂フィルムの欠陥を検出するフィルム検査方法及びそれを用いて樹脂フィルムを検査する工程を有するフィルム製造方法に関する。   The present invention relates to a film inspection method for detecting a defect of a resin film and a film manufacturing method including a step of inspecting a resin film using the same.

樹脂フィルムは、各種産業用途に広く使用されており、包装材料、磁気記録材料、電気絶縁材料、光学材料等多岐に渡って生産されている。しかしながら、用途が多様化するにつれて、樹脂フィルムに要求される特性および品質、さらにコストダウンに関わる生産性は、それぞれの用途分野において益々厳しくなっており、解決すべき課題も数多く有る。例えば、樹脂フィルムを、液晶偏光板、位相差板等の液晶ディスプレイ構成部材、PDP部材、タッチパネル用部材、合わせガラス用部材等の各種光学用フィルムとして用いる場合には、優れた透明性とキズや異物等の無い優れたフィルム品位が要求される。これらの課題に対して、樹脂フィルムの特性改善と共にフィルム製造時におけるフィルム検査方法が重要であり、樹脂フィルムのフィルム品位をチェックする様々なフィルム検査方法の提案がなされている。   Resin films are widely used in various industrial applications, and are produced in a wide variety of fields such as packaging materials, magnetic recording materials, electrical insulating materials, and optical materials. However, as the applications are diversified, the properties and quality required for the resin film and the productivity related to cost reduction are becoming more severe in each application field, and there are many problems to be solved. For example, when using a resin film as various optical films such as liquid crystal display components such as liquid crystal polarizing plates and retardation plates, PDP members, touch panel members, laminated glass members, excellent transparency and scratches, An excellent film quality free from foreign matters is required. For these problems, the film inspection method at the time of film production is important as well as the improvement of the properties of the resin film, and various film inspection methods for checking the film quality of the resin film have been proposed.

そのような中で、透光性物品を置くべき箇所の後方に、標準画像のついている標準画像ユニットが設置され、それにより、前記透光性物品を通してみた画像の前記標準画像との差異から、該透光性物品の組織に欠陥がある箇所を探し出すことができる透光性物品の欠陥検査装置及び欠陥検査方法が提案されている(特許文献1)。   In such a case, a standard image unit with a standard image is installed behind the place where the translucent article is to be placed, so that an image viewed through the translucent article is different from the standard image. There has been proposed a defect inspection apparatus and a defect inspection method for a translucent article capable of finding a portion having a defect in the structure of the translucent article (Patent Document 1).

また、暗室環境下における透明フィルムの欠陥検査装置において、透明フィルムが配置される配置面を有するステージと、透明な素材に描かれた格子の格子状チャートユニットが配置される配置面を有するステージと、前記透明フィルムを配置する配置面と垂直方向に光が照射するように設置された平行光源を含む照射部と、前記透明フィルムを通して前記格子状チャートユニットを撮影し画像データを出力するカメラを有する撮影部と、前記透明フィルムを通して見た画像の前記格子状チャートとの差異から、該透明フィルムの欠陥の有無を判断する画像処理部を有する透明フィルム検査装置及び欠陥検出方法が提案されている(特許文献2)。   Further, in a defect inspection apparatus for a transparent film in a dark room environment, a stage having an arrangement surface on which the transparent film is arranged, and a stage having an arrangement surface on which a latticed chart unit of a lattice drawn on a transparent material is arranged An irradiation unit including a parallel light source installed so as to irradiate light in a direction perpendicular to the arrangement surface on which the transparent film is arranged; and a camera that images the grid chart unit through the transparent film and outputs image data. A transparent film inspection apparatus and a defect detection method having an image processing unit for determining the presence or absence of a defect in the transparent film from the difference between the photographing unit and the lattice chart of the image viewed through the transparent film have been proposed ( Patent Document 2).

特開2009−139365号公報JP 2009-139365 A 特開2012−2792号公報JP2012-2792A

特許文献1記載の透光性物品の欠陥検査装置及び欠陥検査方法は、透光性物品の組織中における欠陥箇所の透過光線にもたらす異常屈折を利用して、標準画像の映像における欠陥箇所に明らかな歪みを与えて欠陥の探し出しを容易にさせ、高い検出率で欠陥を検出することができる。しかしながら、樹脂フィルムの欠陥を精度良く検出するための投光手段による適切な光の投射や、最適な標準画像の形状については考慮されていない。   The defect inspection apparatus and the defect inspection method for a translucent article described in Patent Document 1 use the extraordinary refraction caused by the transmitted light at the defect location in the structure of the translucent article to reveal the defect location in the image of the standard image. It is possible to detect defects with high detection rate by making it easy to search for defects by giving a proper distortion. However, an appropriate light projection by a light projecting unit for accurately detecting defects in the resin film and an optimum standard image shape are not considered.

特許文献2記載の透明フィルム検査装置及び欠陥検出方法は、透明フィルムにおける欠陥箇所の通過光線にもたらす異常屈折を平行光源と画像処理ユニットにより精度よく検出することが可能であり、格子状チャートユニットのキャプチャー画像における欠陥箇所に、明らかな歪みを与えて欠陥の探し出しを容易にさせ、高い検出率で欠陥を検出することができる。しかしながら、樹脂フィルムの欠陥を精度良く検出するための最適なチャートユニットの形状については十分ではなかった。   The transparent film inspection apparatus and the defect detection method described in Patent Document 2 can accurately detect anomalous refraction caused by a passing light beam at a defective portion in a transparent film with a parallel light source and an image processing unit. Defects in the captured image can be clearly distorted to easily find defects, and defects can be detected with a high detection rate. However, the optimal shape of the chart unit for accurately detecting defects in the resin film is not sufficient.

本発明の課題は、樹脂フィルムの欠陥を精度良く検出できるフィルム検査方法、及びそれを用いて樹脂フィルムを検査する工程を有する、優れたフィルム品位の樹脂フィルムを得ることができるフィルム製造方法を提供することである。   An object of the present invention is to provide a film inspection method capable of accurately detecting defects in a resin film, and a film manufacturing method capable of obtaining a resin film having excellent film quality, including a step of inspecting a resin film using the film inspection method. It is to be.

本発明のフィルム検査方法は、投光手段から樹脂フィルムに向かって光を投射し、この樹脂フィルムを透過した透過光またはこの樹脂フィルムの表面で反射した反射光をエリアセンサーカメラに取り込んで樹脂フィルムの欠陥を検出する。そして、前記投光手段と前記樹脂フィルムとの間の投光手段からの投射光が通る位置に、透過性の素材に遮光性の繰り返しパターンが形成されたフィルター、または遮光性の素材で繰り返しパターンを形成したフィルターが配置されており、前記繰り返しパターンの繰り返し単位の位置が樹脂フィルムの走行方向に進むにつれて移動し、かつ前記繰り返し単位が樹脂フィルムの走行方向と樹脂フィルムの幅方向とで全て同じ形状である。   According to the film inspection method of the present invention, light is projected from the light projecting means toward the resin film, and the transmitted light transmitted through the resin film or the reflected light reflected from the surface of the resin film is taken into the area sensor camera to be resin film. Detect defects. Further, a filter in which a light-shielding repetitive pattern is formed on a transparent material at a position where the projection light from the light projecting means passes between the light projecting means and the resin film, or a repetitive pattern with a light-shielding material. The position of the repeating unit of the repetitive pattern moves in the running direction of the resin film, and the repeating unit is all the same in the running direction of the resin film and the width direction of the resin film. Shape.

本発明により、樹脂フィルムの欠陥を精度良く検出できるフィルム検査方法、及びそれを用いて樹脂フィルムを検査する工程を有する、優れたフィルム品位の樹脂フィルムを得ることができるフィルム製造方法を提供することができる。   According to the present invention, there are provided a film inspection method capable of accurately detecting defects in a resin film, and a film manufacturing method capable of obtaining a resin film having excellent film quality, comprising a step of inspecting a resin film using the film inspection method. Can do.

図1は本発明の透過方式によるフィルム検査方法の概略図である。FIG. 1 is a schematic view of a film inspection method according to the transmission method of the present invention. 図2は本発明の反射方式によるフィルム検査方法の概略図である。FIG. 2 is a schematic view of the film inspection method according to the reflection method of the present invention. 図3は本発明の具体的なフィルム製造方法の概略図である。FIG. 3 is a schematic view of a specific film production method of the present invention. 図4は本発明における繰り返しパターンの繰り返し単位が円形であるフィルターの概略図である。FIG. 4 is a schematic view of a filter in which the repeating unit of the repeating pattern is circular in the present invention. 図5は本発明における繰り返しパターンの繰り返し単位が正方形であるフィルターの概略図である。FIG. 5 is a schematic view of a filter in which the repeating unit of the repeating pattern in the present invention is a square. 図6は本発明における繰り返しパターンの繰り返し単位が十字形であるフィルターの概略図である。FIG. 6 is a schematic view of a filter in which the repeating unit of the repeating pattern in the present invention is a cross shape. 図7は従来技術における繰り返しパターンの繰り返し単位が正方形であるフィルターの概略図である。FIG. 7 is a schematic view of a filter in which the repeating unit of the repeating pattern in the prior art is a square. 図8は本発明における繰り返しパターンとは異なる繰り返しパターンを有する繰り返し単位が正六角形であるフィルターの概略図である。FIG. 8 is a schematic view of a filter in which a repeating unit having a repeating pattern different from the repeating pattern in the present invention is a regular hexagon. 図9は樹脂フィルムの欠陥検出評価用の標準サンプルの概略図である。FIG. 9 is a schematic diagram of a standard sample for resin film defect detection evaluation. 図10は本発明における繰り返し単位の例の概略図である。FIG. 10 is a schematic view of an example of a repeating unit in the present invention. 図11は本発明における繰り返し単位とは異なる繰り返し単位の例の概略図である。FIG. 11 is a schematic view of an example of a repeating unit different from the repeating unit in the present invention. 図12は本発明における繰り返しパターンの繰り返し単位がリング形であるフィルターの概略図である。FIG. 12 is a schematic view of a filter in which the repeating unit of the repeating pattern according to the present invention is a ring shape.

以下に、本発明を実施するための望ましい形態について、図面を参照しながら説明する。本発明はこれに限定されるものではない。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to this.

本発明のフィルム検査方法は、投光手段から樹脂フィルムに向かって光を投射し、この樹脂フィルムを透過した透過光またはこの樹脂フィルムの表面で反射した反射光をエリアセンサーカメラに取り込んで樹脂フィルムの欠陥を検出するフィルム検査方法であって、 投光手段と樹脂フィルムとの間の投光手段からの投射光が通る位置に、透過性の素材に遮光性の繰り返しパターンが形成されたフィルター、または遮光性の素材で繰り返しパターンを形成したフィルターを配置する。そして、繰り返しパターンを、繰り返し単位の位置が樹脂フィルムの走行方向に進むにつれて移動し、かつ繰り返し単位が樹脂フィルムの走行方向と樹脂フィルムの幅方向とで全て同じ形状としている。   According to the film inspection method of the present invention, light is projected from the light projecting means toward the resin film, and the transmitted light transmitted through the resin film or the reflected light reflected from the surface of the resin film is taken into the area sensor camera to be resin film. A film inspection method for detecting defects in which a light-shielding repeating pattern is formed on a transparent material at a position where the projection light from the light projecting means passes between the light projecting means and the resin film, Alternatively, a filter in which a repetitive pattern is formed with a light shielding material is disposed. The repeating pattern moves as the position of the repeating unit proceeds in the traveling direction of the resin film, and the repeating unit has the same shape in both the traveling direction of the resin film and the width direction of the resin film.

本発明のフィルム検査方法は、透明度が高く光を透過する樹脂フィルムであれば透過方式によるフィルム検査方法が適しており、フィルム表面の凹凸のキズ、付着異物や、フィルム内部の異物、気泡等の欠陥を検出することができる。   The film inspection method of the present invention is suitable for a transparent film inspection method as long as the resin film has high transparency and transmits light, such as scratches on the surface of the film, adhering foreign matter, foreign matter inside the film, bubbles, etc. Defects can be detected.

本発明のフィルム検査方法は、表面の反射率の高い樹脂フィルムであれば反射方式によるフィルム検査方法が適しており、フィルム表面の凹凸状のキズ、付着異物等の欠陥を検出することができる。   As the film inspection method of the present invention, a film inspection method by a reflection method is suitable for a resin film having a high surface reflectance, and it is possible to detect defects such as uneven scratches on the film surface and attached foreign matter.

本発明の具体的な透過方式によるフィルム検査方法の概略図を図1に示す。本発明はこれに限定されるものではない。図1の検査方法では、走行する樹脂フィルム1に投光手段である光源3から光を投射し、投光手段3と樹脂フィルム1との間の投光手段3からの投射光が通る位置にフィルター2を配置する。そして、樹脂フィルム1を透過した透過光7を、レンズ5を通じてエリアセンサーカメラ4に取り込んで、データ処理装置6にて樹脂フィルム1の欠陥検出データの処理を行う。   A schematic diagram of a film inspection method according to a specific transmission method of the present invention is shown in FIG. The present invention is not limited to this. In the inspection method of FIG. 1, light is projected from a light source 3 that is a light projecting unit onto a traveling resin film 1, and the projected light from the light projecting unit 3 between the light projecting unit 3 and the resin film 1 passes through the position. Place the filter 2. Then, the transmitted light 7 transmitted through the resin film 1 is taken into the area sensor camera 4 through the lens 5, and the defect detection data of the resin film 1 is processed by the data processing device 6.

本発明の具体的な反射方式によるフィルム検査方法の概略図を図2に示す。本発明はこれに限定されるものではない。図2の検査方法では、走行する樹脂フィルム1に投光手段である光源3から光を投射し、投光手段3と樹脂フィルム1との間の投光手段3からの投射光が通る位置にフィルター2を配置する。そして、樹脂フィルム1の表面で反射した反射光8を、レンズ5を通じてエリアセンサーカメラ4に取り込んで、データ処理装置6にて樹脂フィルム1の欠陥検出データの処理を行う。   A schematic diagram of a film inspection method according to a specific reflection method of the present invention is shown in FIG. The present invention is not limited to this. In the inspection method of FIG. 2, light is projected from the light source 3 that is the light projecting means to the traveling resin film 1, and the projection light from the light projecting means 3 between the light projecting means 3 and the resin film 1 passes through the position. Place the filter 2. Then, the reflected light 8 reflected from the surface of the resin film 1 is taken into the area sensor camera 4 through the lens 5, and the defect detection data of the resin film 1 is processed by the data processing device 6.

本発明における樹脂フィルム1の材質は特に制約は無く、非晶性の熱可塑性樹脂や結晶性の熱可塑性樹脂の非晶体が好ましく、非晶性の熱可塑性樹脂としては、例えば、メタクリル樹脂、ポリカーボネート、ポリスチレン、脂環式構造を有する重合体、セルロース系樹脂、塩化ビニル、ポリスルホン、ポリスルホンエーテル等を挙げることができる。結晶性の熱可塑性樹脂としては、例えば、ポリエステル樹脂等を挙げることができる。これらを非晶体にすることで光の透過が可能となる。本発明では、樹脂の原料コストや機械的強度等で優れるポリエステル樹脂を用いることが好ましい。   The material of the resin film 1 in the present invention is not particularly limited, and is preferably an amorphous thermoplastic resin or an amorphous material of a crystalline thermoplastic resin. Examples of the amorphous thermoplastic resin include methacrylic resin and polycarbonate. , Polystyrene, polymers having an alicyclic structure, cellulose resins, vinyl chloride, polysulfone, polysulfone ether, and the like. Examples of the crystalline thermoplastic resin include a polyester resin. By making these amorphous, light can be transmitted. In this invention, it is preferable to use the polyester resin which is excellent in the raw material cost of a resin, mechanical strength, etc.

本発明における樹脂フィルム1の走行形態は特に制約は無く、ばたつきや、シワが入ることなく安定して走行していればよい。走行速度としては10m/分〜500m/分が考えられるが、50m/分〜200m/分が好ましい。また、樹脂フィルム1の厚みは特に制約は無く、1μm〜8,000μmが考えられるが、10μm〜1,000μmが好ましい。   There is no restriction | limiting in particular in the driving | running | working form of the resin film 1 in this invention, What is necessary is just to drive | work stably, without flapping and wrinkles entering. The traveling speed may be 10 m / min to 500 m / min, but is preferably 50 m / min to 200 m / min. The thickness of the resin film 1 is not particularly limited, and can be 1 μm to 8,000 μm, but 10 μm to 1,000 μm is preferable.

本発明における投光手段である光源3は特に制約はないが、面光源であることが好ましい。光源3の平均照度は1,000LUX以上であることが好ましく、2,000LUX以上であることが特に好ましい。また、照度斑は±10%以下であればカメラ側の感度調整で対応可能であるが、±10%を超えると感度斑となることがある。   Although the light source 3 which is a light projection means in this invention does not have a restriction | limiting in particular, It is preferable that it is a surface light source. The average illuminance of the light source 3 is preferably 1,000 LUX or more, particularly preferably 2,000 LUX or more. Further, if the illuminance unevenness is ± 10% or less, it can be dealt with by adjusting the sensitivity on the camera side, but if it exceeds ± 10%, it may become a sensitivity unevenness.

本発明におけるエリアセンサーカメラ4及びレンズ5は特に制約はないが、エリアセンサーカメラ4は、レンズ5を通じて取り込んだ光の陰影を複数の光電変換素子によりデジタル信号に変換するものである。エリアセンサーカメラ4は画素数が多いものが好ましく、樹脂フィルムの走行方向26の画素数が4092、樹脂フィルムの幅方向27の画素数が5104の2100万画素であるものが好ましい。ここで、本発明で言う「樹脂フィルムの幅方向」とは、樹脂フィルム面に平行かつ樹脂フィルムの走行方向と垂直な方向のことを指す。レンズ5は、樹脂フィルム1を透過した透過光7または樹脂フィルム1の表面で反射した反射光8をカメラ4に取り込むもので、焦点を合わせるためのピント機能と、照度を合わせるための絞り機能とを有することが好ましい。   The area sensor camera 4 and the lens 5 in the present invention are not particularly limited, but the area sensor camera 4 converts a shadow of light taken through the lens 5 into a digital signal by a plurality of photoelectric conversion elements. The area sensor camera 4 preferably has a large number of pixels, and preferably has 21 million pixels with 4092 pixels in the running direction 26 of the resin film and 5104 pixels in the width direction 27 of the resin film. Here, the “width direction of the resin film” referred to in the present invention refers to a direction parallel to the resin film surface and perpendicular to the running direction of the resin film. The lens 5 captures the transmitted light 7 transmitted through the resin film 1 or the reflected light 8 reflected from the surface of the resin film 1 into the camera 4. The lens 5 has a focus function for focusing and an aperture function for adjusting illuminance. It is preferable to have.

本発明におけるデータ処理装置6は特に制約はないが、エリアセンサーカメラ4が受光した透過光7または反射光8の受光量に基づいて、樹脂フィルム1の欠陥を検出してデータ処理を行う機能を有することが好ましい。   The data processing device 6 in the present invention is not particularly limited, but has a function of detecting a defect of the resin film 1 and performing data processing based on the amount of transmitted light 7 or reflected light 8 received by the area sensor camera 4. It is preferable to have.

本発明におけるフィルター2は、透過性の素材に遮光性の繰り返しパターンが形成されたもの、または遮光性の素材で繰り返しパターンを形成したものである。透過性の素材に遮光性の繰り返しパターンが形成されたフィルター2は、その形態には特に制約はないが、透過性の素材はガラスで形成されたもので、遮光性の素材はガラスの上に形成された顔料を含む樹脂であることが好ましい。遮光性の素材で繰り返しパターンを形成したフィルター2は、その形態には特に制約はないが、厚み0.1mm程度の薄膜の遮光性の素材で繰り返しパターンを形成したものであることが好ましい。そして、遮光性の素材は、薄膜で遮光性を有する点から金属であることが好ましい。また、遮光性の繰り返しパターンは、金属をエッチング処理して形成したものであることが好ましい。   The filter 2 according to the present invention is one in which a light-shielding repetitive pattern is formed on a transparent material or a light-shielding material formed with a repetitive pattern. The filter 2 in which a light-shielding repeating pattern is formed on a transparent material is not particularly limited in form, but the transparent material is formed of glass, and the light-shielding material is placed on the glass. A resin containing the formed pigment is preferred. The form of the filter 2 in which the repetitive pattern is formed with a light-shielding material is not particularly limited, but it is preferable that the repetitive pattern is formed with a thin light-shielding material having a thickness of about 0.1 mm. The light-shielding material is preferably a metal because it is a thin film and has light-shielding properties. The light-shielding repeating pattern is preferably formed by etching a metal.

本発明におけるフィルター2は、繰り返しパターンの繰り返し単位の位置が樹脂フィルムの走行方向に進むにつれて移動している。ここで、「繰り返し単位の位置が樹脂フィルムの走行方向に進むにつれて移動する」とは、フィルターに形成された繰り返しパターンをフィルム走行方向に沿って観察したとき、フィルム走行方向に並ぶ繰り返し単位が、フィルム幅方向の同じ位置に連続して並んでいるのではなく、フィルム幅方向の異なる位置に配置されていることである。具体的に図面を参照して説明する。図5に図示したものが本発明におけるフィルターの一例である。繰り返し単位28をフィルム走行方向26に沿って観察したとき、フィルム走行方向26に並ぶ繰り返し単位28が、フィルム幅方向27の異なる位置に配置されて並んでいる。一方、図7に図示したものが本発明とは異なるフィルターの一例である。繰り返し単位28をフィルム走行方向26に沿って観察したとき、フィルム走行方向26に並ぶ繰り返し単位28が、フィルム幅方向27の同じ位置に並んでいる。   The filter 2 according to the present invention moves as the position of the repeating unit of the repeating pattern advances in the traveling direction of the resin film. Here, "the position of the repeating unit moves as it advances in the traveling direction of the resin film" means that when the repeating pattern formed on the filter is observed along the film traveling direction, the repeating units arranged in the film traveling direction are It is not arranged continuously at the same position in the film width direction but arranged at different positions in the film width direction. This will be specifically described with reference to the drawings. FIG. 5 shows an example of the filter in the present invention. When the repeating units 28 are observed along the film running direction 26, the repeating units 28 arranged in the film running direction 26 are arranged and arranged at different positions in the film width direction 27. On the other hand, what is illustrated in FIG. 7 is an example of a filter different from the present invention. When the repeating units 28 are observed along the film running direction 26, the repeating units 28 arranged in the film running direction 26 are arranged at the same position in the film width direction 27.

なお、図2のように検査装置を設置した場合など、フィルター2を、フィルター2の面と樹脂フィルム1の面とが角度を持つように設置すると、フィルター2の面と実際のフィルム走行方向26とは平行ではなくなる。このような場合は、フィルター2の面に垂直な方向から走行する樹脂フィルム1を観察し、そのときに観察される樹脂フィルム1が流れていく方向をフィルム走行方向とみなせばよい。   When the filter 2 is installed so that the surface of the filter 2 and the surface of the resin film 1 have an angle, such as when an inspection apparatus is installed as shown in FIG. 2, the surface of the filter 2 and the actual film traveling direction 26 Is no longer parallel. In such a case, the resin film 1 traveling from a direction perpendicular to the surface of the filter 2 is observed, and the direction in which the resin film 1 observed at that time flows may be regarded as the film traveling direction.

フィルム走行方向に並ぶ繰り返し単位がフィルム幅方向の同じ位置に連続して並んでいる繰り返しパターンであると、繰り返し単位と繰り返し単位との間の境界の遮光部分がフィルム走行方向に延びる1本の線のようになることがある。樹脂フィルム上の欠陥がこの遮光部分の位置に重なる位置に発生すると、遮光部分はフィルム走行方向に延びているがゆえに、欠陥は遮光部分に常に重なった状態となってしまうため、この欠陥を検出することはできなくなってしまう。フィルム走行方向に並ぶ繰り返し単位がフィルム幅方向の異なる位置に配置されて並んでいる繰り返しパターンであれば、ある時点で樹脂フィルム上の欠陥が繰り返しパターンの遮光部分に重なる位置に発生したとしても、樹脂フィルムとともに欠陥がフィルム走行方向に移動すれば、欠陥は遮光部分と重ならない位置で観察できる状態となる。これにより、光の透過と遮光の繰り返しで樹脂フィルムの検出すべき欠陥を強調しながら、検出すべき欠陥が遮光部分に隠れて検出できなくなることを抑制することができる。   If the repeating units arranged in the film running direction are repeated patterns arranged continuously at the same position in the film width direction, the light shielding part at the boundary between the repeating units is a single line extending in the film running direction. It may become like this. If a defect on the resin film occurs at a position that overlaps the position of the light-shielding part, the light-shielding part extends in the film running direction, so the defect always overlaps the light-shielding part. You can't do that. If the repeating unit arranged in the film running direction is a repeating pattern arranged and arranged at different positions in the film width direction, even if a defect on the resin film occurs at a position overlapping the light shielding part of the repeating pattern at a certain point in time, If the defect moves in the film running direction together with the resin film, the defect can be observed at a position that does not overlap the light shielding portion. Thereby, it can suppress that the defect which should be detected is hidden behind a light-shielding part and cannot be detected, emphasizing the defect which should be detected of resin film by repetition of light transmission and light shielding.

本発明におけるフィルター2は、繰り返しパターンの繰り返し単位28の形状が、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27を入れ替えても同じとなる形状である(以後、この形状を「樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ形状」とする)。繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで異なる形状であると、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ度合で欠陥を強調することができず、検出感度の方向による差が生じ、樹脂フィルム1の欠陥を精度良く検出できなくなることがある。繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ形状であれば、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ度合で欠陥を強調することができる。   In the filter 2 of the present invention, the shape of the repeating unit 28 of the repeating pattern is the same shape even if the traveling direction 26 of the resin film and the width direction 27 of the resin film are interchanged (hereinafter, this shape is referred to as “resin film The traveling direction 26 and the width direction 27 of the resin film have the same shape ”). When the repeating unit 28 has different shapes in the resin film running direction 26 and the resin film width direction 27, defects can be emphasized in the same degree in the resin film running direction 26 and the resin film width direction 27. Therefore, a difference depending on the direction of detection sensitivity may occur, and a defect in the resin film 1 may not be detected with high accuracy. If the repeating unit 28 has the same shape in the running direction 26 of the resin film and the width direction 27 of the resin film, the defect can be emphasized in the same degree in the running direction 26 of the resin film and the width direction 27 of the resin film. .

本発明におけるフィルター2は、フィルター2の繰り返しパターンの繰り返し単位28が円形であることが好ましい。繰り返し単位28を円形とすることで、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27との2方向に限らず、全方向において同じ度合で欠陥を強調することができる。   In the filter 2 of the present invention, the repeating unit 28 of the repeating pattern of the filter 2 is preferably circular. By making the repeating unit 28 circular, defects can be emphasized in the same degree in all directions, not limited to the two directions of the running direction 26 of the resin film and the width direction 27 of the resin film.

また、本発明におけるフィルター2は、フィルター2の繰り返しパターンの繰り返し単位28がリング形であることも好ましい。繰り返し単位28をリング形とすることで、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27との2方向に限らず、全方向において同じ度合で欠陥を強調することができ、さらに遮光部分と透過部分とのコントラストを多くすることで欠陥を特に精度良く検出することができる。   In the filter 2 according to the present invention, the repeating unit 28 of the repeating pattern of the filter 2 is preferably ring-shaped. By making the repeating unit 28 into a ring shape, defects can be emphasized in the same degree in all directions, not only in the two directions of the resin film running direction 26 and the resin film width direction 27, Defects can be detected particularly accurately by increasing the contrast with the transmission part.

図4、図5、図6、図12に、本発明における繰り返しパターンを有するフィルターの例の概略図を示す(図4:フィルターA21、図5:フィルターB22、図6:フィルターC23、図12:フィルターF48)。それぞれ、繰り返しパターンの繰り返し単位28は円形(図4)、正方形(図5)、十字形(図6)、リング形(図12)である。いずれも、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動し、繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ形状となっている。   4, 5, 6, and 12 show schematic diagrams of examples of filters having a repetitive pattern in the present invention (FIG. 4: filter A21, FIG. 5: filter B22, FIG. 6: filter C23, FIG. 12: Filter F48). The repeating unit 28 of the repeating pattern is circular (FIG. 4), square (FIG. 5), cross (FIG. 6), and ring (FIG. 12). In either case, the position of the repeating unit 28 moves as it advances in the running direction 26 of the resin film, and the repeating unit 28 has the same shape in the running direction 26 of the resin film and the width direction 27 of the resin film.

図7,8に、本発明とは異なる繰り返しパターンを有するフィルターの例の概略図を示す(図7:フィルターD24、図8:フィルターE25)。それぞれ、繰り返しパターンの繰り返し単位28は正方形(図7)、正六角形(図8)である。フィルターD24では、正方形の繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ形状となっているが、樹脂フィルムの走行方向26に並ぶ繰り返し単位28が、樹脂フィルムの幅方向27の同じ位置に連続して並んでいる。フィルターE25では、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動しているが、正六角形の繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで異なる形状となっている。   7 and 8 show schematic diagrams of examples of filters having a repetitive pattern different from the present invention (FIG. 7: filter D24, FIG. 8: filter E25). Each of the repeating units 28 of the repeating pattern is a square (FIG. 7) and a regular hexagon (FIG. 8). In the filter D24, the square repeating unit 28 has the same shape in the traveling direction 26 of the resin film and the width direction 27 of the resin film, but the repeating unit 28 aligned in the traveling direction 26 of the resin film is the width of the resin film. They are continuously arranged at the same position in the direction 27. In the filter E25, the position of the repeating unit 28 moves as the resin film travels in the traveling direction 26. However, the regular hexagonal repeating unit 28 has different shapes in the traveling direction 26 of the resin film and the width direction 27 of the resin film. It has become.

図10に、本発明における繰り返し単位28の例の概略図を示す。繰り返し単位28の形状が、円形の繰り返し単位U41、正方形の繰り返し単位V42、十字形の繰り返し単位W43、リング形の繰り返し単位T47を図示している。いずれも、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ形状であり、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで同じ度合で欠陥を強調することができるため、樹脂フィルム1の欠陥を精度良く検出することができる。この中でも、円形の繰り返し単位U41や、リング形の繰り返し単位T47では、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27との2方向に限らず、全方向において同じ度合で欠陥を強調することができるため、樹脂フィルム1の欠陥を特に精度良く検出することができる。   In FIG. 10, the schematic of the example of the repeating unit 28 in this invention is shown. The repeating unit 28 has a circular repeating unit U41, a square repeating unit V42, a cross-shaped repeating unit W43, and a ring-shaped repeating unit T47. Both have the same shape in the resin film running direction 26 and the resin film width direction 27, and defects can be emphasized in the same degree in the resin film running direction 26 and the resin film width direction 27. The defect of the resin film 1 can be detected with high accuracy. Among these, in the circular repeating unit U41 and the ring-shaped repeating unit T47, defects are emphasized in the same degree in all directions, not limited to the two directions of the resin film running direction 26 and the resin film width direction 27. Therefore, the defect of the resin film 1 can be detected particularly accurately.

図11に、本発明とは異なる繰り返し単位28の例の概略図を示す。繰り返し単位28の形状が、長方形の繰り返し単位X44、三角形の繰り返し単位Y45、正六角形の繰り返し単位Z46を図示している。いずれも、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで異なる形状であり、樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで異なる度合で欠陥を強調するため、検出感度の方向による差が生じ、樹脂フィルム1の欠陥を精度良く検出できなくなることがある。   FIG. 11 shows a schematic diagram of an example of a repeating unit 28 different from the present invention. The repeating unit 28 has a rectangular repeating unit X44, a triangular repeating unit Y45, and a regular hexagonal repeating unit Z46. In both cases, the resin film running direction 26 and the resin film width direction 27 have different shapes, and defects are emphasized at different degrees in the resin film running direction 26 and the resin film width direction 27. A difference depending on the direction may occur, and a defect in the resin film 1 may not be detected with high accuracy.

本発明の具体的なフィルム製造方法の概略図を図3に示す。本発明はこれに限定されるものではない。   A schematic diagram of a specific film production method of the present invention is shown in FIG. The present invention is not limited to this.

熱可塑性樹脂を原料とするフィルム製造方法の場合、原料の樹脂ペレットを押し出し手段である押出機11に供給し、融点からプラス70℃の温度範囲で溶融状態にしてギヤポンプで計量後、濾過装置で溶融した樹脂を濾過し、異物やゲル化物等を取り除く。次いで、該濾過装置を通過した樹脂の溶融体は、口金手段である口金12で目的の幅と厚みに成形された後、連続的に一定量のシート状溶融物として吐出される。次いで、押し出された該シート状溶融物へ上面又は下面より静電荷を析出させ、10℃から60℃の温度範囲で冷却手段である回転冷却体13(キャスティングドラムとも呼ばれる)に密着させて冷却、固化して未延伸の樹脂フィルム1を得る。フィルムのキャスト方法としては、スリット状、スポット状、面状のエアー供給装置(エアーチャンバーとも呼ばれる)からエアーを吹き出し、回転冷却体に密着させて冷却、固化させる方法、ニップロールにて回転冷却体に密着させて冷却、固化させる方法も好ましい。次いで、延伸装置を用いて該未延伸の樹脂フィルム1の二軸延伸を行う。ここで、一般的に、フィルムに分子配向を与えて物理的強度等を向上させることを目的とする二軸延伸方法としては、未延伸フィルムを縦延伸機14でフィルムの走行方向(搬送方向)、すなわち、縦方向に延伸した後、縦方向に延伸された一軸延伸フィルムを横延伸機15(ステンターとも呼ばれる)で走行方向と垂直なフィルムの幅方向、すなわち横方向に延伸する逐次二軸延伸法や、未延伸フィルムをステンター中でフィルムの縦方向および横方向とを同時に延伸する同時二軸延伸法などが知られている。   In the case of a film manufacturing method using a thermoplastic resin as a raw material, the raw material resin pellets are supplied to an extruder 11 as an extrusion means, melted in a temperature range from the melting point to plus 70 ° C., weighed with a gear pump, and then filtered with a filtration device. The molten resin is filtered to remove foreign matters and gelled products. Next, the resin melt that has passed through the filtering device is formed into a target width and thickness by a die 12 that is a die means, and then continuously discharged as a certain amount of sheet-like melt. Next, an electrostatic charge is deposited on the extruded sheet-like melt from the upper surface or the lower surface, and is cooled in close contact with a rotating cooling body 13 (also called a casting drum) as a cooling means in a temperature range of 10 ° C. to 60 ° C. Solidified to obtain an unstretched resin film 1. As a film casting method, air is blown out from a slit-like, spot-like, or planar air supply device (also called an air chamber), and is brought into close contact with the rotating cooling body to be cooled and solidified. A method of closely contacting and cooling and solidifying is also preferable. Next, biaxial stretching of the unstretched resin film 1 is performed using a stretching apparatus. Here, in general, as a biaxial stretching method for improving the physical strength by imparting molecular orientation to the film, the unstretched film is run in the film stretching direction (conveying direction) with the longitudinal stretching machine 14. In other words, after stretching in the longitudinal direction, a uniaxially stretched film stretched in the longitudinal direction is sequentially biaxially stretched in the width direction of the film perpendicular to the running direction, that is, in the transverse direction, by a transverse stretching machine 15 (also called a stenter). And a simultaneous biaxial stretching method in which an unstretched film is stretched simultaneously in a longitudinal direction and a lateral direction of a film in a stenter are known.

本発明のフィルム製造方法の一例として、逐次二軸延伸法の場合について説明する。縦延伸機14を用いて、前記未延伸の樹脂フィルム1をフィルムの走行方向(搬送方向)、すなわち、縦方向に延伸を行う。走行方向への延伸とは、フィルムの走行方向に分子配向を与えるための延伸を言い、通常は、ロール周速差により施され、この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階で行ってもよい。樹脂フィルム1の延伸倍率としては、2〜8倍が好ましく用いられる。また、延伸温度としてはフィルムを構成する樹脂のガラス転移温度からプラス90℃の温度範囲が好ましい。このようにして得られた一軸延伸された樹脂フィルム1に、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能を、フィルム製造工程中で、塗布手段である塗布装置で塗液を塗布することで付与してもよい。   As an example of the film production method of the present invention, the sequential biaxial stretching method will be described. Using the longitudinal stretching machine 14, the unstretched resin film 1 is stretched in the film traveling direction (conveying direction), that is, in the longitudinal direction. Stretching in the running direction refers to stretching for imparting molecular orientation in the running direction of the film, and is usually performed by a difference in roll peripheral speed, and this stretching may be performed in one step, You may carry out in multiple steps using a roll pair. As the draw ratio of the resin film 1, 2 to 8 times is preferably used. The stretching temperature is preferably a temperature range of plus 90 ° C. from the glass transition temperature of the resin constituting the film. The thus obtained uniaxially stretched resin film 1 is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as easy slipping, easy adhesion, and antistatic properties. You may provide a function by apply | coating a coating liquid with the coating device which is an application means in a film manufacturing process.

次いで、ステンターを用いて、縦方向に一軸延伸された樹脂フィルム1を、ステンター予熱室で予熱し、ステンター延伸室で走行方向と垂直なフィルムの幅方向、すなわち横方向に延伸を行う。幅方向の延伸とは、フィルムの幅方向に分子配向を与えるための延伸を言い、ステンター中のフィルムの幅方向の両側端部の位置に有するレールに沿って、ステンターの入口部から出口部に向かって移動する多数のクリップで、フィルムの幅方向の両側端部を把持しながら搬送し、フィルムの幅方向に延伸を行う。樹脂フィルム1の延伸倍率としては、2〜8倍が好ましく用いられる。また、延伸温度としてはフィルムを構成する樹脂のガラス転移温度からプラス90℃の温度範囲が好ましい。こうして二軸延伸された樹脂フィルム1は、平面性、寸法安定性を付与するために、ステンター熱固定室で150℃から250℃の温度範囲で熱処理を行う。このようにして熱処理された後、ステンター冷却室で幅方向に均一に冷却させながら室温まで冷却し、巻き取り手段である巻取機17で巻き取り、二軸延伸された樹脂フィルム1を得る。また、必要に応じて、熱処理から除冷の際に弛緩処理などを併用してもよい。   Next, the resin film 1 uniaxially stretched in the longitudinal direction is preheated in a stenter preheating chamber using a stenter, and stretched in the width direction of the film perpendicular to the running direction, that is, in the transverse direction, in the stenter stretching chamber. Stretching in the width direction refers to stretching for imparting molecular orientation in the width direction of the film, from the entrance portion of the stenter to the exit portion along the rails located at both end portions in the width direction of the film in the stenter. A number of clips moving toward the film are conveyed while gripping both side edges in the width direction of the film, and stretched in the width direction of the film. As the draw ratio of the resin film 1, 2 to 8 times is preferably used. The stretching temperature is preferably a temperature range of plus 90 ° C. from the glass transition temperature of the resin constituting the film. The biaxially stretched resin film 1 is heat-treated in a temperature range of 150 ° C. to 250 ° C. in a stenter heat fixing chamber in order to impart flatness and dimensional stability. After being heat-treated in this manner, it is cooled to room temperature while being uniformly cooled in the width direction in the stenter cooling chamber, and taken up by a winder 17 as a winding means to obtain a biaxially stretched resin film 1. Moreover, you may use a relaxation process etc. together in the case of cooling from heat processing as needed.

本発明におけるフィルム検査機16の設置位置としては、上記で説明したフィルム製造工程内の冷却手段である回転冷却体13と巻き取り手段である巻取機17との間に設置することが好ましい。無延伸フィルムを製造する場合、前記の設置位置が好ましい。また、二軸延伸フィルムを製造する場合、同様の設置位置であるが、詳しくは、逐次二軸延伸法では、図3に記載の横延伸機15と巻取機17との間に設置することが好ましい。   The installation position of the film inspection machine 16 in the present invention is preferably installed between the rotary cooling body 13 that is the cooling means in the film manufacturing process described above and the winder 17 that is the winding means. When an unstretched film is produced, the above installation position is preferable. Moreover, when manufacturing a biaxially stretched film, it is the same installation position. Specifically, in the sequential biaxial stretching method, it is installed between the transverse stretching machine 15 and the winder 17 shown in FIG. Is preferred.

本発明のフィルム製造方法は、本発明のフィルム検査方法を用いて樹脂フィルムを検査する工程を有することで、キズや異物等の無い優れたフィルム品位の樹脂フィルムを得ることができる。   The film manufacturing method of this invention can obtain the resin film of the outstanding film quality without a crack, a foreign material, etc. by having the process of test | inspecting a resin film using the film inspection method of this invention.

以下、実施例に沿って本発明を説明するが、本発明はこれらの実施例によって制限されるものではない。なお、諸特性は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated along an Example, this invention is not restrict | limited by these Examples. Various characteristics were measured by the following methods.

(樹脂フィルムの欠陥検出)
図9に記載の樹脂フィルム1の欠陥検出評価用の標準サンプル31を使用して、レンズ5の前を走行速度60m/分で樹脂フィルムの走行方向26に標準サンプル31を移動させて欠陥を検出できるかについて検証した。光源3(メーカー:株式会社キーエンス、品番:CA−DBW50H)、エリアセンサーカメラ4(メーカー:株式会社キーエンス、品番:CA−H2100C)、レンズ5(メーカー:株式会社キーエンス、品番:CA−LHE50)、及びデータ処理装置6(メーカー:株式会社キーエンス、品番:CV−X290F)を使用し、投光手段の光源3から樹脂フィルム1に向かって光を投射し、樹脂フィルム1を透過した透過光7またはこの樹脂フィルムの表面で反射した反射光8をレンズ5からエリアセンサーカメラ4に取り込んで、データ処理装置6にて検出データの処理を行った。
(Detection of defects in resin film)
Using the standard sample 31 for defect detection evaluation of the resin film 1 shown in FIG. 9, the defect is detected by moving the standard sample 31 in the traveling direction 26 of the resin film at a traveling speed of 60 m / min in front of the lens 5. We verified whether it was possible. Light source 3 (manufacturer: Keyence Corporation, product number: CA-DBW50H), area sensor camera 4 (manufacturer: Keyence Corporation, product number: CA-H2100C), lens 5 (manufacturer: Keyence Corporation, product number: CA-LHE50), And the data processing device 6 (manufacturer: Keyence Corporation, product number: CV-X290F), the light is projected from the light source 3 of the light projecting means toward the resin film 1, and the transmitted light 7 transmitted through the resin film 1 or The reflected light 8 reflected from the surface of the resin film was taken into the area sensor camera 4 from the lens 5, and the detection data was processed by the data processing device 6.

図9に記載の標準サンプル31には、樹脂フィルム1の欠陥として長径が同じ方向のキズが3種類有り、キズの長径は、キズ大32が約100μm(=0.1mm)、キズ中33が約50μm(=0.05mm)、キズ小34が約10μm(=0.01mm)である。   The standard sample 31 shown in FIG. 9 has three types of scratches in the same direction as the major axis as defects of the resin film 1. The major axis of the scratch is about 100 μm (= 0.1 mm) with a large scratch 32 and 33 within the scratch. About 50 μm (= 0.05 mm), and the small scratch 34 is about 10 μm (= 0.01 mm).

評価方法は、標準サンプル31を、レンズ5の前を走行速度60m/分で樹脂フィルムの走行方向26に移動させて、これを10回繰り返す。このとき、1回の走行毎に0.1mmずつ樹脂フィルムの幅方向27に標準サンプル31をずらしていく。10回中で10回の検出は○、10回中で4回以上9回以下の検出は△、10回中で3回以下の検出は×とした。   In the evaluation method, the standard sample 31 is moved in front of the lens 5 at a running speed of 60 m / min in the running direction 26 of the resin film, and this is repeated 10 times. At this time, the standard sample 31 is shifted in the width direction 27 of the resin film by 0.1 mm for each run. 10 out of 10 detections were marked as ◯, 10 out of 4 or more and 9 or less detections were Δ, and 3 or less out of 10 detections were marked with ×.

(実施例1)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図5に記載の繰り返しパターンの繰り返し単位28が正方形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターB22を使用した。
Example 1
In the film inspection method according to the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 5 is square in the filter 2 portion, and the position of the repeating unit 28 advances in the running direction 26 of the resin film. A filter B22 was used that moved with time.

フィルターB22の繰り返しパターンは、3mm角の正方形で樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26にも3.2mmピッチで繰り返し並んでいるが、1列目に対して2列目は樹脂フィルムの幅方向27に1.6mm(切り返しピッチの1/2)移動している。さらに3列目は2列目に対して1.6mm移動しており、結果的に1列目と同じである。   The repeating pattern of the filter B22 is a 3 mm square and is repeatedly arranged at a pitch of 3.2 mm in the width direction 27 of the resin film. Also, the resin film travel direction 26 is repeatedly arranged at a pitch of 3.2 mm, but the second line moves 1.6 mm in the resin film width direction 27 with respect to the first line (1/2 of the turn-back pitch). doing. Furthermore, the third row moves 1.6 mm with respect to the second row, and as a result, is the same as the first row.

標準サンプル31を図9に記載の通りの縦キズとして、図1に記載の本発明の透過方式によるフィルム検査方法にて走行速度60m/分で樹脂フィルムの走行方向26に移動させて、これを10回繰り返した。次いで、図9に記載の標準サンプル31を樹脂フィルムの走行方向26に対して90°回転させた横キズとして、前記と同様にしてフィルム検査を行った。次いで、図9に記載の標準サンプル31を樹脂フィルムの走行方向26に対して45°回転させた斜めキズとして、前記と同様にしてフィルム検査を行った。   The standard sample 31 is moved in the running direction 26 of the resin film at a running speed of 60 m / min by the film inspection method according to the transmission method of the invention shown in FIG. Repeated 10 times. Next, the film was inspected in the same manner as described above with the standard sample 31 shown in FIG. 9 as a horizontal flaw rotated by 90 ° with respect to the running direction 26 of the resin film. Next, film inspection was performed in the same manner as described above, with the standard sample 31 shown in FIG. 9 as an oblique scratch rotated by 45 ° with respect to the running direction 26 of the resin film.

結果を表1に示す。縦キズの場合と、横キズの場合は、10回とも全てのキズを検出できた。斜めキズの場合は、キズ小34が10回中で2回検出できなかった。   The results are shown in Table 1. In the case of a vertical flaw and a horizontal flaw, all flaws could be detected 10 times. In the case of diagonal scratches, the small scratch 34 could not be detected twice in 10 times.

(実施例2)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図4に記載の繰り返しパターンの繰り返し単位28が円形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターA21を使用した。
(Example 2)
In the film inspection method according to the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 4 is circular in the filter 2 portion, and the position of the repeating unit 28 advances in the running direction 26 of the resin film. Filter A21 was used that moved as

フィルターA21の繰り返しパターンは、直径3mmの円形が樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26にも3.2mmピッチで繰り返し並んでいるが、1列目に対して2列目は樹脂フィルムの幅方向27に1.6mm(切り返しピッチの1/2)移動している。さらに3列目は2列目に対して1.6mm移動しており、結果的に1列目と同じである。前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。   In the repeating pattern of the filter A21, circles having a diameter of 3 mm are repeatedly arranged at a pitch of 3.2 mm in the width direction 27 of the resin film. Also, the resin film travel direction 26 is repeatedly arranged at a pitch of 3.2 mm, but the second line moves 1.6 mm in the resin film width direction 27 with respect to the first line (1/2 of the turn-back pitch). doing. Furthermore, the third row moves 1.6 mm with respect to the second row, and as a result, is the same as the first row. A film inspection was conducted in the same manner as in Example 1 except that the filter was used.

結果を表1に示す。縦キズの場合、横キズの場合、及び斜めキズの場合のいずれも、10回とも全てのキズを検出できた。  The results are shown in Table 1. In the case of the vertical scratch, the case of the horizontal scratch, and the case of the diagonal scratch, all the scratches could be detected 10 times.

(実施例3)
図2に記載の本発明の反射方式によるフィルム検査方法で、フィルター2の部分に図4に記載の繰り返しパターンの繰り返し単位28が円形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターA21を使用した。前記のフィルム検査方法、前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。
(Example 3)
In the film inspection method according to the reflection system of the present invention shown in FIG. 2, the repeating unit 28 of the repeating pattern shown in FIG. 4 is circular in the filter 2 portion, and the position of the repeating unit 28 advances in the running direction 26 of the resin film. Filter A21 was used that moved as A film inspection was performed in the same manner as in Example 1 except that the film inspection method and the filter were used.

結果を表1に示す。縦キズの場合、横キズの場合、及び斜めキズの場合のいずれも、10回とも全てのキズを検出できた。   The results are shown in Table 1. In the case of the vertical scratch, the case of the horizontal scratch, and the case of the diagonal scratch, all the scratches could be detected 10 times.

(実施例4)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図6に記載の繰り返しパターンの繰り返し単位28が十字形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターC23を使用した。
Example 4
In the film inspection method according to the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 6 has a cross shape in the filter 2, and the position of the repeating unit 28 is in the running direction 26 of the resin film. Filter C23 was used that moved as it progressed.

フィルターC23の繰り返しパターンは、3mm角の正方形から4隅部分が各々0.75mm欠けた形状の十字形(長辺3mm・短辺1.5mmの長方形2本が、90°の角度で直交して重なった十字型)で樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26には2.45mmピッチで繰り返し並んでいるが、1列目に対して2列目は樹脂フィルムの幅方向27に1.6mm(切り返しピッチの1/2)移動している。さらに3列目は2列目に対して1.6mm移動しており、結果的に1列目と同じである。前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。   The repetitive pattern of the filter C23 is a cruciform shape in which four corners are cut out by 0.75 mm each from a 3 mm square (two rectangles having a long side of 3 mm and a short side of 1.5 mm are orthogonal to each other at an angle of 90 °. Are overlapped in the width direction 27 of the resin film at a pitch of 3.2 mm. Further, the resin film is repeatedly arranged in the running direction 26 at a pitch of 2.45 mm, but the second row moves 1.6 mm in the resin film width direction 27 with respect to the first row (1/2 of the turn-back pitch). doing. Furthermore, the third row moves 1.6 mm with respect to the second row, and as a result, is the same as the first row. A film inspection was conducted in the same manner as in Example 1 except that the filter was used.

結果を表1に示す。縦キズの場合と、横キズの場合は、10回とも全てのキズを検出できた。斜めキズの場合は、キズ小34が10回中で3回検出できなかった。   The results are shown in Table 1. In the case of a vertical flaw and a horizontal flaw, all flaws could be detected 10 times. In the case of diagonal scratches, the small scratch 34 could not be detected 3 times out of 10 times.

(実施例5)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図12に記載の繰り返しパターンの繰り返し単位28がリング形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターF48を使用した。
(Example 5)
In the film inspection method according to the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 12 is ring-shaped in the filter 2 portion, and the position of the repeating unit 28 is in the running direction 26 of the resin film. A filter F48 was used that moved as it progressed.

フィルターF48の繰り返しパターンは、直径3mmの円形の外周部分と、該直径3mmの円形内に形成された直径1mmの円形の外周部分で囲まれた領域で形成されるリング形が樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26にも3.2mmピッチで繰り返し並んでいるが、1列目に対して2列目は樹脂フィルムの幅方向27に1.6mm(切り返しピッチの1/2)移動している。さらに3列目は2列目に対して1.6mm移動しており、結果的に1列目と同じである。前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。   The repetitive pattern of the filter F48 is a ring shape formed by a region surrounded by a circular outer peripheral portion having a diameter of 3 mm and a circular outer peripheral portion having a diameter of 1 mm formed in the circular shape having a diameter of 3 mm. 27 is repeatedly arranged at a pitch of 3.2 mm. Also, the resin film travel direction 26 is repeatedly arranged at a pitch of 3.2 mm, but the second line moves 1.6 mm in the resin film width direction 27 with respect to the first line (1/2 of the turn-back pitch). doing. Furthermore, the third row moves 1.6 mm with respect to the second row, and as a result, is the same as the first row. A film inspection was conducted in the same manner as in Example 1 except that the filter was used.

結果を表1に示す。縦キズの場合、横キズの場合、及び斜めキズの場合のいずれも、10回とも全てのキズを検出できた。   The results are shown in Table 1. In the case of the vertical scratch, the case of the horizontal scratch, and the case of the diagonal scratch, all the scratches could be detected 10 times.

(実施例6)
図2に記載の本発明の反射方式によるフィルム検査方法で、フィルター2の部分に図12に記載の繰り返しパターンの繰り返し単位28がリング形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターF48を使用した。つまり、前記のフィルム検査方法とした以外は実施例5と同様にして、フィルム検査を行った。
(Example 6)
In the film inspection method according to the reflection system of the present invention shown in FIG. 2, the repeating unit 28 of the repeating pattern shown in FIG. 12 is ring-shaped in the filter 2 portion, and the position of the repeating unit 28 is in the running direction 26 of the resin film. A filter F48 was used that moved as it progressed. That is, the film inspection was performed in the same manner as in Example 5 except that the film inspection method was used.

結果を表1に示す。縦キズの場合、横キズの場合、及び斜めキズの場合のいずれも、10回とも全てのキズを検出できた。   The results are shown in Table 1. In the case of the vertical scratch, the case of the horizontal scratch, and the case of the diagonal scratch, all the scratches could be detected 10 times.

(比較例1)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図7に記載の繰り返しパターンの繰り返し単位28が正方形で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動しないフィルターD24を使用した。
(Comparative Example 1)
In the film inspection method by the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 7 is square in the filter 2 portion, and the position of the repeating unit 28 advances in the running direction 26 of the resin film. Filter D24 was used which did not move as

フィルターD24の繰り返しパターンは、3mm角の正方形で樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26にも3.2mmピッチで繰り返し並んでいる。前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。   The repeating pattern of the filter D24 is a 3 mm square and is repeatedly arranged at a pitch of 3.2 mm in the width direction 27 of the resin film. Further, the resin film travel direction 26 is also repeatedly arranged at a pitch of 3.2 mm. A film inspection was conducted in the same manner as in Example 1 except that the filter was used.

結果を表1に示す。縦キズの場合、キズの大きさに関わらず、フィルターD24の樹脂フィルムの走行方向26に続くパターン境界線(幅0.2mm)にキズが隠れて検出できないことがあった(10回中の検出できた回数、キズ大32:9回、キズ中33:8回、キズ小34:6回)。横キズの場合、縦キズと同様に、キズの大きさに関わらず、フィルターD24の樹脂フィルムの走行方向26に続くパターン境界線(幅0.2mm)にキズが隠れて検出できないことがあった(10回中の検出できた回数、キズ大32:9回、キズ中33:9回、キズ小34:4回)。斜めキズの場合、縦キズ及び横キズと同様に、キズの大きさに関わらず、フィルターD24の樹脂フィルムの走行方向26に続くパターン境界線(幅0.2mm)にキズが隠れて検出できないことがあった(10回中の検出できた回数、キズ大32:6回、キズ中33:5回、キズ小34:3回)。   The results are shown in Table 1. In the case of vertical scratches, there were cases where scratches were hidden behind the pattern boundary line (width 0.2 mm) following the resin film running direction 26 of the filter D24 regardless of the size of the scratches (detection during 10 times). Number of completed scratches: 32: 9 scratches, 33: 8 scratches, 34: 6 scratches). In the case of a horizontal flaw, as in the case of a vertical flaw, regardless of the size of the flaw, the flaw may be hidden behind the pattern boundary line (width 0.2 mm) following the resin film running direction 26 of the filter D24 and cannot be detected. (Number of times of detection in 10 times, large scratch 32: 9, small scratch 33: 9, small scratch 34: 4). In the case of diagonal scratches, as with vertical and horizontal scratches, regardless of the size of the scratches, scratches are hidden on the pattern boundary line (width 0.2 mm) following the resin film running direction 26 of the filter D24 and cannot be detected. (The number of times of detection in 10 times, large scratch 32: 6, small scratch 33: 5, small scratch 34: 3).

(比較例2)
図1に記載の本発明の透過方式によるフィルム検査方法で、フィルター2の部分に図8に記載の繰り返しパターンの繰り返し単位28が正六角形、すなわち繰り返し単位28が樹脂フィルムの走行方向26と樹脂フィルムの幅方向27とで異なる形状で、繰り返し単位28の位置が樹脂フィルムの走行方向26に進むにつれて移動するフィルターE25を使用した。
(Comparative Example 2)
In the film inspection method according to the transmission method of the present invention shown in FIG. 1, the repeating unit 28 of the repeating pattern shown in FIG. 8 is a regular hexagon in the filter 2 portion, that is, the repeating unit 28 is the resin film running direction 26 and the resin film. A filter E25 having a shape different from that of the width direction 27 and moving as the position of the repeating unit 28 advances in the running direction 26 of the resin film was used.

フィルターE25の繰り返しパターンは、3mm角の正六角形で樹脂フィルムの幅方向27に3.2mmピッチで繰り返し並んでいる。また、樹脂フィルムの走行方向26にも2.34mmピッチで繰り返し並んでいるが、1列目に対して2列目は樹脂フィルムの幅方向27に1.6mm(切り返しピッチの1/2)移動している。さらに3列目は2列目に対して1.6mm移動しており、結果的に1列目と同じである。前記フィルターとした以外は実施例1と同様にして、フィルム検査を行った。   The repeating pattern of the filter E25 is a 3 mm square regular hexagon and is repeatedly arranged at a pitch of 3.2 mm in the width direction 27 of the resin film. Further, the resin film travel direction 26 is also repeatedly arranged at a pitch of 2.34 mm, but the second row moves 1.6 mm (1/2 of the turn-back pitch) in the width direction 27 of the resin film with respect to the first row. doing. Furthermore, the third row moves 1.6 mm with respect to the second row, and as a result, is the same as the first row. A film inspection was conducted in the same manner as in Example 1 except that the filter was used.

結果を表1に示す。繰り返し単位28が正六角形のフィルターE25は、樹脂フィルムの走行方向26に平行な境界線が有るため、横キズは強調が十分であるが、樹脂フィルムの幅方向27に平行な境界線が無いため、縦キズは強調が不十分である。縦キズの場合、キズ大32は検出できたが、キズ中33とキズ小34は検出できないことがあった(10回中の検出できた回数、キズ大32:10回、キズ中33:8回、キズ小34:2回)。横キズの場合、キズの大きさに関わらず、10回とも全てのキズを検出できた。斜めキズの場合、キズ大32とキズ中33は検出できたが、キズ小は検出できないことがあった(10回中の検出できた回数、キズ大32:10回、キズ中33:10回、キズ小34:8回)。   The results are shown in Table 1. Since the filter E25 having a regular hexagonal repeating unit 28 has a boundary line parallel to the running direction 26 of the resin film, the horizontal scratch is sufficiently emphasized, but there is no boundary line parallel to the width direction 27 of the resin film. The vertical scratches are insufficiently emphasized. In the case of a vertical flaw, the large flaw 32 could be detected, but there were cases where the flaw 33 and the small flaw 34 could not be detected (the number of detections in ten times, the large flaw 32:10 times, the flaw 33: 8). Times, scratches 34: 2 times). In the case of horizontal flaws, all flaws could be detected all 10 times regardless of the size of the flaw. In the case of diagonal scratches, large scratches 32 and small scratches 33 could be detected, but small scratches could not be detected (number of times of detection in 10 times, large scratches 32:10 times, scratches 33:10 times) , Small scratch 34: 8 times).

Figure 2018063237
Figure 2018063237

本発明により、樹脂フィルムの欠陥を精度良く検出できるフィルム検査方法、及びそれを用いて樹脂フィルムを検査する工程を有する、優れたフィルム品位の樹脂フィルムを得ることができるフィルム製造方法を提供することができる。例えば、液晶偏光板、位相差板等の液晶ディスプレイ構成部材、PDP部材、タッチパネル用部材、合わせガラス用部材等の各種光学用フィルムのフィルム検査方法及びそれを用いたフィルム製造方法として好適に用いることができる。   According to the present invention, there are provided a film inspection method capable of accurately detecting defects in a resin film, and a film manufacturing method capable of obtaining a resin film having excellent film quality, comprising a step of inspecting a resin film using the film inspection method. Can do. For example, it is preferably used as a film inspection method for various optical films such as liquid crystal display components such as liquid crystal polarizing plates and retardation plates, PDP members, touch panel members, laminated glass members, and film production methods using the same. Can do.

1:樹脂フィルム
2:フィルター
3:光源(投光手段)
4:エリアセンサーカメラ
5:レンズ
6:データ処理装置
7:透過光
8:反射光
11:押出機
12:口金
13:回転冷却体
14:縦延伸機
15:横延伸機
16:フィルム検査機
17:巻取機
21:フィルターA
22:フィルターB
23:フィルターC
24:フィルターD
25:フィルターE
26:樹脂フィルムの走行方向
27:樹脂フィルムの幅方向
28:繰り返し単位
31:標準サンプル
32:キズ大
33:キズ中
34:キズ小
41:繰り返し単位U(円形)
42:繰り返し単位V(正方形)
43:繰り返し単位W(十字形)
44:繰り返し単位X(長方形)
45:繰り返し単位Y(三角形)
46:繰り返し単位Z(正六角形)
47:繰り返し単位T(リング形)
48:フィルターF
1: Resin film 2: Filter 3: Light source (light projection means)
4: Area sensor camera 5: Lens 6: Data processing device 7: Transmitted light 8: Reflected light 11: Extruder 12: Base 13: Rotating cooling body 14: Longitudinal stretching machine 15: Horizontal stretching machine 16: Film inspection machine 17: Winder 21: Filter A
22: Filter B
23: Filter C
24: Filter D
25: Filter E
26: Running direction of resin film 27: Width direction of resin film 28: Repeat unit 31: Standard sample 32: Large scratch 33: Scratch 34: Small scratch 41: Repeat unit U (circular)
42: Repeating unit V (square)
43: Repeat unit W (cross)
44: Repeat unit X (rectangular)
45: Repeat unit Y (triangle)
46: Repeating unit Z (regular hexagon)
47: Repeating unit T (ring type)
48: Filter F

Claims (5)

投光手段から樹脂フィルムに向かって光を投射し、この樹脂フィルムを透過した透過光またはこの樹脂フィルムの表面で反射した反射光をエリアセンサーカメラに取り込んで樹脂フィルムの欠陥を検出するフィルム検査方法であって、
前記投光手段と前記樹脂フィルムとの間の投光手段からの投射光が通る位置に、透過性の素材に遮光性の繰り返しパターンが形成されたフィルター、または遮光性の素材で繰り返しパターンを形成したフィルターを配置し、
前記繰り返しパターンの繰り返し単位の位置が樹脂フィルムの走行方向に進むにつれて移動しており、
前記繰り返し単位の形状が、樹脂フィルムの走行方向と樹脂フィルムの幅方向を入れ替えても同じとなる形状である、フィルム検査方法。
A film inspection method for detecting a defect in a resin film by projecting light from a light projecting means toward the resin film and taking in transmitted light transmitted through the resin film or reflected light reflected from the surface of the resin film into an area sensor camera Because
A filter in which a light-blocking repetitive pattern is formed on a transparent material or a light-blocking material is used to form a repetitive pattern at a position where the projection light from the light projecting unit passes between the light projecting unit and the resin film. Placed the filter,
The position of the repeating unit of the repeating pattern is moving as it proceeds in the traveling direction of the resin film,
The film inspection method, wherein the shape of the repeating unit is the same shape even if the running direction of the resin film and the width direction of the resin film are interchanged.
前記繰り返しパターンの繰り返し単位が円形である、請求項1のフィルム検査方法。   The film inspection method according to claim 1, wherein a repeating unit of the repeating pattern is circular. 前記遮光性の素材が金属である、請求項1または2のフィルム検査方法。   The film inspection method according to claim 1, wherein the light shielding material is a metal. 前記フィルターが、透過性の素材に遮光性の繰り返しパターンが形成されたフィルターであり、前記繰り返しパターンの繰り返し単位がリング形である、請求項1のフィルム検査方法。   The film inspection method according to claim 1, wherein the filter is a filter in which a light-shielding repeating pattern is formed on a transparent material, and a repeating unit of the repeating pattern is a ring shape. 請求項1〜4のいずれかのフィルム検査方法を用いて樹脂フィルムを検査する工程を有する、フィルム製造方法。   The film manufacturing method which has the process of test | inspecting a resin film using the film inspection method in any one of Claims 1-4.
JP2017113160A 2016-10-13 2017-06-08 Film inspection method and film production method using the same Withdrawn JP2018063237A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201458 2016-10-13
JP2016201458 2016-10-13

Publications (1)

Publication Number Publication Date
JP2018063237A true JP2018063237A (en) 2018-04-19

Family

ID=61967672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113160A Withdrawn JP2018063237A (en) 2016-10-13 2017-06-08 Film inspection method and film production method using the same

Country Status (1)

Country Link
JP (1) JP2018063237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207194A (en) * 2018-05-30 2019-12-05 勇貴 高橋 Inspection system and program
CN114563409A (en) * 2022-02-28 2022-05-31 东莞康视达自动化科技有限公司 Matrix light source for detecting curved glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207194A (en) * 2018-05-30 2019-12-05 勇貴 高橋 Inspection system and program
CN114563409A (en) * 2022-02-28 2022-05-31 东莞康视达自动化科技有限公司 Matrix light source for detecting curved glass
CN114563409B (en) * 2022-02-28 2022-11-15 东莞康视达自动化科技有限公司 Matrix light source for detecting curved glass

Similar Documents

Publication Publication Date Title
TWI767990B (en) System and associated method for online detection of small defects on/in a glass sheet
JP5276875B2 (en) Film defect inspection method and apparatus
JP2015138031A (en) Apparatus and method for inspecting optical film
JP7283398B2 (en) Radiographic inspection method and apparatus, and method for manufacturing microporous membrane
WO2012153662A1 (en) Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2005049158A (en) Foreign object inspection method for transparent film
JP2018063237A (en) Film inspection method and film production method using the same
JP5703566B2 (en) Biaxially stretched polyethylene terephthalate film for mold release
EP3149457A1 (en) Method for particle detection on flexible substrates
JP2013253906A (en) Inspection method and inspection device of web conveyance material
JP2015132605A (en) Film winding failure inspection method and system
JP2017075936A (en) Apparatus for manufacturing optical film and method for manufacturing optical film
CN111024707B (en) Optical film detection device and detection method of optical film
JP6241897B2 (en) Film inspection apparatus and film inspection method
WO2022224636A1 (en) Inspection device
JP2010127910A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
US20160178535A1 (en) Inspection Device And Method
JP7172025B2 (en) Biaxially oriented polyester film and its manufacturing method
JP2018040792A (en) Inspection system, inspection method, method of manufacturing films
WO2021117671A1 (en) Functional film inspection method, inspection system, and web roll
CN110579489B (en) Defect detection method for mirror bowl-shaped structure product
KR101522365B1 (en) Apparatus for inspecting substrate using oblique illumination
KR20140089201A (en) Method of detecting embossed defect and transmissive optical inspection device using the same
WO2021117273A1 (en) Elongated-optical-laminate inspection method and inspection system
JP2019191112A (en) Image acquisition method, measurement method, and image acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20201019