JP2018045797A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2018045797A
JP2018045797A JP2016178077A JP2016178077A JP2018045797A JP 2018045797 A JP2018045797 A JP 2018045797A JP 2016178077 A JP2016178077 A JP 2016178077A JP 2016178077 A JP2016178077 A JP 2016178077A JP 2018045797 A JP2018045797 A JP 2018045797A
Authority
JP
Japan
Prior art keywords
battery case
electrode body
battery
insulating film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016178077A
Other languages
Japanese (ja)
Inventor
康資 岩瀬
Kosuke Iwase
康資 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016178077A priority Critical patent/JP2018045797A/en
Publication of JP2018045797A publication Critical patent/JP2018045797A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery in which short-circuit can be suppressed.SOLUTION: The secondary battery includes: an electrode body 80; a battery case 50; an insulating film 20 provided between the electrode body 80 and an inner wall of the battery case 50; and a restraint member 90 for restraining the electrode body 80 while pressurizing it in a lamination direction 92 via the battery case 50 and the insulating film 20. The restraint pressure in the lamination direction 92 by the restraint member 90 is set to be in a range of 0.5 MPa to 10 MPa. When wall thickness of the battery case 50 is t1 (μm) and the wall thickness of the insulating film 20 is t2 (μm), the secondary battery satisfies relationships of 530≤t1≤1310, 80≤t2≤250, and 120000≤t1×t2≤130000.SELECTED DRAWING: Figure 3

Description

本発明は、二次電池に関する。詳しくは、正極と負極とがセパレータを介して積層されて構成された電極体を備える二次電池に関する。   The present invention relates to a secondary battery. Specifically, the present invention relates to a secondary battery including an electrode body configured by laminating a positive electrode and a negative electrode via a separator.

近年、リチウムイオン二次電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。この種の二次電池においては、シート状正極とシート状負極とをセパレータを介して積層した電極体を備えた電池構造が知られている。   In recent years, lithium ion secondary batteries, nickel metal hydride batteries, and other secondary batteries (storage batteries) have become increasingly important as on-vehicle power supplies, or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. In this type of secondary battery, a battery structure including an electrode body in which a sheet-like positive electrode and a sheet-like negative electrode are laminated via a separator is known.

この種の電池においては電極体と電池ケース(即ち外装容器)とを別々に製造し、その後電極体を電池ケースに収容する場合がある。電池ケースとしては金属製のパッケージを使用することが多く、この場合には金属製パッケージと電極体とを絶縁するために電極体を絶縁性フィルムで包装する必要がある。例えば特許文献1には、ポリプロピレン製のフィルムを袋状に形成した絶縁部材に電極体を挿入し、電極体と金属製の電池ケースとを電気的に絶縁した二次電池の構成が開示されている。   In this type of battery, an electrode body and a battery case (that is, an exterior container) may be manufactured separately, and then the electrode body may be accommodated in the battery case. In many cases, a metal package is used as the battery case. In this case, it is necessary to wrap the electrode body with an insulating film in order to insulate the metal package from the electrode body. For example, Patent Document 1 discloses a configuration of a secondary battery in which an electrode body is inserted into an insulating member formed of a polypropylene film in a bag shape, and the electrode body and a metal battery case are electrically insulated. Yes.

特開2009−026704号公報JP 2009-026704 A

ところで、この種の二次電池を自動車等の車両に搭載する場合、高出力を得るために該電池を複数直列接続して成る組電池が構築される。その際、搭載スペースが制限されることに加えて振動が発生する状態での使用が前提となることから、多数の電池を配列し且つ拘束した状態で組電池が構築され得る。かかる拘束時には組電池を構成する個々の電池に相当な圧力(拘束圧)が加えられることとなる。しかし、電極体に拘束圧を付与した電池において、電極体と電池ケースとの間に前述した絶縁フィルムを配置すると、電池内に混入した導電性異物(例えば金属屑)によって絶縁フィルムが破断され、電極体と電池ケースとが短絡する場合があった。また、該異物がセパレータを貫通して正負極間が短絡する場合があった。
本発明はかかる点に鑑みてなされたものであり、その主な目的は、電池内部に異物が混入した場合でも、上記短絡を抑制し得る信頼性の高い二次電池を提供することである。
By the way, when this type of secondary battery is mounted on a vehicle such as an automobile, an assembled battery comprising a plurality of such batteries connected in series is constructed in order to obtain high output. At that time, since it is premised on use in a state where vibration occurs in addition to limiting the mounting space, the assembled battery can be constructed in a state where a large number of batteries are arranged and restrained. At the time of such restraint, a considerable pressure (restraint pressure) is applied to each battery constituting the assembled battery. However, in a battery in which a restraint pressure is applied to the electrode body, when the insulating film described above is disposed between the electrode body and the battery case, the insulating film is broken by conductive foreign matters (for example, metal scraps) mixed in the battery, There was a case where the electrode body and the battery case were short-circuited. In addition, the foreign matter may pass through the separator and cause a short circuit between the positive and negative electrodes.
This invention is made | formed in view of this point, The main objective is to provide the reliable secondary battery which can suppress the said short circuit, even when a foreign material mixes in the inside of a battery.

上記課題を解決するべく、本発明によって提供される二次電池は、正極と負極とがセパレータを介して積層方向に積層されて構成された電極体と、前記電極体を収容したアルミニウム製の電池ケースと、前記電極体と前記電池ケースの内壁との間に設けられ、該電極体と該電池ケースとを絶縁するポリプロピレン製の絶縁フィルムと、前記電池ケースの外部に配置され、前記電極体を前記電池ケースおよび前記絶縁フィルムを介して前記積層方向に加圧しつつ拘束する拘束部材とを備える。前記拘束部材による前記積層方向の拘束圧が0.5MPa〜10MPaの範囲内に設定されている。そして、前記電池ケースの肉厚をt1(μm)、前記絶縁フィルムの肉厚をt2(μm)とした場合に、530≦t1≦1310、80≦t2≦250、120000≦t1×t2≦130000の関係を満たす。かかる構成によると、電池内部に異物が混入した場合でも、電極体‐電池ケース間および正負極間の短絡を抑制し得る信頼性の高い二次電池が提供される。   In order to solve the above problems, the secondary battery provided by the present invention includes an electrode body in which a positive electrode and a negative electrode are stacked in a stacking direction via a separator, and an aluminum battery that houses the electrode body. A polypropylene insulating film provided between a case, the electrode body and the inner wall of the battery case, and insulating the electrode body and the battery case; and disposed outside the battery case; And a restraining member that restrains the battery case and pressurizing in the stacking direction via the insulating film. The restraining pressure in the stacking direction by the restraining member is set within a range of 0.5 MPa to 10 MPa. When the thickness of the battery case is t1 (μm) and the thickness of the insulating film is t2 (μm), 530 ≦ t1 ≦ 1310, 80 ≦ t2 ≦ 250, 120,000 ≦ t1 × t2 ≦ 130000 Satisfy the relationship. According to such a configuration, a highly reliable secondary battery that can suppress a short circuit between the electrode body and the battery case and between the positive and negative electrodes even when foreign matter is mixed in the battery is provided.

図1は一実施形態に係る二次電池を模式的に示す正面図である。FIG. 1 is a front view schematically showing a secondary battery according to an embodiment. 図2は一実施形態に係る二次電池を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a secondary battery according to an embodiment. 図3は一実施形態に係る二次電池の要部を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a main part of the secondary battery according to the embodiment. 図4は一実施形態に係る二次電池の要部を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a main part of the secondary battery according to the embodiment. 図5は比較例の二次電池の要部を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a main part of a secondary battery of a comparative example. 図6は比較例の二次電池の要部を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a main part of a secondary battery of a comparative example.

以下、図面を参照しながら本発明による実施形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、電池(ケース)の形状等、電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。   Embodiments according to the present invention will be described below with reference to the drawings. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and matters necessary for carrying out the present invention (for example, the configuration and manufacturing method of the electrode body including the positive electrode and the negative electrode, the shape of the battery (case), etc., General techniques related to battery construction, etc.) can be grasped as design matters of those skilled in the art based on conventional techniques in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, in the following drawings, members / parts having the same action are described with the same reference numerals, and overlapping descriptions may be omitted or simplified.

特に限定することを意図したものではないが、以下では主としてリチウムイオン二次電池の場合を例として、本発明の二次電池に係る好適な実施形態を説明する。なお、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオン(Liイオン)を利用し、正負極間におけるLiイオンに伴う電荷の移動により充放電が実現される二次電池をいう。   Although not intended to be particularly limited, a preferred embodiment according to the secondary battery of the present invention will be described below mainly using a lithium ion secondary battery as an example. In this specification, the term “lithium ion secondary battery” refers to a secondary battery that uses lithium ions (Li ions) as electrolyte ions and is charged and discharged by the movement of charges associated with Li ions between the positive and negative electrodes. Say.

図1は本発明の一実施形態に係るリチウムイオン二次電池の外観を模式的に示す正面図であり、図2はその断面図である。図3は、リチウムイオン二次電池の要部を模式的に示す断面図である。本実施形態に係るリチウムイオン二次電池100は、図1〜図3に示すように、正極82および負極84を備える電極体80と、該電極体80を収容する電池ケース50と、絶縁フィルム20と、拘束部材90とを備えている。   FIG. 1 is a front view schematically showing the appearance of a lithium ion secondary battery according to an embodiment of the present invention, and FIG. 2 is a sectional view thereof. FIG. 3 is a cross-sectional view schematically showing a main part of the lithium ion secondary battery. As shown in FIGS. 1 to 3, the lithium ion secondary battery 100 according to this embodiment includes an electrode body 80 including a positive electrode 82 and a negative electrode 84, a battery case 50 that houses the electrode body 80, and an insulating film 20. And a restraining member 90.

電池ケース50は、電池ケース本体52と蓋体54とから構成されている。電池ケース本体52は、電極体80を収容し得る形状を有する。この実施形態では、電池ケース本体52は、扁平形状の電極体80を収容し得る箱型の形状である。電池ケース本体52は上部開口端53を有し、該上部開口端53を介して電極体80を収容し得るように構成されている。電池ケース本体52を構成する外壁は、電池の厚み方向の両端に形成された幅広な側面52A(図1)と、電池の幅方向の両端に形成された幅狭な側面52B(図1)と、底面52C(図1)とから構成されている。蓋体54は電池ケース本体52の上部開口端53を塞ぐ部材であり、この実施形態では、略矩形状の板状部材を好適に用いている。電池ケース本体52および蓋体54の材質はアルミニウム(Al)である。   The battery case 50 includes a battery case main body 52 and a lid 54. The battery case main body 52 has a shape that can accommodate the electrode body 80. In this embodiment, the battery case main body 52 has a box shape that can accommodate the flat electrode body 80. The battery case main body 52 has an upper opening end 53, and is configured to accommodate the electrode body 80 via the upper opening end 53. The outer wall constituting the battery case main body 52 has wide side surfaces 52A (FIG. 1) formed at both ends in the thickness direction of the battery, and narrow side surfaces 52B (FIG. 1) formed at both ends in the battery width direction. The bottom surface 52C (FIG. 1). The lid 54 is a member that closes the upper opening end 53 of the battery case main body 52, and in this embodiment, a substantially rectangular plate-like member is suitably used. The material of the battery case main body 52 and the lid body 54 is aluminum (Al).

蓋体54の上面には、安全弁70が従来の電池ケースと同様に設けられている。安全弁70は、電池ケース50内の圧力が異常に上昇すると安全のために弁体(図示せず)が変形し、該弁体と蓋体54との間に生じた隙間から内部のガス等が放出され得るように構成されている。さらに、蓋体54の上面には注液口62が設けられている。注液口62は、該注液口62を介して電池ケース50内に電解液を収容し得るようになっており、通常時は封止栓60によって封口されている。電池ケース50に収容され得る電解液としては、例えば非水溶媒に電解質を溶解した非水電解液を用いることができる。この実施形態では、非水溶媒としてはジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)を使用し、電解質としてはヘキサフルオロリン酸リチウム(LiPF)を使用し、その濃度は約1mol/リットルに調整されている。 A safety valve 70 is provided on the upper surface of the lid 54 in the same manner as a conventional battery case. When the pressure in the battery case 50 rises abnormally, the safety valve 70 deforms a valve body (not shown) for safety, and internal gas or the like is released from a gap formed between the valve body and the lid 54. It is configured to be released. Further, a liquid injection port 62 is provided on the upper surface of the lid 54. The liquid injection port 62 can accommodate the electrolytic solution in the battery case 50 through the liquid injection port 62, and is normally sealed with a sealing plug 60. As the electrolytic solution that can be accommodated in the battery case 50, for example, a nonaqueous electrolytic solution in which an electrolyte is dissolved in a nonaqueous solvent can be used. In this embodiment, a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1) is used as the nonaqueous solvent, lithium hexafluorophosphate (LiPF 6 ) is used as the electrolyte, and the concentration is It is adjusted to about 1 mol / liter.

電池ケース50内には上記電解液とともに電極体80が収容されている。電極体80は、通常のリチウムイオン電池の電極体と同様、正極82および負極84と、該正負の電極間に介在するセパレータ86とを備える。電極体80は、正極82と負極84とがセパレータ86を介して積層されて構成されている。この実施形態では、電極体80は、正極シート82と負極シート84を計2枚のセパレータ86と共に積層し、さらに当該正極シート82と負極シート84とをややずらしつつ捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80である。   An electrode body 80 is accommodated in the battery case 50 together with the electrolytic solution. The electrode body 80 includes a positive electrode 82 and a negative electrode 84, and a separator 86 interposed between the positive and negative electrodes, like the electrode body of a normal lithium ion battery. The electrode body 80 is configured by laminating a positive electrode 82 and a negative electrode 84 with a separator 86 interposed therebetween. In this embodiment, the electrode body 80 is formed by laminating a positive electrode sheet 82 and a negative electrode sheet 84 together with a total of two separators 86, and further winding the positive electrode sheet 82 and the negative electrode sheet 84 with a slight shift, and then obtaining This is a flat wound electrode body 80 produced by crushing the laminating body from the side direction and causing it to be ablated.

捲回電極体80の捲回方向に対する横方向において、上記のとおりにややずらしつつ捲回された結果として、正極シート82および負極シート84の端の一部がそれぞれ捲回コア部分81(即ち正極シート82の正極活物質層形成部分と負極シート84の負極活物質層形成部分とセパレータ86とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(即ち正極活物質層の非形成部分)82Aおよび負極側はみ出し部分(即ち負極活物質層の非形成部分)84Aには、正極リード端子82Bおよび負極リード端子84Aが付設されており、それぞれ正極端子42および負極端子44と電気的に接続される。この実施形態では、正極端子42および負極端子44は、ガスケット(図示せず)を介して電池ケース50の蓋体54にそれぞれ取り付けられている。   As a result of the winding electrode body 80 being wound with a slight shift as described above in the lateral direction with respect to the winding direction, the ends of the positive electrode sheet 82 and the negative electrode sheet 84 are respectively wound core portions 81 (that is, the positive electrode). The portion of the sheet 82 where the positive electrode active material layer is formed, the portion of the negative electrode sheet 84 where the negative electrode active material layer is formed, and the separator 86 are closely wound) protrudes outward. A positive electrode lead terminal 82B and a negative electrode lead terminal 84A are attached to such a positive electrode side protruding portion (ie, a non-forming portion of the positive electrode active material layer) 82A and a negative electrode side protruding portion (ie, a non-forming portion of the negative electrode active material layer) 84A. Are electrically connected to the positive terminal 42 and the negative terminal 44, respectively. In this embodiment, the positive electrode terminal 42 and the negative electrode terminal 44 are respectively attached to the lid body 54 of the battery case 50 via a gasket (not shown).

捲回電極体80を構成する材料および部材自体は、従来のリチウムイオン二次電池の電極体と同様でよく、特に制限はない。例えば、正極シート82は長尺状の正極集電体(この実施形態ではアルミニウム箔)の上にリチウムイオン二次電池用正極活物質層が付与されて形成される。一方、負極シート84は長尺状の負極集電体(この実施形態では銅箔)の上にリチウムイオン二次電池用負極活物質層が付与されて形成される。負極シート84全体の厚みは例えば90μmであり得る。そのうち負極集電体の厚みは、例えば10μmであり得る。   The material and member itself constituting the wound electrode body 80 may be the same as the electrode body of the conventional lithium ion secondary battery, and are not particularly limited. For example, the positive electrode sheet 82 is formed by applying a positive electrode active material layer for a lithium ion secondary battery on a long positive electrode current collector (in this embodiment, an aluminum foil). On the other hand, the negative electrode sheet 84 is formed by providing a negative electrode active material layer for a lithium ion secondary battery on a long negative electrode current collector (copper foil in this embodiment). The total thickness of the negative electrode sheet 84 may be 90 μm, for example. Among them, the thickness of the negative electrode current collector can be, for example, 10 μm.

また、正負極シート82,84間に介在する好適なセパレータ86としては多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータを好適に使用することができる。   Moreover, as a suitable separator 86 interposed between the positive / negative electrode sheets 82 and 84, what was comprised with the porous polyolefin-type resin is mentioned. For example, a porous separator made of synthetic resin (for example, made of polyolefin such as polyethylene) can be suitably used.

電極体80と電池ケース50の内壁との間には、当該電極体80と電池ケース50とを隔離する絶縁フィルム20が配置されている。絶縁フィルム20は、電極体80を包囲する(好適には包み込む)形状に形成されている。また、絶縁フィルム20は、捲回電極体80全体を被覆するように構成されている。このように絶縁フィルム20を介在させることによって発電要素である捲回電極体80と電池ケース50との直接の接触が回避され、捲回電極体80と電池ケース50との絶縁性を確保することができる。絶縁フィルム20の材質はポリプロピレン(PP)である。   Between the electrode body 80 and the inner wall of the battery case 50, the insulating film 20 that separates the electrode body 80 and the battery case 50 is disposed. The insulating film 20 is formed in a shape that surrounds (preferably encloses) the electrode body 80. Further, the insulating film 20 is configured to cover the entire wound electrode body 80. By interposing the insulating film 20 in this way, direct contact between the wound electrode body 80 that is a power generation element and the battery case 50 is avoided, and insulation between the wound electrode body 80 and the battery case 50 is ensured. Can do. The material of the insulating film 20 is polypropylene (PP).

拘束部材90は、電池ケース50の外部に配置され、電極体80を電池ケース50および絶縁フィルム20を介して積層方向92に加圧しつつ拘束する部材である。この実施形態では、電池100を単電池とし、該単電池の複数個を拘束部材90で一体に保持してなる組電池が構築される。この組電池は、複数の電池100が所定方向(積層方向92)に配列され且つ該配列方向に荷重が加えられた状態で拘束される。具体的には、複数の電池100は、それぞれの正極端子42および負極端子44が交互に配置されるように一つずつ反転させて配置されており、電池ケース50の幅広な側面52A(図1)が対向する方向に配列される。そして、配列させた電池100の周囲には、複数の電池100をまとめて拘束する拘束部材90が配備される。すなわち、単電池配列方向の最外側に位置する電池100の更に外側には、一対の拘束板(拘束部材90)が配置される。また、当該一対の拘束板を架橋するように締付け用ビーム材が取り付けられる。そして、ビーム材の端部をビスにより拘束板に締め付け且つ固定することによって上記電池100をその配列方向に所定の荷重が加わるように拘束することができる。ビーム材の締め付け具合に応じたレベルで、締め付け方向(即ち配列方向)への拘束圧(面圧)が各電池100の幅広な側面に加えられる。ここでは、拘束部材90による積層方向92の拘束圧が0.5MPa〜10MPaの範囲内に設定されている。   The restraining member 90 is a member that is disposed outside the battery case 50 and restrains the electrode body 80 while pressing the electrode body 80 in the stacking direction 92 via the battery case 50 and the insulating film 20. In this embodiment, an assembled battery is constructed in which the battery 100 is a single cell, and a plurality of the single cells are integrally held by a restraining member 90. This assembled battery is constrained in a state in which a plurality of batteries 100 are arranged in a predetermined direction (stacking direction 92) and a load is applied in the arrangement direction. Specifically, the plurality of batteries 100 are arranged so as to be inverted one by one so that the positive terminals 42 and the negative terminals 44 are alternately arranged, and the wide side surface 52A of the battery case 50 (FIG. 1). ) Are arranged in opposite directions. A restraining member 90 that restrains the plurality of batteries 100 together is provided around the arranged batteries 100. That is, a pair of restraining plates (constraining members 90) are arranged on the outer side of the battery 100 located on the outermost side in the unit cell arrangement direction. A tightening beam member is attached so as to bridge the pair of restraining plates. Then, the battery 100 can be restrained so that a predetermined load is applied in the arrangement direction by fastening and fixing the end of the beam member to the restraining plate with a screw. Restraint pressure (surface pressure) in the tightening direction (that is, the arrangement direction) is applied to the wide side surface of each battery 100 at a level corresponding to the tightening condition of the beam material. Here, the restraining pressure in the stacking direction 92 by the restraining member 90 is set in the range of 0.5 MPa to 10 MPa.

本実施形態の電池ケース50は歪みやすい薄い材質(アルミニウム)で構成されている。そのため、電池100の配列方向(積層方向92)に加わった拘束圧は、電池ケース50の幅広な側面52Aおよび絶縁フィルム20を介して電極体80に伝達される。すなわち、ビーム材の締め付け具合に応じたレベルで締め付け方向(即ち配列方向)に加わった拘束圧によって、0.5MPa〜10MPaの範囲内に設定された積層方向92の拘束圧を電池ケース50内の電極体80に対して加えることができる。   The battery case 50 of this embodiment is made of a thin material (aluminum) that is easily distorted. Therefore, the restraining pressure applied in the arrangement direction (stacking direction 92) of the battery 100 is transmitted to the electrode body 80 via the wide side surface 52A and the insulating film 20 of the battery case 50. That is, the restraint pressure applied in the tightening direction (that is, the arrangement direction) at a level corresponding to the tightening condition of the beam material is used to reduce the restraint pressure in the stacking direction 92 set in the range of 0.5 MPa to 10 MPa in the battery case 50. It can be added to the electrode body 80.

ここに開示される技術では、上記のように電池ケース50の外部から電池ケース50および絶縁フィルム20を介して電極体80の積層方向92に拘束圧を加えている電池において、電池ケース50の肉厚をt1(μm)とし、絶縁フィルム20の肉厚をt2(μm)とした場合に、以下の関係:
530≦t1≦1310、
80≦t2≦250、
120000≦t1×t2≦130000
を満たす。このことにより、電池内部に導電性異物(例えば金属屑)が混入した場合でも、電極体80‐電池ケース50間および正極82‐負極84間の短絡を適切に抑制することができる。
In the technology disclosed herein, in the battery in which the binding pressure is applied to the stacking direction 92 of the electrode body 80 from the outside of the battery case 50 via the battery case 50 and the insulating film 20 as described above, When the thickness is t1 (μm) and the thickness of the insulating film 20 is t2 (μm), the following relationship:
530 ≦ t1 ≦ 1310,
80 ≦ t2 ≦ 250,
120,000 ≦ t1 × t2 ≦ 130000
Meet. Thereby, even when conductive foreign matter (for example, metal scraps) is mixed in the battery, it is possible to appropriately suppress a short circuit between the electrode body 80 and the battery case 50 and between the positive electrode 82 and the negative electrode 84.

このような効果が得られる理由としては、特に限定的に解釈されるものではないが、例えば以下のように考えられる。すなわち、図5に示すように、絶縁フィルム20および電池ケース50の双方の肉厚t1、t2が薄すぎる場合、電池内に導電性異物94が混入すると、該異物94が絶縁フィルム20に埋まりきらず、該異物94からかかる荷重が直接電池ケース50に加わる。その際、拘束部材90によって電池ケース50の変形が制限されるため、荷重がさらに増大する。その結果、該異物94により絶縁フィルム20が破断され、電極体80と電池ケース50とが短絡しやすくなる。一方、絶縁フィルム20および電池ケース50の双方の肉厚t1、t2が厚すぎると、図6に示すように、絶縁フィルム20および電池ケース50の変形が制限されるため、電池内に混入した導電性異物94が絶縁フィルム20に殆ど埋まらない。その結果、該異物94がセパレータ86を貫通して正極82‐負極84間が短絡しやすくなる。これに対し、電池ケース50の肉厚t1と絶縁フィルム20の肉厚t2とが上記関係を満たす電池では、図4に示すように、電池内に混入した導電性異物94が絶縁フィルム20に適度に埋まることで、該異物94からかかる荷重が緩和される。また、電池ケース50が絶縁フィルム20と同じ変形をすることで、該荷重がさらに低減される。その結果、絶縁フィルム20およびセパレータ86の破断が抑制され得る。このことが上記短絡の抑制に寄与するものと考えられる。   The reason why such an effect is obtained is not particularly limited, but may be considered as follows, for example. That is, as shown in FIG. 5, when the thicknesses t1 and t2 of both the insulating film 20 and the battery case 50 are too thin, if the conductive foreign matter 94 is mixed in the battery, the foreign matter 94 is not completely embedded in the insulating film 20. The load applied from the foreign matter 94 is directly applied to the battery case 50. At that time, since the deformation of the battery case 50 is restricted by the restraining member 90, the load further increases. As a result, the insulating film 20 is broken by the foreign matter 94 and the electrode body 80 and the battery case 50 are easily short-circuited. On the other hand, if the thicknesses t1 and t2 of both the insulating film 20 and the battery case 50 are too thick, the deformation of the insulating film 20 and the battery case 50 is limited as shown in FIG. The foreign material 94 is hardly embedded in the insulating film 20. As a result, the foreign matter 94 penetrates the separator 86 and the positive electrode 82 and the negative electrode 84 are easily short-circuited. On the other hand, in a battery in which the thickness t1 of the battery case 50 and the thickness t2 of the insulating film 20 satisfy the above relationship, the conductive foreign matter 94 mixed in the battery is moderately applied to the insulating film 20 as shown in FIG. The load applied from the foreign material 94 is relieved by being buried in. Moreover, the load is further reduced by the battery case 50 being deformed in the same manner as the insulating film 20. As a result, breakage of the insulating film 20 and the separator 86 can be suppressed. This is considered to contribute to the suppression of the short circuit.

電池ケース50の肉厚t1と絶縁フィルム20の肉厚t2との積(t1×t2)は、通常は120000以上、典型的には122000以上、例えば124000以上である。また、上記肉厚の積(t1×t2)は、通常は130000以下、典型的には128000以下、例えば126000以下である。所定範囲内の肉厚の積(t1×t2)を有する電池は、電池内に混入した異物94が絶縁フィルム20および電池ケース50に適度に埋設する。したがって、ここに開示される技術の適用効果が適切に発揮され得る。   The product (t1 × t2) of the wall thickness t1 of the battery case 50 and the wall thickness t2 of the insulating film 20 is usually 120,000 or more, typically 122000 or more, for example, 124000 or more. Further, the product of the thickness (t1 × t2) is usually 130,000 or less, typically 128000 or less, for example 126000 or less. In a battery having a product with a thickness within a predetermined range (t1 × t2), the foreign matter 94 mixed in the battery is appropriately embedded in the insulating film 20 and the battery case 50. Therefore, the application effect of the technique disclosed herein can be appropriately exhibited.

電池ケース50の肉厚t1は、通常は530μm以上である。電池ケース50の肉厚t1は、絶縁フィルム20の破断(ひいては電池ケース50と電極体80との短絡)を抑制する観点から、例えば600μm以上、典型的には700μm以上である。また、電池ケース50の肉厚t1は、例えば1310μm以下であり得る。セパレータ86の破断(ひいては正極82と負極84との短絡)を抑制する観点から、例えば1000μm以下、典型的には900μm以下である。例えば、肉厚t1が600μm以上1300μm以下(例えば700μm以上900μm以下)の電池ケース50を好ましく採用し得る。   The thickness t1 of the battery case 50 is usually 530 μm or more. The thickness t1 of the battery case 50 is, for example, 600 μm or more, typically 700 μm or more, from the viewpoint of suppressing breakage of the insulating film 20 (and hence short-circuiting between the battery case 50 and the electrode body 80). Further, the thickness t1 of the battery case 50 can be, for example, 1310 μm or less. From the viewpoint of suppressing the breakage of the separator 86 (and hence the short circuit between the positive electrode 82 and the negative electrode 84), it is, for example, 1000 μm or less, typically 900 μm or less. For example, a battery case 50 having a wall thickness t1 of 600 μm or more and 1300 μm or less (for example, 700 μm or more and 900 μm or less) can be preferably used.

絶縁フィルム20の肉厚t2は、通常は80μm以上である。絶縁フィルム20の肉厚t2は、絶縁フィルム20の破断(ひいては電池ケース50と電極体80との短絡)を抑制する観点から、例えば100μm以上、典型的には130μm以上である。また、絶縁フィルム20の肉厚t2は、通常は250μm以下である。セパレータ86の破断(ひいては正極82と負極84との短絡)を抑制する観点から、絶縁フィルム20の肉厚t2は、例えば220μm以下、典型的には180μm以下である。例えば、肉厚t2が100μm以上200μm以下(例えば130μm以上180μm以下)の絶縁フィルム20を好ましく採用し得る。   The thickness t2 of the insulating film 20 is usually 80 μm or more. The thickness t2 of the insulating film 20 is, for example, 100 μm or more, typically 130 μm or more, from the viewpoint of suppressing breakage of the insulating film 20 (and hence short circuit between the battery case 50 and the electrode body 80). Further, the thickness t2 of the insulating film 20 is usually 250 μm or less. From the viewpoint of suppressing the breakage of the separator 86 (and hence the short circuit between the positive electrode 82 and the negative electrode 84), the thickness t2 of the insulating film 20 is, for example, 220 μm or less, typically 180 μm or less. For example, the insulating film 20 having a wall thickness t2 of 100 μm or more and 200 μm or less (for example, 130 μm or more and 180 μm or less) can be preferably used.

次に、本発明に関する試験例を説明するが、本発明を試験例に示すものに限定することを意図したものではない。   Next, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to a test example.

ここで、評価用セルは、正極シートと負極シートとがセパレータを介して捲回されて構成された捲回電極体と、捲回電極体を収容したアルミニウム製の電池ケースと、捲回電極体と電池ケースの内壁との間に設けられたポリプロピレン製の絶縁フィルムと、電池ケースの外部から捲回電極体の積層方向に拘束圧を与える拘束部材とを備えている。ここでは、電池ケースの肉厚t1、絶縁フィルムの肉厚t2、電極体に加わる積層方向の拘束圧が種々異なる電池を作製した。   Here, the evaluation cell includes a wound electrode body configured by winding a positive electrode sheet and a negative electrode sheet through a separator, an aluminum battery case containing the wound electrode body, and a wound electrode body. And an insulating film made of polypropylene provided between the battery case and an inner wall of the battery case, and a restraining member that applies a restraining pressure in the stacking direction of the wound electrode body from the outside of the battery case. Here, batteries with different thicknesses t1 of the battery case, thickness t2 of the insulating film, and restraining pressure in the stacking direction applied to the electrode bodies were produced.

正極シートは、正極活物質層に含まれる正極活物質粒子としてLiNi1/3Mn1/3Co1/3粉末、バインダとしてポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラック(AB)を用いた。ここで、正極活物質層を形成する際の合剤には、LiNi1/3Mn1/3Co1/3と、PVDFと、ABと、分散溶媒としてのN−メチルピロリドン(NMP)とを、所定の質量割合にて混合した合剤ペーストを用意した。そして、かかる合剤ペーストを、正極集電体としてのアルミニウム箔の両面に塗布し乾燥させ、圧延を行なって、正極シートを形成した。 The positive electrode sheet is made of LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder as positive electrode active material particles contained in the positive electrode active material layer, polyvinylidene fluoride (PVDF) as a binder, and acetylene black (AB) as a conductive material. Using. Here, the mixture for forming the positive electrode active material layer includes LiNi 1/3 Mn 1/3 Co 1/3 O 2 , PVDF, AB, and N-methylpyrrolidone (NMP) as a dispersion solvent. Were prepared in a predetermined mass proportion. And this mixture paste was apply | coated on both surfaces of the aluminum foil as a positive electrode electrical power collector, it was made to dry, and it rolled, and formed the positive electrode sheet.

負極シートは、負極活物質層に含まれる負極活物質粒子としてグラファイト粉末、バインダとしてスチレンブタジエンゴム(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)を用いた。ここで、負極活物質層を形成する際の合剤には、黒鉛と、SBRと、CMCと、分散溶媒としての水とを、質量割合にて混合した合剤ペーストを用意した。そして、かかる合剤ペーストを、負極集電体としての銅箔の両面に塗布し乾燥させ、圧延を行なって、負極シートを形成した。負極シートの厚みは90μm、負極集電体の厚みは10μmとした。   The negative electrode sheet used graphite powder as the negative electrode active material particles contained in the negative electrode active material layer, styrene butadiene rubber (SBR) as the binder, and carboxymethyl cellulose (CMC) as the thickener. Here, a mixture paste prepared by mixing graphite, SBR, CMC, and water as a dispersion solvent in a mass ratio was prepared as a mixture for forming the negative electrode active material layer. And this mixture paste was apply | coated on both surfaces of the copper foil as a negative electrode collector, it was made to dry and it rolled, and the negative electrode sheet was formed. The thickness of the negative electrode sheet was 90 μm, and the thickness of the negative electrode current collector was 10 μm.

セパレータには、ポリエチレン製の多孔質樹脂シートを用いた。電解液には、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとを体積比率において、3:4:3で配合し、LiPFを1.1モル溶解させたものを用いた。 A polyethylene porous resin sheet was used for the separator. As the electrolytic solution, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 3: 4: 3, and 1.1 mol of LiPF 6 was dissolved.

上記正極シートおよび負極シートを、セパレータを介して積層し、その積層体を捲回して捲回電極体を作製した。次いで、捲回電極体を袋状の絶縁フィルムに収容し、これを電解液とともに箱型の電池ケースに収容し、評価用セルを作製した。そして、得られた評価用セルの電池ケースの幅広な側面を拘束部材で拘束し、電池ケース内に収容した電極体の積層方向に対して所定の圧力が加わるように拘束部材による拘束圧を設定した。   The positive electrode sheet and the negative electrode sheet were laminated via a separator, and the laminated body was wound to produce a wound electrode body. Subsequently, the wound electrode body was accommodated in a bag-like insulating film, and this was accommodated in a box-shaped battery case together with the electrolyte solution, thereby producing an evaluation cell. Then, the restraint member restrains the wide side surface of the battery case of the obtained evaluation cell, and sets the restraint pressure by the restraint member so that a predetermined pressure is applied to the stacking direction of the electrode bodies accommodated in the battery case. did.

各例の評価用セルは、電池ケースの肉厚t1、絶縁フィルムの肉厚t2、拘束圧が異なる。各例に係る評価用セルについて、電池ケースの肉厚t1、絶縁フィルムの肉厚t2、肉厚の積(t1×t2)、拘束圧(表7のみ)を表1〜表7に纏めて示す。なお、表1〜表6の評価用セルについては、拘束圧を1MPaに設定した。   The cell for evaluation of each example differs in the thickness t1 of the battery case, the thickness t2 of the insulating film, and the binding pressure. Tables 1 to 7 collectively show battery case thickness t1, insulating film thickness t2, product of thickness (t1 × t2), and restraint pressure (only Table 7) for the evaluation cells according to each example. . In addition, about the evaluation cell of Table 1-Table 6, the restraint pressure was set to 1 MPa.

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

Figure 2018045797
Figure 2018045797

<異物混入試験>
各例の評価用セルについて、電池ケースの幅広な側面の内壁と絶縁フィルムとの間に球形の導電性異物(粒径500μm)を混入し、電池ケースと電極体間および正極と負極間の電気抵抗を測定した。そして、電気抵抗が100Ω以下となった場合に、電池ケースと電極体間もしくは正極と負極間が短絡したと判定した。なお、使用した導電性異物の粒径500μmは、電池内に混入される可能性がある導電性異物の最大粒径である。結果を表1〜表7の該当欄に示す。
<Foreign matter contamination test>
For each evaluation cell in each example, a spherical conductive foreign substance (particle size: 500 μm) is mixed between the inner wall of the wide side surface of the battery case and the insulating film, and the electricity between the battery case and the electrode body, and between the positive electrode and the negative electrode. Resistance was measured. When the electric resistance was 100Ω or less, it was determined that the battery case and the electrode body or the positive electrode and the negative electrode were short-circuited. In addition, the particle size of 500 μm of the conductive foreign matter used is the maximum particle size of the conductive foreign matter that may be mixed in the battery. The results are shown in the corresponding columns of Tables 1-7.

表1〜表6に示すように、電池ケースの肉厚t1(μm)と絶縁フィルムの肉厚t2(μm)とが530≦t1≦1310、80≦t2≦250、かつ、120000≦t1×t2≦130000の関係を満たす例8〜13、26〜32、44〜54、64、77、78、94の評価用セルは、異物混入後においても短絡せず、異物耐性が良好であった。また、表7に示すように、かかる短絡抑制効果は、拘束部材による拘束圧が0.5MPa〜10MPaの範囲内で有効に発現し得ることが判る。   As shown in Tables 1 to 6, the thickness t1 (μm) of the battery case and the thickness t2 (μm) of the insulating film are 530 ≦ t1 ≦ 1310, 80 ≦ t2 ≦ 250, and 120,000 ≦ t1 × t2. The evaluation cells of Examples 8 to 13, 26 to 32, 44 to 54, 64, 77, 78, and 94 satisfying the relationship of ≦ 130,000 were not short-circuited even after foreign matters were mixed therein, and the foreign matter resistance was good. Moreover, as shown in Table 7, it can be seen that such a short-circuit suppressing effect can be effectively exhibited when the restraining pressure by the restraining member is in the range of 0.5 MPa to 10 MPa.

以上から、拘束圧が0.5MPa〜10MPaの範囲内に設定された電池において、電池ケースの肉厚t1(μm)と絶縁フィルムの肉厚t2(μm)とが530≦t1≦1310、80≦t2≦250、かつ、120000≦t1×t2≦130000の関係を満たすことによって、電池内部に異物が混入した場合でも、電極体と電池ケース間および正極と負極間の短絡を抑制し得ることが確かめられた。   From the above, in the battery in which the constraint pressure is set within the range of 0.5 MPa to 10 MPa, the thickness t1 (μm) of the battery case and the thickness t2 (μm) of the insulating film are 530 ≦ t1 ≦ 1310, 80 ≦ By satisfying the relationship of t2 ≦ 250 and 120,000 ≦ t1 × t2 ≦ 130000, it is confirmed that short-circuiting between the electrode body and the battery case and between the positive electrode and the negative electrode can be suppressed even when foreign matter is mixed inside the battery. It was.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれ得る。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The invention disclosed herein can include various modifications and alterations of the specific examples described above.

20 絶縁フィルム
50 電池ケース
80 電極体
82 正極
84 負極
86 セパレータ
90 拘束部材
92 積層方向
94 導電性異物
100 二次電池
20 Insulating film 50 Battery case 80 Electrode body 82 Positive electrode 84 Negative electrode 86 Separator 90 Restraining member 92 Laminating direction 94 Conductive foreign matter 100 Secondary battery

Claims (1)

正極と負極とがセパレータを介して積層方向に積層されて構成された電極体と、
前記電極体を収容したアルミニウム製の電池ケースと、
前記電極体と前記電池ケースの内壁との間に設けられ、該電極体と該電池ケースとを絶縁するポリプロピレン製の絶縁フィルムと、
前記電池ケースの外部に配置され、前記電極体を前記電池ケースおよび前記絶縁フィルムを介して前記積層方向に加圧しつつ拘束する拘束部材と
を備え、
前記拘束部材による前記積層方向の拘束圧が0.5MPa〜10MPaの範囲内に設定されており、
前記電池ケースの肉厚をt1(μm)、前記絶縁フィルムの肉厚をt2(μm)とした場合に、以下の関係:
530≦t1≦1310、
80≦t2≦250、
120000≦t1×t2≦130000
を満たす、二次電池。
An electrode body configured by laminating a positive electrode and a negative electrode in a laminating direction via a separator;
An aluminum battery case containing the electrode body;
An insulating film made of polypropylene provided between the electrode body and the inner wall of the battery case, and insulating the electrode body and the battery case;
A restraining member that is disposed outside the battery case and restrains the electrode body while pressurizing the electrode body in the stacking direction via the battery case and the insulating film;
The restraining pressure in the stacking direction by the restraining member is set within a range of 0.5 MPa to 10 MPa,
When the thickness of the battery case is t1 (μm) and the thickness of the insulating film is t2 (μm), the following relationship:
530 ≦ t1 ≦ 1310,
80 ≦ t2 ≦ 250,
120,000 ≦ t1 × t2 ≦ 130000
Satisfying secondary batteries.
JP2016178077A 2016-09-12 2016-09-12 Secondary battery Pending JP2018045797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178077A JP2018045797A (en) 2016-09-12 2016-09-12 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178077A JP2018045797A (en) 2016-09-12 2016-09-12 Secondary battery

Publications (1)

Publication Number Publication Date
JP2018045797A true JP2018045797A (en) 2018-03-22

Family

ID=61693204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178077A Pending JP2018045797A (en) 2016-09-12 2016-09-12 Secondary battery

Country Status (1)

Country Link
JP (1) JP2018045797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035564A (en) * 2018-08-28 2020-03-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2022210643A1 (en) 2021-04-01 2022-10-06 株式会社Gsユアサ Electricity storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035564A (en) * 2018-08-28 2020-03-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7071699B2 (en) 2018-08-28 2022-05-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2022210643A1 (en) 2021-04-01 2022-10-06 株式会社Gsユアサ Electricity storage element

Similar Documents

Publication Publication Date Title
JP4470124B2 (en) battery
JP4524713B2 (en) Lithium secondary battery and its use
JP6348807B2 (en) Lithium ion secondary battery
WO2014013992A1 (en) Secondary battery collector structure and secondary battery
KR20130063709A (en) Pouch for secondary battery and secondary battery using the same
JP2013016265A (en) Nonaqueous secondary battery
WO2018043375A1 (en) Electricity storage element and method for producing same
JP2013093216A (en) Battery
JP2016181409A (en) Power storage element
JP2013026123A (en) Secondary battery and electrode plate
US11189886B2 (en) Stack-type nonaqueous electrolyte secondary battery
CN110021781B (en) Non-aqueous electrolyte secondary battery
US10312493B2 (en) Battery
US11450858B2 (en) Non-aqueous electrolyte secondary battery having an improved insulating layer
JP2018045797A (en) Secondary battery
JP2013012320A (en) Lithium ion secondary battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
KR20150109671A (en) Secondary Battery
WO2013099000A1 (en) Lithium ion secondary battery, separator thereof, and method for producing each of same
JP2018056022A (en) Method of manufacturing secondary battery and electrode
CN109075310B (en) Electric storage element
JP6681017B2 (en) Secondary battery having electrode body
WO2018047843A1 (en) Electricity storage element and method for producing electricity storage element
WO2019003721A1 (en) Lithium-ion secondary cell