JP2018043889A - Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same - Google Patents

Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same Download PDF

Info

Publication number
JP2018043889A
JP2018043889A JP2016177562A JP2016177562A JP2018043889A JP 2018043889 A JP2018043889 A JP 2018043889A JP 2016177562 A JP2016177562 A JP 2016177562A JP 2016177562 A JP2016177562 A JP 2016177562A JP 2018043889 A JP2018043889 A JP 2018043889A
Authority
JP
Japan
Prior art keywords
manganese oxide
positive electrode
manganese
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016177562A
Other languages
Japanese (ja)
Inventor
雄哉 阪口
Yuya Sakaguchi
雄哉 阪口
昌樹 岡田
Masaki Okada
昌樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016177562A priority Critical patent/JP2018043889A/en
Publication of JP2018043889A publication Critical patent/JP2018043889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manganese oxide which is a novel manganese-based positive electrode material for a lithium secondary battery capable of achieving both a high energy density and a low cost, and to provide a lithium secondary battery with a high energy density using the manganese oxide as a positive electrode.SOLUTION: There are provided: a manganese oxide represented by general formula Li[LiMMn]O(where X+Y+Z=2, 0<X<1/3 and 5/3<Y+Z<2 are satisfied, and M is one or more elements selected from elements other than Li, Mn and O); a manganese oxide mixture containing the manganese oxide and a positive electrode material; a lithium secondary battery including a positive electrode containing the manganese oxide; and a lithium secondary battery including a positive electrode containing a mixed positive electrode active material.SELECTED DRAWING: None

Description

本発明は、マンガン酸化物、マンガン酸化物混合物及びこれらを用いるリチウム二次電池に関する。   The present invention relates to a manganese oxide, a manganese oxide mixture, and a lithium secondary battery using these.

リチウム二次電池は他の蓄電池に比べてエネルギー密度が高いことから、携帯端末用の蓄電池として幅広く使用されてきた。最近では、定置用や車載用といった大型で大容量が必要とされる用途への適用も進められている。   Lithium secondary batteries have been widely used as storage batteries for portable terminals because they have higher energy density than other storage batteries. Recently, application to a large-sized application requiring a large capacity such as a stationary one and an in-vehicle one has been promoted.

大容量が必要とされる用途では高エネルギー密度化の要望が強く、コストダウンに対する要求が特に厳しい。   In applications that require large capacity, there is a strong demand for higher energy density, and the demand for cost reduction is particularly severe.

高エネルギー密度化を目指して現在開発中のリチウム二次電池の正極材料には、コバルト(Co)やニッケル(Ni)などの金属元素を多く含む酸化物材料が主に検討されている。これら希少元素を多く含む正極材料のコストダウンは極めて難しく、現時点では高エネルギー密度と低コストを両立する実用材料はない。   As a positive electrode material of a lithium secondary battery currently being developed with the aim of increasing energy density, oxide materials containing a large amount of metal elements such as cobalt (Co) and nickel (Ni) are mainly studied. It is extremely difficult to reduce the cost of the positive electrode material containing a large amount of these rare elements. At present, there is no practical material that achieves both high energy density and low cost.

高エネルギー密度と低コストを両立する正極材料実現の取り組みとして、CoやNiを多く含む酸化物材料とスピネル型マンガン酸リチウム酸化物材料(LiMn)との混合正極活物質が提案され、一部で実用化されている(例えば、特許文献1)。 As an effort to realize a positive electrode material that achieves both high energy density and low cost, a mixed positive electrode active material of an oxide material containing a large amount of Co and Ni and a spinel type lithium manganate oxide material (LiMn 2 O 4 ) has been proposed, Some have been put to practical use (for example, Patent Document 1).

マンガン(Mn)系材料が選ばれる理由は、埋蔵量が多く安価な元素でありCoやNiに比べて安全性が高く環境への負荷も小さいことに基づいている。   The reason why the manganese (Mn) -based material is selected is based on the fact that it is an element that has a large reserve and is inexpensive and is safer and less burdened on the environment than Co and Ni.

しかし、従来使用のLiMnの実用容量は100mAh/g程度と小さいことから、その混合割合は高エネルギー密度の特徴を損なわない程度に抑えられ、これまでの混合正極活物質では低コスト化に限界があった。 However, since the practical capacity of LiMn 2 O 4 used in the past is as small as about 100 mAh / g, the mixing ratio can be suppressed to such an extent that the characteristics of high energy density are not impaired. There was a limit.

また、ハイブリッド自動車、プラグインハイブリッド自動車および電気自動車用の車載蓄電池では、軽量化や航続距離の延伸を目的に高エネルギー密度化が必須とされ、最近では蓄電池の経済性と引き換えにLiMnの混合割合を少なくした混合正極活物質の使用によって高エネルギー密度化を図る対応が成されている。 In addition, in-vehicle storage batteries for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles, it is essential to increase the energy density for the purpose of reducing the weight and extending the cruising distance. Recently, LiMn 2 O 4 in exchange for the economics of the storage battery. The use of a mixed positive electrode active material with a reduced mixing ratio has been made to increase the energy density.

このように、LiMnに代わる高エネルギー密度なMn系正極材料の実現が望まれており、高エネルギー密度のマンガン系正極材料を実用化できればコストとの両立が可能になり、車載用を中心にリチウム二次電池市場が飛躍的に拡大するものと思われる。 Thus, realization of a high energy density Mn-based positive electrode material that replaces LiMn 2 O 4 is desired, and if high-energy density manganese-based positive electrode material can be put into practical use, it will be possible to achieve both cost and use in vehicles. The lithium secondary battery market is expected to expand dramatically.

特開2015‐72875号公報JP 2015-72875 A

本発明の目的は、高エネルギー密度と低コストを両立できる従来にはない新しいマンガン系リチウム二次電池用正極材料であるマンガン酸化物、マンガン酸化物と正極材料を含有するマンガン酸化物混合物を提供するものであり、さらに、これら正極に用いた高エネルギー密度のリチウム二次電池を提供するものである。   An object of the present invention is to provide a manganese oxide, which is a novel positive electrode material for manganese-based lithium secondary batteries that can achieve both high energy density and low cost, and a manganese oxide mixture containing manganese oxide and a positive electrode material. Furthermore, the present invention provides a high energy density lithium secondary battery used for these positive electrodes.

本発明者らは、高エネルギー密度と低コストを両立できるマンガン酸化物と正極活物質について鋭意検討を重ねた。その結果、一般式Li[LiMn]O(ここで、X+Y+Z=2,0<X<1/3,5/3<Y+Z<2を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されることを特徴とするマンガン酸化物、マンガン酸化物混合物が、従来のマンガン系正極材料に比べて高容量で充放電することが可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度のリチウム二次電池が構成できることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式Li[LiMn]O(ここで、X+Y+Z=2,0<X<1/3,5/3<Y+Z<2を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるマンガン酸化物、このマンガン酸化物と正極材料を含有するマンガン酸化物混合物、これらのマンガン酸化物またはマンガン酸化物混合物を正極に備えるリチウム二次電池である。 The inventors of the present invention have made extensive studies on a manganese oxide and a positive electrode active material that can achieve both high energy density and low cost. As a result, the general formula Li [Li X M Y Mn Z ] O 4 ( here, meet the X + Y + Z = 2,0 < X <1 / 3,5 / 3 <Y + Z <2, M is Li, Mn, other than O It is possible to charge and discharge the manganese oxide and manganese oxide mixture characterized by the above in a higher capacity than conventional manganese-based positive electrode materials. Thus, the present inventors have found that a high energy density lithium secondary battery can be constructed by using it as a positive electrode of a lithium secondary battery, and the present invention has been completed. That is, the present invention is represented by the general formula Li [Li X M Y Mn Z ] O 4 ( here, meet the X + Y + Z = 2,0 < X <1 / 3,5 / 3 <Y + Z <2, M is Li, Mn , One or more elements selected from elements other than O.), a manganese oxide mixture containing this manganese oxide and a positive electrode material, and these manganese oxides or manganese oxide mixtures. It is a lithium secondary battery provided for the positive electrode.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明のマンガン酸化物は、一般式Li[LiMn]O(ここで、X+Y+Z=2,0<X<1/3,5/3<Y+Z<2を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるものである。 Manganese oxide of the present invention have the general formula Li [Li X M Y Mn Z ] O 4 ( here, meet the X + Y + Z = 2,0 < X <1 / 3,5 / 3 <Y + Z <2, M is Li , One or more elements selected from elements other than Mn and O).

本発明のマンガン酸化物である一般式Li[LiMn]OのX、Y、Zの値は、本発明のマンガン酸化物である一般式一般式Li[LiMn]Oの組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Manganese oxide of the present invention the general formula Li [Li X M Y Mn Z ] O 4 of the X, Y, Z values, manganese oxide of the present invention the general formula general formula Li [Li X M Y Mn It can be determined from the composition analysis of Z 4 O 4 . Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.

本発明の一般式Li[LiMn]Oで表されるマンガン酸化物のMには、Li、Mn、O以外の元素から選ばれるひとつ以上の元素を用いることができる。Li、Mn、O以外の元素から選ばれるひとつ以上の元素としては、例えば、Ia族元素のH、Na、K、Rb、Cs、Ib族元素のCu、Ag、Au、IIa族元素のBe、Mg、Ca、Sr、Ba、IIb族元素のZn、Cd、IIIa族元素のSc、Y、IIIb族元素のB、Al、Ge、In、Mn以外の遷移金属としては、Mnを除く第一遷移系列元素のTi、V、Cr、Fe、Co、Ni、第二および第三遷移系列元素のZr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt、Au等が例示される。正極としての重量あたりの容量を維持するため、H、Na、K、Mg、Ca、Al、Zn、Ga,Ti、V、Cr、Fe、Co、Niが好ましい
本発明のマンガン酸化物は、ハイレートでの出力特性に優れるため、スピネル型構造を有することが好ましい。
The M in the general formula Li [Li X M Y Mn Z ] manganese oxide represented by O 4 of the present invention can be used Li, Mn, one or more elements selected from elements other than O. Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable. Therefore, it is preferable to have a spinel structure.

これまで主に検討されているCoやNiなどの金属元素を多く含む酸化物材料の多くは層状構造の化合物であり、Liが固相内を2次元拡散する経路しか持たない。これに対してスピネル構造では、Liが固相内を3次元的に拡散できる移動経路を有しておりレート特性が優れる。   Many of oxide materials containing a large amount of metal elements such as Co and Ni, which have been mainly studied so far, are compounds having a layered structure and have only a path for Li to diffuse two-dimensionally in the solid phase. On the other hand, in the spinel structure, Li has a movement path that can diffuse three-dimensionally in the solid phase and has excellent rate characteristics.

本発明の一般式Li[LiMn]Oで表されるマンガン酸化物は、Li[Li1/3Mn5/3]OとLiMnからなるマンガン酸化物であって、Li[Li1/3Mn5/3]OとLiMnのいずれか又は両方のMnの一部をLi、Mn、O以外の元素から選ばれる少なくともひとつ以上の元素で置き換えたものである。 A general formula Li [Li X M Y Mn Z ] manganese oxide represented by O 4 is, Li [Li 1/3 Mn 5/3] O 4 and manganese oxide comprising LiMn 2 O 4 of the present invention Then, a part of Mn of either or both of Li [Li 1/3 Mn 5/3 ] O 4 and LiMn 2 O 4 was replaced with at least one element selected from elements other than Li, Mn, and O Is.

Li[Li1/3Mn5/3]Oは、スピネル型LiMnのMn層の1/3のMnをLiで置き換えたもので、LiMnと同じスピネル型構造を持つ。さらに、可逆的にリチウムを挿入脱離させるため、Li[Li1/3Mn5/3]O]とLiMnが共存している状態が好ましく、より高い可逆性を発現させるため、これらが同一の結晶固体の中で特定の結晶面や結晶軸を共通にしてスピネル型構造のドメイン同士が結合した状態の双晶構造がより好ましい。 Li [Li 1/3 Mn 5/3 ] O 4 is obtained by replacing 1/3 Mn of the Mn layer of spinel type LiMn 2 O 4 with Li, and has the same spinel type structure as LiMn 2 O 4 . Furthermore, in order to reversibly insert and desorb lithium, a state where Li [Li 1/3 Mn 5/3 ] O 4 ] and LiMn 2 O 4 coexist is preferable, and in order to express higher reversibility, A twin structure in which the domains of the spinel structure are bonded to each other with a specific crystal plane and a common crystal axis in the same crystal solid is more preferable.

本発明のマンガン酸化物である一般式Li[LiMn]Oは、(Mn+M)とLiのモル比[Li/(Mn+M)モル比]が1/2を越えて4/5未満になるように、Mn、M、Liを含む原料を焼成することで調製できる。 Formula Li [Li X M Y Mn Z ] O 4 is manganese oxide of the present invention, beyond the 1/2 (Mn + M) and Li molar ratio [Li / (Mn + M) molar ratio] 4/5 It can prepare by baking the raw material containing Mn, M, and Li so that it may become less.

焼成は双晶構造とするために酸素含有量の雰囲気下で、400〜600℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。   Firing is preferably performed at 400 to 600 ° C. in an oxygen content atmosphere in order to obtain a twin crystal structure. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.

マンガン酸化物の製造で使用するMn原料に特に制限はない。例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらマンガン原料の酸処理物等が例示されるが、これらに制限されない。 There is no restriction | limiting in particular in the Mn raw material used by manufacture of manganese oxide. For example, manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , Birnessite, Hollandite, Manganite, Romanite, Todorokite, and similar structures to these Manganese oxides and acid-treated products of these manganese raw materials are exemplified, but not limited thereto.

本発明のマンガン酸化物の製造で使用するM原料に制限はない。用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。   There is no restriction | limiting in the M raw material used by manufacture of the manganese oxide of this invention. Examples of the element M include carbonates, nitrates, oxalates, chlorides and oxides, but are not limited thereto.

マンガン酸化物の組成を均一にするために、マンガン酸化物の製造で使用するMn原料とM原料として、MnとMを含む原料を用いることが好ましい。例えば、MnとMを含む酸化物、オキシ水酸化物、水酸化物、これらを1つ以上含む混合物等が例示されるが、これらに制限されない。   In order to make the composition of the manganese oxide uniform, it is preferable to use a raw material containing Mn and M as the Mn raw material and the M raw material used in the manufacture of the manganese oxide. Examples include oxides containing Mn and M, oxyhydroxides, hydroxides, and mixtures containing one or more of these, but are not limited thereto.

マンガン酸化物の製造で使用するLi原料に特に制限はなく、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。   There is no particular limitation on the Li raw material used in the production of manganese oxide, for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, lithium oxide, etc. It is not limited to these.

本発明のマンガン酸化物を正極に使用することで、従来では得ることができなかった高容量で低コストのリチウム二次電池を提供することが可能になる。   By using the manganese oxide of the present invention for the positive electrode, it is possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.

本発明のマンガン酸化物混合物は、一般式Li[LiMn]O(ここで、X+Y+Z=2,0<X<1/3,5/3<Y+Z<2を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるマンガン酸化物と正極材料を含有するものである。 Manganese oxide mixtures of the present invention, the general formula Li [Li X M Y Mn Z ] O 4 ( where, satisfies the X + Y + Z = 2,0 < X <1 / 3,5 / 3 <Y + Z <2, M is It contains one or more elements selected from elements other than Li, Mn, and O.) and a positive electrode material.

本発明のマンガン酸化物混合物が含有するマンガン酸化物は、LiMnに比べて高容量であり、その容量は130〜170mAh/gであるLiCoO、LiNi1/2・Mn1/2、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)と比較しても遜色なく、混合割合によらず高エネルギー密度の特徴を損なうことはない。このため、混合正極活物質において、高エネルギー密度と低コストが両立可能になる。 The manganese oxide contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 · Mn 1/2 O 2. Compared with NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), the characteristics of high energy density are impaired regardless of the mixing ratio. There is no. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.

本発明のマンガン酸化物混合物が含有する正極材料は、リチウムを含有してそのリチウムが電気化学的酸化により放出することができる材料であれば、特に制限がないが、例えば、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウム・ニッケル・マンガン複合酸化物(LiNi1/2Mn1/2)、リチウム・ニッケル・マンガンスピネル複合酸化物(LiNi1/2・Mn3/2)、固溶体材料、オリビン型LiMnPO、オリビン型LiFePO等が例示される。 The positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation. For example, NCA (lithium / nickel) Cobalt / aluminum composite oxide), NMC (lithium / nickel / manganese / cobalt composite oxide), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium / nickel / manganese composite oxide (LiNi 1) / 2Mn 1/2 O 2 ), lithium / nickel / manganese spinel composite oxide (LiNi 1/2 · Mn 3/2 O 4 ), solid solution material, olivine type LiMnPO 4 , olivine type LiFePO 4 and the like. .

本発明のマンガン酸化物混合物は、本発明のマンガン酸化物と正極材料を混合することにより、製造することができる。混合の方法は均一に混合できる方法であれば制限はない。例えば、乳鉢による混合、ミキサーによる混合等が例示される。   The manganese oxide mixture of the present invention can be produced by mixing the manganese oxide of the present invention and a positive electrode material. The mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.

本発明のマンガン酸化物混合物を混合正極活物質として使用することで、従来では得ることができなかった高容量で低コストのリチウム二次電池を提供することが可能になる。   By using the manganese oxide mixture of the present invention as a mixed cathode active material, it becomes possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.

混合正極活物質を導電助剤、バインダー等と混合することで、正極とすることができる。   By mixing the mixed positive electrode active material with a conductive additive, a binder, and the like, a positive electrode can be obtained.

正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like. Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.

本発明のマンガン酸化物、マンガン酸化物混合物は、従来の正極活物質に比べて極めて高い容量での充放電が可能になり、これらをリチウム二次電池の正極に使用することで高エネルギー密度と低コストを両立できるリチウム二次電池の提供が可能になる。   The manganese oxide and manganese oxide mixture of the present invention can be charged / discharged at a very high capacity compared to the conventional positive electrode active material, and by using these for the positive electrode of a lithium secondary battery, high energy density and It is possible to provide a lithium secondary battery that can achieve both low costs.

実施例1のマンガン酸化物の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of manganese oxide of Example 1. FIG. 実施例2のマンガン酸化物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of manganese oxide of Example 2. 実施例3〜実施例4、比較例2で使用したNMCの粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of NMC used in Examples 3 to 4 and Comparative Example 2. FIG. 比較例1のマンガン酸化物の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of manganese oxide of Comparative Example 1.

次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated with a specific Example, this invention is not limited to these Examples.

<電池の作製>
得られたマンガン酸化物又はマンガン酸化物混合物(混合正極活物質)と導電性バインダー(商品名:TAB−2,宝泉株式会社製)を重量比2:1でメノウ乳鉢を使用して混合を行い、16mmφのSUSメッシュ(SUS316)に1ton/cmで一軸プレスしてペレット状にした後に、150℃で2時間、減圧乾燥して正極とした。
<Production of battery>
The obtained manganese oxide or manganese oxide mixture (mixed positive electrode active material) and a conductive binder (trade name: TAB-2, manufactured by Hosen Co., Ltd.) were mixed at a weight ratio of 2: 1 using an agate mortar. After being uniaxially pressed into a 16 mmφ SUS mesh (SUS316) at 1 ton / cm 2 to form a pellet, it was dried under reduced pressure at 150 ° C. for 2 hours to obtain a positive electrode.

負極に金属リチウムを、エチレンカーボネートとジメチルカーボネートの体積比1:2の溶媒にLiPFを1mol/dm溶解したものを電解液に、セパレータにポリエチレンシート(商品名:セルガード,ポリポア株式会社製)を使用して2032型コインセルを作製した。 Metallic lithium for the negative electrode, 1 mol / dm 3 of LiPF 6 dissolved in a 1: 2 volume ratio solvent of ethylene carbonate and dimethyl carbonate in the electrolyte, polyethylene sheet in the separator (trade name: Celgard, manufactured by Polypore Corporation) A 2032 type coin cell was prepared using

<充放電試験>
作製したコインセルを用いて、室温条件下(22〜27℃)、10mA/gの定電流でセル電圧が4.8Vと2.0Vの間で、最初に充電を行い、次に放電を行い、以後充電・放電を繰り返し、1サイクル目の充電容量(mAh/g)、1サイクル目の放電容量(mAh/g)、10サイクル目の放電容量(mAh/g)を測定し、容量維持率(1サイクル目の放電容量に対する10サイクル目の放電容量の割合(%))を求めた。
<Charge / discharge test>
Using the produced coin cell, the cell voltage is between 4.8 V and 2.0 V at a constant current of 10 mA / g under room temperature conditions (22 to 27 ° C.), and then discharged. Thereafter, charging and discharging were repeated, and the charge capacity (mAh / g) at the first cycle, the discharge capacity (mAh / g) at the first cycle, the discharge capacity (mAh / g) at the 10th cycle were measured, and the capacity retention rate ( The ratio (%) of the discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle was determined.

<組成分析>
調製したリチウム含有マンガン組成物のリチウムとマンガンの組成は、誘電結合プラズマ発光分析装置(商品名:ICP−AES,株式会社パーキンエルマージャパン製)で分析した。
<Composition analysis>
The composition of lithium and manganese in the prepared lithium-containing manganese composition was analyzed with a dielectric coupled plasma emission spectrometer (trade name: ICP-AES, manufactured by PerkinElmer Japan Co., Ltd.).

<結晶性の評価>
調製したリチウム含有マンガン組成物の結晶構造の同定を粉末X線回折測定装置(商品名:UltimaIV,株式会社リガク製)で行った。
<Evaluation of crystallinity>
The crystal structure of the prepared lithium-containing manganese composition was identified with a powder X-ray diffractometer (trade name: Ultimate IV, manufactured by Rigaku Corporation).

計測条件は、以下の通りとした。   The measurement conditions were as follows.

ターゲット:Cu
出力:1.6kW(40mA−40kV)
ステップスキャン:0.04°(2θ/θ)
計測時間:0.6秒
製造例
硫酸ニッケル及び硫酸マンガンを純水に溶解し、0.5mol/Lの硫酸ニッケル及び1.5mol/Lの硫酸マンガンを含む水溶液を得て、これを金属塩水溶液とした(金属水溶液中の全金属の合計濃度は2.0mol/Lであった)。
Target: Cu
Output: 1.6kW (40mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 0.6 seconds Production Example Nickel sulfate and manganese sulfate are dissolved in pure water to obtain an aqueous solution containing 0.5 mol / L nickel sulfate and 1.5 mol / L manganese sulfate. (The total concentration of all metals in the aqueous metal solution was 2.0 mol / L).

また、内容積1Lの反応容器に純水200gを入れた後、これを80℃まで昇温、維持した。   Further, 200 g of pure water was put into a reaction vessel having an internal volume of 1 L, and then this was heated to 80 ° C. and maintained.

当該金属塩水溶液を供給速度0.28g/minで反応容器に添加した。また、酸化剤として空気を供給速度1L/minで反応容器中にバブリングした。金属塩水溶液及び空気供給の際、pHが10となるように、2mol/Lの水酸化ナトリウム水溶液(苛性ソーダ水溶液)を断続的に添加して混合水溶液を得て、該混合水溶液中でニッケル‐マンガン系複合オキシ水酸化物が析出し、スラリーを得た。得られたスラリーをろ過、洗浄した後、洗浄後のウエットケーキを1週間大気中で風乾し、その後115℃で5時間乾燥することで、MnとNiを含むオキシ水酸化物(Ni0.245Mn0.755OOH)を得た(Mn:45.3wt%,Ni:14.7wt%)。 The aqueous metal salt solution was added to the reaction vessel at a supply rate of 0.28 g / min. Further, air was bubbled into the reaction vessel at a supply rate of 1 L / min as an oxidant. A 2 mol / L sodium hydroxide aqueous solution (caustic soda aqueous solution) is intermittently added so that the pH becomes 10 when supplying the metal salt aqueous solution and air to obtain a mixed aqueous solution, and nickel-manganese in the mixed aqueous solution is obtained. A system composite oxyhydroxide was precipitated to obtain a slurry. The obtained slurry was filtered and washed, and then the wet cake after washing was air-dried in the air for 1 week, and then dried at 115 ° C. for 5 hours, thereby obtaining an oxyhydroxide containing Mn and Ni (Ni 0.245). Mn 0.755 OOH) was obtained (Mn: 45.3 wt%, Ni: 14.7 wt%).

実施例1
製造例で得られたMnとNiを含むオキシ水酸化物5.00gと水酸化リチウムの1水和物(特級試薬)1.71gとを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 1
After dry-mixing 5.00 g of oxyhydroxide containing Mn and Ni obtained in the production example and 1.71 g of monohydrate of lithium hydroxide (special grade reagent) using a mortar for 30 minutes, the opening The whole amount was passed through a 150 μm mesh.

得られた混合粉の1.13gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、450℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。   1.13 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 450 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. . The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.

調製した試料の組成分析と結晶性の評価から、得られたマンガン酸化物はスピネル型構造を有しており、Mn/Ni比は3.304/1、Li/(Mn+Ni)比は0.760であった。この値から、Xは0.295、Yは0.426、Zは1.279で、Li[Li0.295Ni0.426Mn1.279]Oのマンガン酸化物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained manganese oxide has a spinel structure, the Mn / Ni ratio is 3.304 / 1, and the Li / (Mn + Ni) ratio is 0.760. Met. From this value, X is 0.295, Y are 0.426, Z is 1.279, that of manganese oxide Li [Li 0.295 Ni 0.426 Mn 1.279 ] O 4 was obtained I understood.

充放電試験の結果を表1に示す。その結果から、10サイクル目の放電容量は比較例1のLiMnよりも大きく、初回サイクルから安定にサイクルすることが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity at the 10th cycle was larger than that of LiMn 2 O 4 of Comparative Example 1, and the cycle was stable from the first cycle.

Figure 2018043889
実施例2
水酸化リチウムの1水和物(特級試薬)1.62gとした以外は、実施例1と同様にしてマンガン酸化物を調製した。
Figure 2018043889
Example 2
Manganese oxide was prepared in the same manner as in Example 1 except that 1.62 g of lithium hydroxide monohydrate (special grade reagent) was used.

調製した試料の組成分析と結晶性の評価から、得られたマンガン酸化物はスピネル型構造を有しており、Mn/Ni比は3.304/1、Li/(Mn+Ni)比は0.721であった。この値から、Xは0.257、Yは0.436、Zは1.307で、Li[Li0.257Ni0.436Mn1.307]Oのマンガン酸化物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained manganese oxide has a spinel structure, the Mn / Ni ratio is 3.304 / 1, and the Li / (Mn + Ni) ratio is 0.721. Met. From this value, X was 0.257, Y was 0.436, Z was 1.307, and a Li [Li 0.257 Ni 0.436 Mn 1.307 ] O 4 manganese oxide was obtained. I understood.

充放電試験の結果を表1に示す。その結果から、10サイクル目の放電容量は比較例1のLiMnよりも大きく、初回サイクルから安定にサイクルすることが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the discharge capacity at the 10th cycle was larger than that of LiMn 2 O 4 of Comparative Example 1, and the cycle was stable from the first cycle.

実施例3
実施例1で得られたマンガン酸化物と正極材料(NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物を調製した。
Example 3
The agate mortar with the manganese oxide obtained in Example 1 and the positive electrode material (NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) at a weight ratio of 1: 1. Mixing was carried out to prepare a manganese oxide mixture.

充放電試験の結果を表1に示す。その結果から、10サイクル目の放電容量は比較例2のLiMnとNMC(111)の混合正極に比べて大きく、初回サイクルから安定にサイクルすることが分かった。 The results of the charge / discharge test are shown in Table 1. From the results, it was found that the discharge capacity at the 10th cycle was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) in Comparative Example 2, and the cycle was stable from the first cycle.

実施例4
実施例2で得られたマンガン酸化物を用いた以外は実施例3と同様にして、マンガン酸化物混合物を調製した。
Example 4
A manganese oxide mixture was prepared in the same manner as in Example 3 except that the manganese oxide obtained in Example 2 was used.

充放電試験の結果を表1に示す。10サイクル目の放電容量は比較例2のLiMnとNMC(111)の混合正極に比べて大きく、初回サイクルから安定にサイクルすることが分かった。 The results of the charge / discharge test are shown in Table 1. The discharge capacity at the 10th cycle was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) in Comparative Example 2 and was found to cycle stably from the first cycle.

比較例1
炭酸マンガンの0.5水和物(特級試薬)12.35gと水酸化リチウムの1水和物(特級試薬)2.12g(Li/Mn比=1/2)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Comparative Example 1
Manganese carbonate 0.5 hydrate (special grade reagent) 12.35 g and lithium hydroxide monohydrate (special grade reagent) 2.12 g (Li / Mn ratio = 1/2) using a mortar 30 After dry-mixing for a minute, it was pulverized until it passed through a mesh with a mesh size of 150 μm.

得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、800℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。   2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 800 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.

調製した試料の組成分析と結晶性の評価から、得られたマンガン組成物はスピネル型構造を有しており、LiMnであることが分かった。 From the composition analysis of the prepared sample and the evaluation of crystallinity, it was found that the obtained manganese composition had a spinel structure and was LiMn 2 O 4 .

充放電試験の結果を表1に示す。その結果から、実施例1、実施例2のマンガン酸化物に比べて初回容量は大きいものの、10サイクル目の容量は小さくなり、サイクル劣化が著しいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that although the initial capacity was larger than the manganese oxides of Examples 1 and 2, the capacity at the 10th cycle was small and the cycle deterioration was remarkable.

比較例2
比較例1で得られたLiMnをマンガン酸化物に使用した以外は実施例3と同様にしてマンガン酸化物混合物を調製した。
Comparative Example 2
A manganese oxide mixture was prepared in the same manner as in Example 3 except that LiMn 2 O 4 obtained in Comparative Example 1 was used for manganese oxide.

充放電試験の結果を表1に示す。その結果から、実施例3、実施例4のマンガン酸化物に比べて初回容量は大きいものの、10サイクル目の容量は小さくなり、サイクル劣化が著しいことが分かった。   The results of the charge / discharge test are shown in Table 1. From the results, it was found that although the initial capacity was larger than the manganese oxides of Examples 3 and 4, the capacity at the 10th cycle was small and the cycle deterioration was remarkable.

本発明のマンガン酸化物、マンガン酸化物混合物、混合正極活物質は、リチウム二次電池の正極に使用することができる。   The manganese oxide, manganese oxide mixture, and mixed positive electrode active material of the present invention can be used for the positive electrode of a lithium secondary battery.

Claims (6)

一般式Li[LiMn]O(ここで、X+Y+Z=2,0<X<1/3,5/3<Y+Z<2を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されることを特徴とするマンガン酸化物。 In the general formula Li [Li X M Y Mn Z ] O 4 ( where, satisfies the X + Y + Z = 2,0 < X <1 / 3,5 / 3 <Y + Z <2, M is Li, Mn, from elements other than O One or more selected elements)). スピネル型構造を有することを特徴とする請求項1に記載のマンガン酸化物。 The manganese oxide according to claim 1, which has a spinel structure. 請求項1又は請求項2に記載のマンガン酸化物と正極材料を含有することを特徴とするマンガン酸化物混合物。 A manganese oxide mixture comprising the manganese oxide according to claim 1 or 2 and a positive electrode material. 請求項3に記載のマンガン酸化物混合物を含むことを特徴とする混合正極活物質。 A mixed positive electrode active material comprising the manganese oxide mixture according to claim 3. 請求項1又は請求項2に記載のマンガン酸化物を含有する正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode containing the manganese oxide according to claim 1. 請求項4に記載の混合正極活物質を含有する正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode containing the mixed positive electrode active material according to claim 4.
JP2016177562A 2016-09-12 2016-09-12 Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same Pending JP2018043889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177562A JP2018043889A (en) 2016-09-12 2016-09-12 Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177562A JP2018043889A (en) 2016-09-12 2016-09-12 Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2018043889A true JP2018043889A (en) 2018-03-22

Family

ID=61694203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177562A Pending JP2018043889A (en) 2016-09-12 2016-09-12 Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2018043889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353985A (en) * 2021-05-25 2021-09-07 北京大学深圳研究生院 Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353985A (en) * 2021-05-25 2021-09-07 北京大学深圳研究生院 Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery

Similar Documents

Publication Publication Date Title
TWI437753B (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
TWI423508B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR101450421B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102782911B (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2017162614A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
JP6619832B2 (en) Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP6746961B2 (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP2016175825A (en) Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP2018043889A (en) Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same
JP7302826B2 (en) Lithium-manganese composite oxide and method for producing the same
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP2017168218A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
WO2016148283A1 (en) Manganese oxide and method for producing same, and lithium secondary battery using same
JP2002087824A (en) Fluorine substituted transition metal oxide
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same