JP2018036749A - Design evaluation support system - Google Patents

Design evaluation support system Download PDF

Info

Publication number
JP2018036749A
JP2018036749A JP2016167688A JP2016167688A JP2018036749A JP 2018036749 A JP2018036749 A JP 2018036749A JP 2016167688 A JP2016167688 A JP 2016167688A JP 2016167688 A JP2016167688 A JP 2016167688A JP 2018036749 A JP2018036749 A JP 2018036749A
Authority
JP
Japan
Prior art keywords
heating device
deterioration
index
deterioration index
support system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167688A
Other languages
Japanese (ja)
Other versions
JP6719338B2 (en
Inventor
田中 雅人
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2016167688A priority Critical patent/JP6719338B2/en
Priority to KR1020170109363A priority patent/KR101963963B1/en
Priority to CN201710761734.5A priority patent/CN107798161B/en
Publication of JP2018036749A publication Critical patent/JP2018036749A/en
Application granted granted Critical
Publication of JP6719338B2 publication Critical patent/JP6719338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Geometry (AREA)
  • Tourism & Hospitality (AREA)
  • Evolutionary Computation (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Manufacturing & Machinery (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To reinforce an FD/FP function targeting a device design regarding a multiloop heating apparatus.SOLUTION: A design evaluation support system includes: a deterioration index detecting part 1 for detecting deterioration indexes of a plurality of multiloop heating apparatuses to be evaluated, for individual heating apparatuses and for individual temperature control systems in the heating apparatuses; a deterioration index collecting part 2 for collecting the deterioration indexes detected by the deterioration index detecting part 1 for the individual heating apparatuses of the same type; an initial value storage part 3 for previously storing initial values of the deterioration indexes of the heating apparatuses to be evaluated, for the individual heating apparatuses and for the individual temperature control systems in the heating apparatuses; and a deterioration index change presenting part 4 for calculating data indicating secular changes of the deterioration indexes and present the data, on the basis of the deterioration indexes collected by the deterioration index collecting part 2 and the initial values of the deterioration indexes stored in the initial value storage part 3.SELECTED DRAWING: Figure 1

Description

本発明は、複数のコントローラがそれぞれ対応する温度制御ゾーンの温度を制御するマルチループの温度制御系の加熱装置に係り、特に加熱装置の設計改善に繋がる情報を提供する設計評価支援システムに関するものである。   The present invention relates to a heating device of a multi-loop temperature control system in which a plurality of controllers respectively control the temperature of a corresponding temperature control zone, and more particularly to a design evaluation support system that provides information that leads to improvement in the design of the heating device. is there.

半導体製造装置では、EES(Equipment Engineering System)が実用段階へと移行してきている。EESは、半導体製造装置が正常に機能しているかどうかをデータでチェックし、装置の信頼性や生産性を向上させるシステムである。EESの主な目的は、装置自体を対象とする不具合検知(FD:Fault Detection)、不具合予知(FP:Fault Prediction)である。   In semiconductor manufacturing equipment, EES (Equipment Engineering System) has entered a practical stage. The EES is a system that checks whether or not a semiconductor manufacturing apparatus is functioning normally with data and improves the reliability and productivity of the apparatus. The main purpose of EES is failure detection (FD: Fault Detection) and failure prediction (FP: Fault Prediction) for the device itself.

FD/FPには、装置コントロールレベル、モジュールレベル、サブシステムレベル、I/Oデバイスレベルという階層化の捉え方がある。I/Oデバイスレベルの主体は、センサやアクチュエータである。アクチュエータのFD/FPに関しては、(0,1)のビット列のデータ(アクチュエータデータ)で済むシーケンス制御的な動作については、特に実用段階にあると言える。   In FD / FP, there is a way of grasping hierarchies of device control level, module level, subsystem level, and I / O device level. The main components at the I / O device level are sensors and actuators. Regarding the FD / FP of the actuator, it can be said that the sequence control operation that requires only the bit string data (actuator data) of (0, 1) is in a practical stage.

一方で、センサのFD/FPに関しては、温度、圧力、流量などのプロセス量が対象データになる。これらのデータについては、msec.レベルで全てのデータを保存するのが合理的とは言えない。そこで、センサのデータを装置が管理する処理単位毎に、あるいは一定の期間毎に代表値化して、代表値化した値をチェックするEES対応の基板処理装置(特許文献1参照)などが提案されている。代表値とは、最大値、最小値、平均値などである。これらの代表値によりFD/FPが実現できれば、全てのデータを監視する場合と比較して通信量、必要メモリ量などを大幅に削減できるので効率的である。   On the other hand, regarding the FD / FP of the sensor, process quantities such as temperature, pressure, and flow rate become target data. For these data, msec. It is not reasonable to save all data at the level. Therefore, an EES-compliant substrate processing apparatus (see Patent Document 1) that checks the representative value by converting the sensor data into a representative value for each processing unit managed by the apparatus or for a certain period of time has been proposed. ing. The representative value is a maximum value, a minimum value, an average value, or the like. If FD / FP can be realized with these representative values, the amount of communication, the amount of required memory, and the like can be greatly reduced as compared with the case of monitoring all data.

ここで、サブシステムに相当する制御ループ(PID制御などを実行するコントローラレベル)については、特許文献2や特許文献3のように、加熱装置の温度制御応答の特徴を算出するものが提案されている。加熱装置は、例えば図13に示すように、処理対象の被加熱物を加熱する加熱処理炉100と、電気ヒータ101と、加熱処理炉100内の温度を計測する温度センサ102と、加熱処理炉100内の温度を制御する温調計103と、電力調整器104と、電力供給回路105と、加熱装置全体を制御するPLC(Programmable Logic Controller)106とから構成される。温調計103は、温度センサ102が計測した温度PV(制御量)が温度設定値SPと一致するように操作量MVを算出する。電力調整器104は、操作量MVに応じた電力を決定し、この決定した電力を電力供給回路105を通じて電気ヒータ101に供給する。   Here, as for a control loop corresponding to a subsystem (a controller level for executing PID control or the like), as in Patent Document 2 and Patent Document 3, one that calculates the characteristics of the temperature control response of the heating device has been proposed. Yes. For example, as shown in FIG. 13, the heating apparatus includes a heat treatment furnace 100 that heats an object to be treated, an electric heater 101, a temperature sensor 102 that measures the temperature in the heat treatment furnace 100, and a heat treatment furnace. A temperature controller 103 that controls the temperature in 100, a power regulator 104, a power supply circuit 105, and a PLC (Programmable Logic Controller) 106 that controls the entire heating device. The temperature controller 103 calculates the operation amount MV so that the temperature PV (control amount) measured by the temperature sensor 102 matches the temperature set value SP. The power regulator 104 determines power according to the operation amount MV, and supplies the determined power to the electric heater 101 through the power supply circuit 105.

特許文献2に開示された技術は、例えば図13に示す加熱装置において、制御対象のプロセスゲインKpとプロセス時定数Tpの比Kp/Tpを算出するものであり、特許文献3に開示された技術は、制御量PVの最大変化率ΔPVmaxを算出するものである。これらの技術は、制御の不具合状態(例えば加熱装置のヒータ劣化)を把握するために、制御結果を代表値化するための技術である。   The technique disclosed in Patent Document 2 calculates the ratio Kp / Tp between the process gain Kp to be controlled and the process time constant Tp in the heating apparatus shown in FIG. 13, for example. The technique disclosed in Patent Document 3 Is to calculate the maximum change rate ΔPVmax of the control amount PV. These techniques are techniques for representing a control result as a representative value in order to grasp a control malfunction state (for example, heater deterioration of a heating device).

特開2010−219460号公報JP 2010-219460 A 特開2007−293474号公報JP 2007-293474 A 特開2014−170343号公報JP 2014-170343 A

代表値を利用したFD/FPとしては、上記のように特許文献2、特許文献3に開示された技術などが知られている。これらは、制御状態自体を直接的に扱うFD/FP機能と言える。   As the FD / FP using the representative value, the techniques disclosed in Patent Document 2 and Patent Document 3 are known as described above. These can be said to be FD / FP functions that directly handle the control state itself.

しかしながら、制御状態自体を扱うFD/FP機能のみでは、制御の不具合の発生を削減するような効果は得られ難い。すなわち、制御の不具合の発生に繋がる装置設計の問題点として、装置設計自体を直接的に扱うFD/FP機能をさらに強化することが求められている。   However, with only the FD / FP function that handles the control state itself, it is difficult to obtain an effect that reduces the occurrence of control problems. That is, as a problem in device design that leads to the occurrence of control defects, it is required to further strengthen the FD / FP function that directly handles the device design itself.

例えば加熱装置には、図14に示すように複数の温度制御ゾーンZ1〜Z8を有するトンネル炉200を用いるものがある。トンネル炉200は、具体的には半田リフロー炉、セラミック焼成炉、あるいはプリント乾燥炉であり、温度制御ゾーンZ1からZ8への方向へコンベアによりワークを流す炉である。このようなトンネル炉200を用いる加熱装置では、各ゾーンの設計を適切に行なったつもりであっても、あくまでもそれは設計段階の話であり、実用段階での環境や条件に応じて、ゾーン間で適切さにばらつきが生じ得る。   For example, some heating apparatuses use a tunnel furnace 200 having a plurality of temperature control zones Z1 to Z8 as shown in FIG. The tunnel furnace 200 is specifically a solder reflow furnace, a ceramic firing furnace, or a print drying furnace, and is a furnace that allows a work to flow by a conveyor in the direction from the temperature control zone Z1 to Z8. In such a heating apparatus using the tunnel furnace 200, even if it is intended to design each zone appropriately, it is only a story at the design stage, and between zones according to the environment and conditions at the practical stage. Variations in suitability can occur.

開放された入口に近いゾーンZ1や出口に近いゾーンZ8は、中央寄りのゾーンZ4やゾーンZ5に比べると放熱し易い構造であるから、理屈上はヒータによる加熱を多く必要とする。また、入口に近いゾーンZ1と出口に近いゾーンZ8を比較すると、常温で冷えた状態のワークが入るゾーンZ1は、高温のゾーンを通過した後のワークをゾーンZ7から受け取る形のゾーンZ8に比べると、理屈上はヒータによる加熱を多く必要とする。リフロー、焼成、乾燥という直列の一連の工程がトンネル炉200内で実施される場合、予備加熱、本加熱、降温という流れであれば、各ゾーンの設定温度が異なることになり、理屈上はヒータによる加熱は均一ではなくなる。   The zone Z1 close to the opened entrance and the zone Z8 close to the exit have a structure that radiates heat more easily than the zone Z4 and zone Z5 closer to the center, and therefore theoretically requires more heating by the heater. Further, when comparing the zone Z1 close to the entrance and the zone Z8 close to the exit, the zone Z1 into which the workpiece cooled at room temperature enters is compared with the zone Z8 in which the workpiece after passing through the high temperature zone is received from the zone Z7. In theory, a lot of heating with a heater is required. When a series of steps such as reflow, firing, and drying are performed in the tunnel furnace 200, if the flow is preheating, main heating, and cooling, the set temperatures of the zones will be different. Heating by is not uniform.

したがって、実用段階での環境や条件に応じて、設計の適切さは変わってくるものであり、仮に設計が不適切ということになれば、制御の不具合の発生に繋がる装置設計の問題点ということになる。ただし、この場合の問題点とは、ゾーン間のばらつきの大きさという性質の問題点になる。   Therefore, the appropriateness of the design changes depending on the environment and conditions at the practical stage, and if the design is inappropriate, it is a problem of the device design that leads to the occurrence of control failure. become. However, the problem in this case is a problem of the nature of the magnitude of variation between zones.

本発明は、上記課題を解決するためになされたもので、マルチループ型加熱装置について装置設計を対象とするFD/FP機能を従来よりも強化することができる設計評価支援システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a design evaluation support system capable of strengthening the FD / FP function for device design of a multi-loop type heating apparatus as compared with the conventional one. Objective.

本発明の設計評価支援システムは、各コントローラがそれぞれ対応する温度制御ゾーンの温度を制御するマルチループ型加熱装置を評価対象とし、評価対象の複数のマルチループ型加熱装置の劣化指標を、加熱装置毎および加熱装置内の個々の温度制御系毎に検出する劣化指標検出手段と、この劣化指標検出手段が検出した劣化指標を、同じタイプの加熱装置毎に収集する劣化指標収集手段と、評価対象の加熱装置の前記劣化指標の初期値を、加熱装置毎および加熱装置内の個々の温度制御系毎に予め記憶する初期値記憶手段と、前記劣化指標収集手段が収集した劣化指標と前記初期値記憶手段に記憶されている劣化指標の初期値とから、劣化指標の経年変化を示すデータを算出して提示する劣化指標変化提示手段とを備えることを特徴とするものである。
また、本発明の設計評価支援システムの1構成例は、さらに、評価対象の複数のマルチループ型加熱装置の個々のコントローラから出力される操作量の時系列データに基づいて、操作量の履歴平均値を加熱装置毎および加熱装置内の個々の温度制御系毎に算出する平均操作量算出手段と、前記劣化指標変化提示手段が提示する、劣化指標の経年変化を示すデータと、前記履歴平均値との関連性を提示する操作量影響提示手段とを備えることを特徴とするものである。
The design evaluation support system of the present invention uses a multi-loop type heating device that controls the temperature of the temperature control zone corresponding to each controller as an evaluation target, and sets deterioration indicators of a plurality of multi-loop type heating devices to be evaluated as heating devices. A deterioration index detecting means for detecting each temperature control system in each heating device, a deterioration index collecting means for collecting the deterioration index detected by the deterioration index detecting means for each heating device of the same type, and an evaluation object Initial value storage means for storing in advance the initial value of the deterioration index of the heating device for each heating device and for each temperature control system in the heating device, the deterioration index collected by the deterioration index collecting means and the initial value It is characterized by comprising deterioration index change presenting means for calculating and presenting data showing the secular change of the deterioration index from the initial value of the deterioration index stored in the storage means. It is intended.
In addition, one configuration example of the design evaluation support system according to the present invention further includes an operation amount history average based on time series data of operation amounts output from individual controllers of a plurality of multi-loop heating devices to be evaluated. Average manipulated variable calculation means for calculating a value for each heating device and each temperature control system in the heating device, data indicating the deterioration index deterioration presented by the deterioration index change presentation means, and the history average value And a manipulated variable effect presenting means for presenting the relevance to each other.

また、本発明の設計評価支援システムの1構成例において、前記劣化指標検出手段は、前記劣化指標として、制御対象のプロセスゲインKpとプロセス時定数Tpとの比率S_res=Kp/Tpを検出し、前記劣化指標変化提示手段は、前記劣化指標収集手段が収集した比率S_resと前記初期値記憶手段に記憶されている初期値S_iniとから、前記劣化指標の経年変化を示すデータとして、比率R=S_res/S_iniを算出することを特徴とするものである。
また、本発明の設計評価支援システムの1構成例において、前記操作量影響提示手段は、前記平均操作量算出手段が算出した履歴平均値MVmのうち最小値MVm_minを同一の加熱装置内で抽出し、この最小値MVm_minを分子、各履歴平均値MVmを分母とする可視化比率U=MVm_min/MVmを算出して、前記劣化指標の経年変化を示すデータと一緒に提示する処理を、加熱装置毎および加熱装置内の個々の温度制御系毎に行うことを特徴とするものである。
また、本発明の設計評価支援システムの1構成例において、前記劣化指標検出手段は、加熱装置から収集した温度の時系列データと操作量の時系列データについて過渡状態のデータを特定し、過渡状態における温度のデータおよび操作量のデータにより制御対象のモデル数式を同定し、この制御対象のモデル数式に基づいて制御対象のプロセスゲインKpとプロセス時定数Tpとの比率S_res=Kp/Tpを算出する処理を、加熱装置毎および加熱装置内の個々の温度制御系毎に行うことを特徴とするものである。
Further, in one configuration example of the design evaluation support system of the present invention, the deterioration index detection means detects a ratio S_res = Kp / Tp between the process gain Kp to be controlled and the process time constant Tp as the deterioration index, The deterioration index change presenting means uses the ratio R_S_res as data indicating the secular change of the deterioration index from the ratio S_res collected by the deterioration index collecting means and the initial value S_ini stored in the initial value storage means. / S_ini is calculated.
Further, in one configuration example of the design evaluation support system of the present invention, the manipulated variable effect presenting means extracts a minimum value MVm_min from the history average value MVm calculated by the average manipulated variable calculating means in the same heating apparatus. A process of calculating a visualization ratio U = MVm_min / MVm using the minimum value MVm_min as a numerator and each history average value MVm as a denominator and presenting the visualization ratio together with data indicating the secular change of the deterioration index is provided for each heating device and This is performed for each temperature control system in the heating device.
Further, in one configuration example of the design evaluation support system of the present invention, the deterioration index detecting means identifies transient state data for the time series data of the temperature and the time series data of the manipulated variable collected from the heating device, and the transient state The model equation to be controlled is identified from the temperature data and the manipulated variable data, and the ratio S_res = Kp / Tp between the process gain Kp to be controlled and the process time constant Tp is calculated based on the model equation to be controlled. The treatment is performed for each heating device and for each temperature control system in the heating device.

本発明によれば、評価対象の複数のマルチループ型加熱装置の劣化指標を、加熱装置毎および加熱装置内の個々の温度制御系毎に検出し、検出した劣化指標を同じタイプの加熱装置毎に収集し、収集した劣化指標と劣化指標の初期値とから、劣化指標の経年変化を示すデータを算出して提示することにより、装置設計の改善に繋がる情報を提供することができ、装置設計を対象とするFD/FP機能を強化することができる。   According to the present invention, the deterioration index of a plurality of multi-loop heating devices to be evaluated is detected for each heating device and for each temperature control system in the heating device, and the detected deterioration index is detected for each heating device of the same type. It is possible to provide information that leads to improvement of device design by calculating and presenting data indicating the secular change of the deterioration index from the collected deterioration index and the initial value of the deterioration index. The FD / FP function for the target can be strengthened.

また、本発明では、評価対象の複数のマルチループ型加熱装置の個々のコントローラから出力される操作量の時系列データに基づいて、操作量の履歴平均値を加熱装置毎および加熱装置内の個々の温度制御系毎に算出し、劣化指標の経年変化を示すデータと履歴平均値との関連性を提示することにより、装置設計の改善に繋がる情報として、操作量がヒータ系の劣化に影響している度合の情報を提供することができる。   Further, in the present invention, based on the time-series data of the operation amount output from the individual controllers of the plurality of multi-loop heating devices to be evaluated, the history average value of the operation amount is determined for each heating device and in each heating device. The amount of operation affects the deterioration of the heater system as information that leads to the improvement of the device design by presenting the relationship between the data indicating the secular change of the deterioration index and the historical average value. The degree of information can be provided.

本発明の第1の実施の形態に係る設計評価支援システムの構成を示すブロック図である。It is a block diagram which shows the structure of the design evaluation assistance system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る設計評価支援システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the design evaluation assistance system which concerns on the 1st Embodiment of this invention. 加熱装置の劣化指標の初期値、収集した劣化指標、劣化指標の経年変化を示すデータの例を示す図である。It is a figure which shows the example of the data which show the secular change of the initial value of the degradation parameter | index of a heating apparatus, the collected degradation parameter | index, and a degradation parameter | index. 劣化指標の経年変化を示すデータを、グラフ表示した例を示す図である。It is a figure which shows the example which displayed the data which show the secular change of a degradation parameter | index as a graph. 加熱装置の劣化指標の初期値、収集した劣化指標、劣化指標の経年変化を示すデータの別の例を示す図である。It is a figure which shows another example of the data which show the initial value of the degradation parameter | index of a heating apparatus, the collected degradation parameter | index, and a secular change of a degradation parameter | index. 劣化指標の経年変化を示すデータを、グラフ表示した別の例を示す図である。It is a figure which shows another example which displayed the data which show the secular change of a degradation parameter | index as a graph. 加熱装置の劣化指標の初期値、収集した劣化指標、劣化指標の経年変化を示すデータの別の例を示す図である。It is a figure which shows another example of the data which show the initial value of the degradation parameter | index of a heating apparatus, the collected degradation parameter | index, and a secular change of a degradation parameter | index. 劣化指標の経年変化を示すデータを、グラフ表示した別の例を示す図である。It is a figure which shows another example which displayed the data which show the secular change of a degradation parameter | index as a graph. 本発明の第2の実施の形態に係る設計評価支援システムの構成を示すブロック図である。It is a block diagram which shows the structure of the design evaluation assistance system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る設計評価支援システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the design evaluation assistance system which concerns on the 2nd Embodiment of this invention. 加熱装置の劣化指標の経年変化を示すデータ、可視化比率、操作量の履歴平均値の例を示す図である。It is a figure which shows the example of the data which show the secular change of the deterioration parameter | index of a heating apparatus, the visualization ratio, and the historical average value of the operation amount. 劣化指標の経年変化を示すデータと可視化比率を、グラフ表示した例を示す図である。It is a figure which shows the example which displayed the data and visualization ratio which show a secular change of a degradation parameter | index as a graph. 加熱装置の構成を示すブロック図である。It is a block diagram which shows the structure of a heating apparatus. 加熱装置の別の構成を示すブロック図である。It is a block diagram which shows another structure of a heating apparatus.

[発明の原理1]
発明者は、個々の制御ループに与えられる指標であっても、複数の制御ループを対象とする場合は、複数の指標間の傾向を分析すると、装置設計の改善情報に繋がることに着眼した。
[Principle of Invention 1]
The inventor noticed that even if an index is given to each control loop, when a plurality of control loops are targeted, analyzing the tendency between the plurality of indices leads to improvement information of the device design.

すなわち、例えば複数のセンサやヒータを備える装置内の制御系を対象にすると、どの辺りのセンサやコントローラ(例えば温調計)が劣化情報を出すかなどについて、複数の同じタイプの装置から得られるデータを分析したときに、劣化箇所の集中傾向が現れるならば、装置設計上の問題が内在する可能性が考えられる。これに基づき、制御系の構成要素の劣化を検知する指標(例えば特許文献2のKp/Tp比や特許文献3のΔPVmax)を用いて、複数の制御ループ、複数の装置を対象に劣化の集中傾向を可視化することの有用性に想到した。   That is, for example, when targeting a control system in a device including a plurality of sensors and heaters, it can be obtained from a plurality of devices of the same type as to which sensor or controller (for example, temperature controller) provides deterioration information. If the tendency of concentration of deterioration appears when data is analyzed, there is a possibility that a problem in device design is inherent. Based on this, concentration of deterioration is targeted for a plurality of control loops and a plurality of devices by using an index (for example, Kp / Tp ratio of Patent Document 2 or ΔPVmax of Patent Document 3) for detecting deterioration of a control system component. I came up with the usefulness of visualizing trends.

[発明の原理2]
ヒータが劣化しやすい原因となる要素として、高温維持時の平均的なヒータ出力(操作量MV平均値)がある。逆に言えば、高温維持時の温度(制御量PV)の高低については、ゾーン間干渉の影響次第では、必ずしもヒータの負荷に直結しているとは限らない。例えば、800℃のゾーンのヒータ出力よりも、700℃のヒータ出力の方が大きい状態になっていることもある。
したがって、高温維持時の操作量MV平均値を併せて可視化することが、より好適である。この可視化により、オペレータにとっては、より確信度の高い考察が可能になる。
[Principle of Invention 2]
As an element that causes the heater to be easily deteriorated, there is an average heater output (an operation amount MV average value) at the time of maintaining a high temperature. In other words, the level of the temperature (control amount PV) at the time of maintaining the high temperature is not necessarily directly connected to the load of the heater depending on the influence of inter-zone interference. For example, the heater output at 700 ° C. may be larger than the heater output at the 800 ° C. zone.
Therefore, it is more preferable to visualize the manipulated variable MV average value at the time of maintaining the high temperature. This visualization makes it possible for the operator to consider with higher confidence.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る設計評価支援システムの構成を示すブロック図である。本実施の形態は、上記発明の原理1に対応する例である。本実施の形態では、制御系の構成要素の劣化を検知する指標の例として、前述のKp/Tp比(すなわちヒータ劣化の指標)を取り上げて説明する。この場合、公知の劣化指標を検出(算出)する劣化指標検出機能は温調計側に実装され、その他の機能は温調計の上位システムに実装されるのが一般的である。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a design evaluation support system according to the first embodiment of the present invention. The present embodiment is an example corresponding to Principle 1 of the invention described above. In the present embodiment, the above-described Kp / Tp ratio (that is, an indicator of heater deterioration) will be described as an example of an indicator for detecting deterioration of components of the control system. In this case, a degradation index detection function for detecting (calculating) a known degradation index is generally mounted on the temperature controller side, and other functions are generally mounted on the host system of the temperature controller.

設計評価支援システムは、評価対象の複数のマルチループ型加熱装置の劣化指標を、加熱装置毎および加熱装置内の個々の温度制御系毎に検出する劣化指標検出部1と、劣化指標検出部1が検出した劣化指標を、同じタイプの加熱装置毎に収集する劣化指標収集部2と、評価対象の加熱装置の劣化指標の初期値を、加熱装置毎および加熱装置内の個々の温度制御系毎に予め記憶する初期値記憶部3と、劣化指標収集部2が収集した劣化指標と初期値記憶部3に記憶されている劣化指標の初期値とから、劣化指標の経年変化を示すデータを算出して提示する劣化指標変化提示部4とを備えている。   The design evaluation support system includes a degradation index detection unit 1 that detects degradation indexes of a plurality of multi-loop heating devices to be evaluated for each heating device and each temperature control system in the heating device, and a degradation index detection unit 1. The degradation index collection unit 2 that collects the degradation index detected by each heating device of the same type, and the initial value of the degradation index of the heating device to be evaluated for each heating device and each temperature control system in the heating device From the initial value storage unit 3 stored in advance, the degradation index collected by the degradation index collection unit 2 and the initial value of the degradation index stored in the initial value storage unit 3, data indicating the aging of the degradation index is calculated. And a deterioration index change presentation unit 4 for presentation.

本発明は、図14に示したようなマルチループ型の加熱装置を評価対象の装置とする。図14において、温度センサS1〜S8は、それぞれヒータH1〜H8によって加熱される温度制御ゾーンZ1〜Z8の温度PV1〜PV8を測定する。温調計C1〜C8は、それぞれ温度センサS1〜S8によって測定された温度PV1〜PV8が温度設定値SPと一致するように操作量MV1〜MV8を算出する。電力調整器P1〜P8は、それぞれ温調計C1〜C8から出力された操作量MV1〜MV8に応じた電力をヒータH1〜H8に供給する。図14においては、各温調計C1〜C8がそれぞれ対応する温度制御ゾーンZ1〜Z8の温度PV1〜PV8を独立に制御する温度制御系が8個形成されていることになる。   In the present invention, a multi-loop type heating apparatus as shown in FIG. 14 is an apparatus to be evaluated. In FIG. 14, temperature sensors S1 to S8 measure temperatures PV1 to PV8 of temperature control zones Z1 to Z8 heated by heaters H1 to H8, respectively. The temperature controllers C1 to C8 calculate the manipulated variables MV1 to MV8 so that the temperatures PV1 to PV8 measured by the temperature sensors S1 to S8 respectively coincide with the temperature set value SP. The power adjusters P1 to P8 supply power corresponding to the operation amounts MV1 to MV8 output from the temperature controllers C1 to C8 to the heaters H1 to H8, respectively. In FIG. 14, eight temperature control systems that independently control the temperatures PV1 to PV8 of the temperature control zones Z1 to Z8 to which the temperature controllers C1 to C8 respectively correspond are formed.

本実施の形態では、図14に示したような温度制御系(制御ループ)が8個のマルチループ型加熱装置を加熱装置A、温度制御系が12個のマルチループ型加熱装置を加熱装置B、温度制御系が14個のマルチループ型加熱装置を加熱装置Cと呼ぶこととする。   In this embodiment, the temperature control system (control loop) as shown in FIG. 14 has eight multi-loop heating devices as the heating device A, and the temperature control system has 12 multi-loop heating devices as the heating device B. The multi-loop type heating device having 14 temperature control systems is called a heating device C.

以下、本実施の形態の設計評価支援システムの動作を図2を参照して説明する。劣化指標検出部1は、複数の加熱装置の劣化指標を、加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に検出する(図2ステップS100)。本実施の形態では、加熱装置の構成要素の劣化指標、具体的にはヒータの劣化指標として、比率S=Kp/Tpを用いる。   Hereinafter, the operation of the design evaluation support system of the present embodiment will be described with reference to FIG. The deterioration index detection unit 1 detects deterioration indexes of a plurality of heating devices for each heating device and for each individual temperature control system (for each heater) in the heating device (step S100 in FIG. 2). In the present embodiment, the ratio S = Kp / Tp is used as the deterioration index of the components of the heating device, specifically, the deterioration index of the heater.

劣化指標検出部1は、加熱装置から収集した温度PVの時系列データと操作量MVの時系列データについてステップ応答前半の過渡状態のデータを特定し、過渡状態における温度PVのデータおよび操作量MVのデータにより制御対象のモデル数式を同定し、この制御対象のモデル数式に基づいて制御対象のプロセスゲインKpとプロセス時定数Tpとの比率S=Kp/Tpを算出する。   The deterioration index detection unit 1 identifies the transient state data in the first half of the step response for the time series data of the temperature PV and the time series data of the manipulated variable MV collected from the heating device, and the temperature PV data and the manipulated variable MV in the transient state. The control target model formula is identified from the data, and the ratio S = Kp / Tp between the control target process gain Kp and the process time constant Tp is calculated based on the control target model formula.

本実施の形態の制御対象は、加熱処理炉(トンネル炉)と、例えば半導体デバイスなどの被加熱物と、ヒータとを含むものである。このような制御対象を1次遅れとむだ時間で近似できるものとすると、制御対象のモデル数式Gpは次式のように記述できる。
Gp=Kpexp(−Lps)/(1+Tps) ・・・(1)
Control targets of the present embodiment include a heat treatment furnace (tunnel furnace), an object to be heated such as a semiconductor device, and a heater. Assuming that such a controlled object can be approximated by a first order delay and a dead time, the model mathematical expression Gp of the controlled object can be described as the following expression.
Gp = Kpexp (−Lps) / (1 + Tps) (1)

式(1)におけるsはラプラス演算子、Lpはむだ時間である。温度制御の過渡状態における温度PVのデータおよび操作量MVのデータを取得できれば、式(1)を確定することができ、比率S=Kp/Tpを算出することが可能である。劣化指標検出部1は、以上のような処理を加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に行う。なお、比率S=Kp/Tpの算出方法は特許文献2に開示されているので、詳細な説明は省略する。   In Expression (1), s is a Laplace operator, and Lp is a dead time. If the data of the temperature PV and the data of the manipulated variable MV in the transient state of the temperature control can be acquired, the equation (1) can be determined and the ratio S = Kp / Tp can be calculated. The deterioration index detection unit 1 performs the above processing for each heating device and for each temperature control system (for each heater) in the heating device. Since the method for calculating the ratio S = Kp / Tp is disclosed in Patent Document 2, detailed description thereof is omitted.

次に、劣化指標収集部2は、劣化指標検出部1が検出した劣化指標(S=Kp/Tp)を、同じタイプ(同型)の加熱装置毎に収集して記憶する(図2ステップS101)。ここで、同じタイプの加熱装置とは、基本的には設計や仕様が同一の加熱装置という意味であり、典型的には装置メーカが同一の型番を付与した加熱装置のことを言う。本実施の形態では、評価対象の加熱装置が6台あり、1号炉と4号炉が加熱装置A、2号炉と5号炉が加熱装置B、3号炉と6号炉が加熱装置Cであるとする。   Next, the degradation index collection unit 2 collects and stores the degradation index (S = Kp / Tp) detected by the degradation index detection unit 1 for each heating device of the same type (same type) (step S101 in FIG. 2). . Here, the same type of heating device basically means a heating device having the same design and specifications, and typically refers to a heating device to which the device manufacturer has assigned the same model number. In this embodiment, there are six heating devices to be evaluated, the first and fourth furnaces are the heating device A, the second and fifth furnaces are the heating devices B, and the third and sixth furnaces are the heating devices. Suppose that C.

初期値記憶部3には、評価対象の加熱装置の劣化指標の初期値S_iniが、加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に予め記憶されている。ヒータが劣化していない、加熱装置の設置当初の稼働中に上記の劣化指標検出部1による劣化指標の検出を行い、検出した劣化指標を初期値S_iniとして初期値記憶部3に登録しておけばよい。   The initial value storage unit 3 stores in advance an initial value S_ini of the degradation index of the heating device to be evaluated for each heating device and for each temperature control system (for each heater) in the heating device. While the heater is not deteriorated, the deterioration indicator is detected by the deterioration indicator detector 1 during the initial operation of the heating device, and the detected deterioration indicator is registered in the initial value storage unit 3 as the initial value S_ini. That's fine.

劣化指標変化提示部4は、劣化指標収集部2が収集した劣化指標と初期値記憶部3に記憶されている劣化指標の初期値S_iniとから、劣化指標の経年変化を示すデータを算出して提示する(図2ステップS102)。本実施の形態では、劣化指標の経年変化を示すデータとして、初期値S_iniに対する比率Rを用いる。劣化指標収集部2が収集した最新の劣化指標をS_resとすると、比率Rは次式のようになる。
R=S_res/S_ini ・・・(2)
The deterioration index change presentation unit 4 calculates data indicating the secular change of the deterioration index from the deterioration index collected by the deterioration index collection unit 2 and the initial value S_ini of the deterioration index stored in the initial value storage unit 3. Present (step S102 in FIG. 2). In the present embodiment, the ratio R with respect to the initial value S_ini is used as data indicating the secular change of the deterioration index. When the latest degradation index collected by the degradation index collection unit 2 is S_res, the ratio R is expressed by the following equation.
R = S_res / S_ini (2)

劣化指標変化提示部4は、式(2)の算出を加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に行い、算出した比率Rを例えばグラフ表示する。
こうして、設計評価支援システムの処理が完了する。設計評価支援システムは、以上のような処理を定期的に、もしくはユーザから要求があったときに実施する。
The deterioration index change presentation unit 4 performs the calculation of Expression (2) for each heating device and for each temperature control system (for each heater) in the heating device, and displays the calculated ratio R in a graph, for example.
Thus, the process of the design evaluation support system is completed. The design evaluation support system performs the above processing periodically or when a user requests it.

図3は加熱装置Aのタイプに属する1号炉と4号炉の劣化指標の初期値S_ini、劣化指標S_res、および比率Rの数値例を示す図、図4は図3の比率Rをグラフ表示した例を示す図である。図4に示すグラフには、1号炉の各ヒータの比率Rを示す棒41と、4号炉の各ヒータの比率Rを示す棒42とが表示されている。比率Rは、値が小さいほど温度制御系の構成要素(具体的にはヒータ)の消耗度が大きいことを示している。   FIG. 3 is a diagram showing numerical examples of initial values S_ini, deterioration indexes S_res, and ratios R of the deterioration indicators of the first and fourth furnaces belonging to the type of the heating apparatus A, and FIG. 4 is a graph showing the ratio R of FIG. FIG. In the graph shown in FIG. 4, a bar 41 indicating the ratio R of each heater in the No. 1 furnace and a bar 42 indicating the ratio R of each heater in the No. 4 furnace are displayed. The ratio R indicates that the smaller the value, the greater the degree of wear of the temperature control system components (specifically, the heater).

図5は加熱装置Bのタイプに属する2号炉と5号炉の劣化指標の初期値S_ini、劣化指標S_res、および比率Rの数値例を示す図、図6は図5の比率Rをグラフ表示した例を示す図である。図6に示すグラフには、2号炉の各ヒータの比率Rを示す棒61と、5号炉の各ヒータの比率Rを示す棒62とが表示されている。   FIG. 5 is a diagram showing numerical examples of initial values S_ini, deterioration indexes S_res, and ratios R of the deterioration indexes of the No. 2 and No. 5 furnaces belonging to the type of the heating device B, and FIG. 6 is a graph showing the ratio R of FIG. FIG. In the graph shown in FIG. 6, a bar 61 indicating the ratio R of each heater in the No. 2 furnace and a bar 62 indicating the ratio R of each heater in the No. 5 furnace are displayed.

図7は加熱装置Cのタイプに属する3号炉と6号炉の劣化指標の初期値S_ini、劣化指標S_res、および比率Rの数値例を示す図、図8は図7の比率Rをグラフ表示した例を示す図である。図8に示すグラフには、3号炉の各ヒータの比率Rを示す棒81と、6号炉の各ヒータの比率Rを示す棒82とが表示されている。   FIG. 7 is a view showing numerical examples of initial values S_ini, deterioration indicators S_res, and ratios R of the deterioration indicators of the No. 3 and No. 6 furnaces belonging to the type of the heating apparatus C, and FIG. 8 is a graph showing the ratio R of FIG. FIG. In the graph shown in FIG. 8, a bar 81 indicating the ratio R of each heater in the No. 3 furnace and a bar 82 indicating the ratio R of each heater in the No. 6 furnace are displayed.

図3〜図8の数値例は、説明を簡易にするため、各装置タイプで2台の装置としているが、図4、図6、図8によると、加熱装置AのタイプではヒータH7の劣化が進行し、加熱装置BのタイプではヒータH9の劣化が進行し、加熱装置CのタイプではヒータH10とヒータH14の劣化が進行している、という傾向が認識できる。ゆえに、これらのヒータ自体あるいはヒータ条件などが、装置設計の改善情報として利用できることになる。   In the numerical examples of FIGS. 3 to 8, for simplicity of explanation, two apparatuses are used for each apparatus type. However, according to FIGS. 4, 6, and 8, the heater H 7 is deteriorated in the type of the heating apparatus A. It can be recognized that the heater H9 deteriorates in the heating device B type, and the heaters H10 and H14 deteriorate in the heating device C type. Therefore, these heaters or heater conditions can be used as improvement information for device design.

以上のように、本実施の形態では、マルチループ型加熱装置の劣化指標を同じタイプの加熱装置毎に収集し、劣化指標の経年変化を示すデータを加熱装置毎およびヒータ毎に算出して提示することにより、装置設計の改善に繋がる情報を提供することができる。   As described above, in the present embodiment, deterioration indicators for multi-loop heating devices are collected for each heating device of the same type, and data indicating the aging of deterioration indicators is calculated and presented for each heating device and each heater. By doing so, it is possible to provide information that leads to improvement of the device design.

本実施の形態では、1台の加熱装置ではなく、同じタイプの複数の加熱装置の劣化指標を収集することが重要である。1台の加熱装置についてのみ劣化指標を収集した場合には、劣化指標の経年変化を示すデータをヒータ毎に提示したとしても、ヒータの劣化が加熱装置の個体差に由来するものなのか、装置設計に由来するものなのかを判断することが難しい。これに対して、同じタイプの複数の加熱装置の劣化指標を収集して、劣化指標の経年変化を示すデータを加熱装置毎およびヒータ毎に提示すれば、各加熱装置に共通する劣化の傾向を可視化することができるので、劣化が集中している箇所については装置設計に由来する可能性が高いと判断することができる。   In the present embodiment, it is important to collect deterioration indicators of a plurality of heating devices of the same type, not a single heating device. If the degradation index is collected for only one heating device, even if data indicating the aging of the degradation index is presented for each heater, whether the degradation of the heater is due to individual differences in the heating device It is difficult to judge whether it is derived from the design. On the other hand, if deterioration indicators for a plurality of heating devices of the same type are collected and data indicating the aging of the deterioration indicator is presented for each heating device and each heater, the tendency of deterioration common to each heating device can be obtained. Since it can be visualized, it can be determined that there is a high possibility that the location where deterioration is concentrated is derived from the device design.

なお、可視化の具体的な方法は、図3、図5、図7のような表形式や図4、図6、図8のようなグラフ形式には限らない。例えば劣化指標変化提示部4は、式(2)の算出を加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に行い、同じタイプの加熱装置について劣化指標の経年変化を示すデータ(比率R)の平均値を、加熱装置内の位置が同一の温度制御系毎に算出して提示するようにしてもよい。例えば図3の例で言えば、1号炉と4号炉のヒータH1の比率Rの平均値を算出して提示する、といったような動作となる。   The specific method of visualization is not limited to the table format as shown in FIGS. 3, 5, and 7 or the graph format as shown in FIGS. For example, the deterioration index change presentation unit 4 performs the calculation of Expression (2) for each heating device and for each temperature control system (for each heater) in the heating device, and shows the secular change of the deterioration index for the same type of heating device. You may make it show the average value of data (ratio R) for every temperature control system in which the position in a heating apparatus is the same. For example, in the example of FIG. 3, the average value of the ratio R of the heaters H1 of the No. 1 furnace and the No. 4 furnace is calculated and presented.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図9は本発明の第2の実施の形態に係る設計評価支援システムの構成を示すブロック図であり、図1と同一の構成には同一の符号を付してある。本実施の形態は、上記発明の原理2に対応する例である。なお、本実施の形態では、加熱装置Aのタイプについてのみ表示例を示すが、加熱装置B,Cについても、第1の実施の形態と同様に適用対象になることは言うまでもない。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 9 is a block diagram showing the configuration of the design evaluation support system according to the second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals. The present embodiment is an example corresponding to Principle 2 of the invention described above. In the present embodiment, a display example is shown only for the type of the heating apparatus A, but it goes without saying that the heating apparatuses B and C are also applicable as in the first embodiment.

本実施の形態の設計評価支援システムは、劣化指標検出部1と、劣化指標収集部2と、初期値記憶部3と、劣化指標変化提示部4と、評価対象のマルチループ型加熱装置の個々の温調計から操作量MVの時系列データを取得する操作量取得部5と、操作量MVの時系列データに基づいて、操作量MVの履歴平均値MVmを加熱装置毎および加熱装置内の個々の温度制御系毎に算出する平均操作量算出部6と、劣化指標変化提示部4が提示する、劣化指標の経年変化を示すデータと、履歴平均値MVmとの関連性を提示する操作量影響提示部7とを備えている。   The design evaluation support system according to the present embodiment includes a degradation index detection unit 1, a degradation index collection unit 2, an initial value storage unit 3, a degradation index change presentation unit 4, and multi-loop heating devices to be evaluated. The operation amount acquisition unit 5 that acquires time-series data of the operation amount MV from the temperature controller of the controller, and based on the time-series data of the operation amount MV, the history average value MVm of the operation amount MV is determined for each heating device and in the heating device. The manipulated variable that presents the relationship between the average manipulated variable calculating unit 6 that is calculated for each individual temperature control system, the data indicating the deterioration index deterioration presented by the degradation indicator change presenting unit 4, and the history average value MVm. And an influence presentation unit 7.

次に、本実施の形態の設計評価支援システムの動作を図10を参照して説明する。劣化指標検出部1と劣化指標収集部2の動作(図10ステップS100,S101)は、第1の実施の形態で説明したとおりである。   Next, the operation of the design evaluation support system of this embodiment will be described with reference to FIG. The operations of the degradation index detection unit 1 and the degradation index collection unit 2 (steps S100 and S101 in FIG. 10) are as described in the first embodiment.

操作量取得部5は、評価対象の各加熱装置の個々の温調計から操作量MVの時系列データを取得する(図10ステップS103)。なお、操作量MVの取得期間は、例えば設計評価支援システムが図10の処理を開始してから一定時間が経過するまでの期間とすればよい。このとき、図14に示したようなトンネル炉200では、例えばリフロー、焼成、乾燥といった一連の工程が実施されるので、これら全ての工程が含まれるように、操作量MVの取得期間を設定することが好ましい。   The operation amount acquisition unit 5 acquires time-series data of the operation amount MV from the individual temperature controllers of the respective heating devices to be evaluated (step S103 in FIG. 10). In addition, what is necessary is just to let the acquisition period of the operation amount MV be a period until a fixed time passes, for example after the design evaluation support system starts the process of FIG. At this time, in the tunnel furnace 200 as shown in FIG. 14, for example, a series of steps such as reflow, firing, and drying are performed. Therefore, the acquisition period of the manipulated variable MV is set so that all these steps are included. It is preferable.

平均操作量算出部6は、操作量取得部5が取得した操作量MVの時系列データに基づいて、履歴平均値MVm(平均操作量)を加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に算出する(図10ステップS104)。
劣化指標変化提示部4の動作(図10ステップS102)は、第1の実施の形態で説明したとおりである。
Based on the time series data of the operation amount MV acquired by the operation amount acquisition unit 5, the average operation amount calculation unit 6 determines the history average value MVm (average operation amount) for each heating device and for each temperature control system in the heating device. It is calculated every time (each heater) (step S104 in FIG. 10).
The operation (step S102 in FIG. 10) of the deterioration index change presentation unit 4 is as described in the first embodiment.

操作量影響提示部7は、劣化指標変化提示部4が提示する、劣化指標の経年変化を示すデータと、履歴平均値MVmとの関連性を提示する(図10ステップS105)。履歴平均値MVmについては、ベスト条件が1.0で最大になるような定量化が好ましい。そこで、操作量影響提示部7は、平均操作量算出部6が算出した履歴平均値MVmのうち最小値MVm_minを同一の加熱装置内で抽出し、この最小値MVm_minを分子、各履歴平均値MVmを分母とする可視化比率Uを当該加熱装置内の個々の温度制御系毎(ヒータ毎)に算出する。すなわち、可視化比率Uは次式のようになる。
U=MVm_min/MVm ・・・(3)
The manipulated variable effect presenting unit 7 presents the relationship between the history index MVm and the data indicating the degradation index deterioration presented by the degradation index change presenting unit 4 (step S105 in FIG. 10). The history average value MVm is preferably quantified such that the best condition is 1.0 and the maximum. Therefore, the manipulated variable effect presentation unit 7 extracts the minimum value MVm_min from the average history value MVm calculated by the average manipulated variable calculation unit 6 in the same heating apparatus, and uses the minimum value MVm_min as the numerator and each history average value MVm. Is calculated for each temperature control system (each heater) in the heating device. That is, the visualization ratio U is as follows.
U = MVm_min / MVm (3)

操作量影響提示部7は、式(3)の算出を加熱装置毎および加熱装置内の個々の温度制御系毎(ヒータ毎)に行い、算出した可視化比率Uを、劣化指標変化提示部4が提示する、劣化指標の経年変化を示すデータと一緒に提示する。   The manipulated variable effect presentation unit 7 performs the calculation of Expression (3) for each heating device and for each temperature control system (for each heater) in the heating device, and the deterioration index change presentation unit 4 calculates the calculated visualization ratio U. Presented together with the data indicating the aging of the deterioration index.

図11は加熱装置Aのタイプに属する1号炉と4号炉の比率R、可視化比率U、履歴平均値MVmの数値例を示す図、図12は図11の比率Rと可視化比率Uをグラフ表示した例を示す図である。図12に示すグラフには、1号炉の各ヒータの比率Rを示す棒41と、4号炉の各ヒータの比率Rを示す棒42と、1号炉の各ヒータの可視化比率Uを示す折れ線43と、4号炉の各ヒータの可視化比率Uを示す折れ線44とが表示されている。   FIG. 11 is a diagram showing numerical examples of the ratio R, the visualization ratio U, and the history average value MVm between the first and fourth furnaces belonging to the type of the heating apparatus A, and FIG. 12 is a graph showing the ratio R and the visualization ratio U in FIG. It is a figure which shows the example displayed. The graph shown in FIG. 12 shows the bar 41 indicating the ratio R of each heater in the No. 1 furnace, the bar 42 indicating the ratio R of each heater in the No. 4 furnace, and the visualization ratio U of each heater in the No. 1 furnace. A broken line 43 and a broken line 44 indicating the visualization ratio U of each heater of the No. 4 furnace are displayed.

履歴平均値MVmは、値が大きいほど温度制御系の構成要素(具体的にはヒータ)の消耗度への影響が大きいことを意味する変数になる。したがって、可視化比率Uとしては、値が小さいほど消耗度への影響が大きいことになる。一方で、比率Rも値が小さいほど消耗度が大きいことを示しているので、操作量MVと消耗度との関係性が把握し易くなる。すなわち、マルチループ型加熱装置の設計改善に繋がる情報として、操作量MVがヒータ系の劣化に影響している度合の情報を提供することができる。   The history average value MVm is a variable that means that the larger the value, the greater the influence on the degree of wear of the temperature control system components (specifically, the heater). Therefore, the smaller the value of the visualization ratio U, the greater the influence on the degree of wear. On the other hand, the smaller the value of the ratio R, the greater the wear level, so the relationship between the operation amount MV and the wear level can be easily understood. That is, it is possible to provide information on the degree to which the manipulated variable MV affects the deterioration of the heater system as information that leads to improvement of the design of the multi-loop heating device.

第1、第2の実施の形態で説明した設計評価支援システムの劣化指標検出部1を除く構成は、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って第1、第2の実施の形態で説明した処理を実行する。また、劣化指標検出部1は、上記のとおりマルチループ型加熱装置内の個々の温調計毎に設けられている。温調計は、周知のとおりコンピュータとプログラムによって実現することができる。   The configuration excluding the degradation index detection unit 1 of the design evaluation support system described in the first and second embodiments includes a computer having a CPU (Central Processing Unit), a storage device, and an interface, and hardware resources thereof. It can be realized by a program to be controlled. The CPU executes the processing described in the first and second embodiments in accordance with a program stored in the storage device. Moreover, the deterioration index detection unit 1 is provided for each individual temperature controller in the multi-loop heating device as described above. As is well known, the temperature controller can be realized by a computer and a program.

本発明は、マルチループ型加熱装置の設計を支援する技術に適用することができる。   The present invention can be applied to a technology that supports the design of a multi-loop heating apparatus.

1…劣化指標検出部、2…劣化指標収集部、3…初期値記憶部、4…劣化指標変化提示部、5…操作量取得部、6…平均操作量算出部、7…操作量影響提示部。   DESCRIPTION OF SYMBOLS 1 ... Degradation parameter | index detection part, 2 ... Degradation parameter | index collection part, 3 ... Initial value memory | storage part, 4 ... Degradation parameter | index change presentation part, 5 ... Operation amount acquisition part, 6 ... Average operation amount calculation part, 7 ... Operation amount influence presentation Department.

Claims (5)

各コントローラがそれぞれ対応する温度制御ゾーンの温度を制御するマルチループ型加熱装置を評価対象とし、評価対象の複数のマルチループ型加熱装置の劣化指標を、加熱装置毎および加熱装置内の個々の温度制御系毎に検出する劣化指標検出手段と、
この劣化指標検出手段が検出した劣化指標を、同じタイプの加熱装置毎に収集する劣化指標収集手段と、
評価対象の加熱装置の前記劣化指標の初期値を、加熱装置毎および加熱装置内の個々の温度制御系毎に予め記憶する初期値記憶手段と、
前記劣化指標収集手段が収集した劣化指標と前記初期値記憶手段に記憶されている劣化指標の初期値とから、劣化指標の経年変化を示すデータを算出して提示する劣化指標変化提示手段とを備えることを特徴とする設計評価支援システム。
Each controller controls a multi-loop heating device that controls the temperature of the corresponding temperature control zone, and the deterioration index of the multiple multi-loop heating devices to be evaluated is determined for each heating device and for each temperature in the heating device. A deterioration index detecting means for detecting each control system;
A deterioration index collecting means for collecting the deterioration index detected by the deterioration index detecting means for each heating device of the same type;
Initial value storage means for storing in advance the initial value of the deterioration index of the heating device to be evaluated for each heating device and for each temperature control system in the heating device;
Deterioration index change presenting means for calculating and presenting data indicating the secular change of the degradation index from the degradation index collected by the degradation index collection means and the initial value of the degradation index stored in the initial value storage means. A design evaluation support system characterized by comprising.
請求項1記載の設計評価支援システムにおいて、
さらに、評価対象の複数のマルチループ型加熱装置の個々のコントローラから出力される操作量の時系列データに基づいて、操作量の履歴平均値を加熱装置毎および加熱装置内の個々の温度制御系毎に算出する平均操作量算出手段と、
前記劣化指標変化提示手段が提示する、劣化指標の経年変化を示すデータと、前記履歴平均値との関連性を提示する操作量影響提示手段とを備えることを特徴とする設計評価支援システム。
In the design evaluation support system according to claim 1,
Further, based on the time series data of the operation amount output from the respective controllers of the plurality of multi-loop heating devices to be evaluated, the history average value of the operation amount is determined for each heating device and each temperature control system in the heating device. An average operation amount calculation means for calculating each time;
A design evaluation support system comprising: data indicating a deterioration change over time presented by the degradation index change presentation means; and an operation amount influence presentation means for presenting a relationship between the history average value.
請求項1または2記載の設計評価支援システムにおいて、
前記劣化指標検出手段は、前記劣化指標として、制御対象のプロセスゲインKpとプロセス時定数Tpとの比率S_res=Kp/Tpを検出し、
前記劣化指標変化提示手段は、前記劣化指標収集手段が収集した比率S_resと前記初期値記憶手段に記憶されている初期値S_iniとから、前記劣化指標の経年変化を示すデータとして、比率R=S_res/S_iniを算出することを特徴とする設計評価支援システム。
In the design evaluation support system according to claim 1 or 2,
The deterioration index detecting means detects a ratio S_res = Kp / Tp between the process gain Kp to be controlled and the process time constant Tp as the deterioration index,
The deterioration index change presenting means uses the ratio R_S_res as data indicating the secular change of the deterioration index from the ratio S_res collected by the deterioration index collecting means and the initial value S_ini stored in the initial value storage means. A design evaluation support system characterized by calculating / S_ini.
請求項2記載の設計評価支援システムにおいて、
前記操作量影響提示手段は、前記平均操作量算出手段が算出した履歴平均値MVmのうち最小値MVm_minを同一の加熱装置内で抽出し、この最小値MVm_minを分子、各履歴平均値MVmを分母とする可視化比率U=MVm_min/MVmを算出して、前記劣化指標の経年変化を示すデータと一緒に提示する処理を、加熱装置毎および加熱装置内の個々の温度制御系毎に行うことを特徴とする設計評価支援システム。
In the design evaluation support system according to claim 2,
The manipulated variable effect presenting means extracts the minimum value MVm_min from the history average value MVm calculated by the average manipulated variable calculating means in the same heating apparatus, and uses the minimum value MVm_min as the numerator and each history average value MVm as the denominator. The visualization ratio U = MVm_min / MVm is calculated and presented together with data indicating the secular change of the deterioration index for each heating device and each temperature control system in the heating device. Design evaluation support system.
請求項3記載の設計評価支援システムにおいて、
前記劣化指標検出手段は、加熱装置から収集した温度の時系列データと操作量の時系列データについて過渡状態のデータを特定し、過渡状態における温度のデータおよび操作量のデータにより制御対象のモデル数式を同定し、この制御対象のモデル数式に基づいて制御対象のプロセスゲインKpとプロセス時定数Tpとの比率S_res=Kp/Tpを算出する処理を、加熱装置毎および加熱装置内の個々の温度制御系毎に行うことを特徴とする設計評価支援システム。
In the design evaluation support system according to claim 3,
The deterioration index detecting means specifies transient state data for temperature time series data and manipulated variable time series data collected from the heating device, and controls the model formula of the controlled object based on the transient temperature data and manipulated variable data. And calculating the ratio S_res = Kp / Tp between the process gain Kp of the control target and the process time constant Tp based on the model formula of the control target for each heating device and individual temperature control in the heating device A design evaluation support system that is performed for each system.
JP2016167688A 2016-08-30 2016-08-30 Design evaluation support system Expired - Fee Related JP6719338B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016167688A JP6719338B2 (en) 2016-08-30 2016-08-30 Design evaluation support system
KR1020170109363A KR101963963B1 (en) 2016-08-30 2017-08-29 System for supporting design evaluation
CN201710761734.5A CN107798161B (en) 2016-08-30 2017-08-30 Design evaluation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167688A JP6719338B2 (en) 2016-08-30 2016-08-30 Design evaluation support system

Publications (2)

Publication Number Publication Date
JP2018036749A true JP2018036749A (en) 2018-03-08
JP6719338B2 JP6719338B2 (en) 2020-07-08

Family

ID=61531692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167688A Expired - Fee Related JP6719338B2 (en) 2016-08-30 2016-08-30 Design evaluation support system

Country Status (3)

Country Link
JP (1) JP6719338B2 (en)
KR (1) KR101963963B1 (en)
CN (1) CN107798161B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044680A1 (en) * 2018-08-31 2020-03-05 オムロン株式会社 Temperature control system, temperature control method, and program
JP2020077279A (en) * 2018-11-09 2020-05-21 アズビル株式会社 State determination device and state determination method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019712A1 (en) * 2019-07-31 2021-02-04 三菱電機ビルテクノサービス株式会社 Temperature measurement system, temperature measurement sensor unit, and method for changing configuration of temperature measurement system
JP7298522B2 (en) * 2020-03-17 2023-06-27 横河電機株式会社 Evaluation system and evaluation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305624A (en) * 1999-04-16 2000-11-02 Mitsubishi Chemicals Corp Method and device for evaluating control performance of control system and program recording medium therefor
JP2007164568A (en) * 2005-12-15 2007-06-28 Yamatake Corp Controller and control method
JP2007293474A (en) * 2006-04-24 2007-11-08 Yamatake Corp Status judging device and status judging method
JP2010219460A (en) * 2009-03-19 2010-09-30 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2012059117A (en) * 2010-09-10 2012-03-22 Toshiba Corp Patrol inspection support system
JP2012149510A (en) * 2000-09-20 2012-08-09 Komatsu Ltd Working machine management device and working machine communication system
JP2015076058A (en) * 2013-10-11 2015-04-20 株式会社日立製作所 Facility monitoring diagnostic apparatus
JP2016001361A (en) * 2014-06-11 2016-01-07 アズビル株式会社 System and method for confirming sensor interconnection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436922B2 (en) * 2007-03-29 2010-03-24 株式会社日立製作所 Plant monitoring and display device with optimal screen calling function
WO2009130772A1 (en) * 2008-04-24 2009-10-29 東芝三菱電機産業システム株式会社 Deterioration diagnosing apparatus for induction heating unit
JP5494156B2 (en) * 2010-04-09 2014-05-14 ミツミ電機株式会社 Evaluation system, evaluation apparatus, evaluation method, and evaluation program
CN102425790B (en) * 2011-11-11 2014-03-12 浙江大学 Circulating fluid bed boiler online optimized self-learning control method
JP6059046B2 (en) 2013-03-04 2017-01-11 アズビル株式会社 Defect detection system and defect detection method
JP6216589B2 (en) * 2013-09-24 2017-10-18 アズビル株式会社 Defect detection system and defect detection method
JP6216607B2 (en) * 2013-10-25 2017-10-18 アズビル株式会社 Defect detection system and defect detection method
JP6298346B2 (en) * 2014-04-11 2018-03-20 アズビル株式会社 Demand adjustment planning system and demand adjustment planning method
CN204145457U (en) * 2014-09-01 2015-02-04 无锡华测电子系统有限公司 The anti-losing lock phase-locked loop circuit of a kind of broadband high/low temperature
CN204667074U (en) * 2015-06-08 2015-09-23 金华市中荷环保科技有限公司 A kind of multiloop temperature and switching value intelligent patrol detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305624A (en) * 1999-04-16 2000-11-02 Mitsubishi Chemicals Corp Method and device for evaluating control performance of control system and program recording medium therefor
JP2012149510A (en) * 2000-09-20 2012-08-09 Komatsu Ltd Working machine management device and working machine communication system
JP2007164568A (en) * 2005-12-15 2007-06-28 Yamatake Corp Controller and control method
JP2007293474A (en) * 2006-04-24 2007-11-08 Yamatake Corp Status judging device and status judging method
JP2010219460A (en) * 2009-03-19 2010-09-30 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2012059117A (en) * 2010-09-10 2012-03-22 Toshiba Corp Patrol inspection support system
JP2015076058A (en) * 2013-10-11 2015-04-20 株式会社日立製作所 Facility monitoring diagnostic apparatus
JP2016001361A (en) * 2014-06-11 2016-01-07 アズビル株式会社 System and method for confirming sensor interconnection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044680A1 (en) * 2018-08-31 2020-03-05 オムロン株式会社 Temperature control system, temperature control method, and program
JP2020035310A (en) * 2018-08-31 2020-03-05 オムロン株式会社 Temperature control system, temperature control method, and program
JP2020077279A (en) * 2018-11-09 2020-05-21 アズビル株式会社 State determination device and state determination method

Also Published As

Publication number Publication date
JP6719338B2 (en) 2020-07-08
KR20180025251A (en) 2018-03-08
CN107798161B (en) 2021-10-22
KR101963963B1 (en) 2019-03-29
CN107798161A (en) 2018-03-13

Similar Documents

Publication Publication Date Title
JP2018036749A (en) Design evaluation support system
JP5075701B2 (en) Control device and power estimation method
JP6320200B2 (en) PID controller and data collection method
JP2014170343A (en) Failure detection system and failure detection method
JP6859725B2 (en) PID controller, PID control method, and PID control program
JP6216589B2 (en) Defect detection system and defect detection method
CN104281179A (en) Controlling system and data collecting/displaying method
CN111665882B (en) Temperature control method and system
JP6092026B2 (en) Controller and data collection method
KR20190094163A (en) Energy flow monitoring method, monitoring node and computer program in the tightening tool
JP6371612B2 (en) PID controller and data collection method
TWI700569B (en) Deterioration diagnosis device and method
TW202409756A (en) Advanced analytics for bio-/chemical and semiconductor production sites
Wang et al. Multi-objective monitoring of closed-loop controlled systems using adaptive LASSO
JP2018036750A (en) Design evaluation support system
US20220026881A1 (en) Systems and methods for using intermediate data to improve system control and diagnostics
JP6417175B2 (en) Evaluation apparatus and evaluation method
JP6087262B2 (en) Numerical controller
JP6951153B2 (en) Diagnostic equipment and methods
Vijayakumar et al. PLC and SCADA as Smart Services in Industry 4.0 for Industrial Automation Techniques
JP6200261B2 (en) Defect detection system and defect detection method
JP2015084142A (en) Fault detection system and fault detection method
JP7028620B2 (en) Control device and monitoring method
JP6800024B2 (en) Control device and display method
Sangeetha et al. Cc3200 based real-time remote monitoring and control of an industrial process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6719338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees