JP2017506904A5 - - Google Patents

Download PDF

Info

Publication number
JP2017506904A5
JP2017506904A5 JP2016555603A JP2016555603A JP2017506904A5 JP 2017506904 A5 JP2017506904 A5 JP 2017506904A5 JP 2016555603 A JP2016555603 A JP 2016555603A JP 2016555603 A JP2016555603 A JP 2016555603A JP 2017506904 A5 JP2017506904 A5 JP 2017506904A5
Authority
JP
Japan
Prior art keywords
item
polypeptide
inhibitor
cells
pluripotent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016555603A
Other languages
English (en)
Other versions
JP6722108B2 (ja
JP2017506904A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2015/018801 external-priority patent/WO2015134652A1/en
Publication of JP2017506904A publication Critical patent/JP2017506904A/ja
Publication of JP2017506904A5 publication Critical patent/JP2017506904A5/ja
Application granted granted Critical
Publication of JP6722108B2 publication Critical patent/JP6722108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

さらに別の実施形態において、細胞の集団内の細胞の少なくとも10%は、SSEA及びTRA−181を発現する。
特定の実施形態では、例えば以下が提供される:
(項目1)
(a)Wnt経路アゴニストと;
(b)MEK阻害剤と;
(c)ROCK阻害剤とを含み、
TGFβR阻害剤を含まない組成物。
(項目2)
前記Wnt経路アゴニストは、GSK3阻害剤である、項目1に記載の前記組成物。
(項目3)
前記GSK3阻害剤は、CHIR99021またはBIOである、項目2に記載の前記組成物。
(項目4)
前記MEK阻害剤は、PD98059またはPD032901である、項目1に記載の前記組成物。
(項目5)
前記ROCK阻害剤は、チアゾビビンまたはY27632である、項目1に記載の前記組成物。
(項目6)
前記GSK3阻害剤は、CHIR99021であり、前記MEK阻害剤は、PD032901であり、前記ROCK阻害剤は、チアゾビビンである、項目1に記載の前記組成物。
(項目7)
bFGFまたはLIFをさらに備える、項目1から6のいずれか一項に記載の前記組成物。
(項目8)
bFGF及びLIFをさらに含む、項目1から6のいずれか一項に記載の前記組成物。
(項目9)
項目1に記載の前記組成物を含み、
TGFβR阻害剤を含まない培養培地。
(項目10)
1つ以上の多能性細胞を培養する方法であって、前記1つ以上の多能性細胞を、項目9に記載の細胞培養培地中で培養することを含む前記方法。
(項目11)
前記1つ以上の多能性細胞は、胚幹細胞(ESC)または人工多能性幹細胞(iPSC)である、項目10に記載の前記方法。
(項目12)
前記1つ以上の多能性細胞は、iPSCである、項目10に記載の前記方法。
(項目13)
前記組成物は、多能性細胞の集団を含む、項目10に記載の前記方法。
(項目14)
多能性細胞の前記集団は、多能性細胞の均質集団である、項目13に記載の前記方法。
(項目15)
多能性細胞の前記集団の少なくとも95%は、SSEA4−FITC及びTRA1−81またはTRA1−60を発現する、項目13に記載の前記方法。
(項目16)
多能性細胞の前記集団の最大5%は、α−平滑筋アクチン(SMA)、TUJ1、またはFoxA2を発現する、項目13に記載の前記方法。
(項目17)
前記多能性細胞は、TGFβR阻害剤を含む細胞培養培地中で事前に培養されている、項目10に記載の前記方法。
(項目18)
前記多能性細胞を前記細胞培養培地中で培養することは、前記培養された細胞の自発的分化を低減する、項目13に記載の前記方法。
(項目19)
前記培養された細胞における1つ以上の分化マーカー遺伝子の発現が、TGFβR阻害剤を含む培地中で培養された多能性細胞における1つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目18に記載の前記方法。
(項目20)
前記1つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目19に記載の前記方法。
(項目21)
前記培養された細胞において、2つ以上の分化マーカー遺伝子の発現が、TGFβR阻害剤を含む培地中で培養された多能性細胞における2つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目18に記載の前記方法。
(項目22)
前記2つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目21に記載の前記方法。
(項目23)
前記培養された細胞において、3つ以上の分化マーカー遺伝子の発現が、TGFβR阻害剤を含む培地中で培養された多能性細胞における3つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4
、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目18に記載の前記方法。
(項目24)
前記3つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目23に記載の前記方法。
(項目25)
前記培養された細胞において、5つ以上の分化マーカー遺伝子の発現が、TGFβR阻害剤を含む培地中で培養された多能性細胞における5つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目18に記載の前記方法。
(項目26)
前記5つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目25に記載の前記方法。
(項目27)
前記多能性細胞を前記細胞培養培地中で培養することは、多能性の基底状態を維持または誘引する、項目18に記載の前記方法。
(項目28)
前記1つ以上の多能性細胞の多能性の前記基底状態は、少なくとも5継代の間維持される、項目27に記載の前記方法。
(項目29)
前記1つ以上の多能性細胞の多能性の前記基底状態は、少なくとも10継代の間維持される、項目27に記載の前記方法。
(項目30)
前記1つ以上の多能性細胞の多能性の前記基底状態は、少なくとも50継代の間維持される、項目27に記載の前記方法。
(項目31)
前記1つ以上の多能性細胞の多能性の前記基底状態は、少なくとも100継代の間維持される、項目27に記載の前記方法。
(項目32)
継代の間、前記1つ以上の多能性細胞を解離させることをさらに含む、項目10から31のいずれか一項に記載の前記方法。
(項目33)
継代の間、前記1つ以上の多能性細胞の生存率が維持される、項目32に記載の前記方法。
(項目34)
前記1つ以上の多能性細胞は、正常核型を含む、項目10から33のいずれか一項に記載の前記方法。
(項目35)
前記1つ以上の多能性細胞は、フィーダーを含まない環境内で培養される、項目10から34のいずれか一項に記載の前記方法。
(項目36)
前記1つ以上の多能性細胞のゲノム安定性は、少なくとも10継代の間維持される、項目10から35のいずれか一項に記載の前記方法。
(項目37)
前記1つ以上の多能性細胞のゲノム安定性は、少なくとも50継代の間維持される、項目10から35のいずれか一項に記載の前記方法。
(項目38)
前記1つ以上の多能性細胞のゲノム安定性は、少なくとも100継代の間維持される、項目10から35のいずれか一項に記載の前記方法。
(項目39)
多能性細胞をフィーダーを含まない培養に適合させる方法であって、
(a)フィーダー細胞の存在下で培養される1つ以上の多能性細胞を単離することと、
(b)前記1つ以上の多能性細胞を、Wnt経路アゴニストであって、任意選択でGSK3阻害剤であるWnt経路アゴニストと;MEK阻害剤と;ROCK阻害剤とを含み、TGFβR阻害剤を含まない既知組成細胞培養培地中で培養することとを含む前記方法。
(項目40)
単一細胞として酵素的に継代された多能性細胞を培養する方法であって、
(a)1つ以上の多能性細胞を酵素的に処理して、単一多能性細胞を継代することと;
(b)フィーダーを含まない環境内で前記単一多能性細胞を培養することと;
(c)Wnt経路アゴニストであって、任意選択でGSK3阻害剤であるWnt経路アゴニストと;MEK阻害剤と;ROCK阻害剤とを含み、TGFβR阻害剤を含まない既知組成細胞培養培地中で、前記単一多能性細胞を培養することとを含む前記方法。
(項目41)
1つ以上の多能性細胞の自発的分化を低減する方法であって、
(a)フィーダーを含まない環境内で前記1つ以上の多能性細胞を培養することと;
(b)Wnt経路アゴニストであって、任意選択でGSK3阻害剤であるWnt経路アゴニストと;MEK阻害剤と;ROCK阻害剤とを含み、TGFβR阻害剤を含まない既知組成細胞培養培地中で、前記1つ以上の多能性細胞を培養することとを含む前記方法。
(項目42)
人工多能性幹細胞(iPSC)を製造する方法であって、
(a)1つ以上の非多能性細胞を得ることと;
(b)前記1つ以上の非多能性細胞を、多能性状態に再プログラムすることと;
(c)TGFβR阻害剤を含まない細胞培養培地中で前記多能性細胞を培養し、それによりiPSCを生成することとを含む前記方法。
(項目43)
前記1つ以上の非多能性細胞は、体細胞を含む、項目42に記載の前記方法。
(項目44)
前記1つ以上の非多能性細胞は、成体幹細胞を含む、項目42に記載の前記方法。
(項目45)
前記1つ以上の非多能性細胞は、前記細胞内の内在性OCT4の発現を増加させることにより、多能性状態に再プログラムされる、項目42に記載の前記方法。
(項目46)
前記1つ以上の非多能性細胞を、前記多能性状態に再プログラムすることは、OCT4、SOX2、NANOG、KLF4、LIN28、C−MYC、ECAT1、UTF1、ESRRB、及びSV40LTからなる群から選択される1つ以上の再プログラミング因子をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することを含む、項目42に記載の前記方法。
(項目47)
前記1つ以上の非多能性細胞を、前記多能性状態に再プログラムすることは、OCT4、SOX2、NANOG、KLF4、LIN28、C−MYC、ECAT1、UTF1、ESRRB、及びSV40LTからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することを含む、項目42に記載の前記方法。
(項目48)
前記1つ以上の非多能性細胞を、前記多能性状態に再プログラムすることは、OCT4、SOX2、及びNANOGからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することを含む、項目42に記載の前記方法。
(項目49)
前記1つ以上の非多能性細胞を、前記多能性状態に再プログラムすることは、OCT4、NANOG、ECAT1、UTF1、及びESRRBからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することを含む、項目42に記載の前記方法。
(項目50)
前記1つ以上の非多能性細胞を、前記多能性状態に再プログラムすることは、OCT4、ECAT1、及びUTF1からなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することを含む、項目42に記載の前記方法。
(項目51)
前記1つ以上のポリヌクレオチドは、レンチウイルスベクターである、項目46から50のいずれか一項に記載の前記方法。
(項目52)
前記1つ以上のポリヌクレオチドは、エピソームベクターである、項目46から50のいずれか一項に記載の前記方法。
(項目53)
前記細胞培養培地は、Wnt経路アゴニストであって、任意選択でGSK3阻害剤である前記Wnt経路アゴニストと;MEK阻害剤と;ROCK阻害剤とを含む、項目42から52のいずれか一項に記載の前記方法。
(項目54)
前記1つ以上の非多能性細胞を再プログラムすることは、前記1つ以上の非多能性細胞を、Wnt経路アゴニストであって、任意選択でGSK3阻害剤である前記Wntアゴニスト;MEK阻害剤;及びTGFβR阻害剤、ならびに任意選択でROCK阻害剤と接触させることを含む、項目42から53のいずれか一項に記載の前記方法。
(項目55)
前記iPSCは、iPSCの集団を含む、項目42に記載の前記方法。
(項目56)
iPSCの前記集団は、iPSCの均質集団である、項目55に記載の前記方法。
(項目57)
iPSCの前記集団の少なくとも95%は、SSEA4及びTRA1−81またはTRA1−60を発現する、項目55に記載の前記方法。
(項目58)
多能性細胞の前記集団の最大5%は、α−平滑筋アクチン(SMA)、TUJ1、また
はFoxA2を発現する、項目55に記載の前記方法。
(項目59)
前記多能性細胞を前記細胞培養培地中で培養することは、自発的分化を低減する、または多能性の基底状態を維持もしくは誘引する、項目42から58のいずれか一項に記載の前記方法。
(項目60)
1つ以上、2つ以上、3つ以上、4つ以上、または5つ以上の分化マーカー遺伝子の発現が、前記iPSCにおいて、TGFβR阻害剤を含む培地中で培養されたiPSCにおける1つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目59に記載の前記方法。
(項目61)
前記1つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目60に記載の前記方法。
(項目62)
自発的分化の前記低減は、少なくとも5継代の間維持される、項目60に記載の前記方法。
(項目63)
自発的分化の前記低減は、少なくとも10継代の間維持される、項目60に記載の前記方法。
(項目64)
自発的分化の前記低減は、少なくとも50継代の間維持される、項目60に記載の前記方法。
(項目65)
自発的分化の前記低減は、少なくとも100継代の間維持される、項目60に記載の前記方法。
(項目66)
継代の間、前記iPSCを解離させることを含む、項目42から65のいずれか一項に記載の前記方法。
(項目67)
前記iPSCの前記生存率は、継代の間維持される、項目66に記載の前記方法。
(項目68)
前記iPSCは、正常核型を含む、項目42から67のいずれか一項に記載の前記方法。
(項目69)
前記iPSCは、フィーダーを含まない環境内で培養される、項目42から68のいずれか一項に記載の前記方法。
(項目70)
前記iPSCのゲノム安定性は、少なくとも10継代の間維持される、項目42から69のいずれか一項に記載の前記方法。
(項目71)
前記iPSCのゲノム安定性は、少なくとも50継代の間維持される、項目42から69のいずれか一項に記載の前記方法。
(項目72)
前記iPSCのゲノム安定性は、少なくとも100継代の間維持される、項目42から69のいずれか一項に記載の前記方法。
(項目73)
項目42から72のいずれか一項に従って生成された基底状態多能性を含む人工多能性幹細胞(iPSC)。
(項目74)
基底状態多能性を含む人工多能性幹細胞(iPSC)であって、再プログラミング因子ポリペプチドをコードする外部から導入されたポリヌクレオチドを含まない前記iPSC。
(項目75)
人工多能性幹細胞(iPSC)を製造する方法であって、
(a)1つ以上の多能性幹細胞を得ることと;
(b)TGFβR阻害剤を含まない細胞培養培地中で前記1つ以上の多能性幹細胞を培養し、それにより基底状態iPSCを生成することとを含む前記方法。
(項目76)
前記1つ以上のiPSCは、再プログラムされた体細胞を含む、項目75に記載の前記方法。
(項目77)
前記1つ以上のiPSCは、再プログラムされた成体幹細胞を含む、項目75に記載の前記方法。
(項目78)
前記1つ以上のiPSCは、前記1つ以上のiPSC内の内在性OCT4の発現を増加させることにより、多能性状態に再プログラムされている、項目75に記載の前記方法。
(項目79)
前記1つ以上のiPSCは、OCT4、SOX2、NANOG、KLF4、LIN28、C−MYC、ECAT1、UTF1、ESRRB、及びSV40LTからなる群から選択される1つ以上の再プログラミング因子をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することにより再プログラムされている、項目75に記載の前記方法。
(項目80)
前記1つ以上のiPSCは、OCT4、SOX2、NANOG、KLF4、LIN28、C−MYC、ECAT1、UTF1、ESRRB、及びSV40LTからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを導入することにより再プログラムされている、項目75に記載の前記方法。
(項目81)
前記1つ以上のiPSCは、OCT4、SOX2、及びNANOGからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することにより再プログラムされている、項目75に記載の前記方法。
(項目82)
前記1つ以上のiPSCは、OCT4、NANOG、ECAT1、UTF1、及びESRRBからなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することにより再プログラムされている、項目75に記載の前記方法。
(項目83)
前記1つ以上のiPSCは、OCT4、ECAT1、及びUTF1からなる群から選択される再プログラミング因子の1つ以上の複製をコードする1つ以上のポリヌクレオチドを、前記1つ以上の非多能性細胞に導入することにより再プログラムされている、項目75に記載の前記方法。
(項目84)
レンチウイルスベクターは、前記1つ以上のポリヌクレオチドを含む、項目79から83のいずれか一項に記載の前記方法。
(項目85)
エピソームベクターは、前記1つ以上のポリヌクレオチドを含む、項目79から83のいずれか一項に記載の前記方法。
(項目86)
前記細胞培養培地は、Wnt経路アゴニストであって、任意選択でGSK3阻害剤である前記Wnt経路アゴニストと;MEK阻害剤と;ROCK阻害剤とを含む、項目75に記載の前記方法。
(項目87)
前記1つ以上のiPSC得ることは、前記1つ以上の非多能性細胞または部分多能性細胞を、Wnt経路アゴニストであって、任意選択でGSK3阻害剤である前記Wntアゴニスト;MEK阻害剤;及びTGFβR阻害剤、ならびに任意選択でROCK阻害剤と接触させ、前記1つ以上のiPSCを生成することを含む、項目75から86のいずれか一項に記載の前記方法。
(項目88)
前記iPSCは、iPSCの集団を含む、項目75に記載の前記方法。
(項目89)
iPSCの前記集団は、iPSCの均質集団である、項目88に記載の前記方法。
(項目90)
iPSCの前記集団の少なくとも95%は、SSEA4及びTRA1−81またはTRA1−60を発現する、項目88に記載の前記方法。
(項目91)
前記1つ以上のiPSCは、多能性細胞の集団を再プログラムすることにより得られ、多能性細胞の前記集団の最大5%は、α−平滑筋アクチン(SMA)、TUJ1、またはFoxA2を発現する、項目88に記載の前記方法。
(項目92)
前記1つ以上のiPSCを前記細胞培養培地中で培養することは、自発的分化を低減する、または多能性の基底状態を維持もしくは誘引する、項目75に記載の前記方法。
(項目93)
自発的分化が低減された前記iPSCは、遺伝子発現を含み、1つ以上、2つ以上、3つ以上、4つ以上、または5つ以上の分化マーカー遺伝子の発現が、TGFβR阻害剤を含む培地中で培養されたiPSCにおける1つ以上の分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%減少され、前記分化マーカー遺伝子は、FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択される、項目92に記載の前記方法。
(項目94)
前記1つ以上の分化マーカー遺伝子は、T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、項目93に記載の前記方法。
(項目95)
前記低減された自発的分化は、少なくとも5継代の間維持される、項目93に記載の前記方法。
(項目96)
前記低減された自発的分化は、少なくとも10継代の間維持される、項目93に記載の前記方法。
(項目97)
前記低減された自発的分化は、少なくとも50継代の間維持される、項目93に記載の前記方法。
(項目98)
前記低減された自発的分化は、少なくとも100継代の間維持される、項目93に記載の前記方法。
(項目99)
継代の間、前記1つ以上のiPSCを解離させることを含む、項目75から98のいずれか一項に記載の前記方法。
(項目100)
継代の間、前記1つ以上のiPSCの生存率が維持される、項目90に記載の前記方法。
(項目101)
前記1つ以上のiPSCは、正常核型を含む、項目75から100のいずれか一項に記載の前記方法。
(項目102)
前記1つ以上のiPSCは、フィーダーを含まない環境内で培養される、項目75から101のいずれか一項に記載の前記方法。
(項目103)
前記1つ以上のiPSCのゲノム安定性は、少なくとも10継代の間維持される、項目75から102のいずれか一項に記載の前記方法。
(項目104)
前記1つ以上のiPSCのゲノム安定性は、少なくとも50継代の間維持される、項目75から102のいずれか一項に記載の前記方法。
(項目105)
前記1つ以上のiPSCのゲノム安定性は、少なくとも100継代の間維持される、項目75から102のいずれか一項に記載の前記方法。
(項目106)
項目75から105のいずれか一項に従って生成された基底状態多能性を含む人工多能性幹細胞(iPSC)。
(項目107)
基底状態多能性を含む人工多能性幹細胞(iPSC)であって、再プログラミング因子ポリペプチドをコードする外部から導入されたポリヌクレオチドを含まない前記iPSC。
(項目108)
非多能性細胞を多能性細胞に再プログラムするための方法であって、前記非多能性細胞に、(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドからなる群から選択される少なくとも1つのポリペプチドをコードする、1つ以上のポリヌクレオチド、または、(ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリ
ペプチド、及びESRRBポリペプチドからなる群から選択される少なくとも1つのポリペプチドを導入し、それにより前記非多能性細胞を多能性細胞に再プログラムすることを含む前記方法。
(項目109)
導入することは、(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドをコードする1つ以上のポリヌクレオチドを導入すること、または(ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドを導入することを含む、項目108に記載の前記方法。
(項目110)
導入することは、(i)OCT4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドをコードする1つ以上のポリヌクレオチドを導入すること、または(ii)OCT−4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドを導入することを含む、項目108に記載の前記方法。
(項目111)
前記1つ以上のポリヌクレオチドは、レトロウイルス、センダイウイルス、アデノウイルス、エピソーム、ミニサークル、発現カセットを有するベクター系、またはmRNAにより導入される、項目108から110のいずれか一項に記載の前記方法。
(項目112)
前記レトロウイルスは、レンチウイルスである、項目111に記載の前記方法。
(項目113)
前記多能性細胞は、外因性ポリヌクレオチドを含まない、項目111に記載の前記方法。
(項目114)
前記1つ以上のポリヌクレオチドが、CRE媒介切断により切断される、項目113に記載の前記方法。
(項目115)
前記非多能性細胞に、(i)SV40LTポリペプチドをコードするポリヌクレオチド、または(ii)SV40LTポリペプチドを導入することをさらに含む、項目108から114のいずれか一項に記載の前記方法。
(項目116)
前記非多能性細胞を、TGFβR阻害剤、Wnt経路アゴニスト、MEK阻害剤及びROCK阻害剤の少なくとも1つと接触させることをさらに含み、前記Wnt経路アゴニストは、任意選択でGSK3阻害剤である、項目108から115のいずれか一項に記載の前記方法。
(項目117)
前記非多能性細胞は、TGFβR阻害剤、Wnt経路アゴニスト、MEK阻害剤、及びROCK阻害剤と接触させられ、前記Wnt経路アゴニストは、任意選択でGSK3阻害剤である、項目116に記載の前記方法。
(項目118)
Wnt経路アゴニストと、MEK阻害剤と、ROCK阻害剤とを含む培養培地中で前記多能性細胞を培養することをさらに含み、前記Wnt経路アゴニストは、任意選択でGSK3阻害剤であり、前記培養培地は、TGFβR阻害剤を含有しない、項目108から117のいずれか一項に記載の前記方法。
(項目119)
(a)前記Rock阻害剤は、チアゾビビンもしくはY27632であり、(b)前記TGFβR阻害剤は、A−83−01もしくはSB431542であり、(c)前記GSK3阻害剤は、CHIR99021もしくはBIOであり、または(d)前記MEK阻害剤は、PD98059もしくはPD032901である、項目116から118のいずれか一項に記載の前記方法。
(項目120)
前記多能性細胞の多能性は、少なくとも5回の細胞分裂または少なくとも10回の細胞分裂の間維持される、項目118または119に記載の前記方法。
(項目121)
前記1つ以上のポリヌクレオチドは、少なくとも1つの2Aペプチドにより隔てられた複数のポリヌクレオチドを含む多シストロン性ベクターとして導入される、項目108から120のいずれか一項に記載の前記方法。
(項目122)
前記多シストロン性ベクターは、Oct4ポリペプチドをコードする複数のポリヌクレオチドを含む、項目121に記載の前記方法。
(項目123)
前記多能性細胞内のOct34発現のために選択することにより、前記多能性細胞を同定することをさらに含む、項目108から122のいずれか一項に記載の前記方法。
(項目124)
Oct4発現のために選択することは、異所性Oct4発現のために選択することを含む、項目123に記載の前記方法。
(項目125)
培養することは、多能性幹細胞の集団を生成する、項目118から124のいずれか一項に記載の前記方法。
(項目126)
多能性幹細胞の前記集団は、少なくとも70%均質、少なくとも80%均質、または少なくとも90%均質である、項目125に記載の前記方法。
(項目127)
多能性細胞の前記集団の少なくとも70%、少なくとも80%、または少なくとも90%は、SSEA及びTra−181を発現する、項目125または126に記載の前記方法。
(項目128)
前記多能性細胞または多能性細胞の集団は、単一細胞継代が可能である、項目108から127のいずれか一項に記載の前記方法。
(項目129)
単一細胞継代により生成された前記細胞は、正常核型を有する、項目128に記載の前記方法。
(項目130)
項目108から129のいずれか一項に記載の前記方法に従って生成される多能性細胞。
(項目131)
(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドからなる群から選択される少なくとも1つのポリペプチドをコードする1つ以上の外因性ポリヌクレオチド、または(ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドから選択される少なくとも1つの外因性ポリペプチドを含む、単離された非多能性細胞を含む組成物。
(項目132)
前記細胞が、(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドの少なくとも2つをコードする1つ以上の外因性ポリヌクレオチド、または(ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドから選択される少なくとも2つの外因性ポリペプチドを含む、項目131に記載の前記組成物。
(項目133)
前記細胞が、(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドの少なくとも3つをコードする1つ以上の外因性ポリヌクレオチド、または(ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドから選択される少なくとも3つの外因性ポリペプチドを含む、項目131に記載の前記組成物。
(項目134)
前記細胞が、(i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドをコードする1つ以上の外因性ポリヌクレオチド、または(ii)外因性OCT4ポリペプチド、外因性ECAT1ポリペプチド、外因性UTF1ポリペプチド、外因性NANOGポリペプチド、及び外因性ESRRBポリペプチドを含む、項目131に記載の前記組成物。
(項目135)
前記細胞が、(i)OCT4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドをコードする1つ以上の外因性ポリヌクレオチド、または(ii)外因性OCT4ポリペプチド、外因性ECAT1ポリペプチド、及び外因性UTF1ポリペプチドを含む、項目131に記載の前記組成物。
(項目136)
前記細胞は、TGFβR阻害剤、GSK3阻害剤、MEK阻害剤及びROCK阻害剤の少なくとも1つと接触させられている、項目121から135のいずれか一項に記載の前記組成物。
(項目137)
前記細胞は、TGFβR阻害剤、Wnt経路活性化因子、MEK阻害剤及びROCK阻害剤と接触せられており、前記Wnt経路活性化因子は、任意選択でGSK3阻害剤である、項目136に記載の前記組成物。
(項目138)
(a)前記Rock阻害剤は、チアゾビビンもしくはY27632であり、(b)前記TGFβR阻害剤は、A−83−01もしくはSB431542であり、(c)前記GSK3阻害剤は、CHIR99021もしくはBIOであり、または(d)前記MEK阻害剤は、PD98059もしくはPD032901である、項目136または137に記載の前記組成物。
(項目139)
前記1つ以上の外因性ポリヌクレオチドは、レトロウイルス、センダイウイルス、アデノウイルス、エピソーム、ミニサークル、発現カセットを有するベクター系、またはmRNAにより前記非多能性細胞に導入される、項目131から138のいずれか一項に記載の前記組成物。
(項目140)
前記レトロウイルスは、レンチウイルスである、項目139に記載の前記方法。
(項目141)
前記細胞は、外因性ポリヌクレオチドを含まない、項目139に記載の前記組成物。
(項目142)
前記1つ以上の外因性ポリヌクレオチドは、CRE媒介切断により除去される、項目141に記載の前記方法。
(項目143)
前記細胞は、(i)SV40LT抗原ポリペプチドをコードする外因性ポリヌクレオチド、または(ii)外因性SV40LT抗原ポリペプチドをさらに含む、項目131から142のいずれか一項に記載の前記組成物。
(項目144)
前記1つ以上の外因性ポリヌクレオチドは、少なくとも1つの2Aペプチドにより隔てられた複数のポリヌクレオチドを含む多シストロン性ベクターとして導入される、項目
131から143のいずれか一項に記載の前記組成物。
(項目145)
前記多シストロン性ベクターは、OCT4ポリペプチドをコードする複数のポリヌクレオチドを含む、項目144に記載の前記組成物。
(項目146)
OCT4ポリペプチドをコードする前記外因性ポリヌクレオチドは、選択可能マーカーに連結している、項目131から145のいずれか一項に記載の前記組成物。
(項目147)
(i)OCT4ポリペプチドをコードするcDNA、(ii)ECAT1ポリペプチドをコードするcDNA、(iii)UTF1ポリペプチドをコードするcDNA、(iv)NANOGポリペプチドをコードするcDNA、及び(v)ESRRBポリペプチドをコードするcDNAの少なくとも1つ、少なくとも2つ、または少なくとも3つからなる組成物。
(項目148)
OCT4ポリペプチドをコードするcDNA、ECAT1ポリペプチドをコードするcDNA、UTF1ポリペプチドをコードするcDNA、NANOGポリペプチドをコードするcDNA、及びESRRBポリペプチドをコードするcDNAからなる、項目147に記載の前記組成物。
(項目149)
OCT4ポリペプチドをコードするcDNA、ECAT1ポリペプチドをコードするcDNA、及びUTF1ポリペプチドをコードするcDNAからなる、項目148に記載の前記組成物。
(項目150)
各cDNAは、レトロウイルス、センダイウイルス、アデノウイルス、エピソーム、ミニサークル、発現カセットを有するベクター系、またはmRNAにコードされる、項目147から149のいずれか一項に記載の前記組成物。
(項目151)
OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドからなる群から選択される少なくとも1つの再プログラミング因子ポリペプチドをコードする、1つ以上のポリヌクレオチドを含むベクター。
(項目152)
前記1つ以上のポリヌクレオチドは、OCTポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドをコードする、項目151に記載の前記ベクター。
(項目153)
前記1つ以上のポリヌクレオチドは、OCTポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドをコードする、項目152に記載の前記ベクター。
(項目154)
前記ベクターは、SV40LT抗原ポリペプチドをコードするポリヌクレオチドをさらに含む、項目151から153のいずれか一項に記載の前記ベクター。
(項目155)
レトロウイルス、センダイウイルス、アデノウイルス、エピソーム、ミニサークル、発現カセットを有するベクター系、またはmRNAである、項目151から154のいずれか一項に記載の前記ベクター。
(項目156)
前記レトロウイルスは、レンチウイルスである、項目155に記載の前記ベクター。
(項目157)
非多能性細胞を多能性細胞に再プログラムするためのキットであって、
(a)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NA
NOGポリペプチド、もしくはESRRBポリペプチドからなる群から選択される少なくとも1つのポリペプチドをコードする、1つ以上のポリヌクレオチド;または
(b)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、もしくはESRRBポリペプチドからなる群から選択される少なくとも1つのポリペプチド;ならびに
(c)TGFβR阻害剤、Wnt経路活性化因子、MEK阻害剤及びROCK阻害剤の少なくとも1つを備え、前記Wnt経路活性化因子は、任意選択でGSK3阻害剤である、前記キット。
(項目158)
(i)前記1つ以上のポリヌクレオチドは、OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドをコードし、または、(ii)前記少なくとも1つのポリペプチドは、OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドを含む、項目157に記載の前記キット。
(項目159)
(i)前記1つ以上の1つ以上のポリヌクレオチドは、OCT4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドをコードする、または、(ii)前記少なくとも1つのポリペプチドは、OCT4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドを含む、項目157に記載の前記キット。
(項目160)
(i)SV40LT抗原ポリペプチドをコードするポリヌクレオチド、または(ii)SV40LT抗原ポリペプチドをさらに備える、項目157から159のいずれか一項に記載の前記キット。
(項目161)
前記キットは、TGFβR阻害剤と、Wnt経路活性化因子と、MEK阻害剤と、ROCK阻害剤とを備え、前記Wnt経路活性化因子は、任意選択でGSK3阻害剤である、項目157から160のいずれか一項に記載の前記キット。
(項目162)
(a)前記Rock阻害剤は、チアゾビビンもしくはY27632であり、(b)前記TGFβR阻害剤は、A−83−01もしくはSB431542であり、(c)前記GSK3阻害剤は、CHIR99021もしくはBIOであり、または(d)前記MEK阻害剤は、PD98059もしくはPD032901である、項目157から161のいずれか一項に記載の前記キット。
(項目163)
前記少なくとも1つのポリヌクレオチドは、レンチウイルス、センダイウイルス、アデノウイルス、エピソーム、ミニサークル、発現カセットを有するベクター系、またはmRNAにコードされる、項目157から162のいずれか一項に記載の前記キット。
(項目164)
前記レトロウイルスは、レンチウイルスである、項目163に記載の前記キット。
(項目165)
前記少なくとも1つのポリヌクレオチドは、多シストロン性ベクターにコードされ、各ポリヌクレオチドは、2Aペプチドにより隔てられている、項目157から164のいずれか一項に記載の前記キット。
(項目166)
前記多シストロン性ベクターは、OCT4ポリペプチドをコードする2つ以上のポリヌクレオチドを含む、項目165に記載の前記キット。
(項目167)
OCT4ポリペプチドをコードする前記少なくとも1つのポリヌクレオチドは、選択可能マーカーに連結している、項目157から166のいずれか一項に記載の前記キット。
(項目168)
多能性幹細胞の集団を生成するための方法であって、
a)非多能性細胞の集団を提供することと;
b)非多能性細胞の前記集団に、選択可能マーカーに連結したOCT4ポリペプチドをコードするポリヌクレオチドを導入することと;
c)非多能性細胞の前記集団の少なくとも一部を多能性細胞に再プログラムするのに十分な条件下で、非多能性細胞の前記集団を前記ポリヌクレオチドと共にインキュベートすることと;
d)前記選択可能マーカーを発現する細胞を選択し、それにより多能性幹細胞の集団を提供することとを含む前記方法。
(項目169)
前記ポリヌクレオチドは、OCT4ポリペプチドをコードする複数のポリヌクレオチドを含む多シストロン性ベクターとして導入される、項目168に記載の前記方法。
(項目170)
前記複数のポリヌクレオチドは、2Aペプチドにより隔てられている、項目169に記載の前記方法。
(項目171)
細胞の前記集団内の細胞の少なくとも10%は、SSEA及びTRA−181を発現する、項目169に記載の前記方法。

Claims (19)

  1. 多能性細胞を培養するか、多能性細胞の自発的分化を低減するか、または人工多能性幹細胞(iPSC)を製造する方法であって、
    前記細胞を、
    Wnt経路アゴニストと;
    MEK阻害剤と;
    ROCK阻害剤と
    を含む培養培地中で培養し、それにより前記培養された細胞の多能性を維持することを含み、
    前記培養培地は、TGFβR阻害剤を含まず、任意選択で、フィーダーを含まない、方法。
  2. 前記多能性細胞は、多能性細胞の均質集団を含み、任意選択で、
    (i)多能性細胞の前記集団の少なくとも95%は、SSEA4−FITC及びTRA1−81またはTRA1−60を発現する;あるいは
    (ii)多能性細胞の前記集団の最大5%は、α−平滑筋アクチン(SMA)、TUJ1、またはFoxA2を発現する、請求項1に記載の方法。
  3. Wnt経路アゴニストとMEK阻害剤とROCK阻害剤とを含む培養培地中で、前記培養された多能性細胞を継代すること、および任意選択で、継代の前または間に前記多能性細胞を解離して単一細胞にすることをさらに含む、請求項1または2に記載の方法。
  4. 前記培養された細胞が、1つ、2つ、3つ、4つ、5つまたはそれ以上の分化マーカー遺伝子の発現の、TGFβR阻害剤を含む培地中で培養された多能性細胞における前記分化マーカー遺伝子の発現と比較して、少なくとも約10%、20%、25%、30%、40%、50%、60%、70%、80%、または90%の減少を含み;
    前記1つ、2つ、3つ、4つ、5つまたはそれ以上の分化マーカー遺伝子が、
    (i)FOXA2、FGF5、SOX17、XIST、NODAL、COL3A1、OTX2、DUSP6、EOMES、NR2F2、NR0B1、CXCR4、CYP2B6、GATA3、GATA4、ERBB4、GATA6、HOXC6、INHA、SMAD6、RORA、NIPBL、TNFSF11、CDH11、ZIC4、GAL、SOX3、PITX2、APOA2、CXCL5、CER1、FOXQ1、MLL5、DPP10、GSC、PCDH10、CTCFL、PCDH20、TSHZ1、MEGF10、MYC、DKK1、BMP2、LEFTY2、HES1、CDX2、GNAS、EGR1、COL3A1、TCF4、HEPH、KDR、TOX、FOXA1、LCK、PCDH7、CD1D FOXG1、LEFTY1、TUJ1、T遺伝子(Brachyury)及びZIC1からなる群から選択されるか;あるいは
    (ii)T遺伝子、CXCR4、NODAL、GATA4、SOX17、FOXA2、OTX2、及びTUJ1からなる群から選択される、請求項1に記載の方法。
  5. 前記培養培地中で前記細胞を培養するステップの前に、フィーダー細胞及び/またはTGFβR阻害剤の存在下で培養される多能性細胞を単離することをさらに含む、請求項1から4のいずれか一項に記載の方法。
  6. 前記多能性細胞を培養するステップの前に、(a)非多能性細胞を得ることと;(b)前記非多能性細胞を、多能性細胞に再プログラムすることとを含む人工多能性幹細胞(iPSC)を得るステップをさらに含む、請求項1に記載の方法。
  7. 再プログラムするステップ(b)は、
    (i)前記非多能性細胞内の内在性OCT4の発現を増加させること、または
    (ii)前記非多能性細胞中に
    (a)少なくとも2つのOCT4をコードするポリヌクレオチドを含むベクター;
    (b)少なくとも1つのECAT1をコードするポリヌクレオチド、及び少なくとも1つのUTF1をコードするポリヌクレオチドを含むベクター;
    (c)少なくとも1つのNANOGをコードするポリヌクレオチド、及び少なくとも1つのESRRBをコードするポリヌクレオチドを含むベクター;
    (d)少なくとも1つのOCT4をコードするポリヌクレオチド及び少なくとも1つのESRRBをコードするポリヌクレオチドを含むベクター;並びに
    (e)少なくとも1つのOCT4をコードするポリヌクレオチド及び少なくとも1つのDPPA2をコードするポリヌクレオチドを含むベクター
    のうちの1つ以上を導入することをさらに含み、
    前記非多能性細胞は、(i)体細胞;または(ii) 成体幹細胞を含む、請求項6に記載の方法。
  8. 前記方法は、ステップ(b)の前記非多能性細胞を、Wnt経路アゴニスト、MEK阻害剤、TGFβR阻害剤、及び任意選択でROCK阻害剤を含む混合物と接触させることをさらに含む、請求項7に記載の方法。
  9. (a)培養することの前に多能性細胞を処理して単一細胞に解離した多能性細胞を得ることと;
    (b)ステップ(a)からの前記細胞を前記培養培地中で培養及び継代することと;
    を含み、任意選択で、前記培養培地がフィーダーを含まない、請求項1に記載の方法。
  10. (a)Wnt経路アゴニストと;
    (b)MEK阻害剤と;
    (c)ROCK阻害剤とを含み、
    TGFβR阻害剤を含まない組成物。
  11. (i)前記Wnt経路アゴニストは、GSK3阻害剤であり;任意選択で、前記GSK3阻害剤は、CHIR99021またはBIOである;
    (ii)前記MEK阻害剤は、PD98059またはPD032901である;
    (iii)前記ROCK阻害剤は、チアゾビビンまたはY27632である;
    (iv)前記GSK3阻害剤は、CHIR99021であり;前記MEK阻害剤は、PD032901であり;前記ROCK阻害剤は、チアゾビビンである;あるいは
    (v)前記組成物は、bFGF及び/またはLIFをさらに含む、請求項10に記載の組成物。
  12. 請求項10に記載の組成物を含む培養培地であって、TGFβR阻害剤を含まず;任意選択で、フィーダーを含まない、培養培地。
  13. (i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドからなる群から選択される少なくとも1つ、2つ、3つ、または全てのポリペプチドをコードする1つ以上の外因性ポリヌクレオチド;あるいは
    (ii)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドから選択される少なくとも1つ、2つ、3つ、または全ての外因性ポリペプチド
    を含む、単離された非多能性細胞を含む組成物。
  14. 前記単離された非多能性細胞は、
    (i)OCT4ポリペプチド、ECAT1ポリペプチド、UTF1ポリペプチド、NANOGポリペプチド、及びESRRBポリペプチドをコードする1つ以上の外因性ポリヌクレオチド;
    (ii)OCT4ポリペプチド、ECAT1ポリペプチド、及びUTF1ポリペプチドをコードする1つ以上の外因性ポリヌクレオチド;
    (iii)SV40LT抗原ポリペプチドをコードする外因性ポリヌクレオチド;または
    (iv)外因性SV40LT抗原ポリペプチド
    を含む、請求項13に記載の組成物。
  15. 前記1つ以上の外因性ポリヌクレオチドは、少なくとも1つの2Aペプチドによって隔てられた複数のポリヌクレオチドを含む多シストロン性ベクターとして導入される;任意選択で、前記多シストロン性ベクターは、OCT4ポリペプチドをそれぞれコードする複数のポリヌクレオチドを含む、請求項13に記載の組成物。
  16. (i)少なくとも2つのOCT4をコードするポリヌクレオチドを含むベクター;
    (ii)少なくとも1つのECAT1をコードするポリヌクレオチド、及び少なくとも1つのUTF1をコードするポリヌクレオチドを含むベクター;
    (iii)少なくとも1つのNANOGをコードするポリヌクレオチド、及び少なくとも1つのESRRBをコードするポリヌクレオチドを含むベクター;
    (iv)少なくとも1つのOCT4をコードするポリヌクレオチド及び少なくとも1つのESRRBをコードするポリヌクレオチドを含むベクター;並びに
    (v)少なくとも1つのOCT4をコードするポリヌクレオチド及び少なくとも1つのDPPA2をコードするポリヌクレオチドを含むベクター
    のうちの1つ以上を含むベクター系。
  17. 非多能性細胞を多能性細胞に再プログラムするための方法であって、前記非多能性細胞に、請求項16に記載のベクター系を用いて再プログラミング因子をコードする少なくとも1つのポリヌクレオチドを導入して再プログラミングを誘引することを含む、方法。
  18. 前記導入するステップからの前記非多能性細胞を、TGFβR阻害剤、Wnt経路アゴニスト、MEK阻害剤、及び任意選択でROCK阻害剤を含む混合物と接触させ、それにより多能性細胞を得ること;及び/または
    前記多能性細胞を請求項12に記載の培養培地中で培養し、それにより前記多能性細胞の多能性を維持すること
    をさらに含む、請求項17に記載の方法。
  19. 非多能性細胞から多能性幹細胞の集団を生成するためのキットであって、
    (a)請求項16に記載のベクター系;
    (b)TGFβR阻害剤、Wnt経路活性化因子、MEK阻害剤及びROCK阻害剤を含む組成物;並びに任意選択で
    (c)Wnt経路活性化因子、MEK阻害剤及びROCK阻害剤を含むがTGFβR阻害剤を含まない組成物
    を含む、キット。
JP2016555603A 2014-03-04 2015-03-04 改善された再プログラム方法及び細胞培養基盤 Active JP6722108B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461947979P 2014-03-04 2014-03-04
US61/947,979 2014-03-04
PCT/US2015/018801 WO2015134652A1 (en) 2014-03-04 2015-03-04 Improved reprogramming methods and cell culture platforms

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2018028663A Division JP2018086018A (ja) 2014-03-04 2018-02-21 改善された再プログラム方法及び細胞培養基盤
JP2019148519A Division JP7170600B2 (ja) 2014-03-04 2019-08-13 改善された再プログラム方法及び細胞培養基盤

Publications (3)

Publication Number Publication Date
JP2017506904A JP2017506904A (ja) 2017-03-16
JP2017506904A5 true JP2017506904A5 (ja) 2018-04-05
JP6722108B2 JP6722108B2 (ja) 2020-07-15

Family

ID=54055848

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2016555603A Active JP6722108B2 (ja) 2014-03-04 2015-03-04 改善された再プログラム方法及び細胞培養基盤
JP2018028663A Pending JP2018086018A (ja) 2014-03-04 2018-02-21 改善された再プログラム方法及び細胞培養基盤
JP2019148519A Active JP7170600B2 (ja) 2014-03-04 2019-08-13 改善された再プログラム方法及び細胞培養基盤
JP2020151081A Pending JP2021000107A (ja) 2014-03-04 2020-09-09 改善された再プログラム方法及び細胞培養基盤
JP2022062448A Active JP7516452B2 (ja) 2014-03-04 2022-04-04 改善された再プログラム方法及び細胞培養基盤
JP2023118423A Pending JP2023126627A (ja) 2014-03-04 2023-07-20 改善された再プログラム方法及び細胞培養基盤

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2018028663A Pending JP2018086018A (ja) 2014-03-04 2018-02-21 改善された再プログラム方法及び細胞培養基盤
JP2019148519A Active JP7170600B2 (ja) 2014-03-04 2019-08-13 改善された再プログラム方法及び細胞培養基盤
JP2020151081A Pending JP2021000107A (ja) 2014-03-04 2020-09-09 改善された再プログラム方法及び細胞培養基盤
JP2022062448A Active JP7516452B2 (ja) 2014-03-04 2022-04-04 改善された再プログラム方法及び細胞培養基盤
JP2023118423A Pending JP2023126627A (ja) 2014-03-04 2023-07-20 改善された再プログラム方法及び細胞培養基盤

Country Status (11)

Country Link
US (2) US11268069B2 (ja)
EP (3) EP3114214B1 (ja)
JP (6) JP6722108B2 (ja)
KR (4) KR102340553B1 (ja)
CN (1) CN106414721A (ja)
AU (3) AU2015227184B2 (ja)
CA (1) CA2941004A1 (ja)
ES (1) ES2966757T3 (ja)
PT (1) PT3114214T (ja)
SG (2) SG11201606934SA (ja)
WO (1) WO2015134652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273141B2 (ja) 2019-03-29 2023-05-12 富士フイルム株式会社 特定細胞に分化する能力を有する多能性幹細胞の製造方法およびその応用

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182456B2 (ja) 2010-12-22 2017-08-23 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
EP3114214B1 (en) * 2014-03-04 2023-11-01 Fate Therapeutics, Inc. Improved reprogramming methods and cell culture platforms
CN114058582A (zh) 2015-01-26 2022-02-18 菲特治疗公司 用于诱导造血细胞分化的方法和组合物
US20180214487A1 (en) 2015-07-21 2018-08-02 The Children's Medical Center Corporation Pd-l1 expressing hematopoietic stem cells and uses
SG11201802957PA (en) * 2015-10-16 2018-05-30 Fate Therapeutics Inc Platform for the induction & maintenance of ground state pluripotency
US20190093072A1 (en) * 2015-10-21 2019-03-28 Indiana University Research And Technology Corporation Methods of generating human inner ear sensory epithelia and sensory neurons
CN108368520B (zh) 2015-11-04 2023-01-17 菲特治疗公司 多能细胞的基因组工程改造
CA3003152A1 (en) 2015-11-04 2017-05-11 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
KR20180105670A (ko) * 2016-01-12 2018-09-28 론자 워커스빌 아이엔씨. 벡터-프리 유도만능 줄기세포를 생성시키기 위한 방법 및 벡터
JP7141043B2 (ja) * 2016-12-27 2022-09-22 住友化学株式会社 人工多能性幹細胞の評価方法及び選抜方法、並びに人工多能性幹細胞の製造方法
CN106754729B (zh) * 2016-12-31 2020-03-17 内蒙古赛科星家畜种业与繁育生物技术研究院有限公司 利用Xist Tale抑制性转录因子制备诱导性多能干细胞的方法
WO2019060708A1 (en) 2017-09-22 2019-03-28 The Children's Medical Center Corporation TREATMENT OF TYPE 1 DIABETES AND AUTOIMMUNE DISEASES OR DISORDERS
AU2018348142A1 (en) * 2017-10-11 2020-04-02 Fate Therapeutics, Inc. Cellular reprogramming using temporal and transient plasmid vector expression system
IL275177B2 (en) 2017-12-22 2024-05-01 Fate Therapeutics Inc Enhanced effector training cells and their use
US20200339958A1 (en) * 2017-12-28 2020-10-29 The J. David Gladstone Institutes, a testamentary trust established under the Will of J. David Glad Generation of induced pluripotent cells by crispr activation
US20210010030A1 (en) * 2018-03-22 2021-01-14 Nserm (Institut National De La Santé Et De La Recherche Médicale) Method for reprogramming somatic cells
CN109679918A (zh) * 2018-12-25 2019-04-26 合肥中科干细胞再生医学有限公司 一种便捷的人诱导性多能干细胞的制备方法
CN110564673A (zh) * 2019-09-26 2019-12-13 广东工业大学 一种干细胞培养液及其应用
KR20220113349A (ko) * 2019-12-11 2022-08-12 리페아론 게엠베하 생물반응기의 현탁액에서 줄기세포의 확장
US20210395698A1 (en) * 2020-06-22 2021-12-23 Life Technologies Corporation Methods and compositions for cultivating pluripotent cell suspensions
KR20230078712A (ko) * 2020-10-02 2023-06-02 페이트 세러퓨틱스, 인코포레이티드 유도 다능성 줄기세포에 대한 개선된 재프로그래밍, 유지 및 보존
WO2023192876A1 (en) * 2022-03-28 2023-10-05 Reilly Steve E Composition to increase cellular longevity
WO2024078119A1 (en) * 2022-10-12 2024-04-18 Peking University Methods for chemical reprogramming and pluripotent stem cells

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US5010175A (en) 1988-05-02 1991-04-23 The Regents Of The University Of California General method for producing and selecting peptides with specific properties
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
IE66205B1 (en) 1990-06-14 1995-12-13 Paul A Bartlett Polypeptide analogs
US5650489A (en) 1990-07-02 1997-07-22 The Arizona Board Of Regents Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
AU2515992A (en) 1991-08-20 1993-03-16 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
WO1993005021A1 (en) 1991-09-06 1993-03-18 Yoshitomi Pharmaceutical Industries, Ltd. 4-amino(alkyl)cyclohexane-1-carboxamide compound and use thereof
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5702932A (en) 1992-07-20 1997-12-30 University Of Florida Microinjection methods to transform arthropods with exogenous DNA
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5824837A (en) 1993-07-22 1998-10-20 Merck & Co., Inc. Expression of human interleukin-1β in a transgenic animal
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5656610A (en) 1994-06-21 1997-08-12 University Of Southern California Producing a protein in a mammal by injection of a DNA-sequence into the tongue
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
US5736524A (en) 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO1997000271A1 (en) 1995-06-14 1997-01-03 The Regents Of The University Of California Novel high affinity human antibodies to tumor antigens
US5569588A (en) 1995-08-09 1996-10-29 The Regents Of The University Of California Methods for drug screening
US6013516A (en) 1995-10-06 2000-01-11 The Salk Institute For Biological Studies Vector and method of use for nucleic acid delivery to non-dividing cells
US5780448A (en) 1995-11-07 1998-07-14 Ottawa Civic Hospital Loeb Research DNA-based vaccination of fish
GB9807935D0 (en) 1998-04-14 1998-06-10 Univ Edinburgh Lineage specific cells and progenitor cells
US5945100A (en) 1996-07-31 1999-08-31 Fbp Corporation Tumor delivery vehicles
ATE359822T1 (de) 1996-08-12 2007-05-15 Mitsubishi Pharma Corp Medikamente enthaltend rho-kinase inhibitoren
US5981274A (en) 1996-09-18 1999-11-09 Tyrrell; D. Lorne J. Recombinant hepatitis virus vectors
DE69840497D1 (de) 1997-05-07 2009-03-12 William J Crumb Verwendung von Aplidine zur Behandlung von kardiovaskulären Erkrankungen
WO1998056913A1 (en) 1997-06-13 1998-12-17 Ludwig Institute For Cancer Research Smad6 and uses thereof
WO1999001426A1 (en) 1997-07-01 1999-01-14 Warner-Lambert Company 4-bromo or 4-iodo phenylamino benzhydroxamic acid derivatives and their use as mek inhibitors
US5994624A (en) 1997-10-20 1999-11-30 Cotton Incorporated In planta method for the production of transgenic plants
US5994136A (en) 1997-12-12 1999-11-30 Cell Genesys, Inc. Method and means for producing high titer, safe, recombinant lentivirus vectors
US20060263382A1 (en) 1998-06-20 2006-11-23 Richard Hotchkiss Membrane-permeant peptide complexes for treatment of sepsis
EP1100872A1 (en) 1998-07-24 2001-05-23 Carnegie Institution Of Washington Method for maintenance and propagation of germline stem cells using members of the tgf-beta family of growth factors
GB9819912D0 (en) 1998-09-11 1998-11-04 Univ Edinburgh Propagation and/or derivation of embryonic stem cells
US6696440B1 (en) 1999-01-07 2004-02-24 Warner-Lambert Company Treatment of asthma with MEK inhibitors
US6703420B1 (en) 1999-03-19 2004-03-09 Bristol-Myers Squibb Pharma Company Amino-thio-acrylonitriles as MEK inhibitors
AU5250400A (en) 1999-06-18 2001-01-09 Mitsubishi Pharma Corporation Osteogenesis promoters
US6730293B1 (en) 1999-08-24 2004-05-04 Cellgate, Inc. Compositions and methods for treating inflammatory diseases of the skin
WO2001017562A1 (en) 1999-09-02 2001-03-15 Yamanouchi Pharmaceutical Co., Ltd. Osteogenesis promoting agents
US20020142457A1 (en) 1999-12-28 2002-10-03 Akihiro Umezawa Cell having the potentiality of differentiation into cardiomyocytes
US6692736B2 (en) 2000-03-24 2004-02-17 Cell Genesys, Inc. Cell-specific adenovirus vectors comprising an internal ribosome entry site
EE05450B1 (et) 2000-07-19 2011-08-15 Warner-Lambert Company 4-jodofenlaminobenshdroksaamhapete oksgeenitud estrid, nende kristallvormid ja farmatseutilised kompositsioonid ning kasutamine
ATE325795T1 (de) 2001-03-23 2006-06-15 Bayer Corp Rho-kinase inhibitoren
AR035792A1 (es) 2001-03-23 2004-07-14 Bayer Corp Compuestos de n-(4-quinazolinil)-n-(1h-indazol-5-il) amina, inhibidor de la rho-quinasa, su uso para la fabricacion de un medicamento y metodo para prepararlo
AU2002257420A1 (en) 2001-05-01 2002-11-11 National Research Council Of Canada A system for inducible expression in eukaryotic cells
CA2461185A1 (en) 2001-09-21 2003-04-03 Japan Science And Technology Corporation Method of screening reprogramming factor, reprogramming factor screened by the method, method of using the reprogramming factor, method of differentiating undifferentiated fused cells and method of constructing cell, tissues and organs
ES2388968T3 (es) 2001-11-02 2012-10-22 Giuliani International Limited Inhibidores de Smad7 para el tratamiento de enfermedades del SNC
ES2305435T3 (es) 2002-01-10 2008-11-01 Bayer Healthcare Ag Inhibidores de la rho-quinasa.
ATE381557T1 (de) 2002-01-23 2008-01-15 Bayer Pharmaceuticals Corp Rho-kinase inhibitoren
US6924290B2 (en) 2002-01-23 2005-08-02 Bayer Pharmaceuticals Corporation Rho-kinase inhibitors
ATE306810T1 (de) 2002-03-05 2005-11-15 Artemis Pharmaceuticals Gmbh Durch inzucht erzeugte von embryonalen stammzellen abgeleitete mäuse
DE60330227D1 (de) 2002-03-13 2010-01-07 Array Biopharma Inc N3-alkylierte benzimidazol-derivate als mek-hemmer
JPWO2003082808A1 (ja) 2002-04-03 2005-08-04 住友製薬株式会社 ベンズアミド誘導体
GB0210539D0 (en) 2002-05-08 2002-06-19 Univ Edinburgh Control of es cell self renewal and lineage specification, and medium therefor
AU2003278088A1 (en) 2002-10-28 2004-05-25 Bayer Healthcare Ag Heteroaryloxy-substituted phenylaminopyrimidines as rho-kinase inhibitors
AU2003274576A1 (en) 2002-11-15 2004-06-15 Warner-Lambert Company Llc Combination chemotherapy comprising a mek inhibitor and capecitabine for treating cancer
EP1603905A1 (en) 2003-02-10 2005-12-14 Amgen Inc. Vanilloid receptor ligands and their use in treatments
AU2003901099A0 (en) 2003-03-11 2003-03-27 Es Cell International Pte Ltd. Methods of inducing differentiation of stem cells
US20050075276A1 (en) 2003-03-14 2005-04-07 Christopher Rudd Use of inhibitors of glycogen synthase-3 to augment CD28 dependent -T-cell responses
US20070010008A1 (en) 2005-06-29 2007-01-11 Tissuetech, Inc. Ex vivo expansion of primary animal cells
CA2529752A1 (en) 2003-06-20 2005-09-15 The Regents Of The University Of California Polypeptide transduction and fusogenic peptides
EP1674562A4 (en) 2003-10-03 2007-04-11 Keiichi Fukuda METHOD OF INDUCING DIFFERENTIATION OF STEM CELLS INTO MYOCARDIAL CELLS
EP2468729B1 (en) 2003-10-15 2013-12-25 Ube Industries, Ltd. Novel indazole derivative
JP2007508026A (ja) 2003-10-16 2007-04-05 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・エディンバラ Es細胞の自己再生および系統仕様の制御ならびにそのための培地
CN1905873A (zh) 2003-11-19 2007-01-31 阵列生物制药公司 Mek的杂环抑制剂及其使用方法
US20070141703A1 (en) 2003-11-19 2007-06-21 Stanley Edouard G Methods for producing blood products from pluripotent cells in cell culture
US20070269412A1 (en) 2003-12-02 2007-11-22 Celavie Biosciences, Llc Pluripotent cells
EP1713775A4 (en) 2004-01-30 2009-08-12 Smithkline Beecham Corp CHEMICAL COMPOUNDS
AU2005241009A1 (en) 2004-04-21 2005-11-17 Mcmaster University Myosin light chain kinase inhibitors and their use
EP1791952A4 (en) 2004-08-13 2008-06-11 Univ Georgia Res Found COMPOSITIONS AND METHODS OF SELF-RENEWAL AND DIFFERENTIATION IN HUMAN EMBRYONAL STEM CELLS
US20080268533A1 (en) 2004-08-25 2008-10-30 University Of Georgia Research Foundation, Inc. Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
MY149960A (en) 2005-05-18 2013-11-15 Array Biopharma Inc 4-(phenylamino)-6-oxo-1,6-dihydropyridazine-3-carboxamide derivatives as mek inhibitors for the treatment of hyperproliferative diseases
CN101313065A (zh) 2005-08-01 2008-11-26 纽珀滕索有限公司 具有恢复的潜能的重编程序细胞的生产
US20080242594A1 (en) 2005-09-08 2008-10-02 Mckay Ronald D G Methods for Promoting Stem Cell Proliferation and Survival
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
CN101864392B (zh) 2005-12-13 2016-03-23 国立大学法人京都大学 核重新编程因子
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
GB0601538D0 (en) 2006-01-26 2006-03-08 Univ Birmingham Epigenetic analysis
US20090186076A1 (en) 2006-02-01 2009-07-23 Kazunori Kataoka Combined Use of TGF-Beta Signaling Inhibitor and Antitumor Agent
US7541186B2 (en) 2006-02-22 2009-06-02 University Of Washington Method of generating human retinal progenitors from embryonic stem cells
GB0615327D0 (en) 2006-03-30 2006-09-13 Univ Edinburgh Culture medium containing kinase inhibitors and uses thereof
EP2457995A1 (en) 2006-03-30 2012-05-30 The University Court of The University of Edinburgh Culture medium containing kinase inhibitors, and uses thereof
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
EP2027258A2 (en) 2006-05-02 2009-02-25 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
JP2009542666A (ja) 2006-06-30 2009-12-03 シェーリング コーポレイション P53活性を増加させる置換ピペリジンおよびその使用
AU2007271964B2 (en) 2006-07-14 2012-01-19 Novartis Ag Pyrimidine derivatives as ALK-5 inhibitors
US20080020014A1 (en) 2006-07-19 2008-01-24 Paul Consigny Implantable devices containing nuclear receptor ligands for the treatment of vascular and related disorders
ZA200901914B (en) 2006-09-22 2010-06-30 Riken Stem cell culture medium and method
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
GB0622395D0 (en) 2006-11-09 2006-12-20 Univ Cambridge Tech Methods relating to pluripotent cells
SE0950586L (sv) 2007-01-17 2009-08-13 Wisconsin Alumni Res Found Förbättrad odling av stamceller
US20100172883A1 (en) 2007-01-19 2010-07-08 Bruneau Benoit Gaetan Methods of generating cardiomyocytes
KR20090115142A (ko) 2007-01-30 2009-11-04 유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드 초기 중배엽 세포,내배엽 및 중배엽 계통의 생성에 유용한 중내배엽 세포의 안정한 집단 및 다능성 유주 세포(mmc)
EP2132225A4 (en) 2007-02-27 2010-06-09 Procell Therapeutics Inc COMBINED USE OF NANOG AND OCT4 PERMEABLE TO CELLS TO INCREASE SELF-RENEWAL AND DELETE DIFFERENTIATION OF STEM CELLS
ES2703592T3 (es) 2007-03-07 2019-03-11 Mei Pharma Inc Combinación de agente anticancerígeno de bencimidazol y un segundo agente anticancerígeno
WO2008126932A2 (en) 2007-04-09 2008-10-23 Riken Epigenetical regulation of brain plasticity
ES2530370T5 (es) 2007-04-18 2018-05-28 Hadasit Medical Research Services & Development Limited Células del epitelio pigmentario de la retina derivadas de células madre
US7878210B2 (en) 2007-06-04 2011-02-01 Philip Morris Usa Inc. Cellulose acetate fiber modification
US8648069B2 (en) 2007-06-08 2014-02-11 Abbvie Inc. 5-substituted indazoles as kinase inhibitors
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
EP2173863B1 (en) 2007-06-29 2018-10-10 FUJIFILM Cellular Dynamics, Inc. Automated method and apparatus for embryonic stem cell culture
WO2009032456A2 (en) 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
CN101855338B (zh) 2007-08-31 2013-07-17 怀特黑德生物医学研究所 在程序重排体细胞中的wnt途径刺激
EP2096169B1 (en) 2007-10-31 2020-11-18 Kyoto University Nuclear reprogramming method
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
JP4604076B2 (ja) 2007-11-07 2010-12-22 国立大学法人静岡大学 燃料電池用電解質膜
WO2009073523A2 (en) 2007-11-29 2009-06-11 Children's Hospital Of Orange County De-differentiation of human cells
AU2008329563A1 (en) 2007-11-30 2009-06-04 Cytomatrix Pty Ltd Methods of inducing pluripotency involving Oct4 protein
US20110190729A1 (en) 2007-11-30 2011-08-04 Cytomatrix Pty Ltd Methods of inducing pluripotency involving sox2 protein
SG10201607710UA (en) 2008-03-17 2016-11-29 Scripps Research Inst Combined chemical and genetic approaches for generation of induced pluripotent stem cells
JP2011516042A (ja) 2008-03-17 2011-05-26 へルムホルツ・ツェントルム・ミュンヘン−ドイチェス・フォルシュングスツェントルム・ヒューア・ゲズントハイト・ウント・ウムヴェルト(ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング) 部位特異的組み換えを用いて無ベクター誘導多能性幹(iPS)細胞を作製するベクターおよびその方法
CN101550406B (zh) 2008-04-03 2016-02-10 北京大学 制备多潜能干细胞的方法,试剂盒及用途
CA2697621C (en) * 2008-07-30 2017-01-17 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US8298825B1 (en) 2008-08-25 2012-10-30 The General Hospital Corporation TGF-beta receptor inhibitors to enhance direct reprogramming
AU2008363829B2 (en) 2008-11-04 2014-11-20 Viacyte, Inc. Stem cell aggregate suspension compositions and methods for differentiation thereof
EP3623374B1 (en) 2008-12-03 2021-09-08 The Scripps Research Institute Stem cell cultures
EP2373784B1 (en) 2008-12-17 2017-10-25 The Scripps Research Institute Generation and maintenance of stem cells
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
US8609417B2 (en) 2009-04-13 2013-12-17 The Regents Of The University Of California Methods and compositions for stem cell cultures
KR20120047866A (ko) 2009-05-27 2012-05-14 더 솔크 인스티튜트 포 바이올로지칼 스터디즈 유전자 교정된 무질환 유도 만능 줄기 세포의 생성
US8524498B2 (en) 2009-05-29 2013-09-03 The General Hospital Corporation Methods and compositions for homologous recombination in human cells
US9005975B2 (en) 2009-05-29 2015-04-14 Kyoto University Method for selecting clone of induced pluripotent stem cells
DK3150701T3 (en) * 2009-06-05 2019-01-14 Fujifilm Cellular Dynamics Inc REPROGRAMMING T-CELLS AND HEMATOPOIETIC CELLS
US8900871B2 (en) 2009-08-07 2014-12-02 Kyoto University Method of producing induced pluripotent stem cells using inhibitors of P53
CN105861446B (zh) 2009-10-16 2021-10-01 斯克里普斯研究所 多能细胞的诱导
JP5982286B2 (ja) 2009-10-31 2016-08-31 ニュー・ワールド・ラボラトリーズ・インコーポレイテッドNew World Laboratories Inc. 細胞の再プログラミングのための方法とその用途
US9295697B2 (en) 2009-11-04 2016-03-29 Cellular Dynamics International, Inc. Episomal reprogramming with chemicals
DK3633025T3 (da) 2009-11-12 2022-12-12 Technion Res & Dev Foundation Dyrkningsmedier, cellekulturer og metoder til dyrkning af pluripotente stamceller i en udifferentieret tilstand
WO2011090221A1 (en) 2010-01-22 2011-07-28 Kyoto University Method for improving induced pluripotent stem cell generation efficiency
CA2789774C (en) 2010-02-17 2024-01-23 Biotime Inc. Methods for telomere length and genomic dna quality control analysis in pluripotent stem cells
WO2011109695A1 (en) 2010-03-05 2011-09-09 Texas Heart Institute Ets2 and mesp1 generate cardiac progenitors from fibroblasts
ES2624780T3 (es) 2010-03-31 2017-07-17 The Scripps Research Institute Reprogramación de células
DK2582794T4 (da) 2010-06-15 2024-07-22 Fujifilm Cellular Dynamics Inc Generering af inducerede pluripotente stamceller fra små volumener af perifert blod
US20110306516A1 (en) 2010-06-15 2011-12-15 The New York Stem Cell Foundation Methods for producing induced pluripotent stem cells
JPWO2011158852A1 (ja) 2010-06-15 2013-08-19 国立大学法人 東京大学 誘導型多能性幹細胞の製造方法
US8765470B2 (en) 2010-08-04 2014-07-01 Cellular Dynamics International, Inc. Reprogramming immortalized B-cells to induced pluripotent stem cells
JP6182456B2 (ja) * 2010-12-22 2017-08-23 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
WO2013070852A2 (en) * 2011-11-08 2013-05-16 Emory University Compounds and compositions used to epigenetically transform cells and methods related thereto
AU2012347534B2 (en) 2011-12-08 2018-01-25 Fred Hutchinson Cancer Research Center Compositions and methods for enhanced generation of hematopoietic stem/progenitor cells
WO2013159103A1 (en) * 2012-04-20 2013-10-24 Whitehead Institute For Biomedical Research Programming and reprogramming of cells
EP2853590B1 (en) 2012-05-22 2018-11-07 The University of Tokyo Method for producing antigen-specific t cells
US9166832B1 (en) 2013-10-04 2015-10-20 Altera Corporation Methods and apparatus for decision feedback equalization adaptation
EP3114214B1 (en) 2014-03-04 2023-11-01 Fate Therapeutics, Inc. Improved reprogramming methods and cell culture platforms
SG11201802957PA (en) 2015-10-16 2018-05-30 Fate Therapeutics Inc Platform for the induction & maintenance of ground state pluripotency
CN108368520B (zh) 2015-11-04 2023-01-17 菲特治疗公司 多能细胞的基因组工程改造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273141B2 (ja) 2019-03-29 2023-05-12 富士フイルム株式会社 特定細胞に分化する能力を有する多能性幹細胞の製造方法およびその応用

Similar Documents

Publication Publication Date Title
JP2017506904A5 (ja)
JP7516452B2 (ja) 改善された再プログラム方法及び細胞培養基盤
JP7350127B2 (ja) 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
Lluis et al. Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated by cell fusion
Li et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors
Kim et al. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells
EP3183336B1 (en) Resetting pluripotent stem cells
US20210198687A1 (en) Minimal volume reprogramming of mononuclear cells
Murayama et al. Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin
Aulicino et al. Canonical wnt pathway controls mESC Self-renewal through inhibition of spontaneous differentiation via β-Catenin/TCF/LEF functions
US20220325249A1 (en) Platform for the induction & maintenance of ground state pluripotency
Sun et al. Tfcp2l1 safeguards the maintenance of human embryonic stem cell self‐renewal
WO2020213725A1 (ja) 誘導多能性幹細胞の製造方法及びキット
Sanges et al. Reprograming cell fate to pluripotency: The decision-making signalling pathways
Ombrato et al. Regulation of self-renewal and reprogramming by TCF factors