JP2017224483A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2017224483A
JP2017224483A JP2016118906A JP2016118906A JP2017224483A JP 2017224483 A JP2017224483 A JP 2017224483A JP 2016118906 A JP2016118906 A JP 2016118906A JP 2016118906 A JP2016118906 A JP 2016118906A JP 2017224483 A JP2017224483 A JP 2017224483A
Authority
JP
Japan
Prior art keywords
electrode plate
lead
mass
glass
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016118906A
Other languages
Japanese (ja)
Other versions
JP6699383B2 (en
Inventor
鈴木 啓太
Keita Suzuki
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016118906A priority Critical patent/JP6699383B2/en
Publication of JP2017224483A publication Critical patent/JP2017224483A/en
Application granted granted Critical
Publication of JP6699383B2 publication Critical patent/JP6699383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery which has a good discharge performance and which has a satisfying life property even if it is operated in such a standby use that it is discharged with a discharge depth of about 30% at intervals of several months.SOLUTION: A lead storage battery according to the present invention is operated in a state of charge of 95-100% to 100% of the state of full charge. The lead storage battery comprises: a positive electrode plate; a negative electrode plate; a glass nonwoven fabric provided between the positive electrode plate and the negative electrode plate; and an electrolyte solution including aluminum ions. The glass nonwoven fabric includes 55-70 pts.mass of glass fibers of 1.0 μm or smaller in fiber diameter to a total mass of 100 pts.mass of glass fibers constituting the glass nonwoven fabric.SELECTED DRAWING: None

Description

本発明は、スタンバイユースで運用される鉛蓄電池に関する。   The present invention relates to a lead storage battery operated for standby use.

鉛蓄電池は、コスト、安全性及び信頼性に優れた二次電池であり、様々な用途に用いられている。鉛蓄電池の運用例の一つとして、一般回線用電話交換機の直流電源の非常用電源が挙げられる。この運用例においては、制御弁式鉛蓄電池と称されるタイプの電池が使用され、充電状態を常に維持するトリクル充電又はフロート充電といった充電方法が取られている。これらの充電方法においては、自己放電による蓄電池容量損失を補うことを目的として充電状態が維持されるため、主に電極集電体の腐食によって電池劣化が進行する。従来、正極集電体としてPb−Sn−Ca系合金を用いることで、優れた耐食性及び高い強度の両立を図ってきた。   Lead acid batteries are secondary batteries excellent in cost, safety, and reliability, and are used in various applications. One example of the operation of a lead storage battery is an emergency power supply for a DC power supply of a telephone switch for general lines. In this operation example, a type of battery called a control valve type lead-acid battery is used, and a charging method such as trickle charging or float charging that always maintains a charged state is employed. In these charging methods, since the charged state is maintained for the purpose of compensating for the storage battery capacity loss due to self-discharge, the battery deterioration proceeds mainly due to corrosion of the electrode current collector. Conventionally, by using a Pb—Sn—Ca-based alloy as a positive electrode current collector, both excellent corrosion resistance and high strength have been achieved.

近年、スタンバイユースで運用される制御弁式鉛電池は、電源設備の健全性を確保するために数ヶ月おきに放電深度(DOD)30%程度の放電が実施される場合がある。このような放電が行われると、正極集電体の腐食起因ではない容量低下が生じる得ることが確認されている。この容量低下は、正極集電体と正極活物質の界面に不導体である硫酸塩が選択的に生成されるため起きる。   In recent years, a control valve type lead battery operated in a standby use may be discharged at a depth of discharge (DOD) of about 30% every several months in order to ensure the soundness of power supply equipment. It has been confirmed that when such a discharge is performed, a capacity reduction not caused by corrosion of the positive electrode current collector can occur. This decrease in capacity occurs because sulfate, which is a nonconductor, is selectively generated at the interface between the positive electrode current collector and the positive electrode active material.

上述のPb−Sn−Ca系合金は、耐食性に優れるため、正極活物質との密着性が悪い。このため、正極板を製造する過程で熟成と呼ばれる工程が実施される。通常、熟成は温度と湿度をコントロールした雰囲気下において、正極集電体を腐食させ、これにより正極活物質と正極集電体を密着させる。特許文献1は所定の条件で熟成を行って未化活性物質に四塩基性硫酸鉛を生成させることで、熟成工程及び化成工程を経る間に活物質が膨張し、これにより、ペースト式電極で強化圧を加えた場合のような状態を極板自体が持ち、これがサイクル寿命性能の向上に寄与することを開示する(特許文献1段落[0028]参照)。   The Pb—Sn—Ca-based alloy described above is excellent in corrosion resistance and therefore has poor adhesion with the positive electrode active material. For this reason, a process called aging is performed in the process of manufacturing the positive electrode plate. In general, aging corrodes the positive electrode current collector in an atmosphere in which the temperature and humidity are controlled, thereby bringing the positive electrode active material and the positive electrode current collector into close contact with each other. In Patent Document 1, aging is performed under predetermined conditions to generate tetrabasic lead sulfate in the unactivated active material, so that the active material expands through the aging step and the chemical conversion step, and thus, the paste type electrode It is disclosed that the electrode plate itself has a state like that when a strengthening pressure is applied, which contributes to improvement of cycle life performance (see paragraph [0028] of Patent Document 1).

特開2000−260426号公報JP 2000-260426 A

特許文献1に記載の発明は、正極活物質の比表面積が高い活物質の場合でも有効であり、また、数ヶ月おきに放電深度30%程度の放電を実施するスタンバイユースでも有効である。しかし、スタンバイユースの電池に対しては、従来に増して高いレベルの性能が求められている。また、四塩基性硫酸鉛由来の活物質(化成後)は、酸塩基性硫酸鉛に比べて比表面積が低下しやすいため、放電性能が不十分となりやすいという点において特許文献1に記載の発明は改善の余地があった。   The invention described in Patent Document 1 is effective even in the case of an active material having a high specific surface area of the positive electrode active material, and is also effective in standby use in which discharge is performed at a discharge depth of about 30% every several months. However, a higher level of performance is required for standby use batteries than ever before. Moreover, since the specific surface area of the active material derived from tetrabasic lead sulfate (after chemical conversion) is likely to be lower than that of acid-based lead sulfate, the invention described in Patent Document 1 is likely to have insufficient discharge performance. There was room for improvement.

本発明は、良好な放電性能を有するとともに、数ヶ月おきに放電深度30%程度の放電を実施するスタンバイユースで運用されても良好な寿命特性を有する鉛蓄電池を提供することを目的とする。   An object of the present invention is to provide a lead-acid battery having good discharge performance and having good life characteristics even when operated for standby use in which discharge is performed at a discharge depth of about 30% every several months.

本発明に係る鉛蓄電池は、満充電状態を100%とすると、95〜100%の充電状態(SOC:State of Charge)で運用されるものであり、正極板と、負極板と、正極板と負極板との間に設けられたガラス不織布と、アルミニウムイオンを含む電解液とを備え、上記ガラス不織布が1.0μm以下のガラス繊維を含む。この構成の鉛蓄電池によれば、放電性能及び寿命特性の両方を十分高水準に達成できる。   The lead storage battery according to the present invention is operated in a state of charge (SOC) of 95 to 100% assuming that the fully charged state is 100%, and includes a positive electrode plate, a negative electrode plate, a positive electrode plate, A glass nonwoven fabric provided between the negative electrode plate and an electrolyte containing aluminum ions is provided, and the glass nonwoven fabric contains glass fibers of 1.0 μm or less. According to the lead storage battery having this configuration, both the discharge performance and the life characteristic can be achieved at a sufficiently high level.

上記ガラス不織布は、当該ガラス不織布を構成するガラス繊維の全質量100質量部に対して繊維径1.0μm以下のガラス繊維を55〜70質量部含む。かかる構成を採用することで、上記効果がより一層高度且つ確実に奏される。同様の観点から、上記電解液のアルミニウムイオン濃度は0.002〜0.2mol/Lであることが好ましい。   The said glass nonwoven fabric contains 55-70 mass parts of glass fibers with a fiber diameter of 1.0 micrometer or less with respect to 100 mass parts of total mass of the glass fiber which comprises the said glass nonwoven fabric. By adopting such a configuration, the above-described effect can be further enhanced and ensured. From the same viewpoint, the aluminum ion concentration of the electrolytic solution is preferably 0.002 to 0.2 mol / L.

本発明によれば、良好な放電性能を有するとともに、数ヶ月おきに放電深度30%程度の放電を実施するスタンバイユースで運用されても良好な寿命特性を有する鉛蓄電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, while having favorable discharge performance, even if it is operated by the standby use which discharges about 30% of discharge depth every several months, the lead storage battery which has a favorable lifetime characteristic is provided.

本発明に係る鉛蓄電池の一実施形態を示す斜視図である。It is a perspective view showing one embodiment of a lead acid battery concerning the present invention.

以下、本発明に実施形態について説明する。本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.

<鉛蓄電池>
図1に示す鉛蓄電池1は、複数の正極板2と、複数の負極板3と、正極板2と負極板3との間に設けられる複数のセパレータ4(ガラス不織布)と、電槽5と、蓋体6とを備え、正極板2、セパレータ4及び負極板3が交互に積層されてなる電極群が電槽5内に収容されている。複数の正極板2は、それぞれの耳部2aがストラップ2bを介して電気的に接続されている。複数の負極板3は、それぞれの耳部3aがストラップ3bを介して電気的に接続されている。電槽5内に極板群を収容し、蓋体6で閉塞した後、所定量の電解液を注入して電槽化成を行うことによって鉛蓄電池1が作製される。
<Lead battery>
A lead storage battery 1 shown in FIG. 1 includes a plurality of positive plates 2, a plurality of negative plates 3, a plurality of separators 4 (glass nonwoven fabric) provided between the positive plates 2 and the negative plates 3, and a battery case 5. , And a lid 6, and an electrode group in which the positive electrode plate 2, the separator 4, and the negative electrode plate 3 are alternately stacked is accommodated in the battery case 5. As for the some positive electrode plate 2, each ear | edge part 2a is electrically connected through the strap 2b. As for the some negative electrode plate 3, each ear | edge part 3a is electrically connected through the strap 3b. After the electrode plate group is accommodated in the battery case 5 and closed with the lid body 6, the lead storage battery 1 is manufactured by injecting a predetermined amount of electrolyte and performing battery case formation.

鉛蓄電池1は、満充電状態を100%とすると、95〜100%(好ましくは98〜100%)の充電状態(SOC)で運用されるものである。鉛蓄電池1が制御弁式鉛蓄電池である場合、充電時に正極で発生する酸素ガスのうち、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽5外へ排出するための制御弁7を鉛蓄電池1は更に備える。制御弁式鉛蓄電池は、無停電電源装置、非常用電源装置等として使用されているものである。制御弁式鉛蓄電池は、蓄電池内部では、流動するフリーの電解液が存在せず、蓄電池を横置きしても電解液がこぼれることがないという利点がある。また、充電中に水の電気分解反応が起こっても、水素ガスの発生を抑え、発生する酸素ガスも負極板表面での化学反応により元の水に還元して電解液中に戻す作用があり、水分が失われにくく、液量の点検及び補水が不要であるという利点もある。   The lead storage battery 1 is operated in a state of charge (SOC) of 95 to 100% (preferably 98 to 100%), assuming that the fully charged state is 100%. When lead acid battery 1 is a control valve type lead acid battery, a control valve for discharging excess gas, which has not been absorbed by the gas absorption reaction of the negative electrode, out of battery case 5 out of the oxygen gas generated at the positive electrode during charging 7 is further provided with the lead storage battery 1. The control valve type lead storage battery is used as an uninterruptible power supply, an emergency power supply, or the like. The control valve type lead-acid battery has the advantage that there is no flowing free electrolyte inside the battery and the electrolyte does not spill even when the battery is placed sideways. In addition, even if water electrolysis occurs during charging, it suppresses the generation of hydrogen gas, and the generated oxygen gas also has the action of reducing it back to the original water by a chemical reaction on the negative electrode plate surface. There is also an advantage that moisture is not easily lost, and liquid amount inspection and water replenishment are unnecessary.

無停電電源装置又は非常用電源装置として鉛蓄電池1を用いる場合、スタンバイ状態において満充電状態であることが好ましい。しかし、満充電状態で長期間保管すると、使用する際には蓄えられた電気量が自己放電等により減っているため、定格の性能を発揮できない、又は使用できない場合がある。これを防ぐためには、自己放電を補うトリクル充電を行えばよい。トリクル充電を行う際、制御弁式鉛蓄電池の充電状態は95〜100%であればよいが、寿命性能の観点からは好ましくは98〜100%である。トリクル充電は、制御弁式鉛蓄電池の電極に公称電圧より少し高い電圧を加え、定電圧で充電することが好ましい。トリクル充電は、満充電状態に近付くと自然に充電電流が減少し、過充電を防ぐ効果がある。充電電圧は過充電を防ぐよう適切に設定するか、電流制限回路を設けることで過大電流による電池寿命短縮を防ぐことができる。   When the lead storage battery 1 is used as an uninterruptible power supply or an emergency power supply, it is preferable that the battery is fully charged in the standby state. However, if the battery is stored for a long time in a fully charged state, the amount of electricity stored during use is reduced by self-discharge or the like, so that the rated performance may not be exhibited or used. In order to prevent this, trickle charging to compensate for self-discharge may be performed. When trickle charging is performed, the state of charge of the control valve type lead-acid battery may be 95 to 100%, but is preferably 98 to 100% from the viewpoint of life performance. Trickle charging is preferably performed at a constant voltage by applying a voltage slightly higher than the nominal voltage to the electrodes of the control valve type lead-acid battery. Trickle charging naturally reduces the charging current when it approaches the fully charged state, and has the effect of preventing overcharging. The battery voltage can be prevented from being shortened by an excessive current by appropriately setting the charging voltage to prevent overcharging or by providing a current limiting circuit.

鉛蓄電池1はスタンバイユースで運用されるものであり、数ヶ月おきに、電池寿命判断の観点から放電深度30%程度の放電が実施されることがある。   The lead storage battery 1 is operated for standby use, and discharge at a discharge depth of about 30% may be performed every few months from the viewpoint of battery life determination.

電槽5内は複数のセル室に分けられていてもよく、この場合、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池が構成される。他方、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列又は直列に接続することで所定の電圧又は容量の電池を構成することができる。   The battery case 5 may be divided into a plurality of cell chambers. In this case, electrode plate groups are accommodated in each cell chamber, and straps having opposite polarities to the electrode plate groups accommodated in the adjacent cell chambers are mutually connected. By connecting to, a lead storage battery having a predetermined rated voltage and rated capacity is configured. On the other hand, in the case of a single cell battery case, a battery having a predetermined voltage or capacity can be configured by connecting terminals of a plurality of lead storage batteries in parallel or in series using a conductive plate.

(セパレータ)
セパレータ4は、ガラス不織布(ガラス繊維からなるマット状セパレータ)である。セパレータ4は、正極板2と負極板3との間に設けられており、充放電に必要な硫酸電解液を保持するとともに両極を隔離する役割を果たす。ガラス不織布を構成するガラス繊維は、当該ガラス不織布を構成するガラス繊維の全質量100質量部に対して繊維径1.0μm以下のガラス繊維を55〜70質量部含む。この数値範囲は57〜69質量部であってもよく、59〜67質量部であってもよい。繊維径1.0μm以下のガラス繊維の含有量を55質量%以上とすることで、ガラス不織布として充分な強度と保液性の両者が得られる傾向にあり、70質量%以下とすることで強度、保液性及びサイクル特性のすべてをバランスよく十分高いレベルとすることができる。ガラス繊維の繊維径は、例えば、動的画像解析法、レーザースキャン法(例えば、JIS L1081に準拠)、走査型電子顕微鏡等による直接観察により求めることができる。具体的には、これらの方法を用いて400本程度の繊維を観察し、繊維径比率を求めればよい。
(Separator)
The separator 4 is a glass nonwoven fabric (a mat-like separator made of glass fibers). The separator 4 is provided between the positive electrode plate 2 and the negative electrode plate 3, and plays a role of holding the sulfuric acid electrolyte necessary for charging and discharging and isolating both electrodes. The glass fiber which comprises a glass nonwoven fabric contains 55-70 mass parts of glass fibers with a fiber diameter of 1.0 micrometer or less with respect to 100 mass parts of the total mass of the glass fiber which comprises the said glass nonwoven fabric. This numerical range may be 57 to 69 parts by mass, or 59 to 67 parts by mass. When the content of the glass fiber having a fiber diameter of 1.0 μm or less is 55% by mass or more, both strength and liquid retaining property sufficient as a glass nonwoven fabric tend to be obtained. In addition, all of the liquid retention and the cycle characteristics can be made sufficiently high in a balanced manner. The fiber diameter of the glass fiber can be determined, for example, by direct observation using a dynamic image analysis method, a laser scanning method (for example, conforming to JIS L1081), a scanning electron microscope, or the like. Specifically, these methods may be used to observe about 400 fibers and obtain the fiber diameter ratio.

ガラス繊維は、電解液に希硫酸を用いることから、アルカリガラス、ECRガラス、アドバンテックガラス等といった耐酸性を有するものが好ましい。   Since the glass fiber uses dilute sulfuric acid for the electrolytic solution, those having acid resistance such as alkali glass, ECR glass, Advantech glass and the like are preferable.

セパレータ4におけるガラス繊維の目付量は、製造時の濾水性が低下することが抑制されることにより、材料の濃度分布が生じることが抑制されるため、セパレータの内部構造が不均一化することが抑制される観点から、20kPa加圧時で0.5g/cm以下であることが好ましく、20kPa加圧時で0.3g/cm以下であることがより好ましく、20kPa加圧時で0.2g/cm以下であることが更に好ましい。セパレータ4におけるガラス繊維の目付量は、セパレータ4の厚さが過剰に減少することが抑制されることにより、短絡が容易に抑制される観点から、20kPa加圧時で0.1g/cm以上であることが好ましく、20kPa加圧時で0.15g/cm以上であることがより好ましく、20kPa加圧時で0.17g/cm以上であることが更に好ましい。 The basis weight of the glass fiber in the separator 4 is that the decrease in drainage at the time of manufacture is suppressed, so that the concentration distribution of the material is suppressed, so that the internal structure of the separator may become non-uniform. From the viewpoint of being suppressed, the pressure is preferably 0.5 g / cm 3 or less at 20 kPa pressurization, more preferably 0.3 g / cm 3 or less at 20 kPa pressurization, and 0. More preferably, it is 2 g / cm 3 or less. The basis weight of the glass fiber in the separator 4 is 0.1 g / cm 3 or more at the time of 20 kPa pressurization from the viewpoint of easily suppressing a short circuit by suppressing an excessive decrease in the thickness of the separator 4. More preferably, it is 0.15 g / cm 3 or more at a pressure of 20 kPa, and more preferably 0.17 g / cm 3 or more at a pressure of 20 kPa.

セパレータ4の密度は、電池特性(出力特性、電池容量等)に更に優れる観点、及び、製造時の乾燥が容易である観点から、20kPa加圧時で0.10〜0.20g/cmであることが好ましく、0.11〜0.20g/cmであることがより好ましく、0.12〜0.20g/cmであることが更に好ましい。セパレータ4におけるガラス繊維の含有量は、吸水性及び機械的強度のバランスに優れる観点から、セパレータの総量に対して70質量%以上が好ましく、80〜99質量%がより好ましく、90〜99質量%が更に好ましい。なお、セパレータ4におけるガラス繊維以外の成分としては、樹脂繊維、パルプ、凝集剤、結着材等が挙げられる。 The density of the separator 4 is 0.10 to 0.20 g / cm 3 at a pressure of 20 kPa from the viewpoint of further excellent battery characteristics (output characteristics, battery capacity, etc.) and easy drying during production. Preferably, it is 0.11 to 0.20 g / cm 3 , more preferably 0.12 to 0.20 g / cm 3 . The content of the glass fiber in the separator 4 is preferably 70% by mass or more, more preferably 80 to 99% by mass, and more preferably 90 to 99% by mass with respect to the total amount of the separator, from the viewpoint of excellent balance between water absorption and mechanical strength. Is more preferable. In addition, as components other than the glass fiber in the separator 4, resin fiber, pulp, a flocculant, a binder, etc. are mentioned.

(電解液)
鉛蓄電池1の電解液は、アルミニウムイオンを含む。電解液のアルミニウムイオン濃度は、充電受入性及びサイクル特性が更に向上する観点から、電解液の全量を基準として、0.002〜0.2mol/Lが好ましく、0.003〜0.1mol/Lがより好ましく、0.005〜0.08mol/Lが更に好ましい。電解液のアルミニウムイオンの濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することもできる。なお、電解液は、ガラス不織布からなるセパレータ4のみならず、正極板及び負極板の中にも含まれている。
(Electrolyte)
The electrolyte solution of the lead storage battery 1 contains aluminum ions. The aluminum ion concentration of the electrolytic solution is preferably 0.002 to 0.2 mol / L, based on the total amount of the electrolytic solution, from the viewpoint of further improving charge acceptance and cycle characteristics, and 0.003 to 0.1 mol / L. Is more preferable, and 0.005-0.08 mol / L is still more preferable. The concentration of aluminum ions in the electrolytic solution can also be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy). In addition, electrolyte solution is contained not only in the separator 4 which consists of glass nonwoven fabrics but in a positive electrode plate and a negative electrode plate.

<セパレータの製造方法>
セパレータ4をなすガラス不織布の製造方法に特に制限はなく、例えば、湿式抄造、乾式抄造等が挙げられる。本実施形態においては、これらの中でも、湿式法に基づく抄造法(湿式抄造)を採用することが好ましい。この製造方法は、ガラス繊維と、必要に応じて樹脂等を水と混合して作製するスラリーを調製する工程と、スラリーを抄紙して抄造体を作製する工程と、加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する工程と、必要に応じ圧縮体を樹脂の軟化点以上の温度で熱処理する工程とを経る製造方法である。
<Manufacturing method of separator>
There is no restriction | limiting in particular in the manufacturing method of the glass nonwoven fabric which makes the separator 4, For example, wet papermaking, dry papermaking, etc. are mentioned. In the present embodiment, among these, it is preferable to employ a papermaking method based on a wet method (wet papermaking). This production method includes a step of preparing a slurry prepared by mixing glass fiber and, if necessary, a resin or the like with water, a step of papermaking the slurry to prepare a papermaking product, and a papermaking product using a pressure machine In the thickness direction, and a manufacturing method through a step of heat-treating the compression body at a temperature equal to or higher than the softening point of the resin as necessary.

(スラリーを調製する工程)
本工程において、ガラス繊維と必要に応じて樹脂、パルプ等を所定の分散媒体に分散させてスラリーを調製する。スラリーの調製は、例えばミキサー、ボールミル、パルパー等により行うことができる。なお、分散媒体としては水が一般的に用いられている。スラリー中の各原料成分の含有量は、得られるセパレータ中の各原料成分の含有量が上述した範囲となるように調整すればよい。ただし、良好な抄紙性を確保する観点から、スラリー中の原料成分を100%として、ガラス繊維を70〜99質量%することが好ましい。70質量%より少ないと充放電を行うために十分な電解液を保持することができないためである。
(Process for preparing slurry)
In this step, a slurry is prepared by dispersing glass fiber and, if necessary, resin, pulp and the like in a predetermined dispersion medium. The slurry can be prepared using, for example, a mixer, a ball mill, a pulper, or the like. Note that water is generally used as the dispersion medium. What is necessary is just to adjust content of each raw material component in a slurry so that content of each raw material component in the separator obtained may become the range mentioned above. However, from the viewpoint of ensuring good papermaking properties, it is preferable that the raw material component in the slurry is 100% and the glass fiber is 70 to 99% by mass. This is because if the amount is less than 70% by mass, a sufficient electrolyte solution cannot be retained for charging and discharging.

スラリーには必要に応じて有機繊維又はバインダーとしてポリマー粒子を含んでいてもよい。有機繊維、ポリマー粒子は単独で用いてもよいし、二種以上を混合して使用してもよい。有機繊維、ポリマー粒子はスルホン化されたものも含める。これらを含むことでガラス不織布の機械的強度が高くなる等の効果がある。   The slurry may contain polymer particles as organic fibers or a binder as necessary. Organic fibers and polymer particles may be used alone or in admixture of two or more. Organic fibers and polymer particles include those sulfonated. By including these, there exists an effect that the mechanical strength of a glass nonwoven fabric becomes high.

スラリーは界面活性剤を含んでいてもよい。スラリーが界面活性剤を含むことで、セパレータを製造する際に原料成分を分散させやすくなる。界面活性剤は、後の熱処理において分解されてもよい。界面活性剤としては、シランカップリング剤、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤のいずれであってもよい。界面活性剤の含有量は、スラリー中の原料成分を100%として、0.01〜5質量%とすることが好ましい。0.01質量%より少ないと十分な効果が得られず、5質量%より多いと制御弁式鉛蓄電池とした際に電解液中に溶出し、電池劣化を促進させる。   The slurry may contain a surfactant. When the slurry contains the surfactant, the raw material components are easily dispersed when the separator is manufactured. The surfactant may be decomposed in a subsequent heat treatment. As the surfactant, any of a silane coupling agent, a cationic surfactant, an anionic surfactant, and a nonionic surfactant may be used. The content of the surfactant is preferably 0.01 to 5% by mass with 100% of the raw material components in the slurry. If the amount is less than 0.01% by mass, a sufficient effect cannot be obtained. If the amount is more than 5% by mass, the control valve type lead-acid battery is eluted into the electrolytic solution, thereby promoting battery deterioration.

スラリーは凝集剤を含んでいてもよい。凝集剤を含むことで製造されるセパレータの歩留まりを向上することができる。凝集剤としては、カチオン性高分子凝集剤及びアニオン性高分子凝集剤のいずれであってもよく、両者を共に用いてもよい。凝集剤の含有量は、スラリー中の原料成分を100%として、0.001〜0.5質量%とすることが好ましい。0.001質量%より少ないと十分な効果が得られず、0.5質量%より多いと制御弁式鉛蓄電池とした際に電解液中に溶出し、電池劣化を促進させる。   The slurry may contain a flocculant. The yield of the separator manufactured by including a flocculant can be improved. The flocculant may be either a cationic polymer flocculant or an anionic polymer flocculant, and both may be used together. The content of the flocculant is preferably 0.001 to 0.5 mass% with the raw material component in the slurry as 100%. When the amount is less than 0.001% by mass, a sufficient effect cannot be obtained, and when the amount is more than 0.5% by mass, the control valve type lead-acid battery is eluted into the electrolyte solution to promote battery deterioration.

(抄造体を作製する工程から圧縮するまでの工程)
これらの工程では、スラリーを一般的な抄紙機を用いて抄紙し、抄造体を作製した後、更に加圧機を用いて抄造体を厚さ方向に圧縮する。なお、所望の厚さと密度を得るためには、抄造体を1〜30MPaにて1〜5分間圧縮することが好ましい。
(Process from making paper making to compression)
In these processes, the slurry is paper-made using a general paper machine to produce a paper-making body, and then the paper-making body is further compressed in the thickness direction using a pressure machine. In order to obtain a desired thickness and density, the papermaking body is preferably compressed at 1 to 30 MPa for 1 to 5 minutes.

(圧縮後、熱処理する工程)
本工程は必ずしも行う工程ではないが、リテーナ(ガラス不織布)の材料構成に合わせて必要に応じて行う。本工程において樹脂の軟化点以上の温度で圧縮体を熱処理することで、樹脂が軟化してガラス繊維同士を接着させる、あるいはガラス繊維に粘土鉱物を確実に付着させることができ、また、ガラス繊維、粘度鉱物等の表面の一部又は全部を樹脂で被覆することにより、リテーナに柔軟性を付与することができる。更に樹脂が一部分解して、電解液の保持力を向上することができる。
(Step of heat treatment after compression)
Although this process is not necessarily a process to perform, it is performed as needed according to the material structure of a retainer (glass nonwoven fabric). By heat-treating the compression body at a temperature equal to or higher than the softening point of the resin in this step, the resin is softened and the glass fibers can be bonded to each other, or the clay mineral can be reliably adhered to the glass fibers. The retainer can be provided with flexibility by coating a part or all of the surface of a viscous mineral or the like with a resin. Furthermore, the resin can be partially decomposed to improve the electrolyte retention.

なお、処理温度は樹脂の軟化点に依存するため必ずしも限定されないが、100〜200℃で行うことが好ましい。処理温度を100℃以上とすることで、ガラス繊維、粘度鉱物等同士を結着させ易くなる傾向にあり、200℃以下とすることで製造工程を簡略化し易くなる。なお、熱処理は、リテーナの構成材料に応じて、前述した加圧工程と組み合わせて適宜加圧しながら行ってもよい。   The treatment temperature is not necessarily limited because it depends on the softening point of the resin, but it is preferably performed at 100 to 200 ° C. By setting the treatment temperature to 100 ° C. or higher, glass fibers, viscous minerals and the like tend to be bound to each other, and by setting the processing temperature to 200 ° C. or lower, the manufacturing process is easily simplified. In addition, you may perform heat processing, pressing suitably according to the constituent material of a retainer, combining with the pressurization process mentioned above.

<制御弁式鉛蓄電池の作製>
正極活物質は一酸化鉛を主成分とする鉛粉に、鉛丹を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成及び乾燥を行う。ここで、水、及び希硫酸の添加量、熟成及び乾燥条件を変えることにより、化成後、満充電状態における正極板の活物質の表面積を一定の目標範囲内に調整することができる。
<Production of control valve type lead acid battery>
The positive electrode active material is lead powder containing lead monoxide as a main component, added with red lead, and mixed with a predetermined amount of water and dilute sulfuric acid. After filling, aging and drying are performed under predetermined conditions. Here, by changing the addition amount of water and dilute sulfuric acid, aging and drying conditions, the surface area of the active material of the positive electrode plate in the fully charged state can be adjusted within a certain target range after the formation.

負極活物質は一酸化鉛を主成分とする鉛粉に、添加剤を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成及び乾燥を行う。ここで、添加剤、水、及び希硫酸の添加量、熟成及び乾燥条件を変えることにより、化成後、満充電状態における負極板の活物質の表面積を一定の範囲内に調整することができる。化成条件を変えることにより正負極活物質の表面積を調整することが可能である。また、鉛合金製の集電体に充填するペースト状活物質の量を変えることで正負極活物質量を調整することができる。   The negative electrode active material is a powder of lead alloy containing lead powder containing lead monoxide as a main component, mixed with an additive, and mixed with a predetermined amount of water and dilute sulfuric acid. After filling, aging and drying are performed under predetermined conditions. Here, the surface area of the active material of the negative electrode plate in the fully charged state can be adjusted within a certain range after the chemical conversion by changing the addition amount of the additive, water and dilute sulfuric acid, aging and drying conditions. It is possible to adjust the surface area of the positive and negative electrode active materials by changing the chemical conversion conditions. Further, the amount of the positive and negative electrode active materials can be adjusted by changing the amount of the paste-like active material filled in the lead alloy current collector.

ペースト状負極活物質に添加される添加剤には、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤、防縮剤を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、ポリエチレンテレフタレート(PET)繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。硫酸鉛結晶成長抑制添加剤には硫酸バリウムを用いるのが一般的である。硫酸バリウムを用いると、電解液に溶解せず、活物質中に留まるので、放電時に生成する硫酸鉛の結晶核となり、微細な硫酸鉛を形成することができる。防縮剤にはリグニンスルホン酸塩が用いられ、リグニンスルホン酸塩は合成リグニンと樹木由来の天然リグニンがあり、長期間運用されるスタンバイユース用途には長期間安定に存在する天然リグニンを用いることが望ましい。リグニンを添加することで、負極活物質が充放電の際に形態変化し、凝集することを防止し、活物質の表面積の大きさを保つことが可能となる。   As the additive added to the paste-like negative electrode active material, an acid-resistant fiber for reinforcement, a lead sulfate crystal growth inhibiting additive, and a shrinkage preventing agent are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, polyethylene terephthalate (PET) fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the acid-resistant fiber for reinforcement, when the active material is filled into the lattice substrate, it is possible to prevent the active material from coming off and falling off. In general, barium sulfate is used as a lead sulfate crystal growth inhibiting additive. When barium sulfate is used, it does not dissolve in the electrolytic solution and remains in the active material, so that it becomes a crystal nucleus of lead sulfate generated at the time of discharge and fine lead sulfate can be formed. Lignin sulfonate is used as the anti-shrinking agent, and lignin sulfonate includes synthetic lignin and natural lignin derived from trees. desirable. By adding lignin, it is possible to prevent the negative electrode active material from being changed in shape during charge and discharge and to be aggregated, and to maintain the surface area of the active material.

ペースト状正極活物質に添加される添加剤には、強化用耐酸性繊維、鉛丹を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、PET繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。鉛丹は電槽化成時の化成性の向上に寄与するとともに、正極活物質の表面積を大きくすること、並びに正極活物質の利用率を高くすることにも寄与する。活物質の化成性及び活物質の耐久性を両立させるために、鉛粉に対して5〜25質量%の鉛丹を添加することが望ましい。鉛丹量が5%より少ないと鉛丹の効果が十分に発揮されず、25%以上であると活物質の耐久性が著しく低下するためである。   As an additive added to the paste-like positive electrode active material, acid-resistant fibers for reinforcement and red lead are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, PET fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the acid-resistant fiber for reinforcement, when the active material is filled into the lattice substrate, it is possible to prevent the active material from coming off and falling off. The red lead contributes to the improvement of the chemical conversion at the time of battery case formation, and also contributes to increasing the surface area of the positive electrode active material and increasing the utilization rate of the positive electrode active material. In order to achieve both the chemical conversion of the active material and the durability of the active material, it is desirable to add 5 to 25% by mass of red lead with respect to the lead powder. When the amount of lead is less than 5%, the effect of the lead is not sufficiently exhibited, and when it is 25% or more, the durability of the active material is remarkably lowered.

正極集電体を形成するための鉛合金は、鉛−カルシウム−スズ合金によって作製される。カルシウム含有量、スズ含有量、を鉛に対してカルシウム:0.08質量%、スズ:1.6質量%とすることで、合金組成が緻密になり、耐食性に優れた正極集電体を形成することが可能となる。   The lead alloy for forming the positive electrode current collector is made of a lead-calcium-tin alloy. By making calcium content and tin content calcium: 0.08 mass% and tin: 1.6 mass% with respect to lead, the alloy composition becomes dense and a positive electrode current collector excellent in corrosion resistance is formed. It becomes possible to do.

負極集電体を形成するための鉛合金は特に限定されるものではないが、純鉛、カルシウム−スズ合金、アンチモン合金を用いるのが一般的であり、寿命性能、製造上の取り回し易さから、カルシウム−スズ合金を用いることが望ましい。   The lead alloy for forming the negative electrode current collector is not particularly limited, but it is common to use pure lead, calcium-tin alloy, antimony alloy, and from the viewpoint of life performance and ease of manufacturing. It is desirable to use a calcium-tin alloy.

正負極板は、前述したそれぞれのペースト状活物質を集電体に充填して熟成及び乾燥させたものである。集電体は、エキスパンド方式、鋳造方式、鍛造方式等により作製することができる。   The positive and negative electrode plates are obtained by filling each of the paste-like active materials described above into a current collector, aging and drying. The current collector can be produced by an expanding method, a casting method, a forging method, or the like.

本実施形態の制御弁式鉛蓄電池では、例えば、図1に示すように、鉛蓄電池を組み立て、所定量の電解液を注入して電槽化成を行えばよい。電槽に複数のセル室を設けるときは、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池を構成すればよい。また、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列又は直列に接続し、所定の電圧、容量の電池を構成することができる。   In the control valve type lead storage battery of the present embodiment, for example, as shown in FIG. 1, a lead storage battery is assembled, and a predetermined amount of electrolyte is injected to form a battery case. When a plurality of cell chambers are provided in the battery case, electrode plate groups are accommodated in each cell chamber, and a predetermined polarity is obtained by mutually connecting between the electrode plate groups accommodated in the adjacent cell chambers and the opposite polarity straps. A lead storage battery having a rated voltage and a rated capacity may be configured. In the case of a single-cell battery case, terminals of a plurality of lead storage batteries can be connected in parallel or in series using a conductive plate to constitute a battery having a predetermined voltage and capacity.

以下、本発明の実施例について説明する。以下の実施例及び比較例では次に説明する正極板と負極板を共通して用いた。   Examples of the present invention will be described below. In the following examples and comparative examples, a positive electrode plate and a negative electrode plate described below were used in common.

<正極板の作製>
鉛−カルシウム−スズ合金(カルシウム含有量:0.08%、スズ含有量:1.6%の質量比)を溶融し、鋳造方式によって、縦:116.0mm、横:58.0mm、厚さ:4.05mmの格子体(集電体)を作製した。一酸化鉛を主成分とする鉛粉100%に対して、PET繊維を0.15%、水を16%、比重1.280の希硫酸を17%の質量比で加えて、混練して得られたペースト状活物質を格子体に充填した。格子体にペースト状活物質を充填した後、以下の熟成、乾燥条件を経て正極未化板を作製した。
熟成条件1:温度:80℃、湿度:98%、時間:10時間
熟成条件2:温度:65℃、湿度:75%、時間:13時間
熟成条件3:温度:40℃、湿度:65%、時間:40時間
乾燥条件 :温度:60℃、時間:24時間
<Preparation of positive electrode plate>
A lead-calcium-tin alloy (calcium content: 0.08%, tin content: 1.6% mass ratio) is melted and length: 116.0 mm, width: 58.0 mm, thickness, depending on the casting method : A 4.05 mm grid (current collector) was produced. Obtained by kneading with 0.15% PET fiber, 16% water, and 17% dilute sulfuric acid with a specific gravity of 1.280 for 100% lead powder containing lead monoxide as a main component. The obtained paste-like active material was filled into a lattice. After filling the lattice body with the paste-like active material, a positive electrode unformed plate was produced through the following aging and drying conditions.
Aging condition 1: temperature: 80 ° C., humidity: 98%, time: 10 hours Aging condition 2: temperature: 65 ° C., humidity: 75%, time: 13 hours Aging condition 3: temperature: 40 ° C., humidity: 65% Time: 40 hours Drying conditions: Temperature: 60 ° C, Time: 24 hours

<負極板の作製>
鉛−カルシウム−スズ合金(カルシウム含有量:0.1%、スズ含有量:0.2%の質量比)を溶融し、鋳造方式によって、縦:116.0mm、横:58.0mm、厚さ:2.5mmの格子体(集電体)を作製した。一酸化鉛を主成分とする鉛粉100%に対して、PET繊維を0.03%、硫酸バリウムを1.0%、水を10%、水にリグニンスルホン酸塩を溶解させた10%濃度水溶液0.2%、比重1.280の希硫酸を14%の質量比で加えた後、混練して調製したペースト状活物質を格子体に充填した。格子体にペースト状活物質を充填した後、以下の条件で熟成、乾燥を行い、負極未化板を作製した。
熟成条件:温度:40℃、湿度:98%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
<Preparation of negative electrode plate>
A lead-calcium-tin alloy (calcium content: 0.1%, tin content: 0.2% mass ratio) is melted and length: 116.0 mm, width: 58.0 mm, thickness, depending on the casting method : A 2.5 mm grid (current collector) was produced. 10% concentration of 0.03% PET fiber, 1.0% barium sulfate, 10% water, and lignin sulfonate dissolved in water for 100% lead powder containing lead monoxide as the main component After adding dilute sulfuric acid having an aqueous solution of 0.2% and a specific gravity of 1.280 at a mass ratio of 14%, a paste-like active material prepared by kneading was filled in the lattice. After the paste body was filled with the paste-like active material, it was aged and dried under the following conditions to produce a negative electrode unformed plate.
Aging condition: Temperature: 40 ° C., Humidity: 98%, Time: 40 hours Drying condition: Temperature: 60 ° C., Time: 24 hours

<リテーナの作製>
表1を参照して実施例及び比較例に係るリテーナ(ガラス不織布)について説明をする。繊維径が1.0μm以下のガラス繊維を50質量%〜75質量%、繊維径が1.0μm超4.0μm以下のガラス繊維を25質量%〜50質量%、全ガラス繊維質量に対して凝集剤として硫酸アルミニウムを3質量%、結着材としてポリプロピレンエマルジョン樹脂を5質量%加えて混抄し、2.3g/m目付けのガラス不織布とした。
<Production of retainer>
With reference to Table 1, the retainer (glass nonwoven fabric) which concerns on an Example and a comparative example is demonstrated. Glass fiber having a fiber diameter of 1.0 μm or less is 50% by mass to 75% by mass, glass fiber having a fiber diameter of more than 1.0 μm and 4.0 μm or less is 25% by mass to 50% by mass, and aggregates with respect to the total glass fiber mass. 3% by mass of aluminum sulfate as an agent and 5% by mass of a polypropylene emulsion resin as a binder were added to make a glass nonwoven fabric having a basis weight of 2.3 g / m 2 .

<電池の作製>
作製した未化成正極板三枚と未化成負極板四枚を、作製したガラス不織布を介して交互に積層し極板群を作製した。作製した極板群を、電槽へ挿入し、正極端子及び負極端子を極板群に溶接した後、電槽を密閉した。次にアルミニウムイオン濃度0〜0.25mol/Lの希硫酸を主成分とする電解液を排気栓口から注入した後、電槽化成を行った。これにより、制御弁式鉛蓄電池を得た。電槽化成条件は、水槽中で水温度:40℃、課電量:正極活物質の理論化成電気量に対し250%、時間:60時間とした。
<Production of battery>
Three prepared unformed positive electrode plates and four unformed negative electrode plates were alternately laminated through the produced glass nonwoven fabric to prepare an electrode plate group. The prepared electrode plate group was inserted into the battery case, and after the positive electrode terminal and the negative electrode terminal were welded to the electrode plate group, the battery case was sealed. Next, an electrolytic solution containing dilute sulfuric acid having an aluminum ion concentration of 0 to 0.25 mol / L as a main component was injected from the exhaust plug port, and then a battery case was formed. Thereby, the control valve type lead acid battery was obtained. The battery tank formation conditions were as follows: water temperature: 40 ° C., amount of electricity applied: 250% of the theoretical amount of electricity generated by the positive electrode active material, and time: 60 hours.

(放電試験)
定格容量確認試験は、0.05CAにて行った。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、0.05CAで終止電圧1.75Vまで放電し、そのときの放電容量を測定した。その後、雰囲気温度25℃中で、0.1CAの電流値で設定電圧2.45Vまで定電流充電し、2.45Vで定電圧充電する定電流―定電圧充電を16時間実施して満充電状態とした。
(Discharge test)
The rated capacity confirmation test was conducted at 0.05 CA. That is, after the fully-charged control valve type lead storage battery was allowed to stand at 25 ° C. for 24 hours, it was discharged at 0.05 CA to a final voltage of 1.75 V, and the discharge capacity at that time was measured. After that, constant current-constant voltage charging is performed for 16 hours at a constant current charge of 2.45V at a current value of 0.1 CA and constant voltage charge at 2.45V at an ambient temperature of 25 ° C. It was.

高率放電容量確認試験は、3.0CAにて行った。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、3.0CAで終止電圧1.6Vまで放電し、そのときの放電容量を測定した。その後、雰囲気温度25℃中で、0.1CAの電流値で設定電圧2.45Vまで定電流充電し、2.45Vで定電圧充電する定電流―定電圧充電して満充電状態とした。   The high rate discharge capacity confirmation test was conducted at 3.0 CA. That is, the control valve type lead-acid battery after being fully charged was allowed to stand at 25 ° C. for 24 hours, and then discharged to 3.0 V at a final voltage of 1.6 V, and the discharge capacity at that time was measured. Thereafter, a constant current charge to a set voltage of 2.45 V at a current value of 0.1 CA at an ambient temperature of 25 ° C., and a constant current-constant voltage charge at a constant voltage of 2.45 V were performed to obtain a fully charged state.

(寿命試験)
雰囲気温度25℃中に24時間放置した満充電後の制御弁式鉛蓄電池を2.275Vの定電圧充電を22時間実施した。その後、0.2CAで定格容量の40%まで放電し、0.2CAで2.275Vまで充電し、2.275Vで定電圧充電する定電流―定電圧充電をするサイクル実施した。0.2CAで定格容量の40%まで放電したときの放電末期電圧が1.4Vとなったときを電池寿命とした。
(Life test)
The control valve type lead-acid battery after full charge, which was allowed to stand for 24 hours at an ambient temperature of 25 ° C., was subjected to constant voltage charge of 2.275 V for 22 hours. After that, the battery was discharged at 0.2 CA to 40% of the rated capacity, charged to 0.275 V at 0.2 CA, and constant current-constant voltage charging was performed at a constant voltage of 2.275 V. The battery life was determined when the final discharge voltage when discharging to 40% of the rated capacity at 0.2 CA was 1.4V.

<試験結果>
作製したガラス不織布中の繊維径1.0μm以下のガラス繊維の質量、制御弁式鉛蓄電池の定格容量、3CA放電容量及び寿命性能を、比較例1を基準とした比率で表2に示す。表2より、1.0μm以下ガラス繊維本数比率が55〜70の範囲で定格容量比、3CA放電容量比、寿命性能比共に向上した。これは、1.0μm以下ガラス繊維本数比率が高くなると同体積中のガラス表面積が増え、ガラス表面中の水酸基が多くなるため、電解液の受け渡しが良好となったためと考えられる。また、1.0μm以下ガラス繊維本数比率を高くすると電解液を注入した際に生じるガラス不織布ヘタリがへり、電極の加圧が十分に確保されるため、寿命性能が向上したと考えられる。また、1.0μm以下ガラス繊維本数比率が70%を超えると、ガラス不織布の構造が非常に脆弱になり、電槽化成中のガス発生及び液拡散によって構造を維持できなくなり、構造破壊され、電解液が保てなくって電池特性が著しく低下したと考えられる。
<Test results>
Table 2 shows the mass of the glass fiber having a fiber diameter of 1.0 μm or less, the rated capacity of the control valve type lead storage battery, the 3CA discharge capacity, and the life performance in the produced glass nonwoven fabric in ratios based on Comparative Example 1. From Table 2, both the rated capacity ratio, the 3CA discharge capacity ratio, and the life performance ratio were improved when the glass fiber number ratio of 1.0 μm or less was in the range of 55 to 70. This is considered to be because the glass surface area in the same volume increases as the glass fiber number ratio of 1.0 μm or less increases, and the number of hydroxyl groups in the glass surface increases, so that the electrolyte solution is delivered better. In addition, when the glass fiber number ratio is increased to 1.0 μm or less, the glass nonwoven fabric is loosened when the electrolytic solution is injected, and the pressurization of the electrode is sufficiently ensured. Moreover, when the glass fiber number ratio of 1.0 μm or less exceeds 70%, the structure of the glass nonwoven fabric becomes very fragile, the structure cannot be maintained due to gas generation and liquid diffusion during the formation of the battery case, the structure is destroyed, and the electrolysis It is thought that the battery characteristics were significantly deteriorated because the liquid could not be maintained.

表2の比較例1,2より、電槽化成後の電解液中アルミニウムイオン濃度が高いと放電性能が低下したが、1.0μm以下ガラス繊維本数比率55〜70の範囲ではアルミニウムイオンによる放電性能低下が軽減された。1.0μm以下ガラス繊維本数比率が高くなると同体積中のガラス表面積が増え、ガラス表面中の水酸基が多くなるため、電解液中のアルミニウムイオンはガラス繊維表面にトラップされ易く、正極反応の阻害を防止するためと考えられる。また、アルミニウムイオンの効果によってアルミニウムイオンの濃度が高くなるほど充電性能が向上し、集電体と正極活物質界面に生成する硫酸鉛層の生成を抑制したため、寿命性能が向上したと考えられる。   From Comparative Examples 1 and 2 in Table 2, the discharge performance declined when the aluminum ion concentration in the electrolyte solution after battery case formation was high, but in the range of 1.0 μm or less glass fiber number ratio 55 to 70, the discharge performance by aluminum ions The decrease was reduced. When the glass fiber number ratio is 1.0 μm or less, the glass surface area in the same volume increases, and the number of hydroxyl groups in the glass surface increases. Therefore, aluminum ions in the electrolytic solution are easily trapped on the glass fiber surface and inhibit the positive electrode reaction. It is thought to prevent. In addition, it is considered that the life performance is improved because the charging performance is improved as the concentration of aluminum ions is increased due to the effect of aluminum ions, and the generation of the lead sulfate layer generated at the interface between the current collector and the positive electrode active material is suppressed.

Figure 2017224483
Figure 2017224483

Figure 2017224483
Figure 2017224483

本発明によれば、良好な放電性能を有するとともに、数ヶ月おきに放電深度30%程度の放電を実施するスタンバイユースで運用されても良好な寿命特性を有する鉛蓄電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, while having favorable discharge performance, even if it is operated by the standby use which discharges about 30% of discharge depth every several months, the lead storage battery which has a favorable lifetime characteristic is provided.

1…鉛蓄電池、2…正極板、3…負極板、4…セパレータ、5…電槽、6…蓋体。 DESCRIPTION OF SYMBOLS 1 ... Lead storage battery, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4 ... Separator, 5 ... Battery case, 6 ... Cover body.

Claims (2)

正極板と、
負極板と、
前記正極板と前記負極板との間に設けられたガラス不織布と、
アルミニウムイオンを含む電解液と、
を備え、
前記ガラス不織布が当該ガラス不織布を構成するガラス繊維の全質量100質量部に対して繊維径1.0μm以下のガラス繊維を55〜70質量部含み、
満充電状態を100%とすると、95〜100%の充電状態で運用される鉛蓄電池。
A positive electrode plate;
A negative electrode plate;
A glass nonwoven fabric provided between the positive electrode plate and the negative electrode plate;
An electrolyte containing aluminum ions;
With
The glass nonwoven fabric contains 55 to 70 parts by mass of glass fiber having a fiber diameter of 1.0 μm or less with respect to 100 parts by mass of the total mass of the glass fibers constituting the glass nonwoven fabric.
A lead-acid battery operated in a charged state of 95 to 100% when the fully charged state is 100%.
前記電解液のアルミニウムイオン濃度が0.002〜0.2mol/Lである、請求項1に記載の鉛蓄電池。   The lead acid battery of Claim 1 whose aluminum ion concentration of the said electrolyte solution is 0.002-0.2 mol / L.
JP2016118906A 2016-06-15 2016-06-15 Lead acid battery Active JP6699383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118906A JP6699383B2 (en) 2016-06-15 2016-06-15 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118906A JP6699383B2 (en) 2016-06-15 2016-06-15 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2017224483A true JP2017224483A (en) 2017-12-21
JP6699383B2 JP6699383B2 (en) 2020-05-27

Family

ID=60687194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118906A Active JP6699383B2 (en) 2016-06-15 2016-06-15 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6699383B2 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199236A (en) * 1975-02-26 1976-09-01 Yuasa Battery Co Ltd
JPS56114288A (en) * 1980-02-14 1981-09-08 Yuasa Battery Co Ltd Sealed lead battery and its manufacture
JPS60101861A (en) * 1983-11-08 1985-06-05 Matsushita Electric Ind Co Ltd Separator for hermetically sealed lead battery
JPS60216442A (en) * 1984-04-09 1985-10-29 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS62223968A (en) * 1986-03-26 1987-10-01 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH01253154A (en) * 1988-03-31 1989-10-09 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH0266850A (en) * 1988-08-31 1990-03-06 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH08236143A (en) * 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd Sealed type lead-acid battery
JPH097574A (en) * 1995-06-14 1997-01-10 Japan Storage Battery Co Ltd Separator for storage battery and sealed lead acid battery using this separator
JP2001023598A (en) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery
US20050181284A1 (en) * 2001-12-29 2005-08-18 Barry Culpin Energy storage devices
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
CN102891272A (en) * 2012-09-28 2013-01-23 松下蓄电池(沈阳)有限公司 Lead storage battery
JP2013084362A (en) * 2011-10-06 2013-05-09 Gs Yuasa Corp Lead battery
JP2014157703A (en) * 2013-02-15 2014-08-28 Panasonic Corp Lead accumulator
WO2015163287A1 (en) * 2014-04-22 2015-10-29 日立化成株式会社 Bisphenol resin, electrode, and lead-acid battery

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199236A (en) * 1975-02-26 1976-09-01 Yuasa Battery Co Ltd
JPS56114288A (en) * 1980-02-14 1981-09-08 Yuasa Battery Co Ltd Sealed lead battery and its manufacture
JPS60101861A (en) * 1983-11-08 1985-06-05 Matsushita Electric Ind Co Ltd Separator for hermetically sealed lead battery
JPS60216442A (en) * 1984-04-09 1985-10-29 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS62223968A (en) * 1986-03-26 1987-10-01 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH01253154A (en) * 1988-03-31 1989-10-09 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH0266850A (en) * 1988-08-31 1990-03-06 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH08236143A (en) * 1995-02-23 1996-09-13 Matsushita Electric Ind Co Ltd Sealed type lead-acid battery
JPH097574A (en) * 1995-06-14 1997-01-10 Japan Storage Battery Co Ltd Separator for storage battery and sealed lead acid battery using this separator
JP2001023598A (en) * 1999-07-05 2001-01-26 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2003051334A (en) * 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The Sealed lead-acid battery
US20050181284A1 (en) * 2001-12-29 2005-08-18 Barry Culpin Energy storage devices
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
JP2013084362A (en) * 2011-10-06 2013-05-09 Gs Yuasa Corp Lead battery
CN102891272A (en) * 2012-09-28 2013-01-23 松下蓄电池(沈阳)有限公司 Lead storage battery
JP2014157703A (en) * 2013-02-15 2014-08-28 Panasonic Corp Lead accumulator
WO2015163287A1 (en) * 2014-04-22 2015-10-29 日立化成株式会社 Bisphenol resin, electrode, and lead-acid battery

Also Published As

Publication number Publication date
JP6699383B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
US5156935A (en) Lead-acid battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP5396216B2 (en) Lead acid battery
JP2002141066A (en) Control valve type lead acid battery
JP6544126B2 (en) Control valve type lead storage battery
JP6699383B2 (en) Lead acid battery
JP7128482B2 (en) lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2014179229A (en) Positive electrode plate for lead storage batteries, and control valve type lead storage battery arranged by use thereof
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
KR20120010873A (en) Lead storage battery
WO2015064535A1 (en) Separator for valve-regulated lead battery and control valve-regulated lead battery using same
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP6447866B2 (en) Control valve type lead storage battery manufacturing method
JP2536082B2 (en) Lead acid battery
KR102138270B1 (en) Manufacturing method of negative electrode coated with activated carbon as active materials for ultra battery and ultra battery comprising negative electrode for ultra battery manufactured the same
KR20100086689A (en) Nickel-metal hydride secondary battery comprising cathode, anode or separator surface-modified with gel electrolyte for coating
JPH02177260A (en) Closed type lead accumulator
JPH0254871A (en) Lead battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same
JP2022138753A (en) Lead-acid battery
WO2024035663A2 (en) Titanium dioxide in flooded deep cycle lead-acid batteries
KR20200057465A (en) Composition of lead-carbon electrode paste, and manufacturing method of the paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250