JP2017220354A - 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム - Google Patents

運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム Download PDF

Info

Publication number
JP2017220354A
JP2017220354A JP2016113655A JP2016113655A JP2017220354A JP 2017220354 A JP2017220354 A JP 2017220354A JP 2016113655 A JP2016113655 A JP 2016113655A JP 2016113655 A JP2016113655 A JP 2016113655A JP 2017220354 A JP2017220354 A JP 2017220354A
Authority
JP
Japan
Prior art keywords
fuel cell
unit
power
heat demand
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113655A
Other languages
English (en)
Inventor
酢山 明弘
Akihiro Suyama
明弘 酢山
和人 久保田
Kazuto Kubota
和人 久保田
清高 松江
Kiyotaka Matsue
清高 松江
俊昭 枝広
Toshiaki Edahiro
俊昭 枝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016113655A priority Critical patent/JP2017220354A/ja
Publication of JP2017220354A publication Critical patent/JP2017220354A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラムを提供することである。【解決手段】実施形態の運転計画装置は、予測部と、計画部とを持つ。予測部は、熱需要を予測する。計画部は、燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに熱需要に基づいて決定し、第1期間における熱需要を満たす蓄積量である目標蓄熱量と評価値とに基づいて燃料電池の運転計画を所定の時間帯ごとに作成する。【選択図】図1

Description

本発明の実施形態は、運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラムに関する。
燃料電池装置は、需要家の電力需要を賄うために、都市ガスなどの燃料を用いて発電した電力を電力負荷に供給する。燃料電池装置は、需要家の熱需要を賄うために、発電による熱エネルギーを給湯負荷に供給する。しかしながら、運転計画装置は、燃料電池装置を有する需要家における熱需要を満たした上で、エネルギーコストの削減効率を向上させることができない場合があった。
特開2010−67512号公報 特開2014−96866号公報
本発明が解決しようとする課題は、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラムを提供することである。
実施形態の運転計画装置は、予測部と、計画部とを持つ。予測部は、熱需要を予測する。計画部は、燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに熱需要に基づいて決定し、第1期間における熱需要を満たす蓄積量である目標蓄熱量と評価値とに基づいて燃料電池の運転計画を所定の時間帯ごとに作成する。
第1実施形態における、電力システムの構成の例を示す図。 第1実施形態における、電力システムの動作の例を示す図。 第1実施形態における、運転計画部の動作の例を示す図。 第1実施形態における、運転計画部の動作の例を示すフローチャート。 第1実施形態における、現在蓄熱量の例を示す図。 第2実施形態における、運転計画部の動作の例を示すフローチャート。 第3実施形態における、発電コストの例を示す図。 第3実施形態における、運転計画部の動作の例を示すフローチャート。
以下、実施形態の運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラムを、図面を参照して説明する。
(第1の実施形態)
図1は、電力システム1の構成の例を示す図である。電力システム1は、電力を発電するためのシステムである。電力システム1は、系統電力部2と、電力負荷3と、給湯負荷4と、燃料電池装置5とを備える。電力システム1は、太陽光発電装置6及び蓄電装置7の少なくとも一方を更に備えてもよい。
系統電力部2は、電力負荷3に電力を供給する発電装置である。系統電力部2は、蓄電装置7に電力を供給してもよい。系統電力部2は、例えば、電力事業者によって管理される。
電力負荷3は、電力を消費する機器である。電力負荷3は、例えば、系統電力部2から供給された電力を消費する。電力負荷3は、燃料電池装置5から供給された電力を消費してもよい。電力負荷3は、太陽光発電装置6から供給された電力を消費してもよい。電力負荷3は、蓄電装置7から供給された電力を消費してもよい。電力需要測定装置は、電力負荷3の電力需要を表す測定値を、燃料電池装置5に送信する。
給湯負荷4は、需要家における熱需要に応じて、熱エネルギーを消費する。熱エネルギーは、湯などの熱媒体を用いて供給される。すなわち、給湯負荷4は、燃料電池装置5から供給された湯の熱エネルギーを消費する。熱需要測定装置は、給湯負荷4の熱需要の測定値を、燃料電池装置5に送信する。
燃料電池装置5(Fuel cell apparatus)は、電気化学反応によって発電する装置である。燃料電池装置5は、需要家によって管理される。燃料電池装置5は、例えば、需要家の敷地に備えられる。燃料電池装置5は、発電電力を電力負荷3に供給する。燃料電池装置5は、発電電力を蓄電装置7に供給してもよい。
太陽光発電装置6(Photovoltaics power generator)は、太陽光を用いて発電した電力を、電力負荷3に供給する。太陽光発電装置6は、太陽光を用いて発電した電力を、蓄電装置7に供給してもよい。太陽光発電装置6の発電電力は、系統電力部2に売電されてもよい。
蓄電装置7は、系統電力部2から供給された電力を蓄積する。蓄電装置7は、燃料電池装置5から供給された電力を蓄積してもよい。蓄電装置7は、太陽光発電装置6から供給された電力を蓄積してもよい。蓄電装置7は、蓄積した電力を電力負荷3に供給する。蓄電装置7は、例えば、蓄電池である。蓄電装置7は、例えば、宅内の機器に充電又は放電するための電気自動車(EV: Electric Vehicle)充電システムでもよい。
次に、燃料電池装置5の構成を説明する。
燃料電池装置5は、情報取得部50と、運転計画部51と、制御部52と、燃料電池部53(Fuel Cell)と、熱交換部54と、貯湯槽55とを備える。情報取得部50と運転計画部51と制御部52とのうち一部又は全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、記憶部に記憶されたプログラムを実行することにより機能するソフトウェア機能部である。情報取得部50と運転計画部51と制御部52とのうち一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。
情報取得部50と運転計画部51と制御部52とは、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記録媒体)を有する。運転計画部51の記憶部は、例えば、履歴データベースを記憶する。情報取得部50と運転計画部51と制御部52とは、例えば、RAMやレジスタなどの揮発性の記憶媒体を有していてもよい。
情報取得部50は、各種情報を外部サーバから取得する。情報取得部50は、各種情報を燃料電池装置5のインタフェース端末から取得してもよい。各種情報は、例えば、電気料金単価情報、熱需要情報、電力需要情報、気象情報である。情報取得部50は、料金情報取得部500と、気象情報取得部501と、需要情報取得部502とを備える。
料金情報取得部500は、時間帯に対応付けられた電気料金単価情報を取得する。電気料金は、予め定められた予測対象日において変動してもよい。電気料金単価情報は、デマンドレスポンス信号に対応付けられた電気料金単価情報でもよい。電気料金単価は、リアルタイムプライシングに基づいて更新された電気料金単価でもよい。料金情報取得部500は、時間帯に対応付けられたガス料金単価を取得する。料金情報取得部500は、時間帯に対応付けられた売電単価を取得する。売電単価は、例えば、太陽光発電装置6の発電電力の売電単価である。気象情報取得部501は、天気予報などの気象情報を、定期的に外部サーバから取得する。
需要情報取得部502は、給湯負荷4の熱需要の測定値を、所定時間間隔で取得する。所定時間間隔は、例えば、1時間である。需要情報取得部502は、給湯負荷4の熱需要の測定値を、時刻に対応付けて履歴データベースに登録する。需要情報取得部502は、燃料電池部53の燃料購入量、燃料電池部53の発電電力、貯湯槽55の蓄熱量を、時刻に対応付けて履歴データベースに登録してもよい。履歴データベースは、運転計画部51の記憶部に記憶されている。需要情報取得部502は、太陽光発電装置6の発電電力の測定値を取得してもよい。
運転計画部51(運転計画装置)は、燃料電池部53の運転計画を、所定周期で作成する。運転計画は、例えば、未来における予測対象日について、燃料電池部53の起動又は停止の時刻を表す。運転計画は、例えば、未来における予測対象日について、燃料電池部53の発電電力(出力)の値を時刻ごとに表す。所定周期は、例えば、30分周期である。燃料電池部53の発電電力値は、燃料電池部53の最低出力値と定格出力値との間の値である。
運転計画部51は、予測部510と、計画部511と、記憶部512とを備える。予測部510は、給湯負荷4の熱需要の測定値を、需要情報取得部502から取得する。予測部510は、給湯負荷4の熱需要の測定値を、時刻に対応付けて記憶部512に記憶させる。すなわち、予測部510は、給湯負荷4の熱需要の測定値を履歴データベースに登録することによって、履歴データベースを更新する。予測部510は、気象情報を履歴データベースに登録することによって、履歴データベースを更新してもよい。
予測部510は、過去の所定時間における給湯負荷4の熱需要の測定値を、記憶部512の履歴データベースから取得する。過去の所定時間は、例えば、現在時刻から過去の1週間である。予測部510は、給湯負荷4の熱需要の測定値に基づいて、未来における予測対象日について給湯負荷4の熱需要を時間帯ごとに予測する。予測部510は、例えば、1時間ごとの給湯負荷4の熱需要を予測してもよい。予測部510は、例えば、過去の1週間について、給湯負荷4の熱需要の平均値を1時間単位で算出する。予測部510は、例えば、1時間単位で算出された熱需要の平均値を、1時間ごとの給湯負荷4の熱需要の予測値と定める。
予測部510は、未来における予測対象日の24時間について、過去の所定時間における電力負荷3の電力需要を表す測定値に基づいて電力負荷3の電力需要を時間帯ごとに予測する。予測部510は、未来における予測対象日について、過去の所定時間における太陽光発電装置6の発電電力の測定値に基づいて太陽光発電装置6の発電電力を時間帯ごとに予測する。予測部510は、過去の所定時間における給湯負荷4の熱需要の測定値に基づいて、太陽光発電装置6又は燃料電池部53の発電電力が電力需要に対して余剰となる時間帯を予測する。発電電力が余剰となると予想された時間帯は、例えば、開始時刻及び終了時刻を用いて表現される。
以下、Nは、時間長を表す。Nは、例えば、1以上24以下の整数である。以下、Nは一例として10である。予測部510は、例えば、現在時刻からN時間後の時刻における貯湯槽55の蓄熱量の予測値を定める。nは、1以上N以下の整数である。以下、nは、一例として8である。予測部510は、例えば、現在時刻からn時間後の時刻における貯湯槽55の蓄熱量の予測値を定める。
計画部511は、電気料金単価情報を料金情報取得部500から取得する。計画部511は、ガス料金単価情報(燃料料金単価情報)を、料金情報取得部500から取得する。計画部511は、売電単価情報を取得してもよい。計画部511は、気象情報を気象情報取得部501から取得する。計画部511は、1時間ごとの給湯負荷4の熱需要の予測値を、予測部510から取得する。
計画部511は、1時間ごとの給湯負荷4の熱需要の予測値に基づいて、貯湯槽55の蓄熱量の目標値(以下、「目標蓄熱量」という。)(第1の目標蓄熱量)を決定する。計画部511は、現在時刻からN時間後まで(第1期間)の給湯負荷4の熱需要の測定値を合計する。計画部511は、現在時刻からN時間後までの給湯負荷4の熱需要の測定値の合計結果を、目標蓄熱量と定める。
計画部511は、運転計画を作成する対象日における熱需要と対象日よりも前における熱需要との差に基づいて、第1期間の時間長を決定する。例えば、計画部511は、運転計画を作成する対象日における熱需要と対象日の前日における熱需要との差が閾値以上である場合、第1期間を一定期間(初期値)よりも短くする。
計画部511は、第1期間において熱需要が満たされている場合、燃料電池の発電電力の余剰分を蓄電装置7に蓄電させる。計画部511は、第1期間において熱需要が満たされている場合、太陽光発電電力の余剰分を蓄電装置7に蓄電させる。
計画部511は、現在時刻における貯湯槽55の蓄熱量(以下、「現在蓄熱量」という。)と目標蓄熱量との差を算出する。以下、現在蓄熱量と目標蓄熱量との差を「蓄熱量差」という。計画部511は、蓄熱量差ΔQの熱量をn時間で貯湯槽55に回収するように、運転計画を所定周期で作成する。
計画部511は、蓄熱量差ΔQに基づいて、停止中の燃料電池部53を起動させるか否かを判定する。計画部511は、蓄熱量差ΔQに基づいて、起動中の燃料電池部53を停止させるか否かを判定する。
燃料電池部53は、1日のうち最初の正時(熱需要の少ない時間帯の前)の時点で貯湯槽55の熱量が満蓄になっている場合には、発電を続けても熱電併給(コージェネレーション)のメリットを活かすことができない。燃料電池部53は、熱電併給のメリットを活かすことができない場合、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができない。そこで、起動中の燃料電池部53を停止させるための条件は、例えば、1日のうち最初の正時の時点で貯湯槽55の熱量が満蓄になっているという条件である。1日のうち最初の正時とは、午前0時でもよいし、午前1時でもよい。停止中の燃料電池部53を起動させるための条件は、例えば、現在蓄熱量が目標蓄熱量未満であるという条件である。計画部511は、これらの条件を判定することによって、熱需要に対して十分な熱量を給湯負荷4に供給することができる。
計画部511は、燃料電池部53が起動中(発電中)である場合、蓄熱量差ΔQを算出する。計画部511は、蓄熱量差ΔQの熱量をn時間(8時間)で貯湯槽55に蓄熱させる運転計画を、所定周期で作成する。以下、燃料電池部が発電及び蓄熱しない場合と比較して燃料電池部が発電及び蓄熱した場合に削減されるエネルギーコストを表す評価値を、「発電メリット値」という。
計画部511は、発電メリット値を算出する。計画部511は、発電メリット値が高い時間帯において燃料電池部53の発電電力が高くなるように、熱需要を満たす運転計画を作成する。すなわち、計画部511は、発電メリット値が低い時間帯において燃料電池部53の発電電力が低くなるように、熱需要を満たす運転計画を作成する。電力需要に対して太陽光発電電力が余剰となっている場合、時刻tにおける発電メリット値は、式(1)のように表される。
発電メリット値(t)
=PV売電単価(t)
+ガス料金単価(t)/ボイラ効率
−ガス料金単価(t)/発電効率(P(t)) …(1)
発電メリット値(t)の単位は、(円/kWh)である。したがって、燃料電池部53は、評価値である発電メリット値の値が大きいほど、小さいコストで発電することができる。PV売電単価(t)は、太陽光発電装置6の発電電力の売電単価(売電価格)である。ガス料金単価(t)は、燃料電池部53が取得した燃料(ガス)の単価である。(ガス料金単価(t)/ボイラ効率)の単位は、補助ボイラの排熱量を電力量(kWh)に換算した結果に基づいて表現される。ボイラ効率は、燃料電池部53に関する第1の効率である。P(t)は、時刻tにおける燃料電池部53の発電電力(運転計画)を表す。P(t)の単位は(kW)である。発電効率(P(t))は、時刻tにおける燃料電池部53の発電効率を表す。燃料電池部53の発電効率は、燃料電池部53に関する第2の効率である。計画部511は、燃料電池部53の燃料購入量と燃料電池部53の燃料料金と燃料電池部53の発電電力とに基づいて、燃料電池部53に関する効率を決定してもよい。
電力需要に対して太陽光発電電力が余剰となっていない場合、時刻tにおける発電メリット値は、式(2)のように表される。したがって、電力システム1が太陽光発電装置6を備えない場合、時刻tにおける発電メリット値は、式(2)のように表される。
発電メリット値(t)
=電気料金単価(t)
+ガス料金単価(t)/ボイラ効率
−ガス料金単価(t)/発電効率(P(t)) …(2)
計画部511は、現在時刻t0からn時間(8時間)後までの発電メリット値の合計値Mを算出する。合計値Mは、式(3)のように表される。
M=Σt=0..8{発電メリット値(t)} …(3)
計画部511は、現在時刻(t0)からn時間(8時間)後までの1時間ごとの発電メリット値を合計値Mで除算した結果を、重み値W(t)と定める。重み値W(t)は、式(4)のように表される。なお、計画部511は、発電メリット値が負値となった場合、発電メリット値を0として扱う。
W(t)=発電メリット値(t)/M …(4)
燃料電池部53が一定発電電力Pconst(kW)でn時間にわたり発電する場合、式(5)が成り立つ。
const=発電効率(Pconst)×ΔQ(Pconst)/排熱回収効率(Pconst) …(5)
発電効率(Pconst)は、燃料電池部53の発電効率である。排熱回収効率(Pconst)は、燃料電池部53の補助ボイラなどの排熱回収効率である。発電効率(Pconst)及び排熱回収効率(Pconst)は、燃料電池部53について予め定められた関数である。発電効率(Pconst)は、発電電力ごとに定められた異なる発電効率の補間値でもよい。排熱回収効率(Pconst)は、発電電力ごとに定められた異なる排熱回収効率の補間値でもよい。
時刻tにおける燃料電池部53の発電電力P(t)は、式(6)のように表される。
P(t)=Pconst×W(t) …(6)
計画部511は、発電電力P(t)が電力需要Pdmに対して余剰となると予想された時間帯について、燃料電池部53の運転計画を作成する。すなわち、計画部511は、発電電力P(t)が電力需要Pdmに対して余剰となると予想された時間帯について、式(1)〜(4)と式(6)とを用いて、時刻tにおける燃料電池部53の発電電力P(t)を算出する。
計画部511は、発電電力P(t)に基づく設定値Pconを、リアルタイムで制御部52に送信する。すなわち、計画部511は、作成した運転計画に応じた設定値Pconを、発電電力P(t)の算出後から所定時間内に制御部52に送信する。
計画部511は、燃料電池部53の発電電力P(t)の上限Pmax及び下限Pminと、電力需要Pdmとに基づいて、設定値Pcon(kW)を式(7)のように算出する。
con=Max{Min{Min{P(t),Pmax},Pdm},Pmin} …(7)
Max{A,B}は、A及びBのうち大きい値を表す。Min{A,B}は、AとBに対し小さい値を表す。これによって、計画部511は、発電電力P(t)の上限Pmax及び下限Pminの範囲内で、電力需要Pdmを上回らないように設定値Pconを定めることができる。
計画部511は、設定値Pconを更新する。これによって、計画部511は、予測とは異なる熱需要Pdmが生じて貯湯槽55の蓄熱量が変化した場合でも、未来における熱需要Pdmのピークに備えて貯湯槽55の蓄熱量を適切に確保することができる。
計画部511は、現在時刻からn時間後までの間に発電メリット値(t)が大きい時間帯について、式(4)を用いて、重み値W(t)を相対的に大きく定める。すなわち、計画部511は、現在時刻からn時間後までの間に発電メリット値(t)が小さい時間帯について、式(4)を用いて、重み値W(t)を相対的に小さく定める。これによって、計画部511は、N時間後の目標時刻までに必要な熱量を生成しながら、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる。
計画部511は、未来における熱需要Pdmのピークに備えてN時間前(10時間前)から蓄熱を開始させるので、熱需要Pdmのピークの時刻が予測より(N−n)時間早くなっても、貯湯槽55の蓄熱量が無くなることを防ぐことができる。計画部511は、熱需要Pdmのピークの時刻が予測より遅くなっても、蓄熱が完了した時点で発電電力を低下させるため、貯湯槽55の蓄熱量が過剰となることを防ぐことができる。計画部511は、熱需要Pdmのピークの時刻まで十分な時間が残されている場合、蓄熱のペースを低く保つので、貯湯槽55から無駄に放熱することを防ぐことができる。計画部511は、燃料電池装置5の省エネルギー性を実現することができる。計画部511は、デマンドレスポンス又はリアルタイムプライシングによって電気料金単価が変動した場合でも、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる。
計画部511は、算出された発電電力P(t)に基づく設定値Pconを、制御部52に送信する。すなわち、計画部511は、作成した運転計画に応じた設定値Pconを、制御部52に送信する。
なお、計画部511は、電力負荷3に燃料電池部53から供給される電力が電力負荷3の電力需要Pdmを超えると予測された場合、燃料電池部53の発電電力を低下させるための運転計画に応じた値を、制御部52に送信する。これによって、計画部511は、系統電力部2に電力が逆潮流することを回避することができる。また、計画部511は、熱需要のピーク時刻まで時間が残されている場合には、貯湯槽55に蓄熱するペースを遅くすることによって、貯湯槽55から無駄に放熱することを防ぐことができる。
制御部52は、発電電力P(t)に基づく設定値Pconを、計画部511から取得する。制御部52は、燃料電池部53の発電電力である交流電力の測定値を、燃料電池部53から取得する。制御部52は、電力負荷3の電力需要Pdmを表す情報を、電力負荷3から取得する。
制御部52は、設定値Pconと交流電力の測定値と電力需要Pdmを表す情報とに基づいて、燃料電池部53の瞬時的な発電電力を決定する。すなわち、制御部52は、設定値Pconと交流電力の測定値と電力需要Pdmを表す情報とに基づいて、燃料電池部53の発電電力を所定時間内に決定する。制御部52は、燃料電池部53の発電電力を表す制御信号を生成する。制御信号は、例えば、設定値Pconを表す信号である。燃料電池部53の発電電力P(t)が電力負荷3の電力需要Pdm以上となることを回避するために、電力負荷3に追従(負荷追従)させた結果を表す信号でもよい。制御部52は、燃料電池部53の発電電力を表す制御信号を燃料電池部53に送信する。
燃料電池部53は、燃料取得部530と、改質部531と、燃料発電部532と、インバータ533とを備える。燃料電池部53は、補助ボイラ534を更に備えてもよい。燃料取得部530は、制御信号を制御部52から取得する。燃料取得部530は、制御信号に応じた量の燃料を取得する。燃料は、例えば、都市ガス、液化石油ガス、灯油である。燃料取得部530は、取得した燃料を改質部531に送る。
改質部531は、水素リッチなガス(改質ガス)を、改質処理によって燃料から生成する。改質部531は、水素リッチなガスを燃料発電部532に送る。
燃料発電部532は、水素リッチなガスを改質部531から取得する。燃料発電部532は、ガス中の水素と空気中の酸素とを反応させて発電する。燃料発電部532は、発電に応じて直流電力をインバータ533に送る。
インバータ533は、燃料発電部532から取得した直流電力を、予め定められた周波数の交流電力に変換する。インバータ533は、電力負荷3及び蓄電装置7の少なくとも一方に対して交流電力に供給する。インバータ533は、燃料電池部53の発電電力である交流電力の測定値を、制御部52に送信する。すなわち、インバータ533は、インバータ533が燃料電池装置5の外部に供給している電力の測定値を、制御部52に送信する。
補助ボイラ534は、燃料を取得する。補助ボイラ534は、給湯負荷4の熱需要に対して貯湯槽55の蓄熱量が不足する場合、給湯負荷4に必要な熱量を供給する。
熱交換部54は、燃料発電部532が発電した場合に発生した排熱を利用した熱交換処理によって水を温めて、湯(熱媒体)を生成する。熱交換部54は、生成した湯を貯湯槽55に収容する。
貯湯槽55は、収容している湯の少なくとも一部を給湯負荷4する。貯湯槽55は、収容している湯の少なくとも一部を熱交換部54に送ってもよい。
図2は、電力システム1の動作の例を示す図である。図2に示す斜線領域は、燃料電池部53の発電量を示す。図2では、0時から6時まででは、電気料金には夜間料金が適用される。6時から22時まででは、電気料金には昼間料金が適用される。22時から24時まででは、電気料金には夜間料金が適用される。昼間料金は、夜間料金よりも高い料金である。
蓄熱量100は、0時から24時までの蓄熱量の変化を示す。電力需要101は、0時から24時の電力需要を示す。太陽光発電電力102の線は、8時から16時までの太陽光発電電力を示す。熱需要103は、6時から8時までの熱需要を示す。熱需要104は、18時から20時までの熱需要を示す。熱需要105は、22時から23時までの熱需要を示す。
図2では、10時から15時まででは、太陽光発電電力102は、電力需要101に対して余剰となっている。10時から15時までにおける売電単価が1日のうち他の時間帯と比較して高いので、10時から15時までにおける太陽光発電装置6の発電メリット値は高い。したがって、10時から15時まででは、太陽光発電装置6が発電した電力を需要者が売電したほうが、太陽光発電装置6が発電した電力を電力負荷3が消費する場合と比較して、発電コストは安くなる。
発電コスト(エネルギーコスト)とは、目標蓄熱量を得るために必要となるガス料金から、燃料電池部53が発電することによって削減された電気料金を減算した結果である。発電コストは、光熱費のように金額で表現されてもよい。
10時から15時までの時間帯は、燃料電池装置5が発電した場合に削減可能なエネルギーコストが多い(発電メリット値が大きい)時間帯である。10時から15時まででは、燃料電池部53は、燃料電池部53の発電電力の上限を超えない範囲で、電力需要101を満たすよう発電する。貯湯槽55は、貯湯槽55の蓄熱量の上限を超えない範囲で、熱需要103−105を満たすように蓄熱する。
図3は、運転計画部51の動作の例を示す図である。図3では、現在時刻t0から時刻t1における第1の発電メリット値と、現在時刻t1から時刻t2における第2の発電メリット値と、現在時刻t2から時刻t3における第3の発電メリット値と、現在時刻t3から時刻t4における第4の発電メリット値とでは、第3の発電メリット値が最も大きい。
熱需要106は、時刻t1から時刻t2までに含まれた時間帯における熱需要を示す。熱需要107は、時刻t2から時刻t3までに含まれた時間帯における熱需要を示す。熱需要108は、時刻t3から時刻t4までに含まれた時間帯における熱需要を示す。計画部511は、発電メリット値が大きくなるのに応じて、発電電力を多くする運転計画を作成する。計画部511は、発電メリット値が大きい時間帯では、貯湯槽55に蓄熱するペースを早くする。貯湯槽55は、熱需要106−105を満たすように蓄熱する。
図4は、運転計画部51の動作の例を示すフローチャートである。予測部510は、過去の所定時間について、給湯負荷4の熱需要の測定値を需要情報取得部502から取得する(ステップS101)。予測部510は、履歴データベースを更新する(ステップS102)。予測部510は、未来における予測対象日について、給湯負荷4の熱需要の測定値に基づいて給湯負荷4の熱需要を時間帯ごとに予測する(ステップS103)。
予測部510は、未来における予測対象日について、過去の所定時間における電力負荷3の電力需要を表す測定値に基づいて電力負荷3の電力需要を時間帯ごとに予測する(ステップS104)。需要情報取得部502は、未来における予測対象日について、未来における予測対象日の気象情報と過去の所定時間における太陽光発電装置6の発電電力の測定値とに基づいて太陽光発電装置6の発電電力を予測する(ステップS105)。予測部510は、過去の所定時間における給湯負荷4の熱需要の測定値に基づいて、太陽光発電装置6又は燃料電池部53の発電電力が電力需要に対して余剰となる時間帯を予測する(ステップS106)。
計画部511は、1時間ごとの給湯負荷4の熱需要の予測値に基づいて、目標蓄熱量を決定する(ステップS107)。計画部511は、蓄熱量差ΔQを決定する(ステップS108)。計画部511は、燃料電池部53が停止中又は起動中のいずれであるかを判定する(ステップS109)。
燃料電池部53が起動中である場合(ステップS109:NO)、計画部511は、現在時刻が1日のうち最初の正時であるか否かを判定する。さらに、計画部511は、現在蓄熱量が目標蓄熱量より多いか否かを判定する(ステップS110)。現在時刻が1日のうち最初の正時でない場合(ステップS110:NO)、計画部511は、ステップS115に処理を進める。現在蓄熱量が目標蓄熱量以下である場合(ステップS110:NO)、計画部511は、ステップS115に処理を進める。
現在時刻が1日のうち最初の正時であり且つ現在蓄熱量が目標蓄熱量より多い場合(ステップS110:YES)、計画部511は、燃料電池部53を停止させるための運転計画を作成する(ステップS111)。
燃料電池部53が停止中である場合(ステップS109:YES)、計画部511は、現在蓄熱量が目標蓄熱量より多いか否かを判定する(ステップS112)。現在蓄熱量が目標蓄熱量より多い場合(ステップS112:YES)、計画部511は、燃料電池部53を停止させるための運転計画を作成する(ステップS113)。現在蓄熱量が目標蓄熱量以下である場合(ステップS112:NO)、計画部511は、燃料電池部53を起動させるための運転計画を作成する(ステップS114)。
計画部511は、電気料金単価情報とガス料金単価情報と売電単価情報とを取得する(ステップS115)。計画部511は、発電メリット値を時間帯ごとに決定する(ステップS116)。計画部511は、発電メリット値が高い時間帯において燃料電池部53の発電電力が高くなるように、熱需要を満たす運転計画を作成する(ステップS117)。
図5は、現在蓄熱量の例を示す図である。図5では、運転計画作成時刻と、熱需要の予測対象時間帯と、目標蓄熱量(kWh)と、現在蓄熱量(kWh)と、蓄熱量差ΔQと、発電電力とが対応付けられている。計画部511は、運転計画を1時間ごとに作成する。熱需要が発生する時間帯が1日における特定の時間帯に偏っている場合、熱需要が発生する時間帯に現在時刻が近づくほど、蓄熱量差ΔQは小さくなる。図5では、特定の時間帯は、一例として20−6時である。運転計画に基づく発電電力P(t)は、熱需要が発生する時間帯に現在時刻が近づくほど小さくなる。
以上のように、第1の実施形態の運転計画部51(運転計画装置)は、予測部と、計画部とを持つ。予測部510は、熱需要を予測する。計画部511は、発電メリット値を、現在時刻からN時間後まで(第1期間)内の所定の時間帯ごとに、予測された熱需要に基づいて決定する。計画部511は、第1期間における熱需要を満たす蓄積量である目標蓄熱量と発電メリット値とに基づいて、燃料電池部53の運転計画を所定の時間帯ごとに作成する。
これによって、第1の実施形態の運転計画部51(運転計画装置)は、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる。つまり、運転計画部51は、蓄熱の目標時刻までに発電メリット値が変化する場合でも、変化する発電メリット値に応じて運転計画を作成するので、熱需要を満たした上でエネルギーコストの削減効率を向上させることができる。
(第2の実施形態)
第2の実施形態では、第1の実施形態と比較して短い時間に関して熱需要の熱量が予測される点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
図5に示す場合、熱需要が発生する時間帯に現在時刻が近づくほど蓄熱量差ΔQが小さくなるので、熱需要が発生する20時から6時までの時間帯において、現在蓄熱量は目標蓄熱量に対して不足する場合がある。第1の実施形態では、図5に示す場合、例えば、熱需要4.00kWhが発生する時間帯の開始時刻である20時において、現在蓄熱量が一例として2.49kWhとなる場合がある。
計画部511は、現在時刻からN時間後までの給湯負荷4の熱需要の測定値を合計する。さらに、計画部511は、現在時刻からx時間後までの給湯負荷4の熱需要の測定値を合計する。x時間は、第1の実施形態におけるN時間(10時間)よりも短い時間長である。x時間は、一例として8時間である。計画部511は、目標蓄熱量を更新する。例えば、計画部511は、現在時刻からx時間後まで(第2期間)の給湯負荷4の熱需要の測定値の合計結果を、更新された目標蓄熱量(第2の目標蓄熱量)と定める。
計画部511は、現在蓄熱量と更新された目標蓄熱量との差を算出する。以下、現在蓄熱量と更新された目標蓄熱量との差を「更新された蓄熱量差」という。計画部511は、更新された蓄熱量差ΔQ’の熱量をn時間(8時間)で貯湯槽55に回収するように、運転計画を所定周期で作成する。計画部511は、更新された蓄熱量差ΔQ’に基づいて、更新された発電電力P’(t)を決定する。例えば、計画部511は、更新された蓄熱量差ΔQ’に基づいて、停止中の燃料電池部53を起動させるか否かを判定する。計画部511は、更新された蓄熱量差ΔQ’に基づいて、起動中の燃料電池部53を停止させるか否かを判定する。
計画部511は、燃料電池部53の発電電力P(t)の上限Pmax及び下限Pminと、電力需要Pdmと、更新された発電電力P’(t)とに基づいて、式(8)のように設定値Pconを算出する。
con=Max{Min{Min{Max{P(t),P’(t)},Pmax},Pdm},Pmin} …(8)
例えば、計画部511は、補助ボイラ534よりも燃料発電部532のほうが発電コストを削減できる場合、燃料電池部53に発電させるための運転計画を式(8)に基づいて作成する。
図6は、運転計画部51の動作の例を示すフローチャートである。図6に示すステップS101からステップS117までは、図4に示すステップS101からステップS117までと同じである。計画部511は、目標蓄熱量を更新する(ステップS118)。計画部511は、更新された蓄熱量差ΔQ’を算出する(ステップS119)。計画部511は、更新された発電電力P’(t)に基づいて、更新された発電メリット値(t)を算出する(ステップS120)。計画部511は、燃料電池部53の発電電力P(t)の上限Pmax及び下限Pminと、電力需要Pdmと、更新された発電電力P’(t)とに基づいて、設定値Pconを算出する。すなわち、計画部511は、更新された運転計画を作成する(ステップS121)。
以上のように、第2の実施形態の計画部511は、N時間よりも短いx時間における熱需要を満たすように更新された目標蓄熱量と発電メリット値とに基づいて、燃料電池部53の運転計画を時間帯ごとに更新する。これによって、第2の実施形態の運転計画部51は、熱需要が発生する時間帯が1日における特定の時間帯に偏っている場合でも、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる。
(第3の実施形態)
第3の実施形態では、予測対象日における発電メリット値が最も大きい時間帯について運転計画を最適化する点が、第1の実施形態と相違する。第3の実施形態では、第1の実施形態との相違点についてのみ説明する。
計画部511は、発電コストを算出する。発電コストは、式(10)〜(17)に基づいて、式(9)のように表される。
発電コスト(P)=ガス料金(P)(燃料発電部)−電気料金削減額(P)+ガス料金(P)(補助ボイラ) …(9)
電気料金削減額=P×Min{目標時間,所要時間}×電気料金単価 …(10)
ガス料金(燃料発電部)=P/発電効率(P)×Min(目標時間,所要時間)×ガス料金単価 …(11)
ガス料金(P)(補助ボイラ)=ボイラ熱供給量×ガス料金単価 …(12)
所要時間=目標蓄熱量×発電効率(P)/(発電電力P×排熱回収効率) …(13)
待機時間=Max{目標時間−所要時間,0} …(14)
不足熱量=発電電力P/発電効率(P)×Max{所要時間−目標時間,0} …(15)
放熱熱量=目標蓄熱量×(1−保温効率(待機時間)) …(16)
ボイラ供給熱量=(放熱熱量+不足熱量)/ボイラ効率 …(17)
発電効率(P)は、燃料電池部53の発電効率を表す。すなわち、発電効率(P)は、燃料発電部532の発電効率を表す。目標時間は、予め定められる。排熱回収効率は、燃料発電部532の排熱回収効率を表す。ボイラ効率は、補助ボイラ534の排熱回収効率を表す。不足熱量は、燃料発電部532の排熱による蓄熱量が目標蓄熱量に対して不足している熱量を表す。放熱熱量は、停止した燃料電池部53から放熱される熱量である。
計画部511は、発電メリット値が最大となる時間帯について、運転計画を作成する。計画部511は、発電電力P(t)に基づいて運転計画を作成する代わりに、発電コストを最小化する発電電力P*に基づいて運転計画を作成する。
計画部511は、蓄熱量差ΔQを補う熱量を生成するために、補助ボイラ534を起動させるための運転計画を作成してもよい。例えば、計画部511は、現在蓄熱量が目標蓄熱量以下である場合、式(15)に示す不足熱量と式(16)に示す放熱熱量とに基づいて運転計画を作成する。計画部511は、例えば、発電電力P*を表す値を非線形計画法によって算出する。計画部511は、例えば、予め離散化した発電電力を全探索することによって、発電電力P*を表す値(発電電力値P*)を算出してもよい。
図7は、発電コストの例を示す図である。横軸は、発電電力P*を示す。縦軸は、光熱費を示す。式(9)に示すように、発電コストは、燃料電池部53のガス料金と補助ボイラ534のガス料金との合計額から電気料金削減額を減算した結果である。図7では、発電コストを最小化する発電電力P*は、0.55(kW)である。計画部511は、発電メリット値が最大となる時間帯について、発電電力P*(=0.55kW)で発電する運転計画を作成する。
図8は、運転計画部51の動作の例を示すフローチャートである。図8に示すステップS101からステップS117までは、図4に示すステップS101からステップS117までと同じである。計画部511は、発電コストを算出する(ステップS122)。計画部511は、発電コストを最小化する発電電力値P*を算出する(ステップS123)。計画部511は、発電メリット値が最大となる時間帯について運転計画を更新する(ステップS124)。
以上のように、第3の実施形態の計画部511は、燃料発電部532の燃料料金と補助ボイラ534の燃料料金との合計額から、削減されるエネルギーコスト(電気料金削減額)を減算した結果(発電コスト)を最小化する運転計画を、エネルギーコストが最も少ない時間帯ごとに作成する。これによって、第3の実施形態の運転計画部51は、熱需要が発生する時間帯が1日における特定の時間帯に偏っている場合でも、熱需要を満たした上で、エネルギーコストの削減効率を更に向上させることができる。
以上述べた少なくともひとつの実施形態によれば、燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに熱需要に基づいて決定し、第1期間における熱需要を満たす蓄積量である目標蓄熱量と評価値とに基づいて燃料電池の運転計画を所定の時間帯ごとに作成する計画部を持つことにより、熱需要を満たした上で、エネルギーコストの削減効率を向上させることができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…電力システム、2…系統電力部、3…電力負荷、4…給湯負荷、5…燃料電池装置、6…太陽光発電装置、7…蓄電装置、50…情報取得部、51…運転計画部、52…制御部、53…燃料電池部、54…熱交換部、55…貯湯槽、100…蓄熱量、101…電力需要、102…太陽光発電電力、103…熱需要、104…熱需要、105…熱需要、106…熱需要、107…熱需要、108…熱需要、500…料金情報取得部、501…気象情報取得部、502…需要情報取得部、510…予測部、511…計画部、512…記憶部、530…燃料取得部、531…改質部、532…燃料発電部、533…インバータ、534…補助ボイラ

Claims (13)

  1. 熱需要を予測する予測部と、
    燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに前記熱需要に基づいて決定し、前記第1期間における前記熱需要を満たす蓄積量である目標蓄熱量と前記評価値とに基づいて前記燃料電池の運転計画を前記所定の時間帯ごとに作成する計画部と
    を備える運転計画装置。
  2. 前記計画部は、前記燃料電池の燃料料金と前記燃料電池に関する効率とに基づいて前記評価値を決定する、請求項1に記載の運転計画装置。
  3. 前記計画部は、更に太陽光発電電力の売電価格に基づいて前記評価値を決定する、請求項2に記載の運転計画装置。
  4. 前記計画部は、前記燃料電池の燃料購入量と前記燃料電池の燃料料金と前記燃料電池の発電電力とに基づいて前記燃料電池に関する効率を決定する、請求項2又は請求項3に記載の運転計画装置。
  5. 前記計画部は、前記第1期間よりも短い第2期間における前記熱需要を満たすように更新された前記目標蓄熱量と前記評価値とに基づいて前記燃料電池の運転計画を前記所定の時間帯ごとに更新する、請求項1から請求項4のいずれか一項に記載の運転計画装置。
  6. 前記計画部は、前記燃料電池の燃料発電部の燃料料金と前記燃料電池の補助ボイラの燃料料金との合計額から、前記削減されるエネルギーコストを減算した結果を最小化する前記運転計画を、前記エネルギーコストが最も少ない前記所定の時間帯ごとに作成する、請求項1から請求項5のいずれか一項に記載の運転計画装置。
  7. 前記計画部は、前記第1期間において前記熱需要が満たされている場合、前記燃料電池の発電電力の余剰分を蓄電池に蓄電させる、請求項1から請求項6のいずれか一項に記載の運転計画装置。
  8. 前記計画部は、前記第1期間において前記熱需要が満たされている場合、太陽光発電電力の余剰分を蓄電池に蓄電させる、請求項1から請求項7のいずれか一項に記載の運転計画装置。
  9. 前記計画部は、前記運転計画を作成する対象日における前記熱需要と前記対象日よりも前における前記熱需要との差に基づいて、前記第1期間の時間長を決定する、請求項1から請求項8のいずれか一項に記載の運転計画装置。
  10. 前記計画部は、前記第1期間において変動する電気料金に基づいて前記評価値を決定する、請求項1から請求項9のいずれか一項に記載の運転計画装置。
  11. 燃料電池と、
    熱需要を予測する予測部と、
    前記燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに前記熱需要に基づいて決定し、前記第1期間における前記熱需要を満たす蓄積量である目標蓄熱量と前記評価値とに基づいて前記燃料電池の運転計画を前記所定の時間帯ごとに作成する計画部と、
    前記運転計画に基づいて前記燃料電池を運転する制御部と
    を備える燃料電池装置。
  12. 運転計画装置が実行する運転計画方法であって、
    熱需要を予測するステップと、
    燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに前記熱需要に基づいて決定し、前記第1期間における前記熱需要を満たす蓄積量である目標蓄熱量と前記評価値とに基づいて前記燃料電池の運転計画を前記所定の時間帯ごとに作成するステップと
    を含む運転計画方法。
  13. コンピュータに、
    熱需要を予測する手順と、
    燃料電池によって削減されるエネルギーコストを表す評価値を第1期間内の所定の時間帯ごとに前記熱需要に基づいて決定し、前記第1期間における前記熱需要を満たす蓄積量である目標蓄熱量と前記評価値とに基づいて前記燃料電池の運転計画を前記所定の時間帯ごとに作成する手順と
    を実行させるための運転計画プログラム。
JP2016113655A 2016-06-07 2016-06-07 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム Pending JP2017220354A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113655A JP2017220354A (ja) 2016-06-07 2016-06-07 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113655A JP2017220354A (ja) 2016-06-07 2016-06-07 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム

Publications (1)

Publication Number Publication Date
JP2017220354A true JP2017220354A (ja) 2017-12-14

Family

ID=60657819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113655A Pending JP2017220354A (ja) 2016-06-07 2016-06-07 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム

Country Status (1)

Country Link
JP (1) JP2017220354A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035277A (ja) * 2019-08-29 2021-03-01 三菱電機株式会社 発電プラントの運転計画装置および発電プラントの運転計画立案方法
JP2021057181A (ja) * 2019-09-30 2021-04-08 大和ハウス工業株式会社 電力供給システム
JP2021057180A (ja) * 2019-09-30 2021-04-08 大和ハウス工業株式会社 電力供給システム
CN114586208A (zh) * 2019-10-04 2022-06-03 日产自动车株式会社 燃料电池系统的控制方法和燃料电池系统
KR20220114747A (ko) * 2021-02-09 2022-08-17 씨엔씨티에너지 주식회사 가스엔진 구동에 대한 시뮬레이션 제공 방법 및 장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035277A (ja) * 2019-08-29 2021-03-01 三菱電機株式会社 発電プラントの運転計画装置および発電プラントの運転計画立案方法
JP7241644B2 (ja) 2019-08-29 2023-03-17 三菱電機株式会社 発電プラントの運転計画装置および発電プラントの運転計画立案方法
JP2021057181A (ja) * 2019-09-30 2021-04-08 大和ハウス工業株式会社 電力供給システム
JP2021057180A (ja) * 2019-09-30 2021-04-08 大和ハウス工業株式会社 電力供給システム
JP7386028B2 (ja) 2019-09-30 2023-11-24 大和ハウス工業株式会社 電力供給システム
JP7386029B2 (ja) 2019-09-30 2023-11-24 大和ハウス工業株式会社 電力供給システム
CN114586208A (zh) * 2019-10-04 2022-06-03 日产自动车株式会社 燃料电池系统的控制方法和燃料电池系统
CN114586208B (zh) * 2019-10-04 2024-05-14 日产自动车株式会社 燃料电池系统的控制方法和燃料电池系统
KR20220114747A (ko) * 2021-02-09 2022-08-17 씨엔씨티에너지 주식회사 가스엔진 구동에 대한 시뮬레이션 제공 방법 및 장치
KR102546455B1 (ko) * 2021-02-09 2023-06-23 씨엔씨티에너지 주식회사 가스엔진 구동에 대한 시뮬레이션 제공 방법 및 장치

Similar Documents

Publication Publication Date Title
JP6592454B2 (ja) 電力制御システム、電力制御方法及びプログラム
JP6216377B2 (ja) 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム
JP5095495B2 (ja) 電力システムおよびその制御方法
US20190228481A1 (en) Intelligent energy management system for distributed energy resources and energy storage systems using machine learning
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
JP2017220354A (ja) 運転計画装置、燃料電池装置、運転計画方法及び運転計画プログラム
WO2014119153A1 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ
US9543775B2 (en) Battery controller, management system, battery control method, battery control program, and storage medium
JP5841817B2 (ja) 給電システムおよび給電システムの制御方法
JP6042184B2 (ja) エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびローカルサーバ
KR102088532B1 (ko) 에너지 관리 시스템과 그의 에너지 관리 방법 및 에너지 운영 시스템
JP6471011B2 (ja) 蓄電池運転計画作成装置、蓄電池運転計画作成方法及びコンピュータプログラム
Wang et al. Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response
JP6069738B2 (ja) 充放電制御システム、充放電制御方法、および充放電制御プログラム
JP5845474B2 (ja) 電力供給システム
JP2012135134A (ja) 熱電併給システム、熱電併給制御装置、熱電併給制御方法、及びプログラム
Zheng et al. Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation
JP2004312798A (ja) 分散エネルギーシステムおよびその制御方法
Eltamaly A novel energy storage and demand side management for entire green smart grid system for NEOM city in Saudi Arabia
KR20140052467A (ko) 에너지 저장장치 운영방법
JP2021083301A5 (ja) 計算装置、計算方法、プログラム、蓄電システム、発電システム及びグリッド
Momen et al. Determining Optimal Arrangement of Distributed Generations in Microgrids to Supply Electrical and Thermal Demands using Improved Shuffled Frog Leaping Algorithm
JP6280736B2 (ja) エネルギー管理システム及びエネルギー管理方法
JP2021057180A (ja) 電力供給システム
JP2013223316A (ja) 電力制御システム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170913

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170913