JP2017205019A - 有機酸の製造方法 - Google Patents

有機酸の製造方法 Download PDF

Info

Publication number
JP2017205019A
JP2017205019A JP2014191402A JP2014191402A JP2017205019A JP 2017205019 A JP2017205019 A JP 2017205019A JP 2014191402 A JP2014191402 A JP 2014191402A JP 2014191402 A JP2014191402 A JP 2014191402A JP 2017205019 A JP2017205019 A JP 2017205019A
Authority
JP
Japan
Prior art keywords
liquid
fermentation
organic acid
concentration
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014191402A
Other languages
English (en)
Inventor
修一郎 木村
Shuichiro Kimura
修一郎 木村
博己 田中
Hiromi Tanaka
博己 田中
太志 原
Futoshi Hara
太志 原
崇之 田中
Takayuki Tanaka
崇之 田中
弘 波多野
Hiroshi Hatano
弘 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014191402A priority Critical patent/JP2017205019A/ja
Priority to PCT/JP2015/076565 priority patent/WO2016043289A1/ja
Publication of JP2017205019A publication Critical patent/JP2017205019A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】発酵により糖から有機酸を製造する方法において、有機酸の製造効率を向上させる。【解決手段】遺伝子組み換えにより有機酸を発酵生産できる能力を付与した分裂酵母および原料液が導入された発酵設備内で、発酵設備内液中溶存酸素濃度を5ppb以上、500ppb以下に制御しながら、発酵設備内の液の抜き出しを行うことなく、分裂酵母による発酵を行って有機酸を生産する工程(3)、発酵設備内の液の一部を抜き出して、有機酸を含む液を回収する工程(4)を有し、工程(2)から工程(4)は少なくとも2回以上繰り返し、工程(3)において、発酵により発酵設備内液中原料糖濃度が低下し、予め設定された原料糖濃度x(単位:g/L、x≦10)以下に達した時点以降に、工程(4)の抜き出しを開始し、工程(4)における前記発酵設備内液中溶存酸素濃度を、5ppb以上に維持することを特徴とする。【選択図】なし

Description

本発明は、分裂酵母の発酵により有機酸を製造する方法に関する。
例えば有機酸である乳酸は食品用途や、医療、化粧品等の化学原料用途に広く用いられている。また、乳酸を用いて得られるポリ乳酸は、微生物等により最終的に二酸化炭素と水にまで分解される生分解性プラスチックとして注目されている。そのため、乳酸等の有機酸を安価に高い生産性で製造することが必要である。
乳酸の製造方法としては、乳酸菌により糖を発酵させ製造する生物学的方法が知られている。
下記特許文献1には、形質転換された特定の分裂酵母を、糖を含む培養液中で培養することにより、解糖系により該糖から得られるピルビン酸が、乳酸脱水素酵素により還元されて乳酸が産生され、該乳酸を培養液から分離して取得する方法が記載されている。
特許文献1には、培養方法として回分培養と連続培養が記載されている。連続培養法では、例えば、培養中の培養槽から培養液の一部を引き抜き、引き抜いた培養液から菌体を分離して乳酸を含む発酵液を得るとともに、菌体を含む培養上清を回収し、該培養上清にグルコースや新たな培養液を加えて培養槽に戻すことを繰り返して、連続的に培養する方法が記載されている。
下記特許文献2には、出芽酵母であるサッカロミセス・セレビシエを用い、バッチ発酵(pH5.0に自動制御)によりグルコースから乳酸塩を得た発酵試験例が記載されている。具体的に、グルコースを含有する無機培地を用い、pHを5.0に自動制御しながら、酸素供給(溶存酸素濃度)を一定に保つと、酸素が制限(微生物の酸素要求量より酸素濃度が低い状態)になるまでバイオマスが指数関数的に増加し、酸素が制限になるとグルコースが消費されて乳酸塩およびピルビン酸塩が生産されたことが記載されている。グルコースが枯渇したらすぐに追加のグルコースを添加したことが記載されている。
国際公開第2011/021629号 特表2006−525025号公報
特許文献1記載の方法において、培養槽から培養液の一部を引き抜いて得られる液には、菌体、乳酸、残った糖が含まれている。かかる液に対して固液分離を行うと菌体は分離できるが、乳酸と糖を分離することは容易でない。このため、固液分離後の発酵液を精製する際に、糖に起因する着色が生じ易いという問題がある。
また本発明者等の知見によると、仮に培養槽において糖の全部が消費されるまで発酵を行った場合、糖がなくなった状態の培養槽中の液、および引き抜かれた液において、乳酸が経時的に減少する場合がある。これは菌体が飢餓状態となったために乳酸が消費されたと考えられる。かかる乳酸の減少が生じると、乳酸の製造効率が低下する。
本発明は前記事情に鑑みてなされたもので、発酵により糖から有機酸を製造する方法において、有機酸の製造効率を向上させることを課題とする。
本発明の有機酸の製造方法は、発酵設備に、遺伝子組み換えにより有機酸を発酵生産できる能力を付与した分裂酵母を導入する工程(1)、発酵設備に、原料糖を含む原料液を導入する工程(2)、前記分裂酵母および前記原料液が導入された前記発酵設備内で、該発酵設備内液中溶存酸素濃度を5ppb以上、500ppb以下に制御しながら、該発酵設備内の液の抜き出しを行うことなく、前記分裂酵母による発酵を行って有機酸を生産する工程(3)、前記発酵設備内の液の一部を抜き出して、有機酸を含む液を回収する工程(4)を有し、前記工程(2)から前記工程(4)は少なくとも2回以上繰り返し、前記工程(3)において、前記発酵により発酵設備内液中原料糖濃度が低下し、予め設定された原料糖濃度x(単位:g/L、x≦10)以下に達した時点以降に、前記工程(4)の抜き出しを開始し、前記工程(4)における前記発酵設備内液中溶存酸素濃度を、5ppb以上に維持することを特徴とする。
前記工程(3)における前記発酵設備内の液のpHが1.5〜3.5であることが好ましい。
前記分裂酵母が、有機酸とエタノールとを併産する酵母であることが好ましい。
前記工程(4)の抜き出し開始時に、発酵設備内液中エタノール濃度が1g/L以上であることが好ましい。
前記分裂酵母の宿主が、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)であることが好ましい。
前記工程(4)における前記発酵設備内液中溶存酸素濃度を、60ppb以上、6000ppb以下の範囲内で、かつ前記液の抜き出し開始直前の該溶存酸素濃度よりも50ppb以上高い状態が存在するように制御することが好ましい。
前記工程(4)の抜き出し開始時に、発酵設備内液中有機酸濃度が40g/L以上であることが好ましい。
前記工程(4)において、前記発酵設備内液中原料糖濃度が0g/Lとなる状態が存在することが好ましい。
前記工程(4)において、前記発酵設備内の液の一部を、固液分離手段を介して抜き出して、前記有機酸を含む液として、菌体を含まない分離液を得ることが好ましい。
前記分離液中の原料糖濃度が1g/L以下であることが好ましい。
前記工程(4)において、前記固液分離手段で、前記分離液と、菌体を含む非分離液とに分離し、該非分離液を前記発酵設備内で循環させることが好ましい。
本発明によれば、発酵により糖から有機酸を製造する方法において、有機酸の製造効率を向上させることができる。
本発明の有機酸の製造方法の一実施形態の説明図である。 本発明の有機酸の製造方法の一実施形態の説明図である。 本発明の有機酸の製造方法の一実施形態の説明図である。 実施例1の結果を示すグラフである。 試験例1の結果を示すグラフである。 比較試験例1の結果を示すグラフである。
図1〜3は、本発明の有機酸の製造方法の一実施形態における各工程を模式的に示した説明図である。
図中符号1は発酵槽、2は原料液供給経路、3は発酵液排出経路、4は戻り経路、10は固液分離手段、11は分離液排出経路をそれぞれ示す。図中、実線の矢印は液が流れている状態を表す。
本発明において、「発酵設備」とは、発酵槽1及び発酵槽1内と同じ状態にある系(発酵系)を構成する設備を意味する。すなわち図1〜3において、発酵槽1、発酵液排出経路3、戻り経路4、および、固液分離手段10の一部(例えば膜分離装置であれば、膜の1次側)が発酵設備に含まれる。
本発明において、発酵とは分裂酵母を用いて原料糖を転換し目的とする有機酸を得る処理をいう。本発明における発酵液とは、発酵を経た液を意味し、分裂酵母、および発酵により生成した有機酸を含む。発酵液には原料糖が含まれていてもよい。
本実施形態において、発酵設備内(発酵系内)における液中の溶存酸素濃度は均一であるとみなし、発酵槽1内の液中溶存酸素濃度の値を発酵設備内液中溶存酸素濃度とする。
同様に、本実施形態において、発酵設備内(発酵系内)における液中の原料糖濃度は均一であるとみなし、発酵槽1内の液中原料糖濃度の値を発酵設備内液中原料糖濃度とする。
同様に、本実施形態において、発酵設備内(発酵系内)における液中のエタノール濃度は均一であるとみなし、発酵槽1内の液中エタノール濃度の値を発酵設備内液中エタノール濃度とする。
図示していないが発酵槽1内の液に酸素を供給する手段、該酸素の供給量を制御する手段、発酵槽1内の液中溶存酸素濃度を測定する手段、発酵槽1内の液中原料糖濃度をモニターする手段、発酵槽1内の液を均一に混合する手段、発酵槽1内の液温を所定の温度に保持する手段、および発酵槽1内の液を、発酵液排出経路3、固液分離手段10および戻り経路4を順に通って、発酵槽1へ送液する送液手段が設けられている。また必要に応じて各種測定装置を設けることができる。
発酵槽1として、例えば気泡塔型発酵槽、撹拌翼付き発酵槽、管型発酵槽等が好適に用いられる。
発酵槽1の容量は、特に限定されず適宜設定できる。本実施形態において発酵槽1の容量は、本実施形態の構成による効果が得られやすい点、および有機酸の製造効率の点で0.3L以上が好ましく、100L以上がより好ましく、1m以上がさらに好ましい。該容量の上限は定期保守・点検を行いやすい点からは1000m以下が好ましく、600m以下がより好ましい。
酸素は通常、気体として発酵槽1内の液に供給される。供給される気体は、少なくとも酸素を含み発酵に悪影響のない気体であればよい。例えば、純酸素でもよく、酸素と、酸素以外の気体の1種以上(空気、窒素、二酸化炭素、メタン等)との混合気体でもよく、空気でもよい。入手容易であるため空気を用いることが好ましい。
発酵槽1内の液に供給される気体の酸素濃度は、5〜50体積%が好ましく、15〜30体積%がより好ましい。該酸素濃度が上記範囲の下限値以上であると、分裂酵母が利用するために充分な量の酸素が供給しやすい。また該酸素濃度が上記範囲の上限値以下であると酸素濃度を高くする負荷が減るためガスの供給が容易になる。
発酵槽1内の液中の液中溶存酸素濃度を測定する手段としては、一般的な溶存酸素計を用いることができる。
発酵槽1内の液中原料糖濃度をモニターする手段としては、近赤外線センサー、酵素電極等を用いることができる。また試料を抜き出して高速液体クロマトグラフ(HPLC)法等で測定してもよい。
固液分離手段10は、発酵液から菌体(分裂酵母)を含まない分離液を得る。残りの発酵液は戻り経路4を通って発酵槽1に送られる。分離液および残りの発酵液には有機酸が含まれる。ここにおいて、「菌体を含まない」とは、実質的に含まないことを意味する。湿重量で20g/L以下(好ましくは10g/L以下)の菌体(生菌)が含まれてもよい。
固液分離手段10として、例えば、膜分離装置、遠心分離装置、抽出分離装置等が用いられる。菌体へのせん断応力等のストレスを抑制しやすい点、比較的装置の取り扱い性が容易である点で膜分離装置が好ましい。
膜分離装置としては、発酵液中の有機酸を透過し、菌体(分裂酵母)を透過しない分離膜を備えたものであればよく、公知の膜分離装置を適宜用いることができる。分離膜は有機膜であってもよく、無機膜であってもよい。分離膜の材質として、例えばポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、セラミックス等が挙げられる。これらのうち比較的安価かつ耐久性が高く、安定供給が可能という点からは、ポリスルホン、ポリエーテルスルホンが好ましい。
分離膜の形状は、特に限定されず、例えば平膜、中空糸膜などが挙げられる。
分離膜は、平均孔径が0.01〜3μmの細孔を有する多孔膜であることが菌体(分裂酵母)が透過しにくく、比較的高い透過流束(flux)を有する点で好ましい。分離膜の平均孔径は、0.1〜0.65μmがより好ましい。
膜分離装置の処理能力(透過流束)は、装置の規模によっても異なるが、例えば1〜100L/m/hが好ましく、3〜30L/m/hがより好ましい。
<分裂酵母>
本発明では菌体として遺伝子を組み替えた分裂酵母(本明細書では単に分裂酵母ということもある。)を用いる。本発明における分裂酵母はシゾサッカロミセス属(Schizosaccharomyces属)を意味する。
本発明において「遺伝子を組み替えた」分裂酵母とは遺伝子工学的手法により人為的に遺伝子を改変させた分裂酵母を意味する。特に本発明においては、遺伝子の改変により有機酸を発酵生産できる能力が付与された分裂酵母を用いる。なお遺伝子の改変は、異種生物由来の遺伝子の組み込みを必須とする。さらに、遺伝子を改変させた分裂酵母は、分裂酵母が本来有する遺伝子の一部の削除または染色体上の別の部位への挿入が行われていてもよい。
宿主の分裂酵母としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)、シゾサッカロミセス・ジャポニカス(Schizosaccharomyces japonicus)、シゾサッカロミセス・オクトスポラス(Schizosaccharomyces octosporus)等が挙げられる。上記分裂酵母のうち、耐酸性が高く、有機酸の生産能力が高い点からシゾサッカロミセス・ポンベ(以下、S.pombeともいう)が好ましい。
特に、糖から有機酸とエタノールを同時に生産(併産)する分裂酵母を用いることが、原料糖の利用効率を最終的に高くしやすく、工業的生産に好適である点で好ましい。かかる分裂酵母の具体例としてはWO2011/021629(特許文献1)やWO2013/137277に記載された、遺伝子を組み換えた分裂酵母が挙げられる。遺伝子を組み換えた分裂酵母は、特定の発酵条件(特に酸素濃度とpHの両方)を好適範囲に制御することにより、ほとんど増殖することなく原料糖から目的とする有機酸を生産することができる。
<原料糖>
原料糖は、分裂酵母が直接資化して有機酸を生産できるものであればよい。原料糖の好ましい例としては、リボース、アラビノース、キシロース等の五炭糖;グルコース、フルクトース、ガラクトース等の六炭糖;スクロース、トレハロース、セルビオース、マルトース等の二糖類;セルロース、デンプン等の多糖類等が挙げられる。
これらのうち、資化が容易である点で六炭糖がより好ましく、グルコースが特に好ましい。
<原料液>
原料液は、原料糖を含有する液(通常は水溶液)である。原料糖の他に、例えば、K、Na、Mg、Ca、Fe等の金属元素、ミネラル分(微量元素類)およびビタミン類を含んでいてもよい。本実施形態において、原料液は菌体を含まない。
<有機酸>
本発明では、分裂酵母を用いて糖から有機酸を生産する。有機酸の例としては、酢酸、マロン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、3−ヒドロキシプロピオン酸、ピルビン酸、等が挙げられる。ここでヒドロキシカルボン酸は有機酸として考える。また光学異性体が存在する場合には、L体、D体またはラセミ体であってもよい。ただし工業的有用性が高いことから光学純度は高いことが好ましい。光学純度としては95%以上が好ましく、99%以上がより好ましい。
これらのうち汎用性が高く、市場の発展性(合成繊維用途や車載用途、代替プラスチック用途等)が望める点で、特に乳酸、リンゴ酸、コハク酸、3−ヒドロキシプロピオン酸等が好ましい。
本発明の有機酸の製造方法は、有機酸を、沈殿を形成させることなく水溶液として得る方法に特に好適である。
また本発明の製造方法は、沸点が水(100℃)よりも高い有機酸の製造方法として特に好適である。本発明の製造方法のうち、菌体(分裂酵母)を分離して得られる分離液が有機酸を含む水溶液である場合には、得られた有機酸と水を分離する手段として蒸留を適用することが考えられる。しかし一般に原料糖は、蒸留では高沸成分または残渣として分離されることになる。この際目的とする有機酸の沸点が水より低い場合は蒸留での分離が容易である。一方、目的とする有機酸の沸点が水よりも高い場合には、目的とする有機酸と原料糖の分離が困難になりやすい。このため分離液に含まれる原料糖の濃度を下げることにより、有機酸の精製(特に蒸留精製)の負荷を低減することができる。
<培養工程>
予め分裂酵母を含む培養液を調製することが好ましい。例えば、培養槽に液状の培地および分裂酵母を供給し、酸素を含む気体を連続的に供給しつつ、所定の培養温度に保持することにより培養液を得る。培養槽内の液(培養液)中の酸素濃度および培養温度は、菌体(分裂酵母)の増殖に適した培養条件に維持されるように制御される。通常、菌体(分裂酵母)の増殖に適した培養条件と、発酵による化成品の製造に適した発酵条件とでは好ましい酸素濃度条件が異なる。一般に発酵液中の好ましい酸素濃度は、培養に適した酸素濃度条件よりも低い。
以下に、図1〜3を用いて、本発明の有機酸の製造方法に関する実施態様の一例について説明する。
<工程(1)(2)>
まず、発酵設備内に分裂酵母を導入する(工程(1))。本実施形態では発酵槽1内に分裂酵母を導入する。具体的には分裂酵母を培養した培養液を発酵槽1内に導入する。
また発酵設備に原料液を導入する(工程(2))。本実施形態では、原料液供給経路2を介して発酵槽1内に原料液を導入する。分裂酵母の導入と、初回の原料液の導入は、どちらを先に行ってもよい。
そして、図1に示すように、発酵槽1内の液(培養液および原料液)を、発酵液排出経路3、固液分離手段10および戻り経路4を順に通って、発酵槽1へ送液して循環させることが好ましい。
<準備工程>
図2に示すように、発酵槽1内の液を循環させながら、固液分離手段10から分離液排出経路11を経て、菌体を含まない分離液を抜き出すことにより、発酵槽1内の液中における菌体濃度(分裂酵母の濃度)を高めることができる。後述の工程(3)に先立ち、この方法で該菌体濃度を調整してもよい。
発酵槽1内での生菌の量は、事前の発酵試験により好適な範囲を求めることが好ましい。すなわち好適な生菌の菌体濃度を試験により求め、発酵槽1の実効容量を乗じて生菌量とする。菌体濃度は、菌体の種類や培養条件にもよるが、発酵槽1の容量を小さく抑えるために、ある程度高密度での発酵を行うことが好ましい。
例えば、分裂酵母を用いて、グルコースを原料糖とし、乳酸を目的の有機酸とする場合、発酵槽1の液中の生菌の量(菌体濃度)は、乾燥重量換算で12〜72g/Lが好ましく、24〜48g/Lがより好ましい。該生菌の量が上記範囲の下限値以上であると発酵槽の単位体積当たりの有機酸の生産速度を高くできる。また、上限値以下あると菌体にかかるストレスが低く抑制できる点で、また酸素および原料糖を菌体に充分にかつ平均的に行き渡らせることがしやすい点で好ましい。
なお、後述の実施例等で示す菌体濃度(以下「菌体濃度OD660」と記載する。)は、日本分光社製可視紫外分光器V550によって測定した波長660nmの光の吸光度(OD660)から換算した値である。660nmにおけるOD=1は、酵母乾燥重量の0.2g/L、湿重量の0.8g/Lに相当する。
<工程(3)>
このようにして分裂酵母および原料液が導入された発酵設備内で、該分裂酵母による発酵を行って有機酸を生産する(工程(3))。
本実施形態では、発酵槽1内の液を撹拌しつつ、また図1に示すように循環させながら、該液の温度を所定の発酵温度に制御し、発酵槽1内の液に、酸素を含む気体を通気させる。これにより該液中で発酵が進行し、酸素および原料糖が消費されて有機酸が生成される。エタノール等の副生成物が該有機酸と同時に生成されてもよい。特に発酵により有機酸とエタノールとが併産されることが好ましい。
好ましい発酵温度は、用いる分裂酵母によって応じて設定される。
工程(3)においては、発酵設備内の液の抜き出しは行わない。本実施形態では、上記のように発酵槽1内の液を循環させるが、該循環系からの液の抜き出しは行わない。
一方、工程(3)の途中において、工程(2)を追加で行ってもよい。すなわち発酵の途中で、連続的または断続的に、原料糖を含む原料液を発酵設備に導入してもよい。原料液の追加は、原料糖濃度が高い時点で発酵による有機酸生産速度が低下する場合等に好ましく適用できる。
工程(3)においては、発酵設備内液中溶存酸素濃度を5ppb以上、500ppb以下に制御する。該溶存酸素濃度は、発酵槽1内の液に通気する、酸素を含む気体の酸素濃度または通気量(流量)、もしくは攪拌状態によって制御することができる。通気は連続的に行うことが好ましい。
該溶存酸素濃度が高いほど原料糖の消費速度は速くなり、目的とする有機酸の生産速度が速くなる代りに、菌体の増殖が優先して進むようになる。
該発酵設備内液中溶存酸素濃度は、10〜200ppbが好ましく、20〜150ppbがより好ましい。該溶存酸素濃度が上記範囲の下限値以上であると有機酸の良好な生産速度が得られやすい。該溶存酸素濃度が上記範囲の上限値以下であると有機酸の良好な収率が得られやすい。発酵設備内液中溶存酸素濃度が上記上限値を超えると、分裂酵母は原料糖を消費して菌体の増殖に用いる割合が大きくなる。
工程(3)において、例えば原料液を一括で投入した直後のように一時的に原料糖濃度が高くなった場合の、発酵槽1内の液中の原料糖の濃度は、500g/L以下が好ましく、200g/L以下がより好ましく、100g/L以下がさらに好ましい。発酵槽1内の液中の原料糖の濃度は、発酵が進むと低下し、下限値はゼロであってもよい。該原料糖の濃度が上記範囲の上限値以下であると、生菌の菌体濃度を高く維持しやすい点で、また有機酸の生産効率を高くしやすい点で好ましい。
発酵槽1内の液中の目的の有機酸の濃度は、5〜200g/Lが好ましく、10〜150g/Lがより好ましく、50〜120g/Lがさらに好ましい。該目的の有機酸の濃度が上記範囲の下限値以上であると有機酸の精製コストを抑制しやすく、上限値以下であると有機酸の良好な製造効率が得られやすい。
工程(3)の発酵開始後、発酵設備内液中原料糖濃度をモニターする。本実施形態では発酵槽1内の液中原料糖濃度をモニターする。
該発酵設備内液中原料糖濃度が、予め設定された濃度x(単位:g/L、x≦10)以下に低下した時点以降に次の工程(4)を行う。
<工程(4)>
工程(4)では、発酵設備内の液の一部を抜き出して、有機酸を含む液を回収する。
本発明において、「発酵設備内の液を抜き出す」とは、「発酵系内の液」を該発酵系外へ抜き出す操作を意味する。図1に示すように、発酵槽1内の液を、発酵液排出経路3、固液分離手段10および戻り経路4を通って発酵槽1へ送液して循環させている場合、発酵槽1内と該循環経路内が「発酵系内」に該当する。
本実施形態において、工程(3)では、図1に示すように、発酵槽1内の液(発酵液)を、固液分離手段10を介して循環させる。発酵設備内液中原料糖濃度が所定の濃度以下に低下したら、工程(4)で、図2に示すように固液分離手段10から液(発酵液)を抜き出す。これにより発酵槽1内の液量が減少する。
固液分離手段10では、菌体を含まない分離液(発酵液)が分離液排出経路11を通って抜き出され、有機酸を含む液として回収される。菌体を含む非分離液は戻り経路4を通って発酵槽1へ送液され、発酵設備内で循環させる。
工程(4)で抜き出す液量は、発酵設備内(本実施形態では発酵槽1内、固液分離手段10内、発酵液排出経路3内、および戻り経路4内)の液の合計量に対して、10〜90体積%が好ましく、25〜75体積%がより好ましく、30〜70体積%がさらに好ましい。該抜き出す液量が上記範囲の下限値以上であると、良好な有機酸生産速度が得られ、上限値以下であると分離液と非分離液との分離が容易となり、また、菌体へのストレスも抑制しやすい。
発酵設備内液中原料糖濃度のしきい値x(単位:g/L)は、10g/L以下であり、この値が小さいほど、原料糖の含有量が少ない発酵液(分離液)が得られる。該xは3g/L以下が好ましく、1g/L以下がより好ましい。
後述の実施例に示されるように、工程(4)において、発酵設備内液中原料糖濃度が0g/Lとなる状態が存在しても、反復回分発酵を安定して行うことができる。
発酵設備内液中原料糖濃度を0g/Lとすると、有機酸を含み、原料糖を含まない発酵液(または分離液)を得ることができ、有機酸の製造効率を向上させるうえで好ましい。
工程(4)では、発酵設備内液中溶存酸素濃度を5ppb以上に維持する。すなわち工程(4)における発酵設備内液中溶存酸素濃度は工程(3)の発酵設備内液中溶存酸素濃度と同じか高くすることが好ましい。該発酵設備内液中溶存酸素濃度は、発酵槽1内の液に通気する、酸素を含む気体の酸素濃度または通気量、もしくは攪拌状態によって制御することができる。該発酵設備内液中溶存酸素濃度は20ppb以上に維持されることが好ましく、60ppb以上に維持されることがより好ましい。工程(4)において、発酵設備内溶液中酸素濃度は、5ppb以上に維持されれば充分であるが、特に60ppb以上である時間帯を設けることが好ましい。該時間帯は断続的でも連続的でもよい。1回の工程(4)の開始から終了までの時間、すなわち固液分離手段10からの液の抜き出し開始から次工程で原料液が導入されるまでの時間に対して、発酵設備内溶液中酸素濃度が60ppb以上である時間帯の合計が50%以上であることが好ましく、80%以上がより好ましく、100%でもよい。
該発酵設備内液中溶存酸素濃度が上記の範囲となるように通気することにより、発酵設備内液中原料糖濃度がxg/L(x≦10)以下に低下した状態でも、発酵液中の乳酸の減少が抑えられる。仮に発酵設備内の原料糖濃度がゼロになり、発酵設備内液中溶存酸素濃度がゼロになると、分裂酵母は発酵とは逆に有機酸を資化し生菌率を維持する。このため工程(4)においては、発酵設備内液中溶存酸素濃度を、上記下限値を下回らないように維持する必要がある。このようにして発酵で生産された有機酸を消費することなく回収できる。
工程(4)において、発酵設備内液中の溶存酸素濃度を、60ppb以上、6000ppb以下の範囲内で、かつ前記液の抜き出し開始直前の該溶存酸素濃度よりも50ppb以上高い状態が存在するように制御することが好ましい。
具体的には、工程(4)において抜き出しを開始した後、次工程で原料液が導入されるまでの間における、発酵設備内液中溶存酸素濃度の最大値が、60ppb以上、6000ppb以下の範囲内で、かつ抜き出し開始直前の該溶存酸素濃度よりも50ppb以上高くなるように制御することが好ましい。
該発酵設備内液中溶存酸素濃度の最大値は、発酵槽1内の液に通気する、酸素を含む気体の酸素濃度または通気量、もしくは攪拌状態によって制御することができる。
該発酵設備内液中溶存酸素濃度の最大値は、抜き出し開始直前の該溶存酸素濃度よりも100ppb以上高いことが好ましい。
工程(3)においては、発酵設備内液中溶存酸素濃度が上記の範囲内となるように通気されており、仮に工程(4)で発酵液の抜き出しを開始すると同時に、通気を停止すると、発酵設備内液中溶存酸素濃度はゼロとなる。すなわち発酵設備内液中溶存酸素は速やかに消費される。
これに対して、本実施形態では、工程(4)で発酵液の抜き出しを開始した後も、通気を継続する。
例えば工程(3)における通気量(一定でない場合は平均値)に対して、工程(4)における通気量(一定でない場合は平均値)を50〜300〜体積%とすることが好ましく、100〜200体積%とすることがより好ましい。
工程(3)における通気量(流量)および工程(4)における通気量(流量)はそれぞれ一定であることが好ましい。
工程(4)において、抜き出しを開始する時点における、発酵設備内液中有機酸濃度が高い方が、有機酸の製造効率を向上させるうえで好ましい。該有機酸濃度は発酵条件によって制御することができる。
具体的に、該発酵設備内液中有機酸濃度は5g/L以上が好ましく、10g/L以上がより好ましく、40g/L以上がさらに好ましい。該発酵設備内液中有機酸濃度の上限は特に限定されないが、分裂酵母にかかるストレス抑制の点では200g/L以上以下が好ましく、150g/L以上以下がより好ましく、120g/L以上以下がさらに好ましい。
分裂酵母が、有機酸とエタノールとを併産する酵母である場合、後述の試験例に示されるように、発酵設備内液中原料糖濃度がxg/L(x≦10)以下に低下した状態において、酸素を含むガスの通気を行うことによって、発酵液中のエタノールを減少させて、乳酸の減少を抑えることができる。
これは、発酵設備内液中原料糖濃度が低下して飢餓状態にある分裂酵母が、エタノールを資化して生菌率を維持するためと考えられる。
この場合、工程(4)において、抜き出しを開始する時点における、発酵設備内液中エタノール濃度が1g/L以上であることが好ましく、3g/L以上であることがより好ましく、5g/L以上であることがさらに好ましい。
エタノールは副生成物であり、該発酵設備内液中エタノール濃度の上限値は特に限定されないが、有機酸の良好な製造効率を得るうえで、50g/L以下が好ましく、30g/L以下がより好ましく、20g/L以下がさらに好ましい。
<分離液>
本実施形態において分離液は、固液分離手段10で分離され、分離液排出経路11を通って抜き出される。分離液は、目的の有機酸を含み、菌体を含まない発酵液である。
工程(4)では、発酵設備内液中原料糖濃度がxg/L(x≦10)以下に低下した時点以降に、分離液の抜き出しを開始するため、原料糖の含有量が少ない発酵液(分離液)が得られる。
該分離液中の原料糖濃度は1g/L以下が好ましく、0.5g/L以下がより好ましく、0.1g/L以下がさらに好ましく、ゼロであることが最も好ましい。
該分離液中の原料糖濃度が上記範囲であると、分離液(発酵液)を精製する際に、糖に起因する着色が良好に抑えられる。
<反復回分発酵>
工程(4)において、所定量の発酵液を抜き出した後、図3に示すように、発酵槽1に原料液を導入し(工程(2))、続いて工程(3)および工程(4)を順に行って反復回分発酵を行う。
さらに該工程(4)の後、同様に工程(2)〜工程(4)を複数回繰り返してもよい。
工程(4)の後に発酵槽1に導入する原料液を、直前の工程(4)で抜き出した発酵液と同量とすることが好ましい。
本実施形態によれば、工程(1)および工程(2)〜工程(4)を行うことにより、有機酸を含み原料糖の含有量が少ない発酵液(分離液)を得ることができる。
少なくとも工程(2)〜工程(4)は2回以上行い、これによって有機酸を効率良く製造することができる。本発明において、工程(2)〜工程(4)の繰り返し回数は、2回以上であるが、10回以上が好ましく、20回以上がより好ましい。繰り返し回数が多ければ原料糖からの有機酸の生産効率を高くできる点で好ましい。特に本発明にかかる分裂酵母は、好ましくは低pH環境において、菌体の増殖をほとんど行わず、原料糖のほとんどを有機酸等の発酵生産に使用できる。
特に、本実施形態では工程(4)において、菌体を含まない発酵液を抜き出し、菌体を含む液を発酵槽1に戻すため、菌体を追加的に導入しなくても反復回分発酵を行うことができる。
また、本発明において発酵設備内の液のpHは工程(3)または工程(4)において、好ましくは少なくとも工程(3)において、より好ましくは工程(3)及び工程(4)において、1〜6が好ましく、1〜5がより好ましく、1.5〜4.5がさらに好ましく、1.5〜3.5が特に好ましい。すなわち本発明において発酵設備内の液のpHは工程(3)において、1.5〜3.5であることが好ましい。なおこのpHは生産された有機酸により調整されることが好ましい。すなわち中和等は行わないことが好ましい。
本発明に用いる分裂酵母は耐酸性に優れ、生産された有機酸によりpHが低下しても安定して有機酸の発酵生産を継続することができる。また中和により中和塩が沈殿として生成することを回避しやすい。このため生産された有機酸の精製工程を簡素化しやすい。
以下、実験例を示して本発明を詳細に説明する。ただし、本発明は、以下の記載によっては限定されない。本実施例において、含有量の単位「%」は、特に断りのない限り「質量%」を意味する。
[菌体(分裂酵母)]
ASP4156株は、ARC010株(h− leu1−32 ura4−D18)(国際公開第2007/015470号パンフレット参照)を親株として、Latour法(Nucleic Acids Res.誌、2006年、34巻、e11頁;及び国際公開第2007/063919号パンフレット参照)にてpdc2 を欠損させ、Pediococcus acidilactici 由来D−乳酸脱水素酵素(D−ldh)遺伝子発現カセット(hCMV−p.)及びLactobacillus pentosus 由来D−ldh遺伝子発現カセット(hCMV−p.)をそれぞれ1コピーずつ染色体へ組込み作製された2コピー導入株である。ロイシン及びウラシルの要求性は復帰されている。
このASP4156株を菌体として、以下の試験に使用した。なおこのASP4156株は、D−乳酸を主に発酵生産し、エタノールを副次的に発酵生産する能力を有する。
[培養液]
下記の条件で菌体を培養して、培養液を得た。
5mLのYES培地(pH4.5)に、ASP4156株を植菌し、試験管にて32℃で24時間培養し、前培養1とした。さらに120mLのYES培地に、前培養1で得られた培養液2.4mLを植菌し、1L坂口フラスコにて32℃で32時間培養し、前培養2とした。
3Lジャーファーメンターを用いて、表1に示す組成に微量元素類およびビタミン類を適当量加えた初発培地(1Nの硫酸水溶液を用いてpH4.5に調整済。)1800mLに、前培養2で得られた培養液200mLを加え、30℃で培養を開始した。ただし初発培地は、培養液200mLを加えて2Lにした際に、以下の濃度となるように調整した。33g/Lの含水グルコース(含水率:8〜9%)、20g/LのBioSpringer yeast extract、15g/Lの(NHSO、8g/LのKHPO、5.34g/LのMgSO・7HO、0.04g/LのNaHPO、微量元素類、およびビタミン類を含む。
3Lジャーファーメンターでの培養開始から40時間後に、流加培地(1Nの硫酸水溶液を用いてpH4.5に調整済。)を用いて流加を開始した。流加培地は以下の濃度となるように調整した。550g/Lの含水グルコース(含水率:8〜9%)、50g/LのBioSpringer yeast extract、9g/LのKHPO、4.45g/LのMgSO・7HO、3.5g/LのKSO、0.14g/LのNaSO、0.04g/LのNaHPO、微量元素類、およびビタミン類を含む。
流加開始後、流加流量を経時的に増加させ、培養開始から132時間後に培養を終了した。培養中は12.5%アンモニア水の添加制御により、pHの下限値を4.5に保った。培養終了時の菌体濃度はOD660値=136(乾燥菌体重量27g/L)を示した。これを培養液とした。
[原料液]
原料糖としてグルコースを用いた。
136.4g/Lの含水グルコース(含水率:8〜9%)、5g/LのBioSpringer yeast extract、2.2g/LのNaHPO、1.05g/LのMgCl・6HO、1.0g/LのKCl、0.04g/LのNaSO、3.0g/Lのフタル酸水素カリウム、微量元素類、およびビタミン類を含む液を用意し、原料液とした。
測定方法は以下の方法を用いた。
[グルコース、エタノール、乳酸の濃度の測定]
グルコースまたはエタノールの濃度の測定には王子計測機器社製の酵素電極法バイオセンサBF−5を用い、乳酸濃度の測定には、同バイオセンサBF−7を用いた。
[DO(溶存酸素濃度)の測定]
DO(溶存酸素濃度)の測定にはメトラートレド社製のInPro6900を用いた。
[OD660吸光度(発酵液濁度)]
OD660nmにおける吸光度を分光光度計(JASCO V−550 型)にて測定した。発酵液の原液で濃度が高い場合には、RO水により希釈を行い測定した。
[pH]
培養液または発酵液中のpHを常時測定しているプローブが示すオンラインpH値と接取した実際の培養液または発酵液が示すpHを比較するために、ハンディpH計(KS723)を用いた。
[生菌率]
発酵液をトリパンブルー染色液と等量混合し、検鏡観察にて染色された死細胞数と未染色の生細胞数をそれぞれ計数し、算出した。
[D−乳酸光学純度]
サンプルをフィルターろ過後、カラムの劣化を防ぐためpH5付近へ調整するとともに希釈し乳酸濃度を1g/Lとした。HPLC分析後、乳酸の光学純度を算出した。
<実施例1>
図1〜3に示す工程を繰り返すことで反復回分発酵を行った。すなわち遺伝子組み換えにより有機酸(D−乳酸)を発酵生産できる能力を付与した分裂酵母を用いて、D−乳酸の発酵生産を行った。
発酵槽1は小松川化工機社製、1L発酵槽を用いた。発酵槽1は、槽内を撹拌するための撹拌翼(上下2段)を備えている。
発酵槽1には気体(空気)を供給するために、上部から管を、その端部が底面付近となるように挿入した。すなわち気体の供給は発酵槽底部から液中に行うようにした。空気の供給にはエアコンプレッサーで加圧した圧縮空気をフィルターでろ過して用いた。
固液分離手段10としては、膜分離装置(平均孔径:0.2μm、ポリスルホン製中空糸膜、GE Healthcare社製、Xampler CFP−2−E−3MA、膜面積は110cm。)を用いた。
まず、培養液を発酵槽1内へ導入した(工程(1))。発酵槽1内への通気を開始した。通気量は0.25L/分とした。発酵槽1内の液温は28℃とした。
以下の方法で菌体濃度を調整した。すなわち発酵槽1内の液を濃縮するために、発酵槽1内の液を、発酵液排出経路3、固液分離手段10および戻り経路4を順に通って発酵槽1へ戻る経路(以下、循環経路ということもある。)で循環させながら、固液分離手段10から分離液排出経路11を経て、分離液を抜き出した(図2)。分離液の抜き出し量は、発酵槽1内の液中における菌体濃度がOD660値=360(乾燥菌体重量72g/L)に濃縮される量とした。
こうして濃縮した後の、発酵槽1および循環経路内の液の合計量は250mLであった。
次いで、以下の方法で発酵槽1内を初期状態とした。すなわち、液を循環させつつ、250mLの原料液を供給した(工程(2)、図3)。発酵槽1および循環経路内の液の合計量が500mLとなった時点を発酵開始時(発酵時間0時間)とした。この時点の菌体濃度はOD660値=180(乾燥菌体重量36g/L)であった。
抜き出し時における循環経路内の液の流量は240mL/分とし、分離液の抜き出しを行っていない状態での、循環経路内の液の流量は10mL/分とした(以下、同様)。
発酵開始後、循環経路内の液(発酵液)を循環させつつ、発酵槽1内の液中のグルコース濃度、エタノール濃度、および乳酸濃度の経時変化を測定しながら発酵を行った(工程(3)、図1)。また発酵槽1内の液(発酵液)の溶存酸素濃度(DO)の経時変化を測定した。
発酵槽1内の液中原料糖濃度が0.6g/L以下に低下したことを確認した後、循環経路内の液(発酵液)の250mL(全液量の1/2)を、固液分離手段10を介して抜き出して、分離液を得た(工程(4)、図2)。250mLを抜き出すのに約1時間かかった。
分離液の抜き出し中における、発酵槽1内の液の溶存酸素濃度(DO)が5ppb以上に維持されるとともに、該DOの最大値が、抜き出し開始直前よりも50ppb以上高く、かつ60ppb以上、6000ppb以下の範囲内となるように通気量を制御した。本例では分離液の抜き出し開始前および抜き出し中のいずれにおいても、0.25L/分の流量で通気を継続して行った。
250mLの抜き出しが終了した時点で、発酵槽1内に原料液を250mL導入して(工程(2)、図3)、再び発酵を開始した(工程(3)、図1)。分離液の引抜後も、0.25L/分の流量で通気を継続して行った。
そして、発酵槽1内の液中原料糖濃度が0.6g/L以下に低下したことが確認されたら、前回と同様にして、固液分離手段10から250mLの分離液を抜き出した後(工程(4)、図2)、250mLの原料液を導入して(工程(2)、図3)、再度発酵を開始した。250mLの原料液を導入するのにかかった時間は4分間であった。
これらの一連の操作を約210時間繰り返して、乳酸を含み、菌体を含まない分離液を断続的に得た。
発酵開始時(発酵時間0時間)から210.3時間後まで、発酵槽1内の液のpHを調整するための操作は特に行わなかったが、該pHの値は2.2〜4.2の範囲内であった。より具体的には、発酵開始時のpHの値は4.2であり、発酵開始から20時間後までは漸次低下する傾向にあり、その後はpH2.2〜3.0の範囲内で推移した。
また、発酵開始時(発酵時間0時間)から210.3時間後まで、途中で菌体を追加することは行わなかった。発酵槽1内の液の菌体濃度を表すOD660値は、発酵開始時は180に調整され、210.3時間後は約130程度であり、高い濃度に維持された。
また生菌率は、発酵開始時を100%とすると、210.3時間後は約50%であり、高い状態が維持された。
図4は、発酵開始時(発酵時間0時間)から210.3時間後までの、発酵槽1内のグルコース濃度、エタノール濃度、および乳酸濃度の経時変化を示したグラフ(図4(A))と、発酵槽1内の溶存酸素濃度(DO)の経時変化を示したグラフ(図4(B))を並べて示したものである。
図4(A)に示されるように、発酵が開始されると発酵槽1内のグルコース濃度が低下し、かつ乳酸濃度およびエタノール濃度が増大している。このことから、発酵槽1内の液中でグルコースが消費されて乳酸およびエタノールが生産されたことがわかる。
図4(A)に示されるように、本例の方法で発酵および分離液の抜き出しを反復して行うことにより、途中で菌体を補充することなく、約210時間で24回の回分発酵を安定して行うことができた。
図4(B)のグラフにおいて、抜き出しが開始された後、抜き出しが終了するまでの間の、発酵槽1内の液の溶存酸素濃度(DO)は5ppb以上に維持された。また該DOの最大値は250ppb〜1、050ppbであり、該最大値と抜き出し開始直前の該溶存酸素濃度との差は、270ppb〜1、000ppb程度であった。
[乳酸生産速度]
分離液中の乳酸濃度から、乳酸生産速度(単位:g/L/h)を下記式(1)により求めた。
{発酵t時間における乳酸濃度(g/L)−発酵開始時の乳酸濃度(g/L)}/{発酵t時間(h)} ・・・(1)
[対糖乳酸収率]
分離液中の乳酸濃度および糖濃度から、対糖乳酸収率(単位:%)を下記式(2)により求めた。
{発酵t時間における乳酸濃度(g/L)−発酵開始時の乳酸濃度(g/L)}/{発酵開始時の糖濃度(g/L)−発酵t時間の糖濃度(g/L)}×100 ・・・(2)
本例においてt=210.3時間、糖濃度はグルコース濃度である。発酵開始時の乳酸濃度は38.8g/L、発酵開始時の糖濃度は56.7g/Lである。なお発酵開始時に含まれている乳酸は、発酵用菌体取得のために実施された培養段階で生成した乳酸の持ち込み分である。
発酵開始(t=0)から210.3時間後までに得られた分離液の合計量は6.4L、該分離液中のグルコース濃度は0.2g/L、エタノール濃度はg/L、D−乳酸濃度は98.2g/L、D−乳酸光学純度は98.9(%e.e.)であった。
乳酸生産速度は6.0g/L/hであり、対糖乳酸収率は79.9%であった。
このように、分離液に残存するグルコース濃度は、0.2g/Lと非常に低い値を示した。
分離液中のD−乳酸濃度は98.2g/L、乳酸生産速度(回収発酵上清基準)は6.0g/L/h、対糖乳酸収率は79.9%と高い乳酸生産性を示した。
分離液中のD−乳酸の光学純度は、98.9%e.e.と非常に高い値を示した。
以上の結果より、本例によれば、乳酸を含み、グルコース濃度が非常に低い分離液を得ることができるとともに、発酵槽内のグルコース濃度がほぼゼロになった後も乳酸の減少が生じないため、乳酸を効率良く製造することができることがわかる。
<試験例1>
グルコース濃度がゼロになったときの、発酵に対する酸素濃度の影響を調べるために回分発酵を行った。菌体、培養液、原料液および装置は実施例1と同じものを用いた。
まず培養液および原料液を発酵槽1内へ導入し、0.25L/分の流量で通気した。発酵槽1内の液温は28℃とした。
発酵槽1内の液中における菌体濃度がOD660値=180となるように、実施例1と同様にして濃縮を行った。濃縮後の、発酵槽1および循環経路内の液の合計量は500mLであった。
濃縮終了時を発酵開始時(発酵時間0時間)とし、循環経路内の液(発酵液)を循環させつつ、発酵槽1内の液中のグルコース濃度、エタノール濃度、および乳酸濃度の経時変化を測定しながら、70時間発酵を行った。発酵開始から7.8時間後にグルコース濃度がゼロになったことを確認した。その後も通気を継続し条件を変えずに発酵を行った。
グルコース濃度、エタノール濃度、および乳酸濃度の測定結果を図5に示す。
発酵時間が0時間、7.8時間、69時間のときの各濃度および生菌率の測定結果を表1に示す。
Figure 2017205019
<比較試験例1>
本例が試験例1と異なる点は、グルコース濃度がゼロになった時点で通気を止めた点である。
すなわち試験例1と同様にして発酵を行ったところ、発酵開始から7.7時間後にグルコース濃度がゼロになったことを確認した。この時点で通気を中止した。
その他は試験例1と同様に、発酵槽1内の液中のグルコース濃度、エタノール濃度、および乳酸濃度の経時変化を測定しながら、70時間発酵を行った。
グルコース濃度、エタノール濃度、および乳酸濃度の測定結果を図6に示す。
発酵時間が0時間、7.7時間、69時間のときの各濃度および生菌率の測定結果を表2に示す。
Figure 2017205019
図5、6、表1、2の結果に示されるように、グルコース濃度がゼロになった後に通気を継続した試験例1は、乳酸の減少が抑えられている。またエタノール濃度も減少していることから、エタノールが消費されて生菌率が維持されたと考えられる。
一方、グルコース濃度がゼロになった時点で、通気を止めた比較試験例1は、グルコース濃度がゼロになった時点以降、乳酸濃度が減少し、エタノール濃度が増加した。乳酸が消費され、エタノールが生成する反応が進んだと考えられる。
これらの結果より、実施例1において、発酵槽内のグルコース濃度がほぼゼロになった後も乳酸の減少が生じなかったのは、エタノールが消費されて生菌率が維持されたためと考えられる。
1 発酵槽
2 原料液供給経路
3 発酵液排出経路
4 戻り経路
10 固液分離手段
11 分離液排出経路

Claims (11)

  1. 発酵設備に、遺伝子組み換えにより有機酸を発酵生産できる能力を付与した分裂酵母を導入する工程(1)、
    発酵設備に、原料糖を含む原料液を導入する工程(2)、
    前記分裂酵母および前記原料液が導入された前記発酵設備内で、該発酵設備内液中溶存酸素濃度を5ppb以上、500ppb以下に制御しながら、該発酵設備内の液の抜き出しを行うことなく、前記分裂酵母による発酵を行って有機酸を生産する工程(3)、
    前記発酵設備内の液の一部を抜き出して、有機酸を含む液を回収する工程(4)を有し、
    前記工程(2)から前記工程(4)は少なくとも2回以上繰り返し、
    前記工程(3)において、前記発酵により発酵設備内液中原料糖濃度が低下し、予め設定された原料糖濃度x(単位:g/L、x≦10)以下に達した時点以降に、前記工程(4)の抜き出しを開始し、
    前記工程(4)における前記発酵設備内液中溶存酸素濃度を、5ppb以上に維持することを特徴とする有機酸の製造方法。
  2. 前記工程(3)における前記発酵設備内の液のpHが1.5〜3.5である、請求項1に記載の有機酸の製造方法。
  3. 前記分裂酵母が、有機酸とエタノールとを併産する酵母である、請求項1または2に記載の有機酸の製造方法。
  4. 前記工程(4)の抜き出し開始時に、発酵設備内液中エタノール濃度が1g/L以上である、請求項3に記載の有機酸の製造方法。
  5. 前記分裂酵母の宿主が、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)である、請求項1〜4のいずれか一項に記載の有機酸の製造方法。
  6. 前記工程(4)における前記発酵設備内液中溶存酸素濃度を、60ppb以上、6000ppb以下の範囲内で、かつ前記液の抜き出し開始直前の該溶存酸素濃度よりも50ppb以上高い状態が存在するように制御する、請求項1〜5のいずれか一項に記載の有機酸の製造方法。
  7. 前記工程(4)の抜き出し開始時に、発酵設備内液中有機酸濃度が40g/L以上である、請求項1〜6のいずれか一項に記載の有機酸の製造方法。
  8. 前記工程(4)において、前記発酵設備内液中原料糖濃度が0g/Lとなる状態が存在する、請求項1〜7のいずれか一項に記載の有機酸の製造方法。
  9. 前記工程(4)において、前記発酵設備内の液の一部を、固液分離手段を介して抜き出して、前記有機酸を含む液として、菌体を含まない分離液を得る、請求項1〜8のいずれか一項に記載の有機酸の製造方法。
  10. 前記分離液中の原料糖濃度が1g/L以下である、請求項9に記載の有機酸の製造方法。
  11. 前記工程(4)において、前記固液分離手段で、前記分離液と、菌体を含む非分離液とに分離し、該非分離液を前記発酵設備内で循環させる、請求項9または10に記載の有機酸の製造方法。
JP2014191402A 2014-09-19 2014-09-19 有機酸の製造方法 Pending JP2017205019A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014191402A JP2017205019A (ja) 2014-09-19 2014-09-19 有機酸の製造方法
PCT/JP2015/076565 WO2016043289A1 (ja) 2014-09-19 2015-09-17 有機酸の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191402A JP2017205019A (ja) 2014-09-19 2014-09-19 有機酸の製造方法

Publications (1)

Publication Number Publication Date
JP2017205019A true JP2017205019A (ja) 2017-11-24

Family

ID=55533325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191402A Pending JP2017205019A (ja) 2014-09-19 2014-09-19 有機酸の製造方法

Country Status (2)

Country Link
JP (1) JP2017205019A (ja)
WO (1) WO2016043289A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138387A (ja) * 1982-02-15 1983-08-17 Mitsui Petrochem Ind Ltd クエン酸の製造方法
JPH10174594A (ja) * 1996-12-17 1998-06-30 Ngk Insulators Ltd 微生物によるグリコール酸の生産方法
JP4806904B2 (ja) * 2004-07-09 2011-11-02 トヨタ自動車株式会社 乳酸生産方法
CA2638780C (en) * 2006-02-24 2017-11-21 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus
IN2012DN01521A (ja) * 2009-08-21 2015-06-05 Asahi Glass Co Ltd
CN103392004A (zh) * 2011-02-21 2013-11-13 旭硝子株式会社 乳酸的制造方法

Also Published As

Publication number Publication date
WO2016043289A1 (ja) 2016-03-24

Similar Documents

Publication Publication Date Title
Coutte et al. New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor
DE60029440T2 (de) Methoden und materialien zur synthese von organischen produkten
CN101939439B (zh) 通过连续发酵实施的乳酸的制造方法
KR102116643B1 (ko) 높은 글리세린 농도를 사용하는 1,3-프로판디올의 생성을 위한 연속 배양법
CN103396974A (zh) 用于高效乳酸生产的材料和方法
CN104131038A (zh) 化学品的制备方法和连续发酵装置
Pavlečić et al. Ethanol production from different intermediates of sugar beet processing
US10119152B2 (en) Fermentation process for producing chemicals
JP2021506575A (ja) 廃水中の有機化合物の量の削減のための継続的方法
JP5329055B2 (ja) 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法
CN101553572A (zh) 化学品的制备方法和连续发酵装置
US20150344915A1 (en) Process and apparatus for produsing chemical product
RU2012145469A (ru) Способ получения зеаксантина ферментацией
EP3102675B1 (en) Improved microorganisms for succinic acid production
Anastassiadis et al. Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention
JP2017205019A (ja) 有機酸の製造方法
JP6558767B2 (ja) ハロモナス菌を用いたピルビン酸の製造方法
KR20140116845A (ko) 화학품의 제조방법
EP3133164A1 (en) Method for producing chemical substance by continuous fermentation
Jin et al. Study of a cleaner extraction of pyruvic acid from fermentation broth
JP2013013353A (ja) 1,3−プロパンジオールの製造方法
WO2023090305A1 (ja) 核酸構築物
US20190153453A1 (en) Transformant and process for production thereof, and process for production of lactic acid
WO2008117068A1 (en) Apparatus and method for biohydrogen production
JP5660167B2 (ja) 変異型ピルビン酸脱炭酸酵素5遺伝子を有する酵母及び乳酸の製造方法