JP2017176938A - Coating method of metal pipe inner surface - Google Patents

Coating method of metal pipe inner surface Download PDF

Info

Publication number
JP2017176938A
JP2017176938A JP2016064576A JP2016064576A JP2017176938A JP 2017176938 A JP2017176938 A JP 2017176938A JP 2016064576 A JP2016064576 A JP 2016064576A JP 2016064576 A JP2016064576 A JP 2016064576A JP 2017176938 A JP2017176938 A JP 2017176938A
Authority
JP
Japan
Prior art keywords
silica sand
coating
paint
pipe
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016064576A
Other languages
Japanese (ja)
Inventor
佳和 西原
Yoshikazu Nishihara
佳和 西原
祥延 山田
Yoshinobu Yamada
祥延 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2016064576A priority Critical patent/JP2017176938A/en
Publication of JP2017176938A publication Critical patent/JP2017176938A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coating method of a metal pipe inner surface which can obtain a low-cost powder coating film without damaging a coating film appearance and adhesiveness of powder coating.SOLUTION: A coating method of a metal pipe inner surface for applying powder coating by spraying powder coating material on a metal pipe inner surface includes a first process of coating the metal pipe inner surface with the power coating material, a second process of supplying and depositing silica sand on the coated powder coating material by air pressure feeding, and a third process of coating the deposited silica sand with the powder coating material again to sandwich the silica sand with powder coating material layers.SELECTED DRAWING: Figure 1

Description

本発明は、金属管内面の塗装方法に関し、より詳細には、金属管内面の粉体塗装を低コストで行う方法に関する。   The present invention relates to a method for coating an inner surface of a metal tube, and more particularly to a method for performing powder coating on the inner surface of a metal tube at a low cost.

金属管、特に上下水道に用いられる鋳鉄管においては、防食性と環境への配慮の両面から、近年エポキシ樹脂粉体塗料による塗膜を管内面に形成することが一般に行われている。このエポキシ樹脂粉体塗料によるエポキシ塗膜の形成方法の1つは、加熱された回転する管の内面にエポキシ樹脂粉体塗料を吹き付けなどにより塗布し、溶融・硬化させるものである。   In metal pipes, particularly cast iron pipes used in water and sewage systems, in recent years, a coating film made of an epoxy resin powder coating is generally formed on the inner surface of the pipe from the viewpoints of corrosion resistance and environmental considerations. One method of forming an epoxy coating film with this epoxy resin powder coating is to apply an epoxy resin powder coating to the inner surface of a heated rotating tube by spraying, etc., and melt and cure.

金属管の塗装に用いる樹脂粉体塗料は、一般に、樹脂、硬化剤、顔料、添加剤から構成される。顔料には、着色顔料と体質顔料とがあり、着色顔料には無機系成分と有機系成分とがあり、着色を目的に添加される。一方、体質顔料は無機系成分の硫酸バリウム、タルク、炭酸カルシウム、シリカなどであり、充填剤として塗膜の性能改善や塗膜の厚塗り性のために添加される。また、製造時の混練性や粉砕性の改善、塗装時の作業性や流動性を改善する役割も担っている。   A resin powder coating used for coating a metal tube is generally composed of a resin, a curing agent, a pigment, and an additive. The pigment includes a colored pigment and an extender pigment, and the colored pigment includes an inorganic component and an organic component, and is added for the purpose of coloring. On the other hand, extender pigments are inorganic components such as barium sulfate, talc, calcium carbonate, and silica, and are added as fillers to improve the performance of the coating film and to increase the coatability of the coating film. It also plays a role of improving kneadability and grindability during production, and improving workability and fluidity during coating.

一方、珪砂を金属表面の塗装に用いる技術として、特許文献1には、金属表面に粉体塗装を行い、形成されたプラスチック被膜に、このプラスチック被膜が軟化乃至溶融状態にあるうちに、噴射ガンAを用いて火炎と共に粒径0.05〜3.0mm前後のガラス、セラミック、砂、鉄などの無機質粗粒体を吹き付けて、無機質粗粒体の一部が露出した状態で埋設固着させ、粗面構成体を得る方法が開示されている。   On the other hand, as a technique for using silica sand for coating a metal surface, Patent Document 1 discloses that a powder gun is applied to a metal surface, and a plastic gun is formed on the formed plastic film while the plastic film is in a softened or molten state. Using A, together with a flame, spray inorganic coarse particles such as glass, ceramic, sand, iron, etc. with a particle size of around 0.05 to 3.0 mm, and embed and fix the exposed inorganic coarse particles partially, A method for obtaining a rough surface structure is disclosed.

特開2003−127282号公報JP 2003-127282 A

上述のように、エポキシ樹脂粉体塗料は、溶剤を用いることなく防食性を担保することができるため、環境への負荷が少なく非常に優れたものであるが、エポキシ樹脂自体の価格が高く、ある程度の厚さの塗膜を得るためには、そのコストが問題となることがある。   As described above, the epoxy resin powder coating is able to ensure anticorrosion without using a solvent, and is very excellent with little impact on the environment, but the price of the epoxy resin itself is high, In order to obtain a coating film having a certain thickness, the cost may be a problem.

一方、エポキシ樹脂の量を相対的に抑え、コスト的に優れた充填剤となるシリカ等の体質顔料の配合量を増加させることが考えられるが、実際には溶融練合時の装置への負荷を考慮すると、現実的ではない。また、粒度の大きい珪砂等は、微粒子シリカよりも安価に入手できるが、塗料へ混合して用いると、得られる塗膜の仕上がり面に珪砂に起因する凹凸が生じ、外観上も好ましくなく、また塗膜の寿命にも影響を与える。   On the other hand, it is conceivable to increase the blending amount of extender pigments such as silica, which is an excellent filler in terms of cost, while suppressing the amount of epoxy resin relatively, but in reality, the load on the equipment during melt kneading Is not realistic. Silica sand with a large particle size can be obtained at a lower cost than fine particle silica, but when mixed with a paint, the resulting coating film has irregularities due to the silica sand on the finished surface, which is not preferable in appearance. It also affects the life of the coating.

そこで、本発明は、粉体塗装における塗膜外観および密着性を損なうことなく、低コストな粉体塗膜を得ることができる塗装方法を提供することを目的とする。   Then, this invention aims at providing the coating method which can obtain a low-cost powder coating film, without impairing the coating-film external appearance and adhesiveness in powder coating.

本発明者らは、上記課題を解決するために鋭意検討した結果、目標膜厚より少ない粉体塗料を塗装した金属管に珪砂を撒き、その上に再度粉体塗料を目標膜厚となるように塗装することにより、比較的粒子サイズの大きい珪砂であっても塗膜表面に特に影響することなく、塗膜中に含めることができ、粉体塗料の使用量を削減できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors spread silica sand on a metal tube coated with a powder coating that is less than the target film thickness, and the powder coating is again made to have the target film thickness. The present invention found that even silica sand having a relatively large particle size can be included in the coating film without particularly affecting the coating film surface, and the amount of powder paint used can be reduced. Was completed.

すなわち、本発明は、金属管内面に粉体塗料を吹き付けて粉体塗装を行う金属管内面塗装方法において、金属管内面に粉体塗料を塗装する第1工程、塗装された粉体塗料の上に珪砂を空気圧送により供給し堆積させる第2工程、および堆積させた珪砂の上に粉体塗料を再度塗装する第3工程を含む構成とし、それにより珪砂を粉体塗料層で挟み込むものとした。   That is, the present invention provides a metal tube inner surface coating method in which powder coating is performed by spraying a powder coating on the inner surface of a metal tube, and a first step of coating the powder coating on the inner surface of the metal tube, The second step of supplying and depositing silica sand by pneumatic feeding and the third step of re-coating the powder coating on the deposited silica sand are arranged so that the silica sand is sandwiched between the powder coating layers. .

これにより、金属管体の下塗りとの密着性と、塗装後の滑らかな表面状態を確保しつつ、珪砂による嵩増しが可能となる。   Accordingly, it is possible to increase the bulk by the silica sand while ensuring the adhesion with the undercoat of the metal tube and the smooth surface state after the coating.

また、上述の金属管内面塗装方法は、前記粉体塗料を吐出する塗料吐出部と、前記珪砂を吐出する珪砂吐出部とを備えた塗装装置により行われ、前記塗装装置が、前記塗料吐出部および前記珪砂吐出部と、前記金属管体とを管軸方向に相対的に移動させる移動機構を備え、前記塗料吐出部と前記珪砂吐出部とが被塗装管の管軸方向に沿って間隔をあけて配置され、前記移動機構によって、前記塗料吐出部および前記珪砂吐出部が、前記金属管体に対する管軸方向の位置を変えることにより、前記第1工程において前記粉体塗料を前記金属管体の一端側から他端側まで塗装し、その後、前記第3工程において前記粉体塗料を前記金属管体の他端側から一端側まで再塗装することによって行われるものとすることができる。また、前記第2工程における前記珪砂の堆積は、前記第1工程とあわせて前記金属管体の一端側から他端側まで行われるか、あるいは前記第3工程とあわせて前記金属管体の他端側から一端側まで行われるか、もしくはその両方とすることができる。塗料の吐出と珪砂の吐出とを続けて行うことができる装置を被塗装管体内に往復させることにより高い作業効率が得られ、好ましい。   Further, the above-described metal pipe inner surface coating method is performed by a coating apparatus including a paint discharge unit that discharges the powder paint and a silica sand discharge unit that discharges the silica sand, and the coating apparatus includes the paint discharge unit. And a moving mechanism that relatively moves the silica sand discharge part and the metal pipe body in the tube axis direction, and the paint discharge part and the silica sand discharge part are spaced apart along the tube axis direction of the pipe to be coated. The powder coating material is disposed in the first step by changing the position of the coating material discharge portion and the silica sand discharge portion in the tube axis direction with respect to the metal tube body by the moving mechanism. It can be performed by coating from one end side to the other end side, and then re-coating the powder coating material from the other end side to the one end side of the metal tube body in the third step. Further, the deposition of the silica sand in the second step is performed from one end side to the other end side of the metal tube in combination with the first step, or in addition to the metal tube in addition to the third step. It can be done from one end to the other, or both. A high working efficiency can be obtained by reciprocating an apparatus capable of continuously discharging paint and silica sand in the pipe to be coated.

本発明の金属管内面塗装方法によれば、所定量の珪砂を塗膜にサンドウィッチ状に挟み込むことができるため、粉体塗料自体の使用量を削減してコストを抑えつつ、塗膜と下地との密着性に優れ、また珪砂が塗膜表面の仕上がりに影響しにくい良好な塗膜を得ることができる。   According to the metal tube inner surface coating method of the present invention, since a predetermined amount of silica sand can be sandwiched between the coating films, the amount of the powder coating itself can be reduced while suppressing costs, In addition, it is possible to obtain a good coating film that is excellent in adhesion and that the silica sand hardly affects the finish of the coating film surface.

本発明の金属管内面塗装方法の一実施形態を説明するための概略図である。It is the schematic for demonstrating one Embodiment of the metal pipe inner surface coating method of this invention. 本発明の金属管内面塗装方法の一実施形態により得られる塗膜の形成過程を説明する概略図である。It is the schematic explaining the formation process of the coating film obtained by one Embodiment of the metal pipe inner surface coating method of this invention. 本発明の金属管内面塗装方法の一実施形態により得られる塗膜の形成過程を説明する概略図である。It is the schematic explaining the formation process of the coating film obtained by one Embodiment of the metal pipe inner surface coating method of this invention. 本発明の金属管内面塗装方法の一実施形態により得られた塗膜の断面を説明する概略図である。It is the schematic explaining the cross section of the coating film obtained by one Embodiment of the metal pipe inner surface coating method of this invention.

以下、本発明の金属管内面塗装方法を図1〜図4を参照して説明する。図1は、本発明の金属管内面塗装方法の一実施形態を説明するための概略図である。図2および図3は、本発明の金属管内面塗装方法により得られる塗膜の形成過程を説明する概略図である。図4は、実際に本発明の金属管内面塗装方法の一実施形態により得られた塗膜の断面を説明する概略図である。   Hereinafter, the metal pipe inner surface coating method of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view for explaining an embodiment of the method for painting an inner surface of a metal pipe of the present invention. 2 and 3 are schematic views for explaining the process of forming a coating film obtained by the metal tube inner surface coating method of the present invention. FIG. 4 is a schematic diagram for explaining a cross section of a coating film actually obtained by an embodiment of the metal tube inner surface coating method of the present invention.

まず、図1を参照して、本実施形態の金属管内面塗装方法に用いられる管内面塗装装置(以下、単に塗装装置と呼ぶ)Dの構造を説明する。なお、図1に示される塗装装置Dは、あくまで一例であり、図1に示す構造に限定されるものではない。   First, the structure of a pipe inner surface coating apparatus (hereinafter simply referred to as a coating apparatus) D used in the metal pipe inner surface coating method of this embodiment will be described with reference to FIG. In addition, the coating apparatus D shown by FIG. 1 is an example to the last, and is not limited to the structure shown in FIG.

図1に示されるように、本実施形態の塗装装置Dは、粉体塗料4および珪砂5をそれぞれ吐出する吐出装置1と、管体Pを支持し管体Pを回転させる管体回転装置2とを備えている。吐出装置1は、後述するように塗料供給装置11および珪砂供給装置12とを備え、塗料供給装置11および珪砂供給装置12は、それぞれ塗料吐出部11aおよび珪砂吐出部12aを備えている。また、本実施形態では、塗装装置Dは、図1に示されるように、塗料吐出部11aおよび珪砂吐出部12aを管軸方向に沿って移動させる移動機構3を備えている。   As shown in FIG. 1, the coating apparatus D of the present embodiment includes a discharge device 1 that discharges the powder coating material 4 and the silica sand 5, and a tube rotation device 2 that supports the tube P and rotates the tube P. And. As will be described later, the discharge device 1 includes a paint supply device 11 and a silica sand supply device 12, and the paint supply device 11 and the silica sand supply device 12 include a paint discharge portion 11a and a silica sand discharge portion 12a, respectively. Moreover, in this embodiment, the coating apparatus D is provided with the moving mechanism 3 which moves the coating material discharge part 11a and the silica sand discharge part 12a along a pipe-axis direction, as FIG. 1 shows.

管体回転装置2は、本実施形態では、図1に示されるように、予熱した被塗装金属管(以下、単に金属管または管体と呼ぶ)Pが載置され、金属管Pを軸周りに回転させる回転ローラ21を備えている。回転ローラ21は、吐出装置1による塗装時に金属管Pを回転させ、移動機構3により塗料吐出部11aおよび珪砂吐出部12aが管軸方向に沿って移動することにより、金属管Pの内周面全体に塗装が施される。なお、金属管Pの種類は特に限定されないが、たとえば鋳鉄管とすることができる。また、金属管Pの形状は特に限定されないが、たとえば、金属管Pの一端側に受口を有し、他端側に挿し口を有する直管とすることができる。   In the present embodiment, as shown in FIG. 1, the tube rotating device 2 has a preheated metal pipe P (hereinafter simply referred to as a metal pipe or a pipe body) P placed thereon and the metal pipe P around the axis. A rotating roller 21 is provided for rotation. The rotating roller 21 rotates the metal tube P during painting by the discharge device 1, and the paint discharge unit 11 a and the silica sand discharge unit 12 a are moved along the tube axis direction by the moving mechanism 3, whereby the inner peripheral surface of the metal tube P The whole is painted. In addition, although the kind of metal pipe P is not specifically limited, For example, it can be set as a cast iron pipe. Moreover, the shape of the metal pipe P is not particularly limited. For example, the metal pipe P can be a straight pipe having a receiving port on one end side and an insertion port on the other end side.

吐出装置1は、粉体塗料4および珪砂5をそれぞれ吐出し、金属管Pの内面を塗装する装置である。吐出装置1は、本実施形態では図1に示されるように、粉体塗料4を吐出する塗料吐出部11aを有する粉体塗料供給装置11と、珪砂5を吐出する珪砂吐出部12aを有する珪砂供給装置12とを備えている。   The discharge device 1 is a device that discharges the powder paint 4 and the silica sand 5 and paints the inner surface of the metal pipe P. In the present embodiment, as shown in FIG. 1, the discharge device 1 includes a powder paint supply device 11 having a paint discharge portion 11 a that discharges powder paint 4 and a silica sand having a silica sand discharge portion 12 a that discharges silica sand 5. And a supply device 12.

また、本発明に用いる粉体塗料4は、金属管Pに適用後、熱により溶融しその後硬化されるものであれば特に制限なく使用することができる。たとえば、水道用のダクタイル鋳鉄管の場合、規格に適合したエポキシ粉体樹脂塗料が用いられる。また、本発明に用いる珪砂5は、特に限定されるものではないが、たとえば、モード径約0.1〜0.2mm程度、かつ粒度分布が0.05mm〜0.3mmの範囲にあるもので一般に7号珪砂、8号珪砂として市販されているものを用いることが好ましい。   In addition, the powder coating 4 used in the present invention can be used without particular limitation as long as it is melted by heat and then cured after being applied to the metal tube P. For example, in the case of a ductile cast iron pipe for water supply, an epoxy powder resin paint conforming to the standard is used. Further, the silica sand 5 used in the present invention is not particularly limited. For example, the silica sand 5 has a mode diameter of about 0.1 to 0.2 mm and a particle size distribution of 0.05 mm to 0.3 mm. Generally, it is preferable to use what is marketed as No. 7 silica sand and No. 8 silica sand.

粉体塗料供給装置11は、本実施形態では、図1に示されるように、図示しない粉体塗料の供給源から粉体塗料4を供給するための塗料供給機構11cと、塗料供給機構11cに接続され、粉体塗料4を塗料吐出部11aに供給する塗料配管11bと、塗料配管11bに接続され、塗料を吐出する塗料吐出部11aとを備えている。   In this embodiment, as shown in FIG. 1, the powder coating material supply apparatus 11 is supplied to a coating material supply mechanism 11c for supplying a powder coating material 4 from a powder coating material supply source (not shown) and a coating material supply mechanism 11c. A paint pipe 11b that is connected to supply the powder paint 4 to the paint discharge part 11a and a paint discharge part 11a that is connected to the paint pipe 11b and discharges the paint are provided.

塗料供給機構11cは、粉体塗料4を塗料吐出部11aに供給できるものであれば特に限定されない。   The coating material supply mechanism 11c is not particularly limited as long as it can supply the powder coating material 4 to the coating material discharge unit 11a.

塗料配管11bは、塗料4を塗料吐出部11aに供給するための通路を形成する。本実施形態では、塗料配管11bは、塗料供給機構11cと塗料吐出部11aとの間に設けられ、金属管Pの管軸と略平行に延びている。   The paint pipe 11b forms a passage for supplying the paint 4 to the paint discharger 11a. In the present embodiment, the paint pipe 11b is provided between the paint supply mechanism 11c and the paint discharge part 11a and extends substantially parallel to the tube axis of the metal pipe P.

塗料吐出部11aは、粉体塗料4を吐出する部位である。塗料吐出部11aは、粉体塗料4を吐出することが可能であれば、特にその構造は限定されないが、塗料の吐出に用いられる公知のノズルを用いることができる。   The paint discharger 11 a is a part that discharges the powder paint 4. The structure of the coating material discharge unit 11a is not particularly limited as long as it can discharge the powder coating material 4, but a known nozzle used for discharging the coating material can be used.

珪砂供給装置12は、本実施形態では、図1に示されるように、図示しない珪砂の供給源から珪砂5を供給するための珪砂供給機構12cと、珪砂供給機構12cに接続され、珪砂5を珪砂吐出部12aに供給する珪砂配管12bと、珪砂配管12bに接続され、珪砂5を吐出する珪砂吐出部11aとを備えている。   In the present embodiment, as shown in FIG. 1, the silica sand supply device 12 is connected to a silica sand supply mechanism 12c for supplying the silica sand 5 from a silica sand supply source (not shown) and the silica sand supply mechanism 12c. A silica sand pipe 12b to be supplied to the silica sand discharge part 12a and a silica sand discharge part 11a connected to the silica sand pipe 12b to discharge the silica sand 5 are provided.

珪砂供給機構12cは、空気圧送により珪砂5を供給できるものであれば特に限定されるものではない。   The silica sand supply mechanism 12c is not particularly limited as long as the silica sand 5 can be supplied by pneumatic feeding.

珪砂配管12bは、珪砂5を珪砂吐出部12aに供給するための通路を形成し、基本的には上述の粉体塗料供給装置11の塗料配管11bと同様の構成であるため、詳しい説明は省略する。   The silica sand pipe 12b forms a passage for supplying the silica sand 5 to the silica sand discharge part 12a, and basically has the same configuration as the paint pipe 11b of the powder paint supply device 11 described above, and thus detailed description thereof is omitted. To do.

珪砂吐出部12aは、珪砂5を吐出する部位であり、珪砂吐出部12aは、珪砂5を吐出することが可能であれば、特にその構造は限定されず、一般に塗料の吐出に用いられる公知のノズルなど、使用する珪砂5の粒径によって、適宜適切なものを用いることができる。   The silica sand discharge part 12a is a part for discharging the silica sand 5, and the structure of the silica sand discharge part 12a is not particularly limited as long as the silica sand 5 can be discharged, and is generally known for use in discharging paint. Depending on the particle size of the silica sand 5 to be used such as a nozzle, an appropriate one can be used.

移動機構3は、塗料吐出部11aおよび珪砂吐出部12aと、金属管Pとを金属管Pの管軸方向に相対移動させる機構である。本実施形態では、移動機構3は、塗料吐出部11aおよび珪砂吐出部12aを金属管Pの内側で管軸方向に沿って移動させるように構成されているが、移動機構3は、塗料吐出部11aおよび珪砂吐出部12aを移動させずに金属管Pを移動させてもよいし、金属管Pと、塗料吐出部11aおよび珪砂吐出部12aとの両方を移動させるように構成しても構わない。詳細については後述するが、金属管Pと、塗料吐出部11aおよび珪砂吐出部12aとを金属管Pの管軸方向に相対移動させることにより、金属管Pの内面の塗装が可能となる。なお、図1においては、移動機構3は概略的に車輪により移動する移動体を例にあげているが、移動機構3は、少なくとも塗料吐出部11aおよび珪砂吐出部11bを移動させることができればよく、その構造は特に限定されない。   The moving mechanism 3 is a mechanism that relatively moves the paint discharge part 11a, the silica sand discharge part 12a, and the metal pipe P in the tube axis direction of the metal pipe P. In the present embodiment, the moving mechanism 3 is configured to move the paint discharge part 11a and the silica sand discharge part 12a along the pipe axis direction inside the metal pipe P. The metal pipe P may be moved without moving the 11a and the silica sand discharge part 12a, or both the metal pipe P and the paint discharge part 11a and the silica sand discharge part 12a may be moved. . Although details will be described later, the inner surface of the metal pipe P can be painted by relatively moving the metal pipe P, the paint discharge part 11a and the silica sand discharge part 12a in the pipe axis direction of the metal pipe P. In FIG. 1, the moving mechanism 3 is schematically exemplified by a moving body that moves by wheels. However, the moving mechanism 3 only needs to move at least the paint discharging unit 11 a and the silica sand discharging unit 11 b. The structure is not particularly limited.

また、本実施形態では、塗料吐出部11aは、図1に示されるように、珪砂吐出部12aと管軸方向に間隔をあけて配置されている。より具体的には、金属管Pの一端側から塗装を開始する場合、塗料吐出部11aが珪砂吐出部12aに対して他端側に位置するように間隔をあけて配置されている。なお、塗料吐出部11aと珪砂吐出部12aとの間の管軸方向の間隔は、特に限定されないが、たとえば、100〜300mmであることが好ましい。   Moreover, in this embodiment, the coating material discharge part 11a is arrange | positioned at intervals in the pipe-axis direction with the silica sand discharge part 12a, as FIG. 1 shows. More specifically, when coating is started from one end side of the metal pipe P, the coating material discharge part 11a is arranged at an interval so as to be positioned on the other end side with respect to the silica sand discharge part 12a. In addition, although the space | interval of the pipe-axis direction between the coating material discharge part 11a and the silica sand discharge part 12a is not specifically limited, For example, it is preferable that it is 100-300 mm.

つぎに、本発明の金属管内面塗装方法について、図1〜図4を用いて説明する。なお、以下の説明では、上述した塗装装置を例にあげて説明するが、同様の効果を奏することが可能であれば、他の構造の塗装装置を用いても構わない。   Next, the metal pipe inner surface coating method of the present invention will be described with reference to FIGS. In the following description, the above-described coating apparatus is described as an example, but a coating apparatus having another structure may be used as long as the same effect can be obtained.

本実施形態の金属管内面塗装方法は、金属管内面に粉体塗料を吹き付けて粉体塗装を行う金属管内面塗装方法であり、金属管内面に粉体塗料を塗装する第1工程、塗装された粉体塗料の上に珪砂を空気圧送により供給し堆積させる第2工程、および堆積させた珪砂の上に粉体塗料を再度塗装する第3工程を含んでおり、第2工程は第1工程および第3工程とそれぞれあわせて行われる。   The metal tube inner surface coating method of the present embodiment is a metal tube inner surface coating method in which powder coating is applied to the inner surface of the metal tube to perform powder coating. A second step of supplying and depositing silica sand by pneumatic feeding on the powder coating, and a third step of re-coating the powder coating on the deposited silica sand. The second step is the first step. And the third step.

第1工程は、金属管Pの一端側から他端側に向かって金属管Pの内面が塗装される工程であり、第2工程もあわせて行われる。つまり図2に示されるように、金属管Pの内表面6にまず粉体塗料4が管軸方向に沿って塗装され、塗装された未硬化の粉体塗料の前端4aを、管軸方向に沿って吐出される珪砂の前端5aが追いかけるようにして塗装が行なわれる。本実施形態では、まず、金属管Pの一端側(受口側)の開口から塗料配管11bおよび珪砂配管12bを、管軸方向に沿って間隔をあけて配置した状態で、被塗装金属管Pに挿入する(図1→Aの方向:往路、図2)。つぎに、管内面の塗装必要領域Rの手前から、塗料配管11bの先端(塗料吐出部11a)からの粉体塗料4の吐出を開始し、同様に順次珪砂配管12bの先端(珪砂吐出部12a)からの珪砂5の吐出を開始する。これらの吐出に合わせ、移動機構3によって塗装必要領域Rを→Aの方向に塗料吐出部11aおよび珪砂吐出部12aを移動させることにより、金属管Pの一端側から他端側まで塗装を行う。   The first step is a step in which the inner surface of the metal tube P is painted from one end side to the other end side of the metal tube P, and the second step is also performed. That is, as shown in FIG. 2, the powder coating 4 is first applied to the inner surface 6 of the metal tube P along the tube axis direction, and the front end 4a of the uncured powder coating is applied in the tube axis direction. The coating is performed such that the front end 5a of the silica sand discharged along the chase follows. In this embodiment, first, in a state where the paint pipe 11b and the silica sand pipe 12b are arranged at intervals along the pipe axis direction from the opening on one end side (receiving side) of the metal pipe P, the metal pipe P to be coated is provided. (Direction of FIG. 1 → A: forward path, FIG. 2). Next, the discharge of the powder coating material 4 from the front end (paint discharge portion 11a) of the paint pipe 11b is started before the paint required area R on the inner surface of the pipe, and similarly the front end (silica sand discharge portion 12a) of the silica sand pipe 12b in turn. ) Starts discharging the silica sand 5. In accordance with these discharges, the coating mechanism 11 performs coating from one end side to the other end side of the metal pipe P by moving the paint discharge region 11a and the silica sand discharge portion 12a in the direction of → A by the moving mechanism 3 in the direction of required coating R.

第3工程は、第1工程とは逆方向に、すなわち、金属管Pの他端側から一端側に向かって塗装を行う工程であり、第2工程もあわせて行われる。つまり図3に示されるように、第1工程および第2工程により形成された粉体塗料4と珪砂5とが積層された部分に再度粉体塗料4が塗装される。本実施形態では、第3工程は、塗料吐出部11aおよび珪砂吐出部12aが管体Pを突き抜けるなどにより、金属管Pの他端側まで第1工程が完了したのち、移動機構3によって、粉体吐出部11aおよび珪砂吐出部12aを第1工程とは逆方向である図1の→Bの方向(復路)に移動させる。これにより塗装必要領域Rを逆方向に再塗装する。その後、塗料吐出部11aおよび珪砂吐出部12aが塗装必要領域Rを過ぎた地点(ほぼ開始位置)で塗料4および珪砂5の吐出を停止し、被塗装金属管Pから塗料配管11b(塗料吐出部11aを含めて)および珪砂配管12b(珪砂吐出部12aを含めて)を抜き出す。   The third step is a step in which coating is performed in the opposite direction to the first step, that is, from the other end side of the metal pipe P toward the one end side, and the second step is also performed. That is, as shown in FIG. 3, the powder coating material 4 is again applied to the portion where the powder coating material 4 and the silica sand 5 formed in the first step and the second step are laminated. In the present embodiment, in the third step, after the first step is completed up to the other end side of the metal pipe P, for example, when the paint discharge unit 11a and the silica sand discharge unit 12a penetrate the tube P, the moving mechanism 3 causes the powder to be discharged. The body discharge part 11a and the silica sand discharge part 12a are moved in the direction of → B (return path) in FIG. As a result, the necessary coating region R is repainted in the reverse direction. Thereafter, the discharge of the paint 4 and the silica sand 5 is stopped at a point (substantially starting position) where the paint discharge part 11a and the silica sand discharge part 12a have passed the required paint region R, and the paint pipe 11b (paint discharge part) 11a) and the silica sand pipe 12b (including the silica sand discharge part 12a) are extracted.

このように、本実施形態における金属管内面塗装方法によれば、第1工程および第3工程により、珪砂が粉体塗料層により挟み込まれる。これにより、所定量の珪砂を塗膜にサンドウィッチ状に組み込むことができるため、粉体塗料自体の使用量を削減し、コストを抑えつつ塗膜と金属管の内表面との優れた密着性を確保することができる。さらに、未硬化の状態の粉体塗料上に珪砂が堆積し、その上にさらに粉体塗料が塗装されるため、塗膜表面の仕上がりに影響しにくい良好な塗膜を得ることができる。   Thus, according to the metal tube inner surface coating method in the present embodiment, the silica sand is sandwiched between the powder coating layers in the first step and the third step. As a result, a predetermined amount of silica sand can be sandwiched into the coating film, reducing the amount of powder coating used and reducing the cost while maintaining excellent adhesion between the coating film and the inner surface of the metal tube. Can be secured. Furthermore, since silica sand is deposited on the uncured powder coating material, and the powder coating material is further coated thereon, a good coating film that hardly affects the finish of the coating film surface can be obtained.

また、本実施形態では、図2および図3に示されるように、塗料吐出部11aと珪砂吐出部12aとが管軸方向に沿って間隔をあけて配置した構成となっている。この場合、塗料吐出部11aと珪砂吐出部12aとを同時に往復移動させて塗装することにより、粉体塗料4が吐出された直後に珪砂5が吐出され、かつ塗装工程の間に塗料吐出部11aと珪砂吐出部12aとが一定間隔を保った状態で塗装が行なわれる。したがって、珪砂5が塗料4の間に挟まれた状態で、かつ均一な膜厚の塗膜を得ることができる。具体的には、往路(第1工程および第2工程)においては図2に示すように、塗装の進行と共に、まず塗料4が塗料吐出部11aから吐出され金属管内面6に塗料4が塗装される。続いて進行方向に対して塗料吐出部11aの後ろに配置された珪砂吐出部12aより吐出された珪砂5が、先行して塗装された塗料4の上に堆積し、二層構造を生じる。この際、珪砂5は塗料4が硬化する前に堆積されるため、塗装された塗料4の中にある程度埋没した状態となる。さらに被塗装金属管体Pは管軸周りに回転されているため、時間経過と共に、比重の重い珪砂5は管側に移行し、塗料層中への埋没が進む(図4参照)。往路の塗装が完了すると、一旦、塗料吐出部11aおよび珪砂吐出部12aは管外に抜け、その後逆走して復路塗装を行う。復路(第2工程および第3工程)においては、図3に示すように、塗装の進行と共に、まず、珪砂5が珪砂吐出部12aから吐出され、往路において形成された塗膜上に堆積される。続いて塗料4が塗料吐出部11aから吐出され、珪砂5を覆うように塗膜が形成される。このように、第1工程および第3工程によって、珪砂5が塗料4の層に埋没し、さらにその上から粉体塗料4が塗布されることになり、塗装後の金属管Pの内表面に、珪砂5に起因して生じる凹凸が生じにくく、金属管Pの塗装の仕上がり状態をより良くすることができる(図4参照)。また、第1工程および第3工程を、本実施形態のように、塗料吐出部11aと珪砂吐出部12aとを同時に往復移動させる場合、第1工程とあわせて、第3工程とあわせて、またはその両工程とあわせて第2工程を行うことにより、一度の往復で珪砂を粉体塗料層により挟み込むことができるため、塗装工程に必要な時間が短縮し、効率の良い塗装を行うことができる。   Moreover, in this embodiment, as FIG. 2 and FIG. 3 shows, it has the structure which has arrange | positioned the coating material discharge part 11a and the silica sand discharge part 12a at intervals along the pipe-axis direction. In this case, the paint discharge unit 11a and the silica sand discharge unit 12a are simultaneously reciprocated to perform coating, whereby the silica sand 5 is discharged immediately after the powder coating material 4 is discharged, and the paint discharge unit 11a is applied during the coating process. The coating is performed in a state in which the silica sand discharge part 12a is kept at a constant interval. Therefore, it is possible to obtain a coating film having a uniform film thickness with the silica sand 5 sandwiched between the paints 4. Specifically, as shown in FIG. 2, in the forward path (first step and second step), the paint 4 is first discharged from the paint discharge portion 11a as the coating progresses, and the paint 4 is applied to the inner surface 6 of the metal tube. The Subsequently, the silica sand 5 discharged from the silica sand discharge portion 12a disposed behind the paint discharge portion 11a with respect to the traveling direction is deposited on the previously applied paint 4 to form a two-layer structure. At this time, since the silica sand 5 is deposited before the paint 4 is cured, the silica sand 5 is buried to some extent in the painted paint 4. Furthermore, since the metal pipe P to be coated is rotated around the pipe axis, the silica sand 5 having a high specific gravity moves to the pipe side with time, and is buried in the paint layer (see FIG. 4). When the forward coating is completed, the coating material discharge part 11a and the silica sand discharge part 12a are temporarily removed from the pipe and then run backward to perform the backward coating. In the return path (second process and third process), as shown in FIG. 3, as the coating progresses, first, the silica sand 5 is discharged from the silica sand discharge part 12a and deposited on the coating film formed in the forward path. . Subsequently, the coating material 4 is discharged from the coating material discharge portion 11 a and a coating film is formed so as to cover the silica sand 5. Thus, by the first step and the third step, the silica sand 5 is buried in the layer of the paint 4, and the powder paint 4 is further applied thereon, and is applied to the inner surface of the metal pipe P after painting. Unevenness caused by the silica sand 5 hardly occurs, and the finished state of the coating of the metal pipe P can be improved (see FIG. 4). Further, in the case where the first and third steps are simultaneously reciprocated between the paint discharge unit 11a and the silica sand discharge unit 12a as in the present embodiment, the first step and the third step are combined, or By performing the second step in combination with both steps, the silica sand can be sandwiched between the powder coating layers in one reciprocation, so the time required for the coating step can be shortened and efficient coating can be performed. .

また、本発明に用いる珪砂5は、上述したように7号珪砂、8号珪砂として市販されているものを用いることが好ましい。通常、7号珪砂は粒子サイズが0.1〜0.3mmの範囲でモード径がおおよそ0.2mmのものであり、8号珪砂は、粒子サイズが0.05〜0.15mmの範囲でモード径がおおよそ0.1mmのものである。粒子サイズの範囲およびモード径がより小さい珪砂を用いると、本実施形態の構成上、吐出時の空気により巻き上がりやすくなり、巻き上がった珪砂5が表層の塗料層に付着すると、表面がざらつくなどして好ましくない場合がある。一方、珪砂5として、比較的粒径が大きい7号珪砂または8号珪砂を用いる場合、珪砂の吐出時に珪砂の巻き上がりが少なく、巻き上がって浮遊した珪砂が粉体塗装層の仕上がり面上に付着することを防止することができる。また、珪砂の巻き上がりを防止するために比較的粒径の大きい珪砂を用いた場合、塗料自体に混ぜ込むなど、塗装方法によっては粒径の大きな珪砂によって粉体塗装の仕上がり面に珪砂に起因する凹凸が発生するが、本発明においては、上述したように珪砂を粉体塗料で両側から挟み込むことにより、塗装の仕上がり面に生じる凹凸を抑制することができる。   Moreover, as the silica sand 5 used for this invention, it is preferable to use what is marketed as 7 silica sand and 8 silica sand as mentioned above. Normally, No. 7 silica sand has a particle size in the range of 0.1 to 0.3 mm and a mode diameter of approximately 0.2 mm, and No. 8 silica sand has a mode in which the particle size ranges from 0.05 to 0.15 mm. The diameter is approximately 0.1 mm. When silica sand having a smaller particle size range and mode diameter is used, the structure of the present embodiment makes it easy to roll up due to air at the time of discharge, and when the rolled silica sand 5 adheres to the surface coating layer, the surface becomes rough, etc. May not be preferable. On the other hand, when No. 7 silica sand or No. 8 silica sand having a relatively large particle size is used as the silica sand 5, the silica sand hardly rolls up when discharging the silica sand, and the silica sand that has floated and floated on the finished surface of the powder coating layer Adhesion can be prevented. In addition, when silica sand with a relatively large particle size is used to prevent the silica sand from rolling up, depending on the coating method, such as mixing with the paint itself, the silica sand on the finished surface of the powder coating is caused by the silica sand. In the present invention, as described above, it is possible to suppress the unevenness generated on the finished surface of the coating by sandwiching the silica sand with the powder coating from both sides as described above.

粉体塗料4と珪砂5とは、得られる塗膜表面に珪砂5に起因する凹凸が問題とならない程度であれば、種々の割合で使用することができるが、往路および復路の両方で珪砂5を吐出する実施形態においては、粉体塗料4を珪砂5の重量と同等以上用いることが好ましく、珪砂5の重量の3/2以上用いることがより好ましい。また、粉体塗料4は、珪砂5の重量の2倍以下の量で使用することが好ましく、珪砂5の重量の2倍より多く用いると、本発明のコストダウン効果が得られにくくなる傾向がある。   The powder coating 4 and the silica sand 5 can be used in various proportions as long as the unevenness caused by the silica sand 5 does not become a problem on the surface of the coating film to be obtained. In the embodiment in which the powder is discharged, it is preferable to use the powder coating 4 equal to or more than the weight of the silica sand 5, and more preferably 3/2 or more of the weight of the silica sand 5. Moreover, it is preferable to use the powder coating material 4 in the quantity of 2 times or less of the weight of the silica sand 5, and when using more than twice the weight of the silica sand 5, there exists a tendency for the cost reduction effect of this invention to become difficult to be acquired. is there.

また、往路および復路の粉体塗料4の塗装量については適宜設定することができるが、復路の塗装量を往路の塗装量よりも増加させることにより、平滑性がより良好なものとなり好ましい。復路の塗装量を往路の塗装量よりも増加させる手段としては、復路において粉体塗料4の吐出量を増加させることのみならず、吐出量を維持したまま復路の塗装速度を往路よりも遅くすることなどが挙げられる。往路および復路の両方で珪砂を吐出する実施態様の場合、往路の塗装速度を遅くすると、復路での珪砂5の堆積量も増加するが、特に平滑性に影響を与えるものではなく、むしろ珪砂5の金属管側への移行が進み、より表面の平滑性が良好なものとなり好ましい。その場合の復路の塗装速度は、たとえば往路の塗装速度の半分以下がより好ましく、約3分の1以下がさらに好ましい。   Further, the coating amount of the powder coating 4 on the forward path and the return path can be set as appropriate. However, increasing the coating amount on the forward path more than the coating amount on the forward path is preferable because smoothness becomes better. As a means for increasing the amount of paint on the return path from the amount of paint on the forward path, not only increasing the discharge amount of the powder paint 4 on the return path, but also reducing the paint speed of the return path from the forward path while maintaining the discharge amount. And so on. In the embodiment in which the silica sand is discharged on both the outward path and the backward path, if the coating speed of the outbound path is decreased, the amount of silica sand 5 deposited on the return path also increases, but it does not particularly affect the smoothness, but rather the silica sand 5 Since the transition to the metal tube side proceeds, the surface smoothness becomes better, which is preferable. In that case, for example, the painting speed of the return path is preferably half or less of the coating speed of the outbound path, and more preferably about one third or less.

さらに、全体の塗装速度については、使用する粉体塗料、吐出量などに応じて、適宜設定することができ、特に限定されるものではない。   Furthermore, the overall coating speed can be appropriately set according to the powder coating used, the discharge amount, etc., and is not particularly limited.

図1〜図3に示す実施形態により、本発明の金属管内面塗装方法を用いて金属管の内面塗装を行った。   By the embodiment shown in FIG. 1 to FIG. 3, the inner surface of the metal tube was coated using the method for coating the inner surface of the metal tube of the present invention.

被塗装管として、呼び口径が150で長さが50cmの水道用ダクタイル鋳鉄管(直管)を使用した。   As a pipe to be coated, a ductile cast iron pipe (straight pipe) for water supply having a nominal diameter of 150 and a length of 50 cm was used.

被塗装管の内面の錆をフラップホイールにより除去してから、250℃設定の電気炉にて加熱し、管体回転装置に載せ、200℃(±10℃)で塗装を開始した(回転数:200m/分)。塗料配管および珪砂配管を両吐出部の間隔を150mmとして受口側から挿入し、受口領域内で塗料および珪砂の吐出を開始し、一定速度(1m/分〜6m/分)で挿し口側へと管内面を塗装した。続いて珪砂吐出口が管外に抜けたあと、引き返して一定速度(1m/分〜6m/分)で挿し口側から受口側へと珪砂の堆積および粉体塗料の塗装の順で塗装を行った。受口領域に入ったところで、塗料および珪砂の吐出を停止させ、塗料配管および珪砂配管を管体から抜き出した。   After removing the rust on the inner surface of the pipe to be coated with a flap wheel, it was heated in an electric furnace set at 250 ° C. and placed in a tube rotating device, and coating was started at 200 ° C. (± 10 ° C.) (number of rotations: 200 m / min). Paint pipe and silica sand pipe are inserted from the receiving side with the interval of both discharge parts set to 150mm, and the discharge of paint and silica sand is started in the receiving area, and the inlet side is at a constant speed (1m / min to 6m / min) The inner surface of the pipe was painted. Then, after the silica sand discharge port has come out of the pipe, it is turned back and applied at a constant speed (1m / min to 6m / min) from the insertion side to the receiving side in the order of silica sand deposition and powder coating. went. Upon entering the receiving area, the discharge of paint and silica sand was stopped, and the paint pipe and silica sand pipe were extracted from the pipe body.

塗料には、通常の水道用ダクタイル鋳鉄管の内面塗装に用いるエポキシ粉体樹脂塗料(ゲルタイム:92秒)を用い、珪砂には、珪砂7号または8号(三久海運(株)製)を用いた。各珪砂の粒度分布を表1に示す。粉体塗料および珪砂の吐出にはいずれもインジェクタ方式の粉体塗装装置を用い、往路および復路の塗装により、管内面の塗膜厚さが400〜600μmとなるように、塗料および珪砂の吐出量比が1:1、3:2および2:1のいずれかで、さらに復路の塗装速度が往路の塗装速度と同じか、2分の1または3分の1となるように、塗料および珪砂の吐出量や塗装速度を調節した。   Epoxy powder resin paint (gel time: 92 seconds) used for the inner surface coating of ordinary ductile cast iron pipes for water supply is used for the paint, and silica sand No. 7 or No. 8 (manufactured by Miku Kaiun Co., Ltd.) is used for the silica sand. Using. Table 1 shows the particle size distribution of each silica sand. Both the powder paint and silica sand are discharged using an injector-type powder coating device, and the paint and silica sand discharge amounts so that the coating thickness on the inner surface of the pipe is 400 to 600 μm by the forward and return coating. The ratio of paint and silica sand is such that the ratio is 1: 1, 3: 2, and 2: 1 and the return coating speed is the same as that of the outbound path, or half or one third. The discharge rate and coating speed were adjusted.

Figure 2017176938
Figure 2017176938

以上より得られた金属管内面の塗膜は、珪砂7号および8号いずれの場合も塗膜表面に珪砂の影響は特に見られず、金属管との密着性にも優れていた。また、塗料および珪砂の吐出量比が3:2または2:1とした場合は、1:1とした場合よりもより表面の平滑性に優れ、さらに、往路の塗装速度を往路の塗装速度よりも遅く、2分の1または3分の1とした場合は、同速度とした場合よりも珪砂が管側に移行し表面の平滑性により優れていた(図4参照)。   From the above, the coating film on the inner surface of the metal pipe obtained in both cases of silica sand No. 7 and No. 8 was not particularly affected by the silica sand on the coating film surface and was excellent in adhesion to the metal pipe. Also, when the discharge ratio of paint and quartz sand is 3: 2 or 2: 1, the surface smoothness is better than when the ratio is 1: 1, and the forward coating speed is higher than the forward coating speed. When the speed was set to 1/2 or 1/3, the silica sand moved to the pipe side and the surface smoothness was better than that at the same speed (see FIG. 4).

また、上述した実施形態では、往路塗装および復路塗装の両方において珪砂を吐出するものを示したが、往路塗装は第1工程の粉体塗料のみを吐出し、珪砂を吐出しないで行い、復路塗装において第2工程の珪砂の吐出を第3工程と合わせて行ってもよく、あるいは復路塗装において、第3工程の粉体塗料のみを吐出し、珪砂の吐出を停止しても構わない。   In the above-described embodiment, the silica sand is discharged in both the outward coating and the backward coating. However, the outward coating is performed by discharging only the powder coating in the first step, without discharging the silica sand. In this case, the discharge of the silica sand in the second step may be performed together with the third step, or only the powder paint in the third step may be discharged and the discharge of the silica sand may be stopped in the backward coating.

さらに、上述した実施形態では、塗料配管11bと珪砂配管12bとが別々に延びている例を示したが、塗料配管11bと珪砂配管12bとは、図示しない接合部材により固定されていてもよい。また、塗料配管11bと珪砂配管12bとは、図1〜図3に示されるように、垂直方向に上下に配置されていても水平方向に配置されていても構わない。   Furthermore, although the example which the coating material piping 11b and the silica sand piping 12b extended separately was shown in embodiment mentioned above, the coating material piping 11b and the silica sand piping 12b may be fixed with the joining member which is not shown in figure. Moreover, as shown in FIGS. 1 to 3, the paint pipe 11 b and the silica sand pipe 12 b may be arranged vertically in the vertical direction or in the horizontal direction.

また、上述した実施形態では、塗料配管11bおよび珪砂配管12bは、1つの移動機構3により移動するように構成されているが、別々の移動機構を設けて、それぞれを独自に移動させても構わない。また、本実施形態では、塗料配管11bおよび珪砂配管12bは、ともに金属管Pの一方の開口(受口)から挿入されるものを示したが、塗料配管11bおよび珪砂配管12bのいずれかを一方の開口から、塗料配管11bおよび珪砂配管12bのもう一方を他方の開口から挿入してもよい。また、本実施形態では、金属管Pの受口側から塗装を開始するものを示したが、金属管Pの挿し口側から塗装を開始しても構わない。   In the above-described embodiment, the paint pipe 11b and the silica sand pipe 12b are configured to move by one moving mechanism 3, but separate moving mechanisms may be provided to move each independently. Absent. In the present embodiment, the paint pipe 11b and the silica sand pipe 12b are both inserted from one opening (receiving port) of the metal pipe P. However, either the paint pipe 11b or the silica sand pipe 12b is one side. The other of the paint pipe 11b and the silica sand pipe 12b may be inserted through the other opening. In the present embodiment, the coating is started from the receiving side of the metal pipe P. However, the coating may be started from the insertion side of the metal pipe P.

さらに、上述した実施形態では、塗料配管11bの先端に設けられた塗料吐出部11a、および、珪砂配管12bの先端に設けられた珪砂吐出部12aが、塗料配管11bおよび珪砂配管12bの移動に伴って移動するものを示したが、たとえば、塗料吐出部および珪砂吐出部がガイドされるガイドレールを金属管内に挿入し、移動機構により塗料吐出部および珪砂吐出部をガイドレールに沿って直接移動させても構わない。   Furthermore, in the above-described embodiment, the paint discharge part 11a provided at the tip of the paint pipe 11b and the silica sand discharge part 12a provided at the tip of the silica sand pipe 12b are accompanied by the movement of the paint pipe 11b and the silica sand pipe 12b. For example, a guide rail that guides the paint discharge part and the silica sand discharge part is inserted into the metal pipe, and the paint discharge part and the silica sand discharge part are moved directly along the guide rail by the moving mechanism. It doesn't matter.

D 塗装装置
1 吐出装置
11 塗料供給装置
11a 塗料配管
11b 塗料吐出部
11c 塗料供給機構
12 珪砂供給装置
12a 珪砂配管
12b 珪砂吐出部
12c 珪砂供給機構
2 管体回転装置
21 回転ローラ
3 移動機構
P 金属管
4 塗料
5 珪砂
6 金属管内面
D Coating Device 1 Discharge Device 11 Paint Supply Device 11a Paint Pipe 11b Paint Discharge Unit 11c Paint Supply Mechanism 12 Silica Sand Supply Device 12a Silica Sand Pipe 12b Silica Sand Discharge Unit 12c Silica Sand Supply Mechanism 2 Tube Rotating Device 21 Rotating Roller 3 Moving Mechanism P Metal Tube 4 Paint 5 Silica sand 6 Metal pipe inner surface

Claims (3)

金属管内面に粉体塗料を吹き付けて粉体塗装を行う金属管内面塗装方法において、
金属管内面に粉体塗料を塗装する第1工程、
塗装された粉体塗料の上に珪砂を空気圧送により供給し堆積させる第2工程、および
堆積させた珪砂の上に粉体塗料を再度塗装する第3工程
を含み、それにより珪砂を粉体塗料層で挟み込む金属管内面塗装方法。
In the metal tube inner surface coating method, where powder coating is performed by spraying powder paint on the inner surface of the metal tube,
The first step of painting powder coating on the inner surface of the metal tube,
It includes a second step of supplying and depositing silica sand on the coated powder paint by pneumatic feeding, and a third step of re-coating the powder paint on the deposited silica sand, whereby the silica sand is applied to the powder paint. Method of painting the inner surface of a metal tube sandwiched between layers.
前記金属管内面塗装方法が、前記粉体塗料を吐出する塗料吐出部と、前記珪砂を吐出する珪砂吐出部とを備えた塗装装置により行われ、前記塗装装置が、前記塗料吐出部および前記珪砂吐出部と、前記金属管体とを管軸方向に相対的に移動させる移動機構を備え、
前記塗料吐出部と前記珪砂吐出部とが被塗装管の管軸方向に沿って間隔をあけて配置され、
前記移動機構によって、前記塗料吐出部および前記珪砂吐出部が、前記金属管体に対する管軸方向の位置を変えることにより、前記第1工程において前記粉体塗料を前記金属管体の一端側から他端側まで塗装し、その後、前記第3工程において前記粉体塗料を前記金属管体の他端側から一端側まで再塗装する
請求項1記載の金属管内面塗装方法。
The metal pipe inner surface coating method is performed by a coating apparatus including a coating material discharging unit that discharges the powder coating material and a silica sand discharging unit that discharges the silica sand, and the coating device includes the coating material discharging unit and the silica sand. A moving mechanism for moving the discharge unit and the metal tube body relatively in the tube axis direction;
The paint discharge part and the silica sand discharge part are arranged at intervals along the tube axis direction of the pipe to be coated,
By the moving mechanism, the coating material discharge section and the silica sand discharge section change the position of the tube axis direction with respect to the metal tube body, so that the powder coating material is removed from one end side of the metal tube body in the first step. The metal pipe inner surface coating method according to claim 1, wherein the coating is applied to the end side, and then the powder coating is re-coated from the other end side to the one end side of the metal pipe body in the third step.
前記第2工程における前記珪砂の堆積が、前記第1工程とあわせて前記金属管体の一端側から他端側まで行われるか、あるいは前記第3工程とあわせて前記金属管体の他端側から一端側まで行われるか、もしくはその両方である請求項2記載の金属管内面塗装方法。 The silica sand is deposited in the second step from one end side to the other end side of the metal tube together with the first step, or the other end side of the metal tube is combined with the third step. The method for coating an inner surface of a metal pipe according to claim 2, wherein the method is performed from the first end to the one end side or both.
JP2016064576A 2016-03-28 2016-03-28 Coating method of metal pipe inner surface Pending JP2017176938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064576A JP2017176938A (en) 2016-03-28 2016-03-28 Coating method of metal pipe inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064576A JP2017176938A (en) 2016-03-28 2016-03-28 Coating method of metal pipe inner surface

Publications (1)

Publication Number Publication Date
JP2017176938A true JP2017176938A (en) 2017-10-05

Family

ID=60004806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064576A Pending JP2017176938A (en) 2016-03-28 2016-03-28 Coating method of metal pipe inner surface

Country Status (1)

Country Link
JP (1) JP2017176938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359144B1 (en) * 2017-04-14 2018-07-18 株式会社クボタ Cast iron pipe and coating method of cast iron pipe
CN110919301A (en) * 2019-12-05 2020-03-27 四川石油天然气建设工程有限责任公司 Preparation method of drilling fluid storage tank
JP2020131151A (en) * 2019-02-22 2020-08-31 株式会社栗本鐵工所 Metal pipe inner surface coating method and its device
JP7421392B2 (en) 2019-10-15 2024-01-24 株式会社栗本鐵工所 Painting method using powder paint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359144B1 (en) * 2017-04-14 2018-07-18 株式会社クボタ Cast iron pipe and coating method of cast iron pipe
JP2018179160A (en) * 2017-04-14 2018-11-15 株式会社クボタ Cast iron pipe and method for coating cast iron pipe
JP2020131151A (en) * 2019-02-22 2020-08-31 株式会社栗本鐵工所 Metal pipe inner surface coating method and its device
JP7252008B2 (en) 2019-02-22 2023-04-04 株式会社栗本鐵工所 Metal pipe inner surface coating method and apparatus
JP7421392B2 (en) 2019-10-15 2024-01-24 株式会社栗本鐵工所 Painting method using powder paint
CN110919301A (en) * 2019-12-05 2020-03-27 四川石油天然气建设工程有限责任公司 Preparation method of drilling fluid storage tank
CN110919301B (en) * 2019-12-05 2021-08-06 四川石油天然气建设工程有限责任公司 Preparation method of drilling fluid storage tank

Similar Documents

Publication Publication Date Title
JP2017176938A (en) Coating method of metal pipe inner surface
US20130330470A1 (en) Method for coating objects, in particular such objects that have been manufactured by a generative manufacturing method
JP2016502605A (en) Method for lining tubes with alloys
KR101724419B1 (en) Within the steel pipe coating apparatus having a polypropylene coating layer for improving adhesion improving outside diameter and illuminance
CN102755954B (en) Surface coating system and method for container steel plate
CN105951024A (en) Preparation method for composite coating on surface of protective guard
CN103521413A (en) On-line anticorrosive coating spraying technology for steel pipe
CN101967667A (en) Physical pretreatment and electrophoresis coating process of aluminum magnesium alloy
KR101737408B1 (en) Within the steel pipe having a polypropylene coating layer for improving adhesion improving outside diameter and illuminance
JP4848810B2 (en) Coating method and coating apparatus
JPH03165871A (en) Coating method
CN106391370A (en) Device and method for machining coating layer on surface of conical inner cavity
JP5780502B2 (en) Thermal spray equipment
CN109610833B (en) Construction technology of building coating
JP2021030133A (en) Cast iron pipe inner surface coating method
JP4935086B2 (en) Coating method using rotary atomizing coating equipment
JP2013000708A (en) Powder coating device
CN101928907A (en) Anticorrosion method for inner framework of bus shelter ceiling
KR101737409B1 (en) Within the steel pipe having a polypropylene coating layer for improving adhesion improving outside diameter and illuminance
JP2006334485A (en) Multilayer coating film forming method
JP2007260491A (en) Coating method and coating device
JP2007237099A (en) Method of coating structure having recess
CN103406247A (en) Wear-resisting layer coating method
CN109465131A (en) A kind of body structure functional coating automation paint unit and method
JPH0448968A (en) Manufacture of powder epoxy resin-coated steel pipe