JP2017156273A - Cleanliness evaluation method for forged-steel product - Google Patents
Cleanliness evaluation method for forged-steel product Download PDFInfo
- Publication number
- JP2017156273A JP2017156273A JP2016041281A JP2016041281A JP2017156273A JP 2017156273 A JP2017156273 A JP 2017156273A JP 2016041281 A JP2016041281 A JP 2016041281A JP 2016041281 A JP2016041281 A JP 2016041281A JP 2017156273 A JP2017156273 A JP 2017156273A
- Authority
- JP
- Japan
- Prior art keywords
- evaluation
- dimension
- cleanliness
- inspection
- metallic inclusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
本発明は、鍛鋼品の清浄度評価方法に関する。 The present invention relates to a method for evaluating the cleanliness of forged steel products.
鍛鋼品等が用いられる機械構造部材には、高い疲労強度が求められる。このような機械構造部材は、金属材料中に存在する非金属介在物が疲労破壊の起点となり易い。そのため、機械構造部材の疲労強度を向上させるために、金属材料中の非金属介在物の低減技術及び縮小技術と共に、非金属介在物の精確な評価技術が求められている。 High fatigue strength is required for mechanical structural members that use forged steel products and the like. In such a mechanical structural member, non-metallic inclusions present in the metal material are likely to be the starting point of fatigue failure. Therefore, in order to improve the fatigue strength of the mechanical structural member, there is a demand for an accurate evaluation technique for non-metallic inclusions as well as a technique for reducing and reducing non-metallic inclusions in the metal material.
一方、最近の製鋼技術の進歩により、金属材料の清浄度は大幅に改善され、疲労強度に影響を与えるような大型非金属介在物の発生確率は非常に低くなったため、金属材料中の非金属介在物の検出が非常に困難となっている。ここで、金属材料の清浄度は非金属介在物の大きさによって判断されるため、上記非金属介在物の検出が困難となっていることにより、金属材料の清浄度の評価も困難となっている。 On the other hand, the recent progress in steelmaking technology has greatly improved the cleanliness of metal materials, and the probability of large non-metallic inclusions affecting fatigue strength has become very low. Inclusion detection is very difficult. Here, since the cleanliness of the metal material is determined by the size of the nonmetallic inclusions, it is difficult to evaluate the cleanliness of the metal material because it is difficult to detect the nonmetallic inclusions. Yes.
このように金属材料の清浄度の評価が困難になっていることに対して、大型非金属介在物の発生確率が低い場合でも金属材料の清浄度を評価できる方法として、極値統計法を用いる方法が提案されている(例えば特開2001−141704号公報、特開2000−214142号公報、特開2012−73059号公報参照)。 As described above, the extreme statistical method is used as a method for evaluating the cleanliness of the metal material even when the probability of occurrence of large non-metallic inclusions is low, in contrast to the difficulty in evaluating the cleanliness of the metal material. Methods have been proposed (see, for example, Japanese Patent Application Laid-Open Nos. 2001-141704, 2000-214142, and 2012-73059).
上記公報で提案されている極値統計法を用いる方法は、まず、検査対象の金属材料について、n個の検査部位を設定し、各検査部位について非金属介在物を測定し、検査部位毎の最大非金属介在物寸法を求める。次に、上記方法は、n個の検査部位で求めた各最大非金属介在物寸法に基づいて、上記金属材料中に存在する最大の非金属介在物寸法を予測する。具体的には、n個の検査部位での昇順に並べた各最大非金属介在物寸法aj(j=1、2、3、…、n)及び基準化変数yj=−ln[−ln{j/(n+1)}]から作成される一次回帰式とymaxの値とから、金属材料中に存在する最大の非金属介在物寸法を予測する。なお、上記各検査部位における非金属介在物の測定は、超音波探傷や超音波疲労試験などにより行う。 In the method using the extreme value statistical method proposed in the above publication, first, n inspection parts are set for the metal material to be inspected, non-metallic inclusions are measured for each inspection part, and each inspection part is measured. Find the maximum non-metallic inclusion size. Next, the method predicts the maximum non-metallic inclusion size present in the metallic material based on each maximum non-metallic inclusion size determined at n inspection sites. Specifically, the maximum non-metallic inclusion dimensions a j (j = 1, 2, 3,..., N) and the normalization variable y j = −ln [−ln] arranged in ascending order at n inspection sites. From the linear regression equation created from {j / (n + 1)}] and the value of y max , the maximum non-metallic inclusion size existing in the metal material is predicted. In addition, the measurement of the nonmetallic inclusion in each said test | inspection site | part is performed by an ultrasonic flaw, an ultrasonic fatigue test, etc.
しかし、鍛鋼品においては、非金属介在物の形状が鍛造により一方向に延伸した形状に変形するため、同一介在物に対しても検査面の向きにより測定される介在物寸法が変化する。そのため、鍛鋼品の清浄度評価では、検査面の取り方によっては、予測される介在物の寸法が実際に清浄度を評価した評価面での介在物寸法と大きく乖離することがある。 However, in the forged steel product, the shape of the non-metallic inclusions is deformed into a shape extended in one direction by forging, and therefore the inclusion size measured by the direction of the inspection surface changes even for the same inclusion. Therefore, in the cleanliness evaluation of a forged steel product, depending on how the inspection surface is taken, the predicted inclusion size may deviate greatly from the inclusion size on the evaluation surface where the cleanliness was actually evaluated.
本発明は、上述のような事情に基づいてなされたものであり、比較的高い精度で鍛鋼品の清浄度を評価できる清浄度評価方法を提供することを目的とする。 This invention is made | formed based on the above situations, and it aims at providing the cleanliness evaluation method which can evaluate the cleanliness of a forged steel product with comparatively high precision.
上記課題を解決するためになされた発明は、鍛鋼品内の特定の評価面における清浄度評価方法であって、n個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程と、上記n個の検査面の鍛伸方向に対する各角度θi(i=1〜n)及び上記評価面の鍛伸方向に対する角度θ’を用い、各検査面の最大非金属介在物寸法aiを評価面での投影寸法a’i(i=1〜n)に変換する工程と、極値統計法を用い、上記評価面投影寸法a’iから評価面での推定最大非金属介在物寸法amaxを算出する工程とを備えることを特徴とする鍛鋼品の清浄度評価方法である。 The invention made in order to solve the above-mentioned problem is a cleanliness evaluation method on a specific evaluation surface in a forged steel product, and is a maximum non-metallic inclusion size a i (i = 1 to n) on n inspection surfaces. And the angle θ i (i = 1 to n) with respect to the forging direction of the n inspection surfaces and the angle θ ′ with respect to the forging direction of the evaluation surface, and the maximum nonmetal of each inspection surface Using the process of converting the inclusion size a i to the projected size a ′ i (i = 1 to n) on the evaluation surface and the extreme value statistical method, the estimated maximum on the evaluation surface from the evaluation surface projected size a ′ i And a step of calculating a non-metallic inclusion dimension a max .
当該鍛鋼品の清浄度評価方法は、複数の検査面から得た最大非金属介在物寸法aiを、これらの検査面の鍛伸方向に対する角度θiと、清浄度を評価したい評価面の鍛伸方向に対する角度θ’とを用いて、鍛鋼品内部の任意の評価面への投影寸法a’iに変換する。この評価面投影寸法a’iは、複数の検査面で測定された最大非金属介在物の寸法aiを、評価面で測定され得る非金属介在物の寸法にそれぞれ置き換えたものであるので、当該鍛鋼品の清浄度評価方法は、この評価面投影寸法a’iから推定最大非金属介在物寸法amaxを算出することで、評価面での清浄度を比較的高い精度で評価することができる。 The forged steel product cleanliness evaluation method uses the maximum non-metallic inclusion dimension a i obtained from a plurality of inspection surfaces, the angle θ i of these inspection surfaces with respect to the forging direction, and the forging of the evaluation surface on which the cleanliness is to be evaluated. The angle θ ′ with respect to the drawing direction is used to convert the projection dimension a ′ i onto an arbitrary evaluation surface inside the forged steel product. The evaluation plane projection dimension a ′ i is obtained by replacing the dimension a i of the maximum nonmetallic inclusion measured on the plurality of inspection planes with the dimension of the nonmetallic inclusion that can be measured on the evaluation plane. cleanliness evaluation method of the forgings, by calculating the estimated maximum non-metallic inclusion size a max from the evaluation surface projection size a 'i, be evaluated with relatively high accuracy the cleanliness of the evaluation surface it can.
非金属介在物が鍛伸方向を長軸とする回転楕円体であると仮定して上記変換を行うとよい。一般に金属材料内の非金属介在物は球状であり、鍛鋼品においては鍛伸により非金属介在物は鍛伸方向を長軸とする回転楕円体となる。そのため、上記仮定を行って非金属介在物の寸法を変換することとで、精度を維持したまま、評価の手順を簡略化することができる。 The conversion may be performed on the assumption that the nonmetallic inclusion is a spheroid whose major axis is the forging direction. In general, nonmetallic inclusions in a metal material are spherical, and in a forged steel product, the nonmetallic inclusions become a spheroid whose major axis is the forging direction due to forging. Therefore, by making the above assumption and converting the dimensions of the nonmetallic inclusions, the evaluation procedure can be simplified while maintaining the accuracy.
上記変換工程が、上記最大非金属介在物寸法aiを鍛伸方向に対する角度が0°の基準面への一次投影寸法a’’iに一次変換する工程と、上記一次投影寸法a’’iを上記評価面投影寸法a’iに二次変換する工程とを有するとよい。このような手順で最大非金属介在物寸法aiを評価面投影寸法a’iに変換することで、容易かつ確実に評価面投影寸法a’iへの変換を行うことができる。 The converting step primarily converts the maximum non-metallic inclusion size a i into a primary projection size a ″ i on a reference plane whose angle with respect to the forging direction is 0 °; and the primary projection size a ″ i the may have a step of converting the secondary to the evaluation surface projection size a 'i. By converting the maximum non-metallic inclusion size a i to the evaluation surface projection size a ′ i by such a procedure, the conversion to the evaluation surface projection size a ′ i can be easily and reliably performed.
上記一次変換工程で、下記式(1)を用い、上記最大非金属介在物寸法aiを上記一次投影寸法a’’iに変換するとよい。このように基準面での既知の非金属介在物のアスペクト比γを用いて上記一次変換を行うことで、一次投影寸法a’’iを比較的容易に得ることができる。
a’’i=ai・(γ/(sin2θi+γ2・cos2θi)1/2)1/2 ・・・(1)
式(1)中、γは上記基準面における非金属介在物のアスペクト比である。
In the primary conversion step, the maximum non-metallic inclusion size a i may be converted to the primary projection size a ″ i using the following formula (1). Thus, the primary projection dimension a ″ i can be obtained relatively easily by performing the primary conversion using the known non-metallic inclusion aspect ratio γ on the reference plane.
a ″ i = a i · (γ / (sin 2 θ i + γ 2 · cos 2 θ i ) 1/2 ) 1/2 (1)
In the formula (1), γ is an aspect ratio of nonmetallic inclusions on the reference plane.
上記二次変換工程が、下記式(2)及び式(3)を用い、上記一次投影寸法a’’iから上記基準面に投影したアスペクト比γの非金属介在物の長径li及び短径siを算出する工程と、下記式(4)、式(5)及び評価領域における非金属介在物のアスペクト比γ’を用い、上記長径li及び短径siからアスペクト比γ’の非金属介在物の長径l’i及び短径s’iを算出する工程と、下記式(6)及び式(7)を用い、上記長径l’i及び短径s’iから上記評価面に投影したアスペクト比γ’の非金属介在物の長径l’’i及び短径s’’iを算出する工程と、下記式(8)を用い、上記長径l’’i及び短径s’’iから上記評価面投影寸法a’iを算出する工程とを有するとよい。このように上記二次変換を行うことで、一次投影寸法a’’iから評価面投影寸法a’iを比較的容易に得ることができる。
a’’i=(li・si・π)1/2 ・・・(2)
γ=li/’i ・・・(3)
l’i=(si 2・li)1/3・(γ’)2/3 ・・・(4)
s’i=((si 2・li)/γ’)1/3 ・・・(5)
l’’i=(si 2・sin2θ’+(γ’)2・cos2θ’)1/2 ・・・(6)
s’’i=s’i ・・・(7)
a’i=(l’’i・s’’i・π)1/2 ・・・(8)
The secondary transformation step uses the following formula (2) and formula (3), and the major axis l i and minor axis of the non-metallic inclusions having an aspect ratio γ projected from the primary projection dimension a ″ i onto the reference plane: Using the step of calculating s i , the following formula (4), formula (5), and the aspect ratio γ ′ of the non-metallic inclusions in the evaluation region, the aspect ratio γ ′ is calculated from the major axis l i and the minor axis s i. Using the step of calculating the major axis l ′ i and minor axis s ′ i of the metal inclusions and the following formulas (6) and (7), projection from the major axis l ′ i and minor axis s ′ i onto the evaluation surface is performed. 'using a step of calculating a i, the following expression (8), the major axis l' and 'i and the minor axis s'' diameter l of non-metallic inclusions' aspect ratio γ was' i and the minor axis s''i And calculating the evaluation surface projection dimension a ′ i from the above. By performing the secondary conversion in this way, the evaluation surface projection dimension a ′ i can be obtained relatively easily from the primary projection dimension a ″ i .
a ″ i = (l i · s i · π) 1/2 (2)
γ = l i / ' i (3)
l ′ i = (s i 2 · l i ) 1/3 · (γ ′) 2/3 (4)
s ′ i = ((s i 2 · l i ) / γ ′) 1/3 (5)
l ″ i = (s i 2 · sin 2 θ ′ + (γ ′) 2 · cos 2 θ ′) 1/2 (6)
s ″ i = s ′ i (7)
a ′ i = (l ″ i · s ″ i · π) 1/2 (8)
上記課題を解決するためになされた別の発明は、鍛鋼品内の特定の評価面における清浄度評価方法であって、鍛伸方向に対する角度が等しいn個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程と、極値統計法を用い、上記最大非金属介在物寸法aiから検査面での推定最大非金属介在物寸法amaxを算出する工程と、上記検査面の鍛伸方向に対する角度θ及び上記評価面の鍛伸方向に対する角度θ’を用い、検査面での推定最大非金属介在物寸法amaxを評価面での推定最大非金属介在物寸法a’maxに変換する工程とを備えることを特徴とする鍛鋼品の清浄度評価方法である。 Another invention made in order to solve the above-mentioned problem is a cleanliness evaluation method on a specific evaluation surface in a forged steel product, and the maximum non-metallic inclusion size on n inspection surfaces having the same angle to the forging direction a step of measuring a i (i = 1 to n), a step of calculating an estimated maximum non-metallic inclusion size a max on the inspection surface from the maximum non-metallic inclusion size a i using an extreme value statistical method; , Using the angle θ relative to the forging direction of the inspection surface and the angle θ ′ relative to the forging direction of the evaluation surface, the estimated maximum nonmetallic inclusion size a max on the inspection surface is estimated to be the estimated maximum nonmetallic inclusion on the evaluation surface. And a process for converting to dimension a ′ max .
当該鍛鋼品の清浄度評価方法は、検査面及び評価面それぞれの鍛伸方向に対する角度を用い、複数の検査面で測定された最大非金属介在物の寸法aiから得た推定最大非金属介在物寸法amaxを、評価面で測定され得る非金属介在物の推定最大非金属介在物寸法a’maxに変換する。そのため、当該鍛鋼品の清浄度評価方法は、評価面での清浄度を比較的高い精度で評価することができる。 The method for evaluating the cleanliness of the forged steel product uses the angle to the forging direction of each of the inspection surface and the evaluation surface, and the estimated maximum nonmetallic inclusion obtained from the dimension a i of the maximum nonmetallic inclusion measured on a plurality of inspection surfaces. The object dimension a max is converted into an estimated maximum non-metal inclusion dimension a ′ max of non-metallic inclusions that can be measured on the evaluation surface. Therefore, the cleanliness evaluation method of the forged steel product can evaluate the cleanliness on the evaluation surface with relatively high accuracy.
なお、「非金属介在物」とは、金属材料の凝固過程において金属材料中に析出又は巻き込まれる非金属性の介在物を意味し、例えば硫化マンガン(MnS)等の硫化物系、酸化アルミニウム(Al2O3)、二酸化ケイ素(SiO2)等の酸化物系、窒化チタン(TiN)等の窒化物系などの介在物である。また、「非金属介在物寸法」とは、非金属介在物の検査面又は評価面での投影面積で表される大きさを意味し、この投影面積のほか、例えば投影面積と等面積の真円の直径、投影面積の1/2乗値(√area)などが含まれる。 The term “non-metallic inclusions” refers to non-metallic inclusions that are precipitated or entrained in the metallic material during the solidification process of the metallic material. For example, sulfide-based materials such as manganese sulfide (MnS), aluminum oxide ( These are inclusions such as oxides such as Al 2 O 3 ) and silicon dioxide (SiO 2 ), and nitrides such as titanium nitride (TiN). “Non-metallic inclusion size” means the size represented by the projected area of the non-metallic inclusion on the inspection or evaluation surface. In addition to this projected area, for example, the true area of the projected area is equal to the projected area. The diameter of the circle, the half power value (√area) of the projected area, and the like are included.
以上説明したように、本発明の鍛鋼品の清浄度評価方法によれば、比較的高い精度で鍛鋼品の清浄度を評価できる。 As described above, according to the method for evaluating the cleanliness of a forged steel product according to the present invention, the cleanliness of the forged steel product can be evaluated with relatively high accuracy.
以下、本発明に係る鍛鋼品の清浄度評価方法の実施形態について説明する。 Hereinafter, the embodiment of the cleanliness evaluation method of a forged steel product concerning the present invention is described.
〔第一実施形態〕
当該鍛鋼品の清浄度評価方法は、鍛鋼品内の検査面とは異なる特定の評価面の清浄度を評価する方法である。当該鍛鋼品の清浄度評価方法は、n個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程(測定工程)と、上記n個の検査面の鍛伸方向に対する各角度θi(i=1〜n)及び上記評価面の鍛伸方向に対する角度θ’を用い、各検査面の最大非金属介在物寸法aiを評価面での投影寸法a’i(i=1〜n)に変換する工程(変換工程)と、極値統計法を用い、上記評価面投影寸法a’iから評価面での推定最大非金属介在物寸法amaxを算出する工程(算出工程)とを備える。
[First embodiment]
The forged steel product cleanliness evaluation method is a method for evaluating the cleanliness of a specific evaluation surface different from the inspection surface in the forged steel product. The method for evaluating the cleanliness of the forged steel product includes a step of measuring the maximum non-metallic inclusion size a i (i = 1 to n) on n inspection surfaces (measurement step), and forging of the n inspection surfaces. Using each angle θ i (i = 1 to n) with respect to the direction and the angle θ ′ with respect to the forging direction of the evaluation surface, the maximum non-metallic inclusion size a i of each inspection surface is the projected dimension a ′ i on the evaluation surface. (I = 1 to n) step of converting (converting step) and step of calculating the estimated maximum non-metallic inclusion size a max on the evaluation surface from the evaluation surface projection size a ′ i using the extreme value statistical method (Calculation step).
[測定工程]
測定工程では、検査対象の鍛鋼品にn個の検査面を設定し、各検査面における非金属介在物の大きさを測定する。
[Measurement process]
In the measurement process, n inspection surfaces are set on the forged steel product to be inspected, and the size of the nonmetallic inclusions on each inspection surface is measured.
各検査面の鍛伸方向に対する各角度θi(i=1〜n)は、全て同一でもよいが、評価精度の観点から異なる角度が含まれることが好ましい。この角度θiは、鍛鋼品の中央縦断面における鍛伸方向に対する角度であり、0°以上90°未満である。なお、鍛伸方向とは、鍛伸によって形成される鋼材の鍛流線の方向であり、上記角度θiは、鍛鋼品の断面マクロ観察により鍛流線を観察することで計測又は決定することができる。また、形状や鍛造条件が同等であれば、鍛流線の向きもほぼ同じとなるため、清浄度評価対象とは異なるチャージ(鍛鋼品)でマクロ観察結果を採取しておくことで、鍛伸方向の計測を省略できる。 Each angle θ i (i = 1 to n) with respect to the forging direction of each inspection surface may be the same, but it is preferable that different angles are included from the viewpoint of evaluation accuracy. The angle theta i is an angle with respect to forging direction in the central longitudinal plane of the forgings, is less than 90 ° 0 ° or more. The forging direction is the direction of the forging line of the steel material formed by forging, and the angle θ i is measured or determined by observing the forging line by cross-sectional macro observation of the forged steel product. Can do. Also, if the shape and forging conditions are the same, the direction of the forging line will be almost the same, so by collecting the macro observation results with a charge (forged steel product) that is different from the object of cleanliness evaluation, Measurement of direction can be omitted.
当該鍛鋼品を形成する金属材料として、鉄(Fe)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、銀(Ag)、金(Au)、これらの合金、マグネシウム(Mg)合金、クロム(Cr)合金等が挙げられる。 As a metal material forming the forged steel product, iron (Fe), aluminum (Al), titanium (Ti), nickel (Ni), copper (Cu), zinc (Zn), silver (Ag), gold (Au), These alloys, a magnesium (Mg) alloy, a chromium (Cr) alloy, etc. are mentioned.
上記測定工程における測定方法としては、金属材料中の非金属介在物を測定できる方法であれば特に制限はなく、超音波探傷による測定方法、超音波疲労試験による測定方法、電子顕微鏡観察による測定方法などを用いることができる。これらの中でも、基本的に非破壊検査法であり、迅速に検査できる点において超音波探傷による測定が好ましい。 The measurement method in the measurement step is not particularly limited as long as it is a method capable of measuring nonmetallic inclusions in a metal material. Measurement method by ultrasonic flaw detection, measurement method by ultrasonic fatigue test, measurement method by electron microscope observation Etc. can be used. Among these, measurement by ultrasonic flaw detection is preferable because it is basically a nondestructive inspection method and can be inspected quickly.
上記測定工程では、鍛鋼品の検査領域に、非金属介在物を測定する任意のn個の検査面を設定する。ここで、測定工程における測定は、金属材料から検査領域を切り出して行ってもよく、金属材料から切り出しをせずに設定した検査面の領域に対して行ってもよい。 In the measurement step, arbitrary n inspection surfaces for measuring nonmetallic inclusions are set in the inspection area of the forged steel product. Here, the measurement in the measurement step may be performed by cutting out the inspection region from the metal material, or may be performed on the region of the inspection surface set without cutting out from the metal material.
鍛鋼品に設定する検査面の個数nとしては、統計計算的に、5以上100以下が好ましい。 The number n of inspection surfaces set in the forged steel product is preferably 5 or more and 100 or less in statistical calculation.
検査面を切り出して測定する場合、検査面を含む同じサイズの直方体形状の複数の検査試料を切り出すことが好ましい。このように同一形状の検査試料を切り出すことで、連続検査及び自動測定がし易くなる。 When measuring by cutting out the inspection surface, it is preferable to cut out a plurality of inspection samples having a rectangular parallelepiped shape of the same size including the inspection surface. By cutting out the inspection sample having the same shape in this way, continuous inspection and automatic measurement are facilitated.
検査面の面積としては、1mm2以上10000mm2以下が好ましい。検査面積が上記下限に満たないと、検査面における非金属介在物の検出精度が低下するおそれがある。逆に、検査面積が上記上限を超えると、検査面における非金属介在物の測定が困難となるおそれがある。 The area of the inspection surface is preferably 1 mm 2 or more and 10,000 mm 2 or less. If the inspection area is less than the lower limit, the detection accuracy of non-metallic inclusions on the inspection surface may be reduced. Conversely, if the inspection area exceeds the upper limit, it may be difficult to measure nonmetallic inclusions on the inspection surface.
また、複数の検査面は、検査対象の鍛鋼品の外周部及び中心部のそれぞれに設定することが好ましい。これは、鋼材において、一般に中心部は最終凝固位置であり、非金属介在物の濃化溶鋼への排出及び非金属介在物の沈降量が多いため、このように中心部及び外周部を検査することによって、大型の非金属介在物の検出率を向上させることができるからである。その結果、清浄度評価の精度をより向上させることができる。 Moreover, it is preferable to set a some test | inspection surface in each of the outer peripheral part and center part of the forged steel product to be examined. This is because, in steel materials, the central part is generally the final solidification position, and the discharge of nonmetallic inclusions into concentrated molten steel and the amount of nonmetallic inclusions settled are large, so the central part and the outer peripheral part are inspected in this way. This is because the detection rate of large non-metallic inclusions can be improved. As a result, the accuracy of cleanliness evaluation can be further improved.
なお、鋳造した金属材料は、一般的に微細な空洞が無数にあるため、超音波探傷法により走査する場合、上記空洞による無数の乱反射やノイズが発生し、正常に測定できないことがある。そのため、鋳造した金属材料を評価対象とし、測定工程で超音波探傷法を用いる場合、検査面の測定前に、検査面を含む金属材料を圧延又は鍛造することが好ましい。このように検査対象の金属材料を圧延又は鍛造することで、金属材料の圧着により上記空洞が消滅するので、超音波探傷法による上記検査領域の正常な測定ができる。 In addition, since the cast metal material generally has an infinite number of fine cavities, when scanning by the ultrasonic flaw detection method, an infinite number of irregular reflections and noises are generated by the cavities, and the measurement may not be performed normally. Therefore, when the cast metal material is an evaluation object and the ultrasonic flaw detection method is used in the measurement process, it is preferable to roll or forge the metal material including the inspection surface before measuring the inspection surface. By rolling or forging the metal material to be inspected in this way, the cavity disappears due to the pressure bonding of the metal material, so that the normal measurement of the inspection region by ultrasonic flaw detection can be performed.
[変換工程]
変換工程では、上記n個の検査面の鍛伸方向に対する各角度θi及び上記評価面の鍛伸方向に対する角度θ’を用い、測定工程で得られた各検査面の最大非金属介在物寸法aiを評価面での投影寸法a’i(i=1〜n)に変換する。
[Conversion process]
In the conversion step, the maximum non-metallic inclusion size of each inspection surface obtained in the measurement step using each angle θ i with respect to the forging direction of the n inspection surfaces and the angle θ ′ with respect to the forging direction of the evaluation surface. a i is converted into a projected dimension a ′ i (i = 1 to n) on the evaluation surface.
図1及び図2に示すように、同一の金属介在物Sを測定する場合でも、鍛伸方向Pに対する検査面Iの向きにより測定される介在物寸法が変化する。そのため、本変換工程では、検査面で計測した最大非金属介在物寸法aiを評価面での投影寸法a’iに変換する。 As shown in FIGS. 1 and 2, even when the same metal inclusion S is measured, the measured inclusion size changes depending on the orientation of the inspection surface I with respect to the forging direction P. Therefore, in this conversion step, the maximum non-metallic inclusion size a i measured on the inspection surface is converted into the projected size a ′ i on the evaluation surface.
評価面の鍛伸方向に対する角度θ’は、上記角度θi同様、鍛鋼品の中央縦断面における鍛伸方向に対する角度であり、0°以上90°未満である。また、角度θ’は、鍛鋼品の断面マクロ観察により、鍛流線を観察することで計測することができる。 Angle theta 'relative to forging direction of the evaluation plane, like the angle theta i, is the angle relative to forging direction in the central longitudinal plane of the forgings, is less than 0 ° or 90 °. Moreover, angle (theta) 'can be measured by observing a forge stream line by cross-sectional macro observation of a forged steel product.
具体的には、変換工程は、非金属介在物が鍛伸方向を長軸とする回転楕円体であると仮定することで容易に変換を行うことができる。 Specifically, the conversion step can be easily performed by assuming that the nonmetallic inclusion is a spheroid whose major axis is the forging direction.
また、本変換工程は、上記最大非金属介在物寸法aiを鍛伸方向に対する角度が0°の基準面への一次投影寸法a’’iに一次変換する工程(一次変換工程)と、上記一次投影寸法a’’iを上記評価面投影寸法a’iに二次変換する工程(二次変換工程)とを有する。 Further, the conversion step includes a step of converting the maximum non-metallic inclusion size a i into a primary projection size a ″ i on a reference plane whose angle with respect to the forging direction is 0 ° (primary conversion step), A step (secondary conversion step) of secondarily converting the primary projection size a ″ i to the evaluation surface projection size a ′ i .
ここで、鍛鋼品内の領域によって非金属介在物の鍛錬による変形度合いも変化するので、基準面の非金属介在物のアスペクト比γと、評価領域の非金属介在物のアスペクト比γ’とを用いることで、評価精度を高めることができる。 Here, since the degree of deformation due to forging of nonmetallic inclusions varies depending on the region in the forged steel product, the aspect ratio γ of the nonmetallic inclusions in the reference surface and the aspect ratio γ ′ of the nonmetallic inclusions in the evaluation region By using it, evaluation accuracy can be increased.
基準面及び評価面の非金属介在物のアスペクト比は、例えばそれぞれの領域での疲労試験破断面を観察することで求めることができる。また、基準面の非金属介在物のアスペクト比は、上記観察から求めた検査面の非金属介在物のアスペクト比から算出してもよい。 The aspect ratio of the non-metallic inclusions on the reference surface and the evaluation surface can be obtained, for example, by observing the fatigue test fracture surface in each region. Further, the aspect ratio of the nonmetallic inclusions on the reference surface may be calculated from the aspect ratio of the nonmetallic inclusions on the inspection surface obtained from the above observation.
<一次変換工程>
一次変換工程では、下記式(1)を用い、上記最大非金属介在物寸法aiを上記一次投影寸法a’’iに変換する。
a’’i=ai・(γ/(sin2θi+γ2・cos2θi)1/2)1/2 ・・・(1)
<Primary conversion process>
In the primary conversion step, the maximum non-metallic inclusion size a i is converted into the primary projection size a ″ i using the following formula (1).
a ″ i = a i · (γ / (sin 2 θ i + γ 2 · cos 2 θ i ) 1/2 ) 1/2 (1)
<二次変換工程>
二次変換工程は、基準面に投影したアスペクト比γの非金属介在物の長径li及び短径siを算出する工程(第一算出工程)と、アスペクト比γ’の非金属介在物の長径l’i及び短径s’iを算出する工程(第二算出工程)と、評価面に投影したアスペクト比γ’の非金属介在物の長径l’’i及び短径s’’iを算出する工程(第三算出工程)と、評価面投影寸法a’iを算出する工程(第四算出工程)とを有する。
<Secondary conversion process>
The secondary conversion step includes a step (first calculation step) of calculating a major axis l i and a minor axis s i of a non-metallic inclusion having an aspect ratio γ projected on a reference plane, and a non-metallic inclusion having an aspect ratio γ ′. a step (second calculation step) for calculating the major axis l 'i and the minor axis s' i, a' i and the minor axis s''i' major axis l of non-metallic inclusions' aspect ratio γ projected onto the evaluation plane A step of calculating (third calculation step) and a step of calculating the evaluation surface projection dimension a ′ i (fourth calculation step).
(第一算出工程)
第一算出工程では、下記式(2)及び式(3)を用い、上記一次投影寸法a’’iから上記基準面に投影したアスペクト比γ’’の非金属介在物の長径li及び短径siを算出する。
a’’i=(li・si・π)1/2 ・・・(2)
γ=li/si ・・・(3)
(First calculation process)
In the first calculation step, the following formulas (2) and (3) are used, and the major axis l i and the minor axis l i of the non-metallic inclusion having the aspect ratio γ ″ projected from the primary projection dimension a ″ i onto the reference plane are used. The diameter s i is calculated.
a ″ i = (l i · s i · π) 1/2 (2)
γ = l i / s i (3)
(第二算出工程)
第二算出工程では、下記式(4)、式(5)及び評価領域における非金属介在物のアスペクト比γ’を用い、上記長径li及び短径siからアスペクト比γ’の非金属介在物の長径l’i及び短径s’iを算出する。
l’i=(si 2・li)1/3・(γ’)2/3 ・・・(4)
s’i=((si 2・li)/γ’)1/3 ・・・(5)
(Second calculation step)
In the second calculation step, the following formula (4), formula (5) and the aspect ratio γ ′ of the nonmetallic inclusion in the evaluation region are used, and the nonmetallic inclusion having the aspect ratio γ ′ from the major axis l i and the minor axis s i is used. The major axis l ′ i and the minor axis s ′ i of the object are calculated.
l ′ i = (s i 2 · l i ) 1/3 · (γ ′) 2/3 (4)
s ′ i = ((s i 2 · l i ) / γ ′) 1/3 (5)
(第三算出工程)
第三算出工程では、下記式(6)及び式(7)を用い、上記長径l’i及び短径s’iから上記評価面に投影したアスペクト比γ’の非金属介在物の長径l’’i及び短径s’’iを算出する。
l’’i=(si 2・sin2θ’+(γ’)2・cos2θ’)1/2 ・・・(6)
s’’i=s’i ・・・(7)
(Third calculation step)
In the third calculation step, using the following formula (6) and formula (7), the major axis l ′ of the non-metallic inclusion having the aspect ratio γ ′ projected from the major axis l ′ i and the minor axis s ′ i onto the evaluation surface. ' i and minor axis s'' i are calculated.
l ″ i = (s i 2 · sin 2 θ ′ + (γ ′) 2 · cos 2 θ ′) 1/2 (6)
s ″ i = s ′ i (7)
(第四算出工程)
第四算出工程では、下記式(8)を用い、上記長径l’’i及び短径s’’iから上記評価面投影寸法a’iを算出する。
a’i=(l’’i・s’’i・π)1/2 ・・・(8)
(Fourth calculation step)
In the fourth calculating step, using the following equation (8), calculates the evaluation surface projection size a 'i from the major axis l''i and the minor axis s'' i.
a ′ i = (l ″ i · s ″ i · π) 1/2 (8)
[算出工程]
算出工程では、極値統計法を用い、変換工程で得られた上記評価面投影寸法a’iから評価面での推定最大非金属介在物寸法amaxを算出する。
[Calculation process]
In the calculation step, an estimated maximum non-metallic inclusion size a max on the evaluation surface is calculated from the evaluation surface projection size a ′ i obtained in the conversion step using an extreme value statistical method.
上記極値統計法としては、例えば以下の方法が使用できる。まず、評価面投影寸法a’iを昇順に並べ、この昇順に並べた評価面投影寸法a’j(j=1〜n)と、基準化変数yj=−ln[−ln{j/(n+1)}]とから、yjを従属変数、ajを独立変数とする下記式(9)のm次回帰式を導出する。このm次回帰式は、一次以上の回帰式の導出ができる例えば最小二乗法や最尤法などの公知の方法を用いて導出できる。
yj=fm(aj) ・・・(9)
As the extreme value statistical method, for example, the following method can be used. First, the evaluation surface projection dimensions a ′ i are arranged in ascending order, and the evaluation surface projection dimensions a ′ j (j = 1 to n) arranged in this ascending order, and the standardization variable y j = −ln [−ln {j / ( n + 1)}], an m-th order regression equation of the following formula (9) is derived with y j as a dependent variable and a j as an independent variable. The m-th order regression equation can be derived by using a known method such as a least square method or a maximum likelihood method, which can derive a first-order or higher-order regression equation.
y j = f m (a j ) (9)
上記導出で得られた上記式(9)のm次回帰式と下記式(10)との解を求め、評価面での推定最大非金属介在物寸法amaxを算出する。
fm(amax)=ymax ・・・(10)
The solution of the m-th order regression equation of the above equation (9) obtained by the above derivation and the following equation (10) is obtained, and the estimated maximum nonmetallic inclusion size a max on the evaluation surface is calculated.
f m (a max ) = y max (10)
上記式(9)において、fm(aj)は例えばaj+bとでき(bは定数)、式(10)において、ymaxは例えばln[−ln{Sd/(Sd+Se)}]とできる。Sdは、評価領域における応力負荷が加わる表面積(危険面積)であり、Seは、検査領域における応力負荷が加わる表面積(危険面積)である。 In the above equation (9), f m (a j ) can be, for example, a j + b (b is a constant). In equation (10), y max is, for example, ln [−ln {S d / (S d + S e ). }]. S d is the surface area of stress loading in the evaluation area is added (hazardous area), S e is the surface area (hazardous area) stress load in the examination region is applied.
なお、本算出工程において、評価面投影寸法a’iから異常値を除去した上で、最大非金属介在物寸法amaxを算出することが好ましい。これは、上記測定工程で非金属介在物以外のものが非金属介在物と判断されて非金属介在物寸法として測定される場合があるためである。例えば超音波探傷による測定において、非金属介在物でない空洞からの反射波や外からの飛び込み乱反射ノイズなどが非金属介在物として測定される場合がある。これに対し、異常値を除去することで、非金属介在物でない欠陥からのデータを省くことができる。例えば超音波探傷では、異常値と正常値との波形が異なるので、波形によって容易に異常値を除去することができる。 In this calculation step, it is preferable to calculate the maximum non-metallic inclusion size a max after removing abnormal values from the evaluation surface projection size a ′ i . This is because in the measurement step, things other than non-metallic inclusions may be determined as non-metallic inclusions and measured as non-metallic inclusion dimensions. For example, in the measurement by ultrasonic flaw detection, a reflected wave from a cavity that is not a non-metallic inclusion or an irregular reflection noise from outside may be measured as a non-metallic inclusion. On the other hand, data from defects that are not non-metallic inclusions can be omitted by removing abnormal values. For example, in ultrasonic flaw detection, since the waveform of an abnormal value and a normal value are different, the abnormal value can be easily removed by the waveform.
本算出工程で得られた上記推定最大非金属介在物寸法amaxにより、鍛鋼品の評価対象領域での清浄度を評価することができる。 Based on the estimated maximum non-metallic inclusion size a max obtained in this calculation step, the cleanliness of the forged steel product in the evaluation target region can be evaluated.
[利点]
当該鍛鋼品の清浄度評価方法は、複数の検査面から得た最大非金属介在物寸法aiを、これらの検査面の鍛伸方向に対する角度θiと、清浄度を評価したい評価面の鍛伸方向に対する角度θ’とを用いて、評価面への投影寸法a’iに変換するので、検査面での計測値から評価面での清浄度を比較的高い精度で評価することができる。
[advantage]
The forged steel product cleanliness evaluation method uses the maximum non-metallic inclusion dimension a i obtained from a plurality of inspection surfaces, the angle θ i of these inspection surfaces with respect to the forging direction, and the forging of the evaluation surface on which the cleanliness is to be evaluated. Since the angle θ ′ with respect to the stretching direction is used to convert the projected dimension a ′ i onto the evaluation surface, the cleanliness on the evaluation surface can be evaluated with relatively high accuracy from the measurement value on the inspection surface.
〔第二実施形態〕
当該鍛鋼品の清浄度評価方法は、鍛鋼品内の特定の評価面における清浄度評価方法である。当該鍛鋼品の清浄度評価方法は、鍛伸方向に対する角度が等しいn個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程(測定工程)と、極値統計法を用い、上記最大非金属介在物寸法aiから検査面での推定最大非金属介在物寸法amaxを算出する工程(算出工程)と、上記検査面の鍛伸方向に対する角度θ及び上記評価面の鍛伸方向に対する角度θ’を用い、検査面での推定最大非金属介在物寸法amaxを評価面での推定最大非金属介在物寸法a’maxに変換する工程(変換工程)とを備える。
[Second Embodiment]
The method for evaluating the cleanliness of the forged steel product is a method for evaluating the cleanliness of a specific evaluation surface in the forged steel product. The cleanliness evaluation method of the forged steel product includes a step (measurement step) of measuring the maximum non-metallic inclusion dimension a i (i = 1 to n) on n inspection surfaces having the same angle with respect to the forging direction, and an extreme value. Using a statistical method, a step (calculation step) of calculating an estimated maximum non-metallic inclusion size a max on the inspection surface from the maximum non-metallic inclusion size a i , an angle θ with respect to the forging direction of the inspection surface, and the above 'using the estimated maximum non-metallic inclusion size a max of the inspection surface estimated maximum non-metallic inclusion size a of the evaluation plane' angle θ with respect to forging direction evaluation plane step of converting the max and (conversion step) Is provided.
[測定工程]
上記測定工程は、n個の検査面の鍛伸方向に対する角度を同じにする点以外は、第一実施形態の鍛鋼品の清浄度評価方法の測定工程と同じである。
[Measurement process]
The said measurement process is the same as the measurement process of the cleanliness evaluation method of the forged steel product of 1st embodiment except the point which makes the angle with respect to the forge direction of n inspection surface the same.
[算出工程]
上記算出工程は、極値統計法を用い、上記測定工程で得た最大非金属介在物寸法aiから検査面での推定最大非金属介在物寸法amaxを算出する。この極値統計法は第一実施形態で説明したものが使用できる。
[Calculation process]
The calculation step uses an extreme value statistical method to calculate the estimated maximum non-metallic inclusion size a max on the inspection surface from the maximum non-metallic inclusion size a i obtained in the measurement step. The extreme value statistical method described in the first embodiment can be used.
[変換工程]
上記変換工程は、検査面の鍛伸方向に対する角度θ及び上記評価面の鍛伸方向に対する角度θ’を用い、上記算出工程で得た検査面での推定最大非金属介在物寸法amaxを評価面での推定最大非金属介在物寸法a’maxに変換する。検査面での推定最大非金属介在物寸法amaxを評価面での推定最大非金属介在物寸法a’maxに変換する方法としては、第一実施形態の鍛鋼品の清浄度評価方法の変換工程で説明した最大非金属介在物寸法aiを評価面での投影寸法a’iに変換する方法が使用できる。
[Conversion process]
The conversion step uses the angle θ with respect to the forging direction of the inspection surface and the angle θ ′ with respect to the forging direction of the evaluation surface, and evaluates the estimated maximum non-metallic inclusion size a max on the inspection surface obtained in the calculation step. Convert to the estimated maximum non-metallic inclusion size a ′ max at the surface. As a method of converting the estimated maximum non-metallic inclusion size a max in the inspection surface on the estimated maximum non-metallic inclusion size a 'max of the evaluation plane, the conversion step of forgings cleanliness evaluation method of the first embodiment The method of converting the maximum non-metallic inclusion dimension a i described in the above into the projected dimension a ′ i on the evaluation surface can be used.
[利点]
当該鍛鋼品の清浄度評価方法は、検査面及び評価面それぞれの鍛伸方向に対する角度を用い、複数の検査面で測定された最大非金属介在物の寸法aiから得た推定最大非金属介在物寸法amaxを、評価面で測定され得る非金属介在物の推定最大非金属介在物寸法a’maxに変換する。そのため、当該鍛鋼品の清浄度評価方法は、評価面での清浄度を比較的高い精度で評価することができる。
[advantage]
The method for evaluating the cleanliness of the forged steel product uses the angle to the forging direction of each of the inspection surface and the evaluation surface, and the estimated maximum nonmetallic inclusion obtained from the dimension a i of the maximum nonmetallic inclusion measured on a plurality of inspection surfaces. The object dimension a max is converted into an estimated maximum non-metal inclusion dimension a ′ max of non-metallic inclusions that can be measured on the evaluation surface. Therefore, the cleanliness evaluation method of the forged steel product can evaluate the cleanliness on the evaluation surface with relatively high accuracy.
〔その他の実施形態〕
なお、本発明の清浄度評価方法は、上記実施形態に限定されるものではない。
[Other Embodiments]
The cleanliness evaluation method of the present invention is not limited to the above embodiment.
つまり、当該鍛鋼品の清浄度評価方法においては、検査面における最大非金属介在物寸法aiを評価面での投影寸法a’iに変換する方法は、上記実施形態に限定されず、他の手順を用いて変換を行ってもよい。例えば、一次投影寸法a’’iを介さずに最大非金属介在物寸法aiを評価面での投影寸法a’iに直接変換してもよい。 That is, in the cleanliness evaluation method of the forged steel product, the method for converting the maximum non-metallic inclusion dimension a i on the inspection surface into the projected dimension a ′ i on the evaluation surface is not limited to the above embodiment, The conversion may be performed using a procedure. For example, the maximum non-metallic inclusion size a i may be directly converted into the projected dimension a ′ i on the evaluation surface without going through the primary projected dimension a ″ i .
以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
まず、評価対象の鍛鋼品として、直径350mmの軸系鍛鋼品を製鋼した。この軸系鍛鋼品は、図3に示すように半径方向の一方向から鍛錬することで、軸の中央部Aが端部Bよりも中心軸がオフセット(偏心)するように加工されており、この中央部Aを評価領域とした。また、この鍛錬により、中央部Aでは鍛伸方向(鍛流線の向き)Pが図示するように軸方向に沿って変化している。 First, as a forged steel product to be evaluated, a shaft forged steel product having a diameter of 350 mm was made. This shaft-based forged steel product is machined so that the center axis of the shaft is offset (eccentric) from the end B by forging from one direction in the radial direction as shown in FIG. This central part A was used as an evaluation area. Further, due to this training, in the central portion A, the forging direction (direction of the forging line) P changes along the axial direction as shown in the figure.
次に、この軸系鍛鋼品の端部Bから、鍛伸方向Pに対する角度が0°、90°となる面で疲労破断する小型疲労試験片を6本ずつ、計12本採取した。また、中央部Aから、鍛伸方向Pに対する角度が60°となる面で疲労破断する大型疲労試験片を一本採取した。これらの試験片は、破壊起点部位が鍛造前の鋼塊の1/3R位置に想到する部位になるように採取した。さらに、これらの試験片について、疲労試験において最大負荷応力から最大負荷応力の90%の応力が加わる危険領域を検査領域又は評価領域とした。疲労試験の結果、小型疲労試験片の検査領域の表面積は676mm2、大型疲労試験片の評価領域の表面積は3320mm2であった。 Next, a total of 12 small fatigue test pieces were collected from the end portion B of the shaft-based forged steel product, each having 6 small fatigue test pieces that were subjected to fatigue fracture on the surface where the angles with respect to the forging direction P were 0 ° and 90 °. Further, from the central portion A, one large fatigue test piece that was subjected to fatigue fracture on a surface having an angle with respect to the forging direction P of 60 ° was collected. These test pieces were sampled so that the fracture start site was a site that reached the 1 / 3R position of the steel ingot before forging. Further, with respect to these test pieces, a dangerous region where 90% of the maximum load stress was applied from the maximum load stress in the fatigue test was defined as an inspection region or an evaluation region. As a result of the fatigue test, the surface area of the inspection region of the small fatigue test piece was 676 mm 2 , and the surface area of the evaluation region of the large fatigue test piece was 3320 mm 2 .
上記小型疲労試験片及び大型疲労試験片について疲労試験破断面を観察し、最大非金属介在物寸法を求めた。この小型疲労試験片における最大非金属介在物寸法について、昇順に並べた結果を表1に示す。 The fatigue test fracture surface was observed for the small fatigue test piece and the large fatigue test piece, and the maximum non-metallic inclusion size was determined. Table 1 shows the results of arranging the maximum non-metallic inclusion dimensions in this small fatigue test piece in ascending order.
一方、上記大型疲労試験片の評価面(疲労破断面)での最大介在物寸法は98μm、アスペクト比γ’は14.1であった。 On the other hand, the maximum inclusion size on the evaluation surface (fatigue fracture surface) of the large fatigue test piece was 98 μm, and the aspect ratio γ ′ was 14.1.
さらに、鍛伸方向Pに対する角度が75°(θ1)となる面で疲労破断する別の小型疲労試験片に対し、疲労試験破断面を観察したところ非金属介在物の平均アスペクトγ1は3.15であった。このアスペクト比γ1を鍛伸方向Pに対する角度が0°となる基準面のアスペクト比γに下記式(11)を用いて変換したところ、3.92が得られた。なお、鍛鋼方向Pに対する角度が0°となる検査面(疲労破断面)を有する試験片を用いて、基準面のアスペクト比γを観察により直接求めてもよい。
γ=((γ1 2−sin2θ1)/cos2θ1)1/2 ・・・(11)
Furthermore, when the fatigue test fracture surface was observed for another small fatigue test piece that was fatigue fractured at a surface where the angle with respect to the forging direction P was 75 ° (θ 1 ), the average aspect γ 1 of the nonmetallic inclusions was 3. .15. When this aspect ratio γ 1 was converted into the aspect ratio γ of the reference surface having an angle with respect to the forging direction P of 0 ° using the following formula (11), 3.92 was obtained. Note that the aspect ratio γ of the reference surface may be directly determined by observation using a test piece having an inspection surface (fatigue fracture surface) whose angle with respect to the forging steel direction P is 0 °.
γ = ((γ 1 2 −sin 2 θ 1 ) / cos 2 θ 1 ) 1/2 (11)
上述の鍛伸方向Pに対する角度が90°となる検査面(疲労破断面)を有する小型疲労試験片の最大非金属介在物寸法を上記式(1)を用いて、基準面における一次投影寸法a’’iに変換し、さらに上記式(2)、(3)を用いて、アスペクト比γの非金属介在物の長径li及び短径siを算出した結果を表2に示す。 The maximum projected non-metallic inclusion size of a small fatigue test piece having an inspection surface (fatigue fracture surface) with an angle with respect to the forging / stretching direction P of 90 ° is the primary projected dimension a on the reference surface using the above equation (1). into a '' i, further the above formula (2), Table 2 shows the result of calculating the major axis l i and the minor axis s i (3) using a non-metallic inclusions of an aspect ratio gamma.
さらに、上記式(4)、(5)を用いて、長径li及び短径siからアスペクト比γ’の非金属介在物の長径l’i及び短径s’iを算出した結果を表3に示す。 Furthermore, the results of calculating the major axis l ′ i and minor axis s ′ i of the nonmetallic inclusion having the aspect ratio γ ′ from the major axis l i and the minor axis s i using the above formulas (4) and (5) are shown. 3 shows.
さらに、上記式(6)、(7)を用いて、長径l’i及び短径s’iからアスペクト比γ’の非金属介在物の長径l’’i及び短径s’’iを算出した結果を表4に示す。 Further, the formula (6), calculates the 'i and the minor axis s'' i 'major axis l of non-metallic inclusions' (7) with a major axis l' i and the minor axis s' aspect ratio from i gamma Table 4 shows the results.
さらに、上記式(8)を用いて、長径l’’i及び短径s’’iから評価面投影寸法a’iを算出した。この結果を基準化変数yj=−ln[−ln{j/(n+1)}]と共に表5に示す。 Furthermore, using the above equation (8) to calculate the evaluation surface projection size a 'i from the major axis l''i and the minor axis s'' i. The results are shown in Table 5 together with the normalization variable y j = −ln [−ln {j / (n + 1)}].
最後に、得られた評価面投影寸法a’iに対し、基準化変数の近似式をyj=aj+b(bは定数)、ymax=ln[−ln{Sd/(Sd+Se)}]として極値統計法を用い、評価面での推定最大非金属介在物寸法amaxを算出したところ、amaxとして99.8μmが得られた。これにより、本発明により実測値98μmに近い評価ができることがわかる。一方で、表1の最大非金属介在物寸法を用いて極値統計法を用いた場合、鍛伸方向Pに対する角度が0°となる検査面の結果のみを用いると推定最大非金属介在物寸法は129.1μm、上記角度が90°となる検査面の結果のみを用いると推定最大非金属介在物寸法は37.4μmとなり、実測値と大きく乖離する。 Finally, with respect to the obtained evaluation surface projection dimension a ′ i , the approximate expression of the standardization variable is expressed as y j = a j + b (b is a constant), y max = ln [−ln {S d / (S d + S e )}] was used to calculate the estimated maximum non-metallic inclusion size a max on the evaluation surface, and 99.8 μm was obtained as a max . Thereby, it turns out that evaluation close | similar to measured value 98 micrometers can be performed by this invention. On the other hand, when the extreme value statistical method is used using the maximum non-metallic inclusion size in Table 1, the estimated maximum non-metallic inclusion size is obtained using only the result of the inspection surface where the angle with respect to the forging direction P is 0 °. Is 129.1 μm, and using only the result of the inspection surface where the angle is 90 °, the estimated maximum non-metallic inclusion size is 37.4 μm, which is greatly different from the actually measured value.
以上説明したように、当該清浄度評価方法は、比較的高い精度で鍛鋼品の清浄度を評価できるので、クランクシャフトのような高い疲労強度が求められる鍛鋼品の清浄度を保証できる。 As described above, since the cleanliness evaluation method can evaluate the cleanliness of the forged steel product with relatively high accuracy, it can guarantee the cleanliness of the forged steel product that requires high fatigue strength such as a crankshaft.
A 中央部
B 端部
I 検査面
P 鍛伸方向
S 非金属介在物
A Center B End I Inspection surface P Forging direction S Non-metallic inclusions
Claims (6)
n個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程と、
上記n個の検査面の鍛伸方向に対する各角度θi(i=1〜n)及び上記評価面の鍛伸方向に対する角度θ’を用い、各検査面の最大非金属介在物寸法aiを評価面での投影寸法a’i(i=1〜n)に変換する工程と、
極値統計法を用い、上記評価面投影寸法a’iから評価面での推定最大非金属介在物寸法amaxを算出する工程と
を備えることを特徴とする鍛鋼品の清浄度評価方法。 A cleanliness evaluation method for a specific evaluation surface in a forged steel product,
measuring a maximum non-metallic inclusion dimension a i (i = 1 to n) on n inspection surfaces;
Using each angle θ i (i = 1 to n) with respect to the forging direction of the n inspection surfaces and the angle θ ′ with respect to the forging direction of the evaluation surface, the maximum nonmetallic inclusion size a i of each inspection surface is obtained. Converting the projected dimension a ′ i (i = 1 to n) on the evaluation surface;
A method for evaluating the cleanliness of a forged steel product, comprising: using an extreme value statistical method and calculating an estimated maximum nonmetallic inclusion size a max on the evaluation surface from the evaluation surface projection size a ′ i .
上記最大非金属介在物寸法aiを鍛伸方向に対する角度が0°の基準面への一次投影寸法a’’iに一次変換する工程と、
上記一次投影寸法a’’iを上記評価面投影寸法a’iに二次変換する工程と
を有する請求項2に記載の鍛鋼品の清浄度評価方法。 The conversion step is
Primary conversion of the maximum non-metallic inclusion dimension a i into a primary projection dimension a ″ i on a reference plane having an angle with respect to the forging direction of 0 °;
The method for evaluating the cleanliness of a forged steel product according to claim 2, further comprising a step of secondarily converting the primary projection dimension a ″ i to the evaluation plane projection dimension a ′ i .
a’’i=ai・(γ/(sin2θi+γ2・cos2θi)1/2)1/2 ・・・(1)し、
式(1)中、γは上記基準面における非金属介在物のアスペクト比である。 The method for evaluating the cleanliness of a forged steel product according to claim 3, wherein, in the primary conversion step, the maximum non-metallic inclusion size a i is converted into the primary projected size a ″ i using the following formula (1).
a ″ i = a i · (γ / (sin 2 θ i + γ 2 · cos 2 θ i ) 1/2 ) 1/2 (1)
In the formula (1), γ is an aspect ratio of nonmetallic inclusions on the reference plane.
下記式(2)及び式(3)を用い、上記一次投影寸法a’’iから上記基準面に投影したアスペクト比γの非金属介在物の長径li及び短径siを算出する工程と、
下記式(4)、式(5)及び評価領域における非金属介在物のアスペクト比γ’を用い、上記長径li及び短径siからアスペクト比γ’の非金属介在物の長径l’i及び短径s’iを算出する工程と、
下記式(6)及び式(7)を用い、上記長径l’i及び短径s’iから上記評価面に投影したアスペクト比γ’の非金属介在物の長径l’’i及び短径s’’iを算出する工程と、
下記式(8)を用い、上記長径l’’i及び短径s’’iから上記評価面投影寸法a’iを算出する工程と
を有する請求項3又は請求項4に記載の鍛鋼品の清浄度評価方法。
a’’i=(li・si・π)1/2 ・・・(2)
γ=li/si ・・・(3)
l’i=(si 2・li)1/3・(γ’)2/3 ・・・(4)
s’i=((si 2・li)/γ’)1/3 ・・・(5)
l’’i=(si 2・sin2θ’+(γ’)2・cos2θ’)1/2 ・・・(6)
s’’i=s’i ・・・(7)
a’i=(l’’i・s’’i・π)1/2 ・・・(8) The secondary conversion step is
Calculating a major axis l i and a minor axis s i of a non-metallic inclusion having an aspect ratio γ projected from the primary projection dimension a ″ i using the following formula (2) and formula (3); ,
Formula (4), (5) and 'used, the aspect ratio γ from the major axis l i and the minor axis s i' Aspect ratio of nonmetallic inclusions γ in the evaluation region major axis l 'i nonmetallic inclusions And calculating a minor axis s ′ i ;
Using the following equation (6) and (7), the longer diameter l 'i and the minor axis s'' diameter l of non-metallic inclusions' aspect ratio γ projected onto the evaluation plane from i 'i and the minor axis s '' calculating i ;
The following formula (8) is used to calculate the evaluation surface projection dimension a ′ i from the major axis l ″ i and the minor axis s ″ i . Cleanliness evaluation method.
a ″ i = (l i · s i · π) 1/2 (2)
γ = l i / s i (3)
l ′ i = (s i 2 · l i ) 1/3 · (γ ′) 2/3 (4)
s ′ i = ((s i 2 · l i ) / γ ′) 1/3 (5)
l ″ i = (s i 2 · sin 2 θ ′ + (γ ′) 2 · cos 2 θ ′) 1/2 (6)
s ″ i = s ′ i (7)
a ′ i = (l ″ i · s ″ i · π) 1/2 (8)
鍛伸方向に対する角度が等しいn個の検査面における最大非金属介在物寸法ai(i=1〜n)を測定する工程と、
極値統計法を用い、上記最大非金属介在物寸法aiから検査面での推定最大非金属介在物寸法amaxを算出する工程と、
上記検査面の鍛伸方向に対する角度θ及び上記評価面の鍛伸方向に対する角度θ’を用い、検査面での推定最大非金属介在物寸法amaxを評価面での推定最大非金属介在物寸法a’maxに変換する工程と
を備えることを特徴とする鍛鋼品の清浄度評価方法。 A cleanliness evaluation method for a specific evaluation surface in a forged steel product,
Measuring the maximum non-metallic inclusion size a i (i = 1 to n) on n inspection surfaces having the same angle to the forging direction;
Calculating an estimated maximum non-metallic inclusion dimension a max on the inspection surface from the maximum non-metallic inclusion dimension a i using an extreme value statistical method;
Using the angle θ with respect to the forging direction of the inspection surface and the angle θ ′ with respect to the forging direction of the evaluation surface, the estimated maximum non-metallic inclusion size a max on the inspection surface is the estimated maximum non-metallic inclusion size on the evaluation surface. a method of converting to a ′ max . A method for evaluating the cleanliness of a forged steel product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016041281A JP6630191B2 (en) | 2016-03-03 | 2016-03-03 | Forging steel cleanliness evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016041281A JP6630191B2 (en) | 2016-03-03 | 2016-03-03 | Forging steel cleanliness evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017156273A true JP2017156273A (en) | 2017-09-07 |
JP6630191B2 JP6630191B2 (en) | 2020-01-15 |
Family
ID=59809627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016041281A Active JP6630191B2 (en) | 2016-03-03 | 2016-03-03 | Forging steel cleanliness evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6630191B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441369A (en) * | 1982-09-30 | 1984-04-10 | General Electric Company | Ultrasonic detection of extended flaws |
JPS63228062A (en) * | 1986-10-16 | 1988-09-22 | Babcock Hitachi Kk | Predicting method for remaining life of metallic material |
JP2004225073A (en) * | 2003-01-20 | 2004-08-12 | Sumitomo Metal Ind Ltd | Hot forged non-heat treated steel bars |
JP2010217076A (en) * | 2009-03-18 | 2010-09-30 | Nsk Ltd | Method of evaluating inclusion |
-
2016
- 2016-03-03 JP JP2016041281A patent/JP6630191B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441369A (en) * | 1982-09-30 | 1984-04-10 | General Electric Company | Ultrasonic detection of extended flaws |
JPS63228062A (en) * | 1986-10-16 | 1988-09-22 | Babcock Hitachi Kk | Predicting method for remaining life of metallic material |
JP2004225073A (en) * | 2003-01-20 | 2004-08-12 | Sumitomo Metal Ind Ltd | Hot forged non-heat treated steel bars |
JP2010217076A (en) * | 2009-03-18 | 2010-09-30 | Nsk Ltd | Method of evaluating inclusion |
Also Published As
Publication number | Publication date |
---|---|
JP6630191B2 (en) | 2020-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5085013B2 (en) | Steel reliability evaluation method | |
Belevitin et al. | Modeling of the energy potential saving in the production of seamless pipes | |
JP2008122345A (en) | Method of evaluating life by creep elongation in high-strength steel welded part, and method of evaluating life of high-strength steel welded part | |
Kuwazuru et al. | X-ray CT inspection for porosities and its effect on fatigue of die cast aluminium alloy | |
JP5421796B2 (en) | Titanium alloy billet with excellent defect detection capability in ultrasonic testing | |
JP5072725B2 (en) | Titanium alloy billet with excellent defect detection capability in ultrasonic testing | |
US6318178B1 (en) | Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness | |
JP2017156273A (en) | Cleanliness evaluation method for forged-steel product | |
JP5648172B2 (en) | Method for judging bending limit value of plate material and method for judging bending crack of pressed parts using the same | |
TWI557237B (en) | Rolling fatigue life of excellent steel | |
JP3505415B2 (en) | Evaluation method of cleanliness of metallic materials by ultrasonic testing | |
JP2016182657A (en) | Suspension arm made of aluminum alloy, and manufacturing method thereof | |
JP6365813B2 (en) | Fatigue strength estimation method | |
JP6402054B2 (en) | Method for evaluating the cleanliness of metal materials | |
Khaira et al. | Analysis of relation between ultrasonic testing and microstructure: a step towards highly reliable fault detection | |
KR20150109738A (en) | Prediction metal properties | |
JP4559160B2 (en) | Inspection method of high reliability bearing steel | |
Chinese Society for Metals (CSM) and The Minerals, Metals & Materials Society (TMS) et al. | Automatic measurement of centreline segregation in continuously cast line pipe steel slabs | |
Elwazri et al. | Effect of specimen thickness and punch diameter in shear punch testing | |
JP2017082261A (en) | Alloy sheet with quantitatively evaluated segregation | |
CN105651603A (en) | TC18 titanium alloy basketweave microstructure fracture toughness prediction method | |
JP6208062B2 (en) | Crank throw forging method and crank throw manufacturing method | |
Dugic et al. | on Fatigue Strength for Case-Hardened | |
Khalil et al. | Influence of microstructure on the quasistatic and low cycle fatigue behaviour of an AA2618 aluminium alloy | |
JP2012181112A (en) | Cleanliness evaluation method of metallic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6630191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |