JP2017141483A - Method of forming spray coating on outer peripheral surface of cast iron pipe - Google Patents

Method of forming spray coating on outer peripheral surface of cast iron pipe Download PDF

Info

Publication number
JP2017141483A
JP2017141483A JP2016021929A JP2016021929A JP2017141483A JP 2017141483 A JP2017141483 A JP 2017141483A JP 2016021929 A JP2016021929 A JP 2016021929A JP 2016021929 A JP2016021929 A JP 2016021929A JP 2017141483 A JP2017141483 A JP 2017141483A
Authority
JP
Japan
Prior art keywords
spray coating
cast iron
iron pipe
thermal spray
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021929A
Other languages
Japanese (ja)
Other versions
JP6258371B2 (en
Inventor
健吾 明渡
Kengo Akewatari
健吾 明渡
忠 浦上
Tadashi Uragami
忠 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2016021929A priority Critical patent/JP6258371B2/en
Publication of JP2017141483A publication Critical patent/JP2017141483A/en
Application granted granted Critical
Publication of JP6258371B2 publication Critical patent/JP6258371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield of a spray coating material.SOLUTION: After a spray coating is formed on an outer peripheral surface of a cast iron pipe P, a spray coating is further formed again on the spray coating. Normally, the outer peripheral surface of the cast iron pipe is roughened by blast processing etc., before the spray coating is formed, so when the spray coating is formed on the roughened surface, unevenness of the spray coating is generated in addition to unevenness of the former cast iron pipe surface. Consequently, anchor effect on the spray coating increased by forming the coating again. At this time, it is preferred that a speed of feeding of the cast iron pipe along its axis and a speed of rotation on the axis are made slower in the spray coating formation than in the former spray coating formation, namely, a latter spray coating speed is slower than a former spray coating speed. The reason is that although it takes a sufficient time for finishing with the latter (next) spray coating, the former spray coating is only for forming a base and thereby may be rough. Consequently, a work time can be shortened.SELECTED DRAWING: Figure 1

Description

この発明は、土中に埋設される上下水道等用鋳鉄管外周面に防食のために溶射被覆を形成する方法に関するものである。   The present invention relates to a method for forming a thermal spray coating on an outer peripheral surface of a cast iron pipe for water and sewage etc. buried in soil.

鋳鉄管が土中に埋設されると、土中の湿気や内部を流れる流体による腐食に晒される。このため、鋳鉄管の外周面及び内周面には防食処理が施されるのが一般的である。
その鋳鉄管外周面の防食処理として、亜鉛−アルミニウムシリコン(Zn-AlSi)擬合金等の金属を加熱溶融させた溶射材を、溶射ガンから、その鋳鉄管の外周面に吹き付けて溶射被覆を形成する方法がある(特許文献1、段落0030〜0031、図1b参照)。
When cast iron pipes are buried in the soil, they are exposed to corrosion from moisture in the soil and fluid flowing inside. For this reason, it is common that the outer peripheral surface and inner peripheral surface of a cast iron pipe are subjected to anticorrosion treatment.
As an anti-corrosion treatment on the outer peripheral surface of the cast iron pipe, a thermal spray coating made by heating and melting a metal such as zinc-aluminum silicon (Zn-AlSi) pseudo alloy is sprayed from the spray gun onto the outer peripheral surface of the cast iron pipe to form a thermal spray coating. (See Patent Document 1, paragraphs 0030 to 0031 and FIG. 1b).

特開2014−133908号公報JP, 2014-133908, A

その従来の溶射被覆の形成方法は、例えば、本願図5を参照して説明すると、レール1上を走行する台車2に鋳鉄管Pが支持ローラ3を介してその軸心周りに回転自在に支持され、その鋳鉄管Pを回転しつつ軸方向に移動させ、溶射ガン(溶射機)Gから溶射材cを噴射し、その溶射材cを鋳鉄管Pの外周面に溶射被覆する。
この溶射被覆において、溶射材cの飛び散り量(飛散量)が多いと歩留まり(以下、適宜に「歩留」と記載する)が悪く、生産性に問題が生じる。このため、溶射ガンGと鋳鉄管Pとの距離Sを小さくし(近づけ)、溶射パターン(図4のc’参照)を小さくする手段によって飛散防止を行うことが一般的である。
しかし、この手段は、それなりの効果は認められるが、前記距離Sを近づけすぎると、溶射パターンc’が小さくなって十分な溶射パターンが得られず、鋳鉄管Pの回転速度とその軸方向の移動速度の関係で溶射被覆に螺旋模様が生じる場合が多い。
このため、従来では、その螺旋模様が生じないように、上記距離Sを十分にとって溶射を行っているため、溶射材cの歩留まりが悪いという問題がある。今日の資源の枯渇化から、出来るだけ、歩留まりは高い方が好ましい。
The conventional thermal spray coating forming method will be described, for example, with reference to FIG. 5 of the present application. A cast iron pipe P is supported on a carriage 2 traveling on a rail 1 via a support roller 3 so as to be rotatable around its axis. Then, the cast iron pipe P is moved in the axial direction while rotating, the spray material c is sprayed from the spray gun (spray machine) G, and the spray material c is spray coated on the outer peripheral surface of the cast iron pipe P.
In this thermal spray coating, if the sprayed material c has a large scattering amount (scattering amount), the yield (hereinafter referred to as “yield” as appropriate) is poor, resulting in a problem in productivity. For this reason, it is common to prevent scattering by means for reducing (approaching) the distance S between the spray gun G and the cast iron pipe P and reducing the spray pattern (see c ′ in FIG. 4).
However, this means has some effect, but if the distance S is too close, the spray pattern c ′ becomes small and a sufficient spray pattern cannot be obtained, and the rotational speed of the cast iron pipe P and the axial direction thereof are not obtained. In many cases, a spiral pattern is formed on the thermal spray coating due to the movement speed.
For this reason, conventionally, since the thermal spraying is performed with a sufficient distance S so that the spiral pattern does not occur, there is a problem that the yield of the thermal spray material c is poor. From today's depletion of resources, it is preferable that the yield is as high as possible.

この発明は、以上の実状の下、溶射材の歩留まりを高めることを課題とする。   This invention makes it a subject to raise the yield of a thermal spray material under the above actual condition.

上記課題を達成するため、この発明は、鋳鉄管Pの外周面に溶射被覆を行った後、その溶射被覆の上に、さらに再溶射被覆を行うこととしたのである。
通常、溶射被覆の前には、ブラスト処理等によって鋳鉄管の外周面は粗面とされるため、その粗面に溶射被覆が形成されると、前者の鋳鉄管表面の凹凸に加えて溶射被覆の凹凸が生じるため、再被覆時、溶射被覆へのアンカー効果が増す。
また、再溶射被覆は、再度の溶射によってその前溶射被覆(溶射表層)の一部が再溶融されて溶射中の粒子との溶着が促進されるため、溶射中の粒子が剥がれ難くなる。
以上から、溶射材の歩留まり率が高くなる。
In order to achieve the above object, in the present invention, after the thermal spray coating is performed on the outer peripheral surface of the cast iron pipe P, the thermal spray coating is further performed on the thermal spray coating.
Usually, before spray coating, the outer peripheral surface of the cast iron pipe is roughened by blasting or the like, so when the thermal spray coating is formed on the rough surface, in addition to the irregularities on the surface of the cast iron pipe, As a result, the anchor effect on the thermal spray coating increases during re-coating.
Further, in the respraying coating, a part of the pre-spraying coating (spraying surface layer) is remelted by respraying and the adhesion with the particles being sprayed is promoted, so that the particles being sprayed are hardly peeled off.
From the above, the yield rate of the thermal spray material is increased.

因みに、溶射ガンGを鋳鉄管Pの軸方向に往復させることも行っているが(特許文献1明細書段落0030第6行、同図1(b)参照)、僅かな範囲の往復動であって、この発明に言う、溶射被覆する範囲の全ての溶射被覆を行った後、その溶射被覆の上に、さらに再溶射被覆を行うものではない。   Incidentally, the spray gun G is also reciprocated in the axial direction of the cast iron pipe P (see Patent Document 1, paragraph 0030, line 6, FIG. 1B). In this invention, after the entire thermal spray coating in the range of thermal spray coating is performed, the thermal spray coating is not further performed on the thermal spray coating.

この発明の構成としては、鋳鉄管の外周面に溶射ガンから溶射材を噴射して溶射被覆を形成する方法において、前記鋳鉄管の一端から他端までの前記溶射被覆する範囲の溶射被覆をした後、その溶射被覆の上に、さらに溶射被覆(再溶射被覆)を行う構成を採用することができる。
なお、溶射被覆は、溶射ガンと鋳鉄管をその軸方向に相対的に移動させて行うが、その相対移動は、溶射ガンと鋳鉄管のいずれか一方を他方に対して前記軸方向に移動させれば良い。また、再溶射被覆は、その軸方向の一端から他端の間の往復移動で行ったり、鋳鉄管の一端から他端まで溶射した後、一端に戻ってその一端から他端に向かう溶射で行ったりする、すなわち、上記溶射被覆する範囲の他端から一端まで又は一端から他端までの溶射被覆をさらに行ったりすることができる。
さらに、溶射ガンの溶射速度(鋳鉄管への単位時間当たりの溶射量)は、溶射材の噴出量が一定の場合、鋳鉄管の軸方向の送り速度とその軸周りの回転速度(以下、適宜、単に「送り速度」、「回転速度」と言う。)によって決定されるため、その両速度を調整して前記溶射速度を決定する。このとき、回転速度を遅く(低速化)すれば、鋳鉄管表面の気流の影響が受けにくくなるため、歩留の点から好ましい。
As a configuration of the present invention, in the method of forming a thermal spray coating by spraying a thermal spray material from a thermal spray gun on the outer peripheral surface of the cast iron pipe, the thermal spray coating in the range of the thermal spray coating from one end of the cast iron pipe to the other end is performed. Thereafter, a configuration in which spray coating (re-spray coating) is further performed on the spray coating can be employed.
The thermal spray coating is performed by relatively moving the spray gun and the cast iron pipe in the axial direction, but the relative movement is performed by moving either the spray gun or the cast iron pipe in the axial direction with respect to the other. Just do it. In addition, re-spray coating is performed by reciprocating movement between one end and the other end in the axial direction, or by spraying from one end of the cast iron pipe to the other end and then returning from one end to the other end. That is, the thermal spray coating from the other end to the one end or from the one end to the other end of the range to be spray coated can be further performed.
Furthermore, the spraying speed of the spray gun (spraying amount per unit time to the cast iron pipe) is determined by the axial feed rate of the cast iron pipe and the rotational speed around the axis (hereinafter referred to as appropriate). , Simply referred to as “feeding speed” and “rotational speed”), the spraying speed is determined by adjusting both speeds. At this time, if the rotation speed is slowed (lowered), the influence of the airflow on the cast iron pipe surface is less likely to be affected, which is preferable from the viewpoint of yield.

この構成において、上記鋳鉄管の溶射被覆する範囲の一端から他端までの全外周面の溶射被覆と、その後の前記溶射被覆する範囲の他端から一端まで又は同一端から他端までの全外周面の溶射被覆とにおいて、上記溶射ガンに対する送り速度と、回転速度を異ならせることができる。このとき、その前者の溶射被覆における送り速度と回転速度を、後者の再溶射被覆における送り速度と回転速度に対し速くする、すなわち、先の溶射速度に対し次の溶射速度を遅くすることが好ましい。
このように、先の溶射被覆の溶射速度に対し次の溶射被覆の速度を遅くするのは、後(次)の溶射被覆で仕上げをするため、その仕上げに十分な時間を担保する必要があるのに対し、先の溶射被覆は下地を作るためであって粗くてもよいからである。
In this configuration, the thermal spray coating of the entire outer peripheral surface from one end to the other end of the spray coating range of the cast iron pipe, and the entire outer periphery from the other end to the one end or the same end to the other end of the subsequent thermal spray coating range In the spray coating on the surface, the feed rate and the rotation speed for the spray gun can be made different. At this time, it is preferable to increase the feed rate and rotation speed in the former spray coating with respect to the feed rate and rotation speed in the latter re-spray coating, that is, to lower the next spray rate with respect to the previous spray rate. .
As described above, since the subsequent spray coating is finished in order to reduce the speed of the next spray coating relative to the spraying speed of the previous spray coating, it is necessary to secure a sufficient time for the finishing. On the other hand, the above-mentioned thermal spray coating is for making a base and may be rough.

なお、溶射材の噴出量を変更して仕上げ度を担保することも考えられるが、その場合、通常、溶射ガン(溶射機)を最大能力以下(例えば、中程度の能力)として溶射材の噴出量を減少させるため、仕上げ度が担保された所要厚の溶射被覆層を得るためには作業時間が長くなる。これに対し、上記のように、先の溶射速度に対して後の溶射速度を遅くする溶射であると、溶射ガンの能力を最大限にし、溶射速度の調整によって前記所要厚の溶射被覆層を得ることができるため、2度の溶射被覆作業を行っても、結果的には作業時間が短くすることができる。このため、効率的で作業時間の短縮になる。   In addition, it is conceivable to change the spraying amount of the thermal spray material to ensure the finishing degree. In that case, however, the thermal spray gun (spraying machine) is usually sprayed at a maximum capacity (for example, medium capacity) or less. In order to reduce the amount, the working time becomes longer in order to obtain a thermal spray coating layer having a required thickness with a guaranteed finish. On the other hand, as described above, if the spraying is to slow down the subsequent spraying speed with respect to the previous spraying speed, the ability of the spraying gun is maximized, and the sprayed coating layer of the required thickness is formed by adjusting the spraying speed. Therefore, even if two thermal spray coating operations are performed, the operation time can be shortened as a result. This is efficient and reduces work time.

この発明は、以上のように構成したので、溶射材の歩留まり率を高くすることができる。   Since this invention is comprised as mentioned above, the yield rate of a thermal spray material can be made high.

この発明に係る鋳鉄管外周面への溶射被覆の形成方法の一実施形態の概略図Schematic of one embodiment of a method for forming a thermal spray coating on the outer peripheral surface of a cast iron pipe according to the present invention 同他の実施形態の概略図Schematic of the other embodiment さらに同他の実施形態の概略図Schematic of yet another embodiment 溶射パターン図Thermal spray pattern 従来例の概略図Schematic diagram of conventional example

この発明に係る鋳鉄管外周面への溶射被覆装置の一実施形態を図1に示す。この実施形態は、従来と同様に、レール1上を走行する台車2に鋳鉄管Pが支持ローラ3を介してその軸心周りに回転自在に支持されている。その移動する鋳鉄管Pには固定の溶射ガンGが対向している。台車2上の鋳鉄管Pはブラスト処理等によってその外周面が粗面とされたものである。   One embodiment of the thermal spray coating apparatus for the outer peripheral surface of the cast iron pipe according to the present invention is shown in FIG. In this embodiment, a cast iron pipe P is supported by a carriage 2 traveling on a rail 1 via a support roller 3 so as to be rotatable around its axis, as in the prior art. A fixed spray gun G is opposed to the moving cast iron pipe P. The cast iron pipe P on the carriage 2 has an outer peripheral surface roughened by blasting or the like.

この溶射被覆装置は、図1に示すように、軸心周りに回転する鋳鉄管Pが台車2によって左右方向に移動されるとともに、溶射ガンGから上記亜鉛等の金属を加熱溶融させた溶射材cが噴出される。このため、鋳鉄管Pにはその一端(同図において右端)から他端(同左端)に向かってその全外周面に溶射被覆がなされる(図1(a)→同(b)→同(c))。
その溶射被覆が行われ、図1(c)に示すように、その溶射被覆が鋳鉄管Pの他端に至ると(溶射ガンGが鋳鉄管Pの他端に対向すると)、台車2は反転して逆方向に移動する。このため、鋳鉄管Pにはその他端から一端に向かってその全外周面に溶射被覆がなされる(図1(c)→同(d)→(同e))。
In this thermal spray coating apparatus, as shown in FIG. 1, a cast iron pipe P rotating around an axis is moved in the left-right direction by a carriage 2, and a thermal spray material in which the metal such as zinc is heated and melted from a thermal spray gun G. c is ejected. Therefore, the cast iron pipe P is thermally sprayed on the entire outer peripheral surface from one end (right end in the figure) to the other end (left end in the figure) (FIG. 1 (a) → same (b) → same ( c)).
When the thermal spray coating is performed and the thermal spray coating reaches the other end of the cast iron pipe P (when the thermal spray gun G faces the other end of the cast iron pipe P) as shown in FIG. And move in the opposite direction. Therefore, the cast iron pipe P is thermally sprayed on the entire outer peripheral surface from the other end toward the one end (FIG. 1 (c) → same (d) → (same e)).

鋳鉄管Pの一端まで溶射被覆が行われると(図1(e)の状態)、すなわち、溶射ガンGに対して鋳鉄管Pが往復移動して溶射被覆が行われると、溶射ガンGからの溶射材cの噴出は停止され、鋳鉄管Pの溶射被覆作業は終了する。以後、台車2は次工程に移動し、新たなブラスト処理済みの鋳鉄管Pがこの溶射被覆装置に送り込まれ、上記作用によって溶射被覆が行われる。   When spray coating is performed up to one end of the cast iron pipe P (state of FIG. 1 (e)), that is, when the cast iron pipe P is reciprocated with respect to the spray gun G and spray coating is performed, The spraying of the thermal spray material c is stopped, and the thermal spray coating operation of the cast iron pipe P is completed. Thereafter, the carriage 2 moves to the next process, and a new blasted cast iron pipe P is fed into the thermal spray coating apparatus, and thermal spray coating is performed by the above-described action.

この溶射被覆作業において、その溶射範囲Lは、図1(a)に示すように、鋳鉄管Pの全長であったり、鋳鉄管Pの一部を除いたりする。後者は、例えば、図2に示すように、挿し口部分L’を60〜70mm程度残し(溶射被覆せず)、その挿し口部分L’にはジンクリッチ塗装などを行う。   In this thermal spray coating operation, the thermal spray range L is the entire length of the cast iron pipe P or a part of the cast iron pipe P as shown in FIG. In the latter case, for example, as shown in FIG. 2, the insertion opening portion L ′ is left about 60 to 70 mm (not sprayed), and the insertion opening portion L ′ is subjected to zinc rich coating or the like.

この溶射被覆装置によって、片道溶射(図5)及び往復溶射(図1)の両者ともに、鋳鉄管Pの送り速度と同回転速度を同じにした「溶射歩留(歩留まり)」を表1に示す。このとき、呼び径:100mmの30本のダクタイル鋳鉄管Pについて試験を行い、溶射被覆厚が同じ値となるように、溶射ガンGからの溶射量を調整し、「溶射歩留」は、図1(c)鎖線で示すように、片面サンドブラスト板片T(例えば、1.6mm厚×150mm×50mm)をマグネット等によって溶射被覆前の鋳鉄管Pに固定し、溶射被覆後、その板片Tを取り外し、その板片T表面の溶射被覆重量を、板片Tの表面に噴出された(使用された)溶射材cの重量で割って算出した。また、溶射ガンGの噴出口と鋳鉄管Pの外面との距離S(図1(a)、図5参照)は、溶射ガンGの高さは固定のため、直部は150mm、受口部は120mmとなった。   Table 1 shows the “spraying yield (yield)” in which both the one-way spraying (FIG. 5) and the reciprocating spraying (FIG. 1) have the same feed rate and the same rotational speed of the cast iron pipe P. . At this time, a test was performed on 30 ductile cast iron pipes P having a nominal diameter of 100 mm, and the amount of spraying from the spray gun G was adjusted so that the spray coating thickness would be the same value. 1 (c) As shown by a chain line, a single-sided sandblast plate piece T (for example, 1.6 mm thickness × 150 mm × 50 mm) is fixed to a cast iron pipe P before spray coating by a magnet or the like, and after the spray coating, the plate piece T The thermal spray coating weight on the surface of the plate piece T was divided by the weight of the thermal spray material c ejected (used) on the surface of the plate piece T. Further, the distance S (see FIGS. 1 (a) and 5) between the spray port of the spray gun G and the outer surface of the cast iron pipe P is 150mm at the straight portion because the height of the spray gun G is fixed. Became 120 mm.

Figure 2017141483
Figure 2017141483

この表1から、片道溶射に比べて往復溶射は約3%の溶射歩留の向上が認められることから、往復溶射は「溶射歩留」の点において優れていることが理解できる。   From Table 1, it can be understood that reciprocating spraying is superior in terms of “spraying yield” because reciprocating spraying is improved by about 3% in comparison with one-way spraying.

つぎに、往復溶射において、表1の実施例を「ベンチマーク(BM)」とし、そのBMを基準点として、往路と復路において、鋳鉄管Pの送り速度と回転速度を前後(早い遅い)に異ならせた場合における「溶射歩留」を下記表2、3に示す。この試験においても、上記と同様に、鋳鉄管Pは、呼び径:100mmのダクタイル鋳鉄製を使用し、「溶射歩留」も上記板片Tによる算出とし、溶射ガンGの噴出口と鋳鉄管Pの外面との距離Sも、同様に、溶射ガンGの高さは固定とし、直部は150mm又は155mm、受口部は120mm又は125mmとした。なお、BMにおいて、表2と表3で「溶射歩留」が異なるのは、溶射ガンGの噴出口と鋳鉄管Pの外面との距離Sが、表2:150mm、表3:155mmとして僅かに異なったためである。   Next, in the reciprocating spraying, the example of Table 1 is set as “benchmark (BM)”, and the feed speed and the rotational speed of the cast iron pipe P are different forward and backward (fast and slow) in the forward path and the return path with the BM as a reference point. Tables 2 and 3 below show the “spraying yield” in the case of being applied. Also in this test, the cast iron pipe P is made of ductile cast iron having a nominal diameter of 100 mm, the “spraying yield” is also calculated by the above plate piece T, and the nozzle of the spray gun G and the cast iron pipe are used. Similarly, the distance S between the outer surface of P and the height of the spray gun G was fixed, the straight part was 150 mm or 155 mm, and the receiving part was 120 mm or 125 mm. In BM, “spraying yield” differs between Table 2 and Table 3 because the distance S between the spray port of the spray gun G and the outer surface of the cast iron pipe P is as follows: Table 2: 150 mm, Table 3: 155 mm This is because they are different.

Figure 2017141483
Figure 2017141483

Figure 2017141483
Figure 2017141483

この表2の条件1と同2との対比から、回転速度を低くすると、溶射材cの飛散が減少したことにより「歩留」が向上することが分かる。
また、同条件3と同4との対比から、鋳鉄管Pの送り速度(台車2の速度)は、往路に対し復路を遅くすると、「歩留」が向上することが分かる。
さらに、表3の各条件7〜13の対比から、復路における溶射被覆における鋳鉄管Pの送り速度とその回転速度から決定される溶射速度を、往路の溶射被覆における送り速度とその回転速度から決定される溶射速度に対し遅くすると、「溶射歩留」が向上することが分かる。しかし、条件8と同9、同12と同13の対比から、単に、鋳鉄管Pの回転速度のみを低くしても、鋳鉄管Pの同送り速度との関係で必ずしも「歩留」が向上しないことが分かる。このことから、鋳鉄管Pの回転速度と送り速度に付、有効な溶射速度となって「最適な歩留」が得られるように実験・実操業のデータ集積によって適宜に決定することが好ましいことが理解できる。
From the comparison between conditions 1 and 2 in Table 2, it can be seen that when the rotational speed is lowered, the “yield” is improved due to the decrease in the scattering of the thermal spray material c.
Further, from comparison between the same condition 3 and the same condition 4, it can be seen that the “yield” is improved when the return speed of the cast iron pipe P (speed of the carriage 2) is slowed down with respect to the forward path.
Further, from the comparison of conditions 7 to 13 in Table 3, the spraying speed determined from the feed speed and the rotation speed of the cast iron pipe P in the spray coating on the return path is determined from the feed speed and the rotation speed in the spray coating on the outbound path. It can be seen that the “spraying yield” is improved when the spraying speed is reduced. However, from the comparison between conditions 8 and 9, and 12 and 13, even if only the rotational speed of the cast iron pipe P is simply reduced, the “yield” is not necessarily improved in relation to the same feed speed of the cast iron pipe P. I understand that I will not. From this, it is preferable to determine appropriately by data collection of experiments and actual operations so as to obtain an “optimal yield” as an effective spraying speed with the rotational speed and feed speed of the cast iron pipe P. Can understand.

上記実施形態は、溶射ガンGに対し、台車2により鋳鉄管Pをその軸方向に移動させたが、鋳鉄管Pをその両端(挿口、受け口)を把持して回転・往復移動したり、図2に示すように、溶射ガンGを鋳鉄管Pに対して往復移動させたりしても良い。この場合、台車2は鋳鉄管Pを支持ローラ3を介してその軸心周りに回転自在に支持し前後工程への搬送のみの作用となる。また、往復移動で溶射被覆したが、鋳鉄管(溶射範囲L)の一端から他端まで溶射した後、同一端に戻ってその一端から他端に向かう溶射で行うこともできる(図1(a)→同(b)→同(c)及び同(a)→同(b)→同(c))。   In the above-described embodiment, the cast iron pipe P is moved in the axial direction by the carriage 2 with respect to the spray gun G. However, the cast iron pipe P is rotated and reciprocated while gripping both ends (insertion, receiving port), As shown in FIG. 2, the spray gun G may be reciprocated with respect to the cast iron pipe P. In this case, the carriage 2 supports the cast iron pipe P through the support roller 3 so as to be rotatable around its axis, and serves only for conveyance to the front and rear processes. Further, although spray coating is performed by reciprocating movement, after spraying from one end to the other end of the cast iron pipe (spraying range L), it can be performed by returning to the same end and spraying from one end to the other end (FIG. 1 (a)). ) → (b) → (c) and (a) → (b) → (c)).

さらに、図3に示すように、2台等の複数の溶射ガンG、Gで鋳鉄管Pの軸方向の前後を溶射被覆するようにすれば、1溶射ガンG当たりの軸方向の溶射距離が短くなることによる作業時間の短縮が図れるとともに、例えば、直部と受口部における溶射条件が異なる場合、その条件を異ならせて行うことができる。その異なる場合は、直部と受口部の溶射材cの噴出量や距離Sが異なる等である。
なお、上記各実施形態において、先の溶射被覆時とつぎの溶射被覆時の鋳鉄管Pの回転方向を異ならせることもできる。また、溶射ガンGと鋳鉄管Pとの間(距離S)は、鋳鉄管Pの送り速度や回転速度との関係において、上記螺旋模様が生じないように、実験・実操業などに基づいて適宜な距離Sに決定することは勿論である。
Furthermore, as shown in FIG. 3, if the front and rear in the axial direction of the cast iron pipe P are covered with a plurality of spray guns G, G such as two, the spray distance in the axial direction per one spray gun G can be increased. The working time can be shortened by shortening, and for example, when the spraying conditions in the straight part and the receiving part are different, the conditions can be changed. In the case of the difference, the spray amount and the distance S of the thermal spray material c in the straight part and the receiving part are different.
In each of the above embodiments, the direction of rotation of the cast iron pipe P at the time of the previous thermal spray coating and the time of the subsequent thermal spray coating can be made different. Further, the distance (distance S) between the spray gun G and the cast iron pipe P is appropriately determined based on experiments and actual operations so that the spiral pattern does not occur in relation to the feed speed and the rotational speed of the cast iron pipe P. Of course, it is determined to be a short distance S.

因みに、実操業や各種の試験において、溶射被覆膜厚は、2極式の膜厚計等を使用して測定し、鋳鉄管Pの長さ方向の中間と両端等の3個所以上とする。また、溶射被覆の付着性の適否はクロスカット法等によって評価する。
また、溶射被覆はその範囲Lの往復等のみならず、さらに被覆する等と、3層以上の複数層とすることもできる。また、溶射範囲Lにおいて、小刻みに往復溶射し(例えば、1/5×Lづつ往復溶射被覆し)ながら移動して全範囲Lを複数層の溶射被覆とすることもできる。
Incidentally, in actual operations and various tests, the thermal spray coating film thickness is measured using a bipolar film thickness meter or the like, and is set at three or more locations such as the middle and both ends in the length direction of the cast iron pipe P. . The suitability of the thermal spray coating is evaluated by a cross-cut method or the like.
Further, the thermal spray coating can be made not only to reciprocate within the range L, but also to cover more than three layers. Further, in the spraying range L, the entire range L can be changed to a plurality of layers by performing reciprocating spraying in small increments (for example, by 1/5 × L reciprocating spraying coating).

1 レール
2 走行台車
3 鋳鉄管支持ローラ
G 溶射ガン
L 溶射範囲
P 鋳鉄管
c 溶射材
c’ 溶射パターン
1 Rail 2 Traveling Cart 3 Cast Iron Pipe Support Roller G Thermal Spray Gun L Thermal Spray Range P Cast Iron Pipe c Thermal Spray Material c ′ Thermal Spray Pattern

この発明の構成としては、鋳鉄管の外周面に溶射ガンから溶射材を噴射して溶射被覆を形成する方法において、同一溶射材により、前記鋳鉄管の一端から他端までの前記溶射被覆する範囲の溶射被覆をした後、その溶射被覆の上に、さらに溶射被覆(再溶射被覆)を行い、鋳鉄管の外周面に同一溶射材からなる複数の溶射被覆層を形成して前記同一溶射材の歩留まり率を高める構成を採用することができる。
なお、溶射被覆は、溶射ガンと鋳鉄管をその軸方向に相対的に移動させて行うが、その相対移動は、溶射ガンと鋳鉄管のいずれか一方を他方に対して前記軸方向に移動させれば良い。また、再溶射被覆は、その軸方向の一端から他端の間の往復移動で行ったり、鋳鉄管の一端から他端まで溶射した後、一端に戻ってその一端から他端に向かう溶射で行ったりする、すなわち、上記溶射被覆する範囲の他端から一端まで又は一端から他端までの溶射被覆をさらに行ったりすることができる。
さらに、溶射ガンの溶射速度(鋳鉄管への単位時間当たりの溶射量)は、溶射材の噴出量が一定の場合、鋳鉄管の軸方向の送り速度とその軸周りの回転速度(以下、適宜、単に「送り速度」、「回転速度」と言う。)によって決定されるため、その両速度を調整して前記溶射速度を決定する。このとき、回転速度を遅く(低速化)すれば、鋳鉄管表面の気流の影響が受けにくくなるため、歩留の点から好ましい。
As a configuration of the present invention, in a method of forming a thermal spray coating by spraying a thermal spray material from a thermal spray gun on an outer peripheral surface of a cast iron pipe, a range of the thermal spray coating from one end to the other end of the cast iron pipe with the same thermal spray material after the spray coating, the over spray coating, further spray coating (re spray coating) to have a row, cast iron pipe plurality of spray coating layer formed to the same thermal spraying material consisting of the same spraying material on the outer peripheral surface of the The structure which raises the yield rate of can be employ | adopted.
The thermal spray coating is performed by relatively moving the spray gun and the cast iron pipe in the axial direction, but the relative movement is performed by moving either the spray gun or the cast iron pipe in the axial direction with respect to the other. Just do it. In addition, re-spray coating is performed by reciprocating movement between one end and the other end in the axial direction, or by spraying from one end of the cast iron pipe to the other end and then returning from one end to the other end. That is, the thermal spray coating from the other end to the one end or from the one end to the other end of the range to be spray coated can be further performed.
Furthermore, the spraying speed of the spray gun (spraying amount per unit time to the cast iron pipe) is determined by the axial feed rate of the cast iron pipe and the rotational speed around the axis (hereinafter referred to as appropriate). , Simply referred to as “feeding speed” and “rotational speed”), the spraying speed is determined by adjusting both speeds. At this time, if the rotation speed is slowed (lowered), the influence of the airflow on the cast iron pipe surface is less likely to be affected, which is preferable from the viewpoint of yield.

鋳鉄管Pの一端まで溶射被覆が行われると(図1(e)の状態)、すなわち、溶射ガンGに対して鋳鉄管Pが往復移動して同一溶射材cからなる2層の溶射被覆が行われると、溶射ガンGからの溶射材cの噴出は停止され、鋳鉄管Pの溶射被覆作業は終了する。以後、台車2は次工程に移動し、新たなブラスト処理済みの鋳鉄管Pがこの溶射被覆装置に送り込まれ、上記作用によって溶射被覆が行われる。 When the thermal spray coating is performed up to one end of the cast iron pipe P (state shown in FIG. 1 (e)), that is, the two layers of thermal spray coating made of the same thermal spray material c are performed by reciprocating the cast iron pipe P with respect to the thermal spray gun G. When performed, the spraying of the thermal spray material c from the thermal spray gun G is stopped, and the thermal spray coating operation of the cast iron pipe P is completed. Thereafter, the carriage 2 moves to the next process, and a new blasted cast iron pipe P is fed into the thermal spray coating apparatus, and thermal spray coating is performed by the above-described action.

Claims (3)

鋳鉄管(P)の外周面に溶射ガン(G)から溶射材(c)を噴射して溶射被覆を形成する方法において、前記鋳鉄管(P)の前記溶射被覆する範囲(L)の一端から他端までの前記全外周面の溶射被覆をした後、その溶射被覆の上に、鋳鉄管(P)の前記溶射被覆する範囲(L)の他端から一端まで又は一端から他端までの前記全外周面の溶射被覆をさらに行うことを特徴とする鋳鉄管への溶射被覆方法。   In a method for forming a thermal spray coating by spraying a thermal spray material (c) from a thermal spray gun (G) to the outer peripheral surface of a cast iron pipe (P), from one end of the spray coating range (L) of the cast iron pipe (P) After the thermal spray coating of the entire outer peripheral surface to the other end, on the thermal spray coating, the range from the other end to the one end or the one end to the other end of the spray coating range (L) of the cast iron pipe (P) A method for thermal spray coating on cast iron pipes, characterized by further performing thermal spray coating on the entire outer peripheral surface. 上記鋳鉄管(P)の溶射被覆する範囲(L)の一端から他端までの全外周面の溶射被覆と、その後の前記溶射被覆する範囲(L)の他端から一端まで又は同一端から他端までの全外周面の溶射被覆とにおいて、上記溶射ガン(G)に対する鋳鉄管(P)の軸方向の送り速度と、その鋳鉄管の軸周りの回転速度を異ならせたことを特徴とする請求項1記載の鋳鉄管への溶射被覆方法。   Thermal spray coating of the entire outer peripheral surface from one end to the other end of the spray coating range (L) of the cast iron pipe (P), and the other end to one end of the subsequent spray coating range (L) or the other from the same end In the spray coating on the entire outer peripheral surface to the end, the feed rate in the axial direction of the cast iron pipe (P) with respect to the spray gun (G) and the rotational speed around the axis of the cast iron pipe are different. The thermal spray coating method to the cast iron pipe according to claim 1. 上記鋳鉄管(P)の溶射被覆する範囲(L)の一端から他端までの全外周面の溶射被覆と、その後の前記溶射被覆する範囲(L)の他端から一端まで又は同一端から他端までの全外周面の溶射被覆とにおいて、前者の溶射被覆における鋳鉄管(P)の軸方向の送り速度とその軸周りの回転速度とで決定される溶射速度を、後者の再溶射被覆における鋳鉄管(P)の軸方向の送り速度とその軸周りの回転速度とで決定される溶射速度に対し、速くすることを特徴とする請求項2記載の鋳鉄管への溶射被覆方法。   Thermal spray coating of the entire outer peripheral surface from one end to the other end of the spray coating range (L) of the cast iron pipe (P), and the other end to one end of the subsequent spray coating range (L) or the other from the same end In the thermal spraying coating of the entire outer peripheral surface to the end, the thermal spraying speed determined by the feed rate in the axial direction of the cast iron pipe (P) in the thermal spraying coating and the rotational speed around the axis is set in the latter thermal spraying coating. The thermal spray coating method for a cast iron pipe according to claim 2, wherein the thermal spray speed is determined with respect to a thermal spray speed determined by an axial feed speed of the cast iron pipe (P) and a rotational speed around the axis.
JP2016021929A 2016-02-08 2016-02-08 Method for forming thermal spray coating on outer peripheral surface of cast iron pipe Active JP6258371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021929A JP6258371B2 (en) 2016-02-08 2016-02-08 Method for forming thermal spray coating on outer peripheral surface of cast iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021929A JP6258371B2 (en) 2016-02-08 2016-02-08 Method for forming thermal spray coating on outer peripheral surface of cast iron pipe

Publications (2)

Publication Number Publication Date
JP2017141483A true JP2017141483A (en) 2017-08-17
JP6258371B2 JP6258371B2 (en) 2018-01-10

Family

ID=59627696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021929A Active JP6258371B2 (en) 2016-02-08 2016-02-08 Method for forming thermal spray coating on outer peripheral surface of cast iron pipe

Country Status (1)

Country Link
JP (1) JP6258371B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147051A (en) * 1987-12-03 1989-06-08 Toshiba Corp Method and apparatus for flame spraying inner surface of thin-walled cylindrical body
JPH0280546A (en) * 1988-09-14 1990-03-20 Onoda Cement Co Ltd Film thickness adjusting device
JPH05222511A (en) * 1992-02-17 1993-08-31 Kubota Corp Manufacture of outer surface thermal-sprayed tube
JPH0659461U (en) * 1993-01-19 1994-08-19 三菱重工業株式会社 Spraying equipment
JPH0718409A (en) * 1993-07-05 1995-01-20 Kubota Corp Production of corrosion resisting high grade cast iron tube
JPH11230482A (en) * 1998-02-19 1999-08-27 Kubota Corp Method for preventing corrosion of outer surface of ductile cast iron pipe
JP2003268526A (en) * 2002-03-12 2003-09-25 Kubota Corp Method for forming corrosion protective film
JP2003286559A (en) * 2002-03-28 2003-10-10 Kurimoto Ltd Corrosion prevention coating on ferrous substrate and corrosion prevention method
JP2014177709A (en) * 2014-05-07 2014-09-25 Mitsubishi Heavy Ind Ltd Manufacturing method of thermal barrier coating member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147051A (en) * 1987-12-03 1989-06-08 Toshiba Corp Method and apparatus for flame spraying inner surface of thin-walled cylindrical body
JPH0280546A (en) * 1988-09-14 1990-03-20 Onoda Cement Co Ltd Film thickness adjusting device
JPH05222511A (en) * 1992-02-17 1993-08-31 Kubota Corp Manufacture of outer surface thermal-sprayed tube
JPH0659461U (en) * 1993-01-19 1994-08-19 三菱重工業株式会社 Spraying equipment
JPH0718409A (en) * 1993-07-05 1995-01-20 Kubota Corp Production of corrosion resisting high grade cast iron tube
JPH11230482A (en) * 1998-02-19 1999-08-27 Kubota Corp Method for preventing corrosion of outer surface of ductile cast iron pipe
JP2003268526A (en) * 2002-03-12 2003-09-25 Kubota Corp Method for forming corrosion protective film
JP2003286559A (en) * 2002-03-28 2003-10-10 Kurimoto Ltd Corrosion prevention coating on ferrous substrate and corrosion prevention method
JP2014177709A (en) * 2014-05-07 2014-09-25 Mitsubishi Heavy Ind Ltd Manufacturing method of thermal barrier coating member

Also Published As

Publication number Publication date
JP6258371B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
CN100417746C (en) Distribution type laser spot alloying method
CN106435563B (en) A kind of method of bearing shell steel back spraying babbit coating
CN104878382A (en) Alloy powder for laser cladding and method for laser cladding alloy powder
US9796044B2 (en) Manufacturing process for hard facing aluminum injection molds
CN103537848A (en) Large-diameter hydraulic cylinder body repairing and remanufacturing system and method
CN108165978A (en) A kind of method that nuclear power sea water pump shaft is repaired using ultrahigh speed laser melting and coating technique
JP2015193900A (en) Consecutive surface treatment method of steel wires
CN106112307A (en) A kind of lamellar composite pricker is coated with material and preparation method thereof
CN102677047A (en) Laser repairing technology for aluminum foil roll crack
CN105239070A (en) Method for repairing and strengthening surface of hot work die
CN105441935A (en) Coaxial powder feeding laser cladding method and special processing device under vacuum condition
CN101310914A (en) Surfacing welding rod of transition layer of sink roller for melted zinc bath and surfacing technique
JP6258371B2 (en) Method for forming thermal spray coating on outer peripheral surface of cast iron pipe
CN105624470A (en) Iron-nickel-based composite alloy powder for laser cladding and laser cladding method of powder
CN104032256A (en) Method for preparing wear-resisting corrosion-resisting nickel-based alloy coating
CN104525945A (en) Laser 3D printing manufacturing method of sink roller shaft sleeve bearing bush
CN103498148B (en) A kind of laser cladding method for perforating head surface
CN103695831B (en) Spray-welding coating technology for hot-rolling laminar cooling roller and use fixture for technology
JP6454585B2 (en) Continuous surface treatment method for steel wire
CN204366331U (en) A kind of circular thin-wall work piece inner surface heap welding clamp
CN111687407B (en) Copper powder for laser cladding of phosphorus-copper workpiece and cladding method
CN105316631B (en) The preparation system and its method of multicomponent composite coating
CN108145276B (en) Spray welding treatment method for vulnerable part of chemical pump
JP2004011772A (en) Pipe end screw surface treatment method
CN102560477A (en) Manufacturing process of pipe fitting with corrosion and abrasion-resistant inner wall

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6258371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150