JP2017106062A - Surface treatment apparatus - Google Patents

Surface treatment apparatus Download PDF

Info

Publication number
JP2017106062A
JP2017106062A JP2015239497A JP2015239497A JP2017106062A JP 2017106062 A JP2017106062 A JP 2017106062A JP 2015239497 A JP2015239497 A JP 2015239497A JP 2015239497 A JP2015239497 A JP 2015239497A JP 2017106062 A JP2017106062 A JP 2017106062A
Authority
JP
Japan
Prior art keywords
gas
surface treatment
mold
pipe
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015239497A
Other languages
Japanese (ja)
Inventor
元亮 尾崎
Motoaki Ozaki
元亮 尾崎
修司 外崎
Shuji Sotozaki
修司 外崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015239497A priority Critical patent/JP2017106062A/en
Publication of JP2017106062A publication Critical patent/JP2017106062A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment apparatus capable of suitably implementing a surface treatment of an inner surface and an outer surface each even if a surface treatment condition for a surface facing an internal space of an object to be treated differs from that for an outer surface of the object to be treated.SOLUTION: A surface treatment apparatus 1 includes a treatment furnace 2 housing an object to be treated, a gas supply port 3 supplying gas to the treatment furnace 2, and a gas exhaust port 4 exhausting gas from the treatment furnace 2. The surface treatment apparatus 1 includes a gas pipeline 5 inserted into an internal space WI of an object to be treated W, and a gas pipeline control part 6 which switches gas supply to the gas pipeline 5 and gas exhaustion from the gas pipeline 5, not depending from gas supply to the gas supply port 3 and gas exhaustion from the gas exhaust port 4.SELECTED DRAWING: Figure 1

Description

本発明は、表面処理装置に関する。   The present invention relates to a surface treatment apparatus.

従来から部品の深孔の表面硬化処理に関し、真空炉で部品の深孔の表面硬化処理を実施する発明が知られている(下記特許文献1を参照)。特許文献1に記載された部品の深孔の表面硬化処理方法は、真空炉などの炉内雰囲気を制御する金属表面処理装置において、所定温度に維持した炉内に表面処理の対象となる部品を配置する。   2. Description of the Related Art Conventionally, there has been known an invention for carrying out surface hardening treatment of a component deep hole in a vacuum furnace with respect to the surface hardening treatment of the component deep hole (see Patent Document 1 below). The surface hardening treatment method for the deep hole of a part described in Patent Document 1 is a metal surface treatment apparatus for controlling the atmosphere in a furnace such as a vacuum furnace, and a part to be surface-treated in a furnace maintained at a predetermined temperature. Deploy.

そして、表面処理の対象となる部品の深孔に対して処理ガスを供給し、炉内雰囲気を所定圧力に保つように排気して、深孔内に供給された処理ガスの強制対流を生じさせ、処理ガスと孔内壁との接触を所要の条件下に保持する。これにより、ガスの分解、浸透拡散処理を深孔奥部に対して均一に行っている。より具体的には、以下の手順によって深孔奥部に対して浸透拡散処理を行っている。   Then, the processing gas is supplied to the deep holes of the parts to be surface-treated, and the furnace atmosphere is exhausted so as to maintain a predetermined pressure, thereby causing forced convection of the processing gas supplied into the deep holes. The contact between the processing gas and the inner wall of the hole is maintained under the required conditions. Thereby, the decomposition of gas and the permeation diffusion process are uniformly performed on the deep hole back part. More specifically, the permeation diffusion process is performed on the deep hole depth by the following procedure.

まず、部品、ガス輸送管、固定器具を洗浄、乾燥した後、真空炉内の加熱空間に入れて適当な場所に設置する。さらに、真空炉の加熱空間を減圧した後、処理温度まで加熱する。加熱空間の圧力よりやや高い圧力と適当な流量で処理ガスを輸送管で連続的に深孔に送る。真空ポンプで真空空間を設定の低圧状態に維持し、処理ガスは必然的に内孔壁から孔外に強制的に排出され、同時に分解し、孔壁に向かって浸透し、拡散する。   First, parts, gas transport pipes, and fixtures are washed and dried, then placed in a heating space in a vacuum furnace and placed in a suitable place. Further, after the pressure in the heating space of the vacuum furnace is reduced, the heating space is heated to the processing temperature. The processing gas is continuously sent to the deep hole through the transport pipe at a pressure slightly higher than the pressure in the heating space and at an appropriate flow rate. The vacuum space is maintained at a set low pressure state by a vacuum pump, and the processing gas is inevitably forced out of the inner hole wall and out of the hole, and simultaneously decomposes, permeates and diffuses toward the hole wall.

特開2003−27209号公報JP 2003-27209 A

部品の深孔等、被処理物の内部空間に面する内表面と被処理物の外表面とは、表面処理の条件が異なる場合がある。しかし、前記特許文献1に記載された表面硬化処理方法では、輸送管から部品の深孔へ供給された処理ガスと、ガス補給口から部品の外表面へ供給された処理ガスとが、加熱空間に設けられた一つのガス排出口から排出される。そのため、表面処理の対象となる部品の深孔の表面処理と外表面の表面処理とを異なる条件で適切に行うことが困難である。   The surface treatment conditions may differ between the inner surface facing the internal space of the object to be processed, such as a deep hole of a part, and the outer surface of the object to be processed. However, in the surface hardening processing method described in Patent Document 1, the processing gas supplied from the transport pipe to the deep hole of the component and the processing gas supplied from the gas supply port to the outer surface of the component are heated space. It is discharged from one gas outlet provided in the. Therefore, it is difficult to appropriately perform the surface treatment of the deep hole of the component to be surface-treated and the surface treatment of the outer surface under different conditions.

本発明は、前記課題に鑑みてなされたものであり、深孔等、被処理物の内部空間に面する内表面と被処理物の外表面との表面処理の条件が異なる場合でも、内表面と外表面の表面処理をそれぞれ適切に行うことができる表面処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and even if the inner surface facing the inner space of the object to be processed, such as a deep hole, and the outer surface of the object to be processed have different surface treatment conditions, the inner surface An object of the present invention is to provide a surface treatment apparatus capable of appropriately performing surface treatment on the outer surface and the outer surface.

前記目的を達成すべく、本発明の表面処理装置は、被処理物を収容する処理炉と、該処理炉へ気体を供給するガス供給口と、前記処理炉から気体を排出するガス排出口とを備える表面処理装置であって、前記被処理物の内部空間へ挿入されるガス管路と、前記ガス供給口への気体の供給及び前記ガス排出口からの気体の排出と独立して前記ガス管路への気体の供給と前記ガス管路からの気体の排出とを切り替えるガス管路制御部と、を備えることを特徴とする。   In order to achieve the above object, a surface treatment apparatus according to the present invention includes a treatment furnace that accommodates an object to be treated, a gas supply port that supplies gas to the treatment furnace, and a gas discharge port that discharges gas from the treatment furnace. A gas pipe inserted into the internal space of the object to be processed, gas supply to the gas supply port, and gas discharge from the gas discharge port independently of the gas And a gas pipeline control unit that switches between supply of gas to the pipeline and discharge of gas from the gas pipeline.

本発明の表面処理装置は、例えば、金属部品や金型等の被処理物を処理炉に収容し、被処理物の表面に対して、N、NH、CO、H等の気体を供給し、窒化処理等の表面処理を行うための装置である。 The surface treatment apparatus of the present invention, for example, accommodates an object to be processed such as a metal part or a mold in a processing furnace, and gas such as N 2 , NH 3 , CO 2 , or H 2 with respect to the surface of the object to be processed. Is a device for performing surface treatment such as nitriding.

例えば、鍛造用の金型は、良品を短時間で大量に生産する必要があるため、鍛造品を鍛造するためのキャビティと反対側の表面からキャビティを形成する表面の近傍まで、冷却水を導入する冷却穴が設けられることがある。金型の冷却穴は、冷却水による腐食と金型の昇温及び冷却に伴う繰り返し応力によって亀裂が生じやすい。冷却穴に亀裂が発生すると、亀裂から水漏れが発生するなどして、金型の寿命が短くなる一因になる。   For example, forging molds need to produce good products in large quantities in a short time, so cooling water is introduced from the surface opposite to the cavity for forging the forged product to the vicinity of the surface forming the cavity. Cooling holes may be provided. The mold cooling hole is likely to crack due to corrosion by cooling water and repeated stress accompanying the temperature rise and cooling of the mold. If a crack occurs in the cooling hole, water leaks from the crack, which contributes to shortening the life of the mold.

そのため、金型の延命を目的として、金型の表面に窒化処理等の表面処理が施されるが、金型の冷却穴に面する内表面とキャビティを形成する金型の外表面とは、異なる表面処理が必要になる場合がある。具体的には、金型の外表面にヒートクラックに対する耐久性の高い表面処理を行い、金型の内表面に応力腐食割れに対する耐久性の高い表面処理を行うことが必要になる場合がある。   Therefore, for the purpose of extending the life of the mold, the surface of the mold is subjected to surface treatment such as nitriding, but the inner surface facing the cooling hole of the mold and the outer surface of the mold forming the cavity are: Different surface treatments may be required. Specifically, it may be necessary to perform a surface treatment with high durability against heat cracks on the outer surface of the mold and to perform a surface treatment with high durability against stress corrosion cracking on the inner surface of the die.

ここで、本発明の表面処理装置は、金型の外表面等、処理炉に収容した被処理物の外表面に対し、ガス供給口から表面処理に必要なガスを供給するともに、ガス排出口から処理炉内の不要なガスを排出することができる。これにより、被処理物の外表面に適した表面処理を、被処理物の内表面の表面処理と独立して行うことができる。   Here, the surface treatment apparatus of the present invention supplies the gas necessary for the surface treatment from the gas supply port to the outer surface of the workpiece accommodated in the processing furnace, such as the outer surface of the mold, and the gas discharge port. Thus, unnecessary gas in the processing furnace can be discharged. Thereby, the surface treatment suitable for the outer surface of the workpiece can be performed independently of the surface treatment of the inner surface of the workpiece.

さらに、金型の冷却穴等、被処理物の内部空間にガス管路を挿入し、ガス管路制御部によって、ガス供給口とは独立して、ガス管路から被処理物の内表面の表面処理に必要なガスを適切に供給することができる。また、ガス管路制御部によって、ガスの供給と排出を切り替え、ガス排出口とは独立して、ガス管路から被処理物の内部空間の不要なガスを適切に排出することができる。これにより、被処理物の内表面に適した表面処理を、被処理物の外表面の表面処理と独立して行うことができる。   Further, a gas pipe line is inserted into the inner space of the object to be processed, such as a cooling hole of a mold, and the gas pipe line controller controls the inner surface of the object to be processed from the gas pipe line independently of the gas supply port. A gas necessary for the surface treatment can be appropriately supplied. In addition, the gas pipe control unit can switch between gas supply and discharge, and can appropriately discharge unnecessary gas in the internal space of the object to be processed from the gas pipe independently of the gas discharge port. Thereby, the surface treatment suitable for the inner surface of the workpiece can be performed independently of the surface treatment of the outer surface of the workpiece.

以上の説明から理解できるように、本発明によれば、被処理物の内部空間に面する内表面と被処理物の外表面との表面処理の条件が異なる場合でも、内表面と外表面の表面処理をそれぞれ適切に行うことができる表面処理装置を提供することができる。   As can be understood from the above description, according to the present invention, even when the conditions of the surface treatment between the inner surface facing the inner space of the workpiece and the outer surface of the workpiece are different, the inner surface and the outer surface A surface treatment apparatus capable of appropriately performing surface treatment can be provided.

本発明の実施形態に係る表面処理装置の概略構成図。The schematic block diagram of the surface treatment apparatus which concerns on embodiment of this invention. 図1に示す表面処理装置のガス供給経路とガス排出経路を示す斜視図。The perspective view which shows the gas supply path | route and gas discharge path | route of the surface treatment apparatus shown in FIG. 図1に示すガス管路支持部の斜視図。FIG. 2 is a perspective view of a gas pipe line support portion shown in FIG. 1. ガス供給口からのガス流量及び炉内温度と時間との関係を示すグラフ。The graph which shows the relationship between the gas flow rate from a gas supply port, furnace temperature, and time. ガス管路からのガス流量及び炉内温度と時間との関係を示すグラフ。The graph which shows the relationship between the gas flow rate from a gas pipe line, the furnace temperature, and time. 被処理物の外表面からの深さと硬さとの関係を示すグラフ。The graph which shows the relationship between the depth from the outer surface of a to-be-processed object, and hardness. 被処理物の内表面からの深さと硬さとの関係を示すグラフ。The graph which shows the relationship between the depth from the inner surface of a to-be-processed object, and hardness. 被処理物の温度と経過時間との関係を示すグラフ。The graph which shows the relationship between the temperature of a to-be-processed object, and elapsed time. 被処理物の内表面の耐久試験を行うための装置の模式図。The schematic diagram of the apparatus for performing the durability test of the inner surface of a to-be-processed object. 被処理物の外表面近傍の拡大断面写真。An enlarged cross-sectional photograph of the vicinity of the outer surface of the workpiece. 被処理物の内表面近傍の拡大断面写真。An enlarged cross-sectional photograph of the vicinity of the inner surface of the workpiece.

以下、図面を参照して本発明の表面処理装置の実施形態を説明する。   Hereinafter, embodiments of the surface treatment apparatus of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る表面処理装置1の概略構成図である。図2は、図1に示す表面処理装置1のガス供給経路とガス排出経路を示す斜視図である。図3は、図1に示すガス管路支持部7の斜視図である。   FIG. 1 is a schematic configuration diagram of a surface treatment apparatus 1 according to an embodiment of the present invention. FIG. 2 is a perspective view showing a gas supply path and a gas discharge path of the surface treatment apparatus 1 shown in FIG. FIG. 3 is a perspective view of the gas pipe line support portion 7 shown in FIG.

本実施形態の表面処理装置1は、被処理物Wを収容する処理炉2と、該処理炉2へ気体を供給するガス供給口3と、処理炉2から気体を排出するガス排出口4と、被処理物Wの内部空間WIへ挿入されるガス管路5とを備えている。本実施形態の表面処理装置1は、例えば、金属部品や金型D等の被処理物Wを処理炉2に収容し、被処理物Wの表面に対して、N、NH、CO、H等の気体を供給し、窒化処理等の表面処理を行うための装置である。 The surface treatment apparatus 1 of the present embodiment includes a processing furnace 2 that accommodates the workpiece W, a gas supply port 3 that supplies gas to the processing furnace 2, and a gas discharge port 4 that discharges gas from the processing furnace 2. The gas pipe 5 is inserted into the internal space WI of the workpiece W. The surface treatment apparatus 1 according to the present embodiment accommodates an object to be processed W such as a metal part or a mold D in a processing furnace 2, and N 2 , NH 3 , CO 2 with respect to the surface of the object to be processed W. , An apparatus for supplying a gas such as H 2 and performing surface treatment such as nitriding.

詳細については後述するが、本実施形態の表面処理装置1は、ガス供給口3への気体の供給及びガス排出口4からの気体の排出と独立して、ガス管路5への気体の供給とガス管路5からの気体の排出とを切り替えるガス管路制御部6を備えることを最大の特徴としている。以下、本実施形態の表面処理装置1の各構成について、詳細に説明する。   Although details will be described later, the surface treatment apparatus 1 according to the present embodiment supplies gas to the gas pipeline 5 independently of gas supply to the gas supply port 3 and gas discharge from the gas discharge port 4. And a gas pipe line control unit 6 that switches between gas discharge from the gas pipe line 5. Hereinafter, each structure of the surface treatment apparatus 1 of this embodiment is demonstrated in detail.

処理炉2は、内部に収容された金属部品や金型D等の被処理物Wを支持する支持部21と、天井部に設けられたガスセンサ22と、ガス供給口3が設けられた壁面と反対側の壁面に設けられた対流ファン23とを有している。ガスセンサ22は、例えば、N、NH、CO、H等、処理炉2の内部に供給された気体の流量を測定する。対流ファン23は、処理炉2の内部に供給された気体を処理炉2の内部で対流させる。 The processing furnace 2 includes a support part 21 that supports a workpiece W such as a metal part or a mold D accommodated therein, a gas sensor 22 provided on a ceiling part, and a wall surface provided with a gas supply port 3. And a convection fan 23 provided on the opposite wall surface. The gas sensor 22 measures the flow rate of the gas supplied into the processing furnace 2 such as N 2 , NH 3 , CO 2 , H 2, and the like. The convection fan 23 convects the gas supplied into the processing furnace 2 inside the processing furnace 2.

ガス供給口3は、処理炉2の壁面に開口し、被処理物Wの外表面OFの表面処理を行うためのガスを供給する外表面処理用のガス供給系に、外表面処理用のガス供給管31を介して接続されている。ガス排出口4は、処理炉2の壁面に開口し、処理炉2から排出されたガスを回収して処理するガス処理系に、排気管41を介して接続されている。排気管41には、所定の圧力でガスを排出する排気弁42が設けられている。   The gas supply port 3 opens to the wall surface of the processing furnace 2, and the gas for external surface treatment is supplied to the gas supply system for external surface treatment that supplies gas for performing the surface treatment of the external surface OF of the workpiece W. They are connected via a supply pipe 31. The gas discharge port 4 opens to the wall surface of the processing furnace 2 and is connected to a gas processing system that collects and processes the gas discharged from the processing furnace 2 through an exhaust pipe 41. The exhaust pipe 41 is provided with an exhaust valve 42 that exhausts gas at a predetermined pressure.

ガス管路制御部6は、例えば、ガス管路5の一端に接続された切換弁61と、切換弁61と排気管41とを接続する内部ガス排出管62と、内部ガス排出管62に設けられた吸引機63とを有している。切換弁61は、被処理物Wの内部空間WIに面する内表面IFの表面処理を行うためのガスを供給する内表面処理用のガス供給系に、内表面処理用のガス供給管64を介して接続されている。吸引機63は、所定の制御信号により駆動され、内部ガス排出管62のガスを吸引して排気管41へ送出する。   The gas pipe line control unit 6 is provided in, for example, a switching valve 61 connected to one end of the gas pipe line 5, an internal gas discharge pipe 62 connecting the switch valve 61 and the exhaust pipe 41, and the internal gas discharge pipe 62. The suction machine 63 is provided. The switching valve 61 has an inner surface treatment gas supply pipe 64 for an inner surface treatment gas supply system for supplying a gas for performing a surface treatment of the inner surface IF facing the inner space WI of the workpiece W. Connected through. The suction machine 63 is driven by a predetermined control signal, sucks the gas in the internal gas discharge pipe 62 and sends it to the exhaust pipe 41.

切換弁61は、例えばモータ等によって弁体61aが駆動され、所定の制御信号によってガスの流れを切り換える。切換弁61の弁体61aは、例えばT字状の流路を有し、90°の回転により、ガス供給管64とガス管路5とを接続し、ガス管路5と内部ガス排出管62との間のガスの流れを遮断した状態と、ガス管路5と内部ガス排出管62とを接続し、ガス供給管64とガス管路5との間のガスの流れを遮断した状態とを切り換える。   In the switching valve 61, for example, a valve body 61a is driven by a motor or the like, and the flow of gas is switched by a predetermined control signal. The valve body 61a of the switching valve 61 has, for example, a T-shaped flow path, and connects the gas supply pipe 64 and the gas pipe line 5 by rotation of 90 °, and the gas pipe line 5 and the internal gas discharge pipe 62. A state in which the gas flow between the gas pipe 5 and the internal gas discharge pipe 62 is connected, and a gas flow between the gas supply pipe 64 and the gas pipe 5 is cut off. Switch.

ガス管路5は、図3に示すように、例えば、可撓性を有するフレキシブルホース5aと、継手5cを介してフレキシブルホース5aの先端に接続された金属製の直管5bとによって構成される。フレキシブルホース5aは、切換弁61に接続された基端部において複数に分岐され、フレキシブルホース5aの複数の先端部が複数の直管5bに接続されている。直管5bは、ガス管路支持部7によって支持され、被処理物Wの内部空間WIに挿入される。   As shown in FIG. 3, the gas pipeline 5 is constituted by, for example, a flexible hose 5a having flexibility and a metal straight pipe 5b connected to the tip of the flexible hose 5a via a joint 5c. . The flexible hose 5a is branched into a plurality at the base end connected to the switching valve 61, and the plurality of distal ends of the flexible hose 5a are connected to the plurality of straight pipes 5b. The straight pipe 5 b is supported by the gas pipe line support portion 7 and is inserted into the internal space WI of the workpiece W.

本実施形態の表面処理装置1では、処理炉2内に収容される被処理物Wとして、鍛造用の金型Dを例示しているが、その他にも種々の金属部品や工具等を被処理物Wとして表面処理を行うことができる。図示の例において、金型Dは、鍛造品を鍛造するためのキャビティを形成する凹状の外表面OFと、キャビティの反対側の外表面OFからキャビティを形成する外表面OFの近傍まで設けられた複数の冷却穴CCとを有している。   In the surface treatment apparatus 1 of this embodiment, the forging die D is illustrated as the workpiece W accommodated in the processing furnace 2, but various metal parts, tools, and the like are also treated. Surface treatment can be performed as the object W. In the illustrated example, the mold D is provided from a concave outer surface OF that forms a cavity for forging a forged product and from the outer surface OF on the opposite side of the cavity to the vicinity of the outer surface OF that forms the cavity. It has a plurality of cooling holes CC.

冷却穴CCは、金型Dによって短時間に大量に良品を鍛造するために、冷却水を導入して金型Dを冷却するための深穴であり、被処理物Wである金型Dに内部空間WIを形成している。すなわち、本実施形態の表面処理装置1において、被処理物Wの内部空間WIに面する内表面IFは、金型Dの冷却穴CCの表面であり、被処理物Wの外表面OFは、金型Dのキャビティを形成する金型Dの外表面OFである。   The cooling hole CC is a deep hole for cooling the mold D by introducing cooling water in order to forge a large quantity of good products in a short time with the mold D. An internal space WI is formed. That is, in the surface treatment apparatus 1 of the present embodiment, the inner surface IF facing the inner space WI of the workpiece W is the surface of the cooling hole CC of the mold D, and the outer surface OF of the workpiece W is It is the outer surface OF of the mold D that forms the cavity of the mold D.

ガス管路支持部7は、処理炉2内で金型Dの冷却穴CCに挿入されたガス管路5の先端の直管5bを支持する。ガス管路支持部7は、ガス管路5の先端の直管5bを載置する載置台71と、載置台71を上下に移動可能に支持するレール部72と、載置台71にガス管路5の先端の直管5bを固定するクランプ部73とを備えている。   The gas pipe line support portion 7 supports the straight pipe 5 b at the tip of the gas pipe line 5 inserted into the cooling hole CC of the mold D in the processing furnace 2. The gas pipe line support unit 7 includes a mounting table 71 on which the straight pipe 5b at the tip of the gas pipe line 5 is mounted, a rail unit 72 that supports the mounting table 71 so as to be movable up and down, and a gas pipe line on the mounting table 71. 5 and a clamp portion 73 for fixing the straight pipe 5b at the tip of the tip 5.

以下、本実施形態の表面処理装置1の作用について説明する。   Hereinafter, the operation of the surface treatment apparatus 1 of the present embodiment will be described.

表面処理装置1の被処理物Wとして、例えば、金型Dの表面処理を行うには、まず、処理炉2に金型Dを収容して支持部21によって支持する。次に、ガス管路5の先端の直管5bを金型Dの冷却穴CCに挿入してガス管路支持部7によって支持する。   For example, in order to perform surface treatment of the mold D as the workpiece W of the surface treatment apparatus 1, first, the mold D is accommodated in the processing furnace 2 and supported by the support portion 21. Next, the straight pipe 5 b at the tip of the gas pipe 5 is inserted into the cooling hole CC of the mold D and supported by the gas pipe support 7.

例えば、まず、直管5bを載置した載置台71をレール部72に沿って上下に移動させ、直管5bと冷却穴CCの上下方向の位置合わせを行って、載置台71をレール部72に固定する。次に、載置台71に載置されたガス管路5の先端の直管5bと金型Dの冷却穴CCとの横方向の位置合わせを行って、直管5bを冷却穴CCに挿入し、クランプ部73によって直管5bを載置台71に固定する。次に、外表面処理用のガス供給系から、ガス供給管31及びガス供給口3を介して、処理炉2内へガスを供給するとともに、ガス排出口4及び排気管41を介して処理炉2内のガスを排出する。   For example, first, the mounting table 71 on which the straight pipe 5b is mounted is moved up and down along the rail portion 72, the vertical pipe 5b and the cooling hole CC are aligned in the vertical direction, and the mounting table 71 is moved to the rail portion 72. Secure to. Next, the straight pipe 5b at the tip of the gas pipe 5 placed on the placing table 71 and the cooling hole CC of the mold D are aligned in the horizontal direction, and the straight pipe 5b is inserted into the cooling hole CC. The straight pipe 5 b is fixed to the mounting table 71 by the clamp portion 73. Next, gas is supplied from the gas supply system for external surface treatment into the processing furnace 2 through the gas supply pipe 31 and the gas supply port 3, and the processing furnace is connected through the gas discharge port 4 and the exhaust pipe 41. The gas in 2 is discharged.

また、ガス管路制御部6の切換弁61を切り換えてガス供給管64とガス管路5とを接続し、ガス管路5と内部ガス排出管62との間のガスの流れを遮断した状態にする。そして、内表面処理用のガス供給系から、ガス供給管64、切換弁61、及びガス管路5を介して、金型Dの冷却穴CCの内部にガスを供給する。或いは、ガス管路制御部6の切換弁61を切換えて、ガス管路5と内部ガス排出管62とを接続し、ガス供給管64とガス管路5との間のガスの流れを遮断した状態にする。そして、吸引機63を駆動させ、ガス管路5、切換弁61、及び内部ガス排出管62を介して、金型Dの冷却穴CCの内部のガスを排気管41へ排出する。   Further, the switching valve 61 of the gas pipe line control unit 6 is switched to connect the gas supply pipe 64 and the gas pipe line 5 so that the gas flow between the gas pipe line 5 and the internal gas discharge pipe 62 is cut off. To. Then, gas is supplied from the gas supply system for inner surface treatment into the cooling hole CC of the mold D through the gas supply pipe 64, the switching valve 61, and the gas pipe line 5. Alternatively, the switching valve 61 of the gas pipe line control unit 6 is switched to connect the gas pipe line 5 and the internal gas discharge pipe 62 to block the gas flow between the gas supply pipe 64 and the gas pipe line 5. Put it in a state. Then, the suction machine 63 is driven, and the gas inside the cooling hole CC of the mold D is discharged to the exhaust pipe 41 through the gas pipe 5, the switching valve 61, and the internal gas discharge pipe 62.

図4は、ガス供給口3を介して処理炉2内へ供給されるガスの流量及び処理炉2内の温度と、時間との関係を示すグラフである。図5は、ガス管路5を介して金型Dの冷却穴CCに供給されるガスの流量及び処理炉2内の温度と時間との関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the flow rate of the gas supplied into the processing furnace 2 via the gas supply port 3, the temperature in the processing furnace 2, and time. FIG. 5 is a graph showing the relationship between the flow rate of the gas supplied to the cooling hole CC of the mold D through the gas pipe 5 and the temperature and time in the processing furnace 2.

表面処理装置1は、まず、処理炉2内及び金型Dの冷却穴CC内に残留する大気を排出する前処理を行う。具体的には、表面処理の開始後に処理炉2内の温度を約580℃まで昇温させ、約45分間に亘って約580℃に保持する。その間、ガス供給口3を介して処理炉2内に毎分約25Lの流量でNガスを供給するとともに、ガス排出口4を介して処理炉2内のガスを排出する。同時に、ガス管路5を介して金型Dの冷却穴CCの内部に毎分約25Lの流量でNガスを供給するか、又は、ガス管路5を介して金型Dの冷却穴CCの内部のガスを排出する。 The surface treatment apparatus 1 first performs a pretreatment for discharging the atmosphere remaining in the processing furnace 2 and the cooling hole CC of the mold D. Specifically, after the start of the surface treatment, the temperature in the processing furnace 2 is raised to about 580 ° C. and maintained at about 580 ° C. for about 45 minutes. In the meantime, N 2 gas is supplied into the processing furnace 2 through the gas supply port 3 at a flow rate of about 25 L per minute, and the gas in the processing furnace 2 is discharged through the gas discharge port 4. At the same time, N 2 gas is supplied into the cooling hole CC of the mold D through the gas pipe 5 at a flow rate of about 25 L / min, or the cooling hole CC of the mold D is supplied through the gas pipe 5. The gas inside is exhausted.

次に、処理炉2内の温度を約300分間に亘って約560℃に保持する。その間、ガス供給口3を介して処理炉2内に、金型Dの外表面OFの処理用のガスを供給する。例えば、NHガスを毎分約20L程度の流量で供給し、Hガスを毎分5Lから10L程度の流量で供給し、Nガスを毎分2Lから3L程度の流量で供給し、COガスを毎分1L以下の流量で供給する。また、ガス排出口4を介して処理炉2内のガスを所定の流量で排出する。 Next, the temperature in the processing furnace 2 is maintained at about 560 ° C. for about 300 minutes. Meanwhile, a gas for processing the outer surface OF of the mold D is supplied into the processing furnace 2 through the gas supply port 3. For example, NH 3 gas is supplied at a flow rate of about 20 L / min, H 2 gas is supplied at a flow rate of 5 L to 10 L / min, N 2 gas is supplied at a flow rate of 2 L to 3 L / min, and CO 2 is supplied. Two gases are supplied at a flow rate of 1 L or less per minute. Further, the gas in the processing furnace 2 is discharged at a predetermined flow rate through the gas discharge port 4.

同時に、ガス管路5を介して、金型Dの冷却穴CCの内部に、金型Dの内表面IFの処理用のガスを供給する。例えば、NHガスを毎分約20Lの流量で供給し、Hガスを毎分約7Lの流量で供給し、Nガスを毎分約2Lの流量で供給し、COガスを毎分1L以下の流量で供給する。 At the same time, a gas for processing the inner surface IF of the mold D is supplied into the cooling hole CC of the mold D through the gas pipe 5. For example, NH 3 gas is supplied at a flow rate of approximately 20 L / min, H 2 gas is supplied at a flow rate of approximately 7 L / min, N 2 gas is supplied at a flow rate of approximately 2 L / min, and CO 2 gas is supplied per minute. Supply at a flow rate of 1 L or less.

なお、ガス管路5を介して金型Dの冷却穴CCの内部に供給する金型Dの内表面IFの処理用のガスは、供給を開始してから約180分後に供給を停止し、その後、ガス管路制御部6の切換弁61を切り換え、吸引機63を駆動させて、ガス管路5を介して金型Dの冷却穴CCの内部のガスを排出する。一方、ガス供給口3を介して処理炉2内に供給する金型Dの外表面OFの処理用のガスは、供給開始から約300分間に亘って供給を継続する。その後、ガス供給口3からのNガスの供給を毎分約50Lに増加させるとともに、N以外のガスの供給を停止し、処理炉2内の温度を低下させる。 The gas for processing the inner surface IF of the mold D supplied to the inside of the cooling hole CC of the mold D via the gas pipe 5 is stopped after about 180 minutes from the start of supply. Thereafter, the switching valve 61 of the gas pipeline control unit 6 is switched and the suction machine 63 is driven to discharge the gas inside the cooling hole CC of the mold D via the gas pipeline 5. On the other hand, the gas for processing the outer surface OF of the mold D supplied into the processing furnace 2 through the gas supply port 3 is continuously supplied for about 300 minutes from the start of supply. Thereafter, the supply of N 2 gas from the gas supply port 3 is increased to about 50 L per minute, the supply of gases other than N 2 is stopped, and the temperature in the processing furnace 2 is lowered.

図6は、表面処理後の金型Dの外表面OFからの深さと金型Dの硬さとの関係を示すグラフである。表面処理後の金型Dは、外表面OFから概ね100μmから120μm程度の深さまでの部分の硬度が、それよりも深い部分の硬度よりも高くなっている。したがって、金型Dは、外表面OFの表面処理によって硬度が上昇した部分の厚さ、すなわち外表面OFの表面処理深さが、概ね100μmから120μm程度になっている。   FIG. 6 is a graph showing the relationship between the depth from the outer surface OF of the mold D after the surface treatment and the hardness of the mold D. In the mold D after the surface treatment, the hardness of the portion from the outer surface OF to the depth of about 100 μm to about 120 μm is higher than the hardness of the deeper portion. Therefore, in the mold D, the thickness of the portion whose hardness is increased by the surface treatment of the outer surface OF, that is, the surface treatment depth of the outer surface OF is about 100 μm to 120 μm.

図7は、表面処理後の金型Dの内表面IFからの深さと金型Dの硬さとの関係を示すグラフである。表面処理後の金型Dは、内表面IFから概ね60μmから80μm程度の深さまでの部分の硬度が、それよりも深い部分の硬度よりも高くなっている。したがって、金型Dは、内表面IFの表面処理によって硬度が上昇した部分の厚さ、すなわち内表面IFの表面処理深さが、概ね60μmから80μm程度になっている。   FIG. 7 is a graph showing the relationship between the depth from the inner surface IF of the mold D after the surface treatment and the hardness of the mold D. In the mold D after the surface treatment, the hardness of the portion from the inner surface IF to the depth of about 60 μm to about 80 μm is higher than the hardness of the deeper portion. Therefore, in the mold D, the thickness of the portion whose hardness is increased by the surface treatment of the inner surface IF, that is, the surface treatment depth of the inner surface IF is about 60 to 80 μm.

次に、金型Dの外表面OFと内表面IFの表面処理の効果を評価するために、耐久試験を行った。   Next, in order to evaluate the effect of the surface treatment of the outer surface OF and the inner surface IF of the mold D, a durability test was performed.

図8は、金型Dの外表面OFの耐久試験における経過時間と金型Dの温度を示すグラフである。耐久試験の開始から約2.5秒かけて金型Dを加熱誘導コイルの下方に移動させ、その後、加熱誘導コイルによって金型Dを加熱し、金型Dの温度を約4.0秒間で約600℃まで昇温させた。その後、約3.5秒かけて金型Dを加熱誘導コイルの下方から水冷ノズルの下方に移動させ、水冷ノズルから冷却水を供給して金型Dを冷却し、金型Dの温度を3.0秒間で約20℃まで低下させた。この金型Dの昇温と冷却のサイクルを、6000サイクルに亘って繰り返した。   FIG. 8 is a graph showing the elapsed time and the temperature of the mold D in the durability test of the outer surface OF of the mold D. The mold D is moved below the heating induction coil over about 2.5 seconds from the start of the durability test, and then the mold D is heated by the heating induction coil, and the temperature of the mold D is set to about 4.0 seconds. The temperature was raised to about 600 ° C. Thereafter, the mold D is moved from below the heating induction coil to below the water cooling nozzle over about 3.5 seconds, cooling water is supplied from the water cooling nozzle to cool the mold D, and the temperature of the mold D is set to 3 Reduced to about 20 ° C. in 0 seconds. The temperature raising and cooling cycle of the mold D was repeated over 6000 cycles.

比較のために、上述の表面処理条件と異なる条件で金型Dの外表面OFの表面処理を行って、外表面OFの表面処理深さが、60μm以上かつ80μm以下である金型Dと、外表面OFの表面処理深さが、80μmを超えかつ100μm未満である金型Dを用意した。そして、これらの金型Dに同様の耐久試験を行った。   For comparison, by performing a surface treatment of the outer surface OF of the mold D under conditions different from the above-described surface treatment conditions, the mold D having a surface treatment depth of the outer surface OF of 60 μm or more and 80 μm or less; A mold D having a surface treatment depth of the outer surface OF of more than 80 μm and less than 100 μm was prepared. Then, a similar durability test was performed on these molds D.

図9は、金型Dの内表面IFの耐久試験を行うための装置の模式図である。まず、金型Dと同じ材質で同じ寸法の冷却穴CCを有する筒状の試験片TPを用意し、金型Dの冷却穴CCと同じ条件で試験片TPの冷却穴CCの内表面IFの表面処理を行って、内表面IFの表面処理深さが概ね60μmから80μm程度の試験片TPを用意した。また、比較のために、上述の表面処理条件と異なる条件で試験片TPの内表面IFの表面処理を行って、内表面IFの表面処理深さが、80μmを超えかつ100μm未満である試験片TPと、100μm以上かつ120μm以下の試験片TPとを用意した。   FIG. 9 is a schematic diagram of an apparatus for performing an endurance test on the inner surface IF of the mold D. First, a cylindrical test piece TP having the same dimension as the mold D and having the same size cooling hole CC is prepared, and the inner surface IF of the cooling hole CC of the test piece TP is prepared under the same conditions as the cooling hole CC of the mold D. Surface treatment was performed to prepare a test piece TP having an inner surface IF with a surface treatment depth of about 60 μm to 80 μm. For comparison, a test piece in which the inner surface IF of the test piece TP is subjected to a surface treatment under conditions different from the above-described surface treatment conditions, and the surface treatment depth of the inner surface IF is more than 80 μm and less than 100 μm. TP and a test piece TP of 100 μm or more and 120 μm or less were prepared.

次に、冷却装置CLと、エアブロー装置ABと、誘導加熱コイルHTを用意した。そして、各試験片TPの先端部を、先端から約80mm程度の長さで誘導加熱コイルHTに挿入して高周波誘導で加熱し、試験片TPの温度を約600℃まで昇温させた。その後、試験片TPを移動させ、試験片TPの冷却穴CCの内部に冷却装置CLの冷却パイプCPを挿入し、冷却パイプCPに冷却水CWを流すとともに、エアブロー装置ABからエアーAを吹き付けて試験片TPの温度を100℃まで低下させた。この試験片TPの昇温と冷却のサイクルを、6000サイクルに亘って繰り返した。   Next, a cooling device CL, an air blowing device AB, and an induction heating coil HT were prepared. And the front-end | tip part of each test piece TP was inserted in the induction heating coil HT about 80 mm in length from the front-end | tip, and it heated by the high frequency induction, and raised the temperature of the test piece TP to about 600 degreeC. Thereafter, the test piece TP is moved, the cooling pipe CP of the cooling device CL is inserted into the cooling hole CC of the test piece TP, the cooling water CW is allowed to flow through the cooling pipe CP, and the air A is blown from the air blowing device AB. The temperature of the test piece TP was lowered to 100 ° C. The cycle of heating and cooling of the test piece TP was repeated over 6000 cycles.

図10は、金型Dの外表面OF近傍の拡大断面写真の一例である。図11は、試験片TPの内表面IF近傍の拡大断面写真の一例である。所定の評価長さにおいて、発生した亀裂の長さLをすべて足し合わせた総亀裂長さを算出し、金型Dの外表面OFの表面処理の効果を評価した。評価結果を、以下の表1に示す。   FIG. 10 is an example of an enlarged cross-sectional photograph near the outer surface OF of the mold D. FIG. 11 is an example of an enlarged cross-sectional photograph near the inner surface IF of the test piece TP. In a predetermined evaluation length, the total crack length obtained by adding all the lengths L of the generated cracks was calculated, and the effect of the surface treatment of the outer surface OF of the mold D was evaluated. The evaluation results are shown in Table 1 below.

Figure 2017106062
Figure 2017106062

金型Dの外表面OFと試験片TPの内表面IFの総亀裂長さに基づき、鍛造用の金型Dとして12万ショット以上の耐久性を有すると判断された表面処理深さdを良好(表1の○印)と判断した。また、鍛造用の金型Dとして6万ショット以下の耐久性しか有しないと判断された表面処理深さdを不良(表1の×印)と判断し、良好と不良との間の耐久性を有すると判断された表面処理深さdを中間(表1の△印)と判断した。   Based on the total crack length of the outer surface OF of the mold D and the inner surface IF of the test piece TP, the surface treatment depth d determined as having a durability of 120,000 shots or more as the mold D for forging is good. (Circle mark in Table 1). Further, the surface treatment depth d determined as having a durability of not more than 60,000 shots as the forging die D is determined to be defective (x mark in Table 1), and the durability between good and defective The surface treatment depth d determined to have an intermediate was determined to be intermediate (Δ mark in Table 1).

より詳細には、金型Dの外表面OFの表面処理深さdが60μm以上かつ80μm以下の場合には、亀裂が多く発生し、総亀裂長さが、例えば4.2mm程度であった。一方、金型Dの外表面OFの表面処理深さdが100μm以上かつ120μmの場合には、亀裂の発生が抑制され、総亀裂長さが概ね6割程度減少し、総亀裂長さが例えば1.8mm程度に留まった。   More specifically, when the surface treatment depth d of the outer surface OF of the mold D is 60 μm or more and 80 μm or less, many cracks are generated, and the total crack length is, for example, about 4.2 mm. On the other hand, when the surface treatment depth d of the outer surface OF of the mold D is 100 μm or more and 120 μm, the generation of cracks is suppressed, the total crack length is reduced by about 60%, and the total crack length is, for example, It stayed at about 1.8 mm.

また、金型Dの内表面IFに対応する試験片TPの冷却穴CCの内表面IFの表面処理深さdが100μm以上かつ120μmの場合には、亀裂が多く発生し、総亀裂長さが、例えば23.1mm程度であった。一方、金型Dの内表面IFに対応する試験片TPの冷却穴CCの内表面IFの表面処理深さdが60μm以上かつ80μm以下の場合には、亀裂の発生が抑制され、総亀裂長さが8割以上減少し、総亀裂長さが例えば3.9mm程度に留まった。   Further, when the surface treatment depth d of the inner surface IF of the cooling hole CC of the test piece TP corresponding to the inner surface IF of the mold D is 100 μm or more and 120 μm, many cracks are generated, and the total crack length is For example, it was about 23.1 mm. On the other hand, when the surface treatment depth d of the inner surface IF of the cooling hole CC of the test piece TP corresponding to the inner surface IF of the mold D is 60 μm or more and 80 μm or less, the generation of cracks is suppressed and the total crack length is reduced. Was reduced by 80% or more, and the total crack length remained at about 3.9 mm, for example.

以上の評価結果から、金型Dの外表面OFの表面処理深さdは、概ね100μm以上かつ120μm以下が最適であり、金型Dの内表面IFの表面処理深さは、概ね60μm以上かつ80μm以下が最適であることが分かった。このように、金型Dの内表面IFと外表面OFとで最適な表面処理が異なる理由は、以下のとおりである。   From the above evaluation results, the surface treatment depth d of the outer surface OF of the mold D is optimally about 100 μm or more and 120 μm or less, and the surface treatment depth of the inner surface IF of the mold D is about 60 μm or more and It has been found that 80 μm or less is optimal. The reason why the optimum surface treatment is different between the inner surface IF and the outer surface OF of the mold D is as follows.

例えば、鍛造用の金型Dにおいて、キャビティを形成する金型Dの外表面OFは、ヒートクラック、すなわち熱衝撃に強い処理が必要となるため、金型Dの外表面OFの硬度が高い部分の厚さである表面処理深さdを、所定の深さで確保する必要がある。一方、冷却穴CCの内部の金型Dの内表面IFは、冷却水の腐食割れに強い処理が必要となるため、金型Dの内表面IFの硬度が高い部分の厚さである表面処理深さdが必要以上に深くなると、亀裂が発生しやすくなる。したがって、金型Dの内表面IFと外表面OFに異なる表面処理が必要になる。   For example, in the mold D for forging, the outer surface OF of the mold D that forms the cavity needs to be heat cracked, that is, a process that is resistant to thermal shock. It is necessary to ensure the surface treatment depth d, which is a thickness of On the other hand, since the inner surface IF of the mold D inside the cooling hole CC needs to be resistant to corrosion cracking of the cooling water, the surface treatment is the thickness of the portion where the hardness of the inner surface IF of the mold D is high. If the depth d is deeper than necessary, cracks are likely to occur. Therefore, different surface treatments are required for the inner surface IF and the outer surface OF of the mold D.

ここで、本実施形態の表面処理装置1は、金型Dの外表面OF等、処理炉2に収容した被処理物Wの外表面OFに対し、ガス供給口3から表面処理に必要なガスを供給するともに、ガス排出口4から処理炉2内の不要なガスを排出することができる。これにより、被処理物Wの外表面OFに適した表面処理を、被処理物Wの内表面IFの表面処理と独立して行うことができる。   Here, the surface treatment apparatus 1 according to the present embodiment has a gas necessary for the surface treatment from the gas supply port 3 to the outer surface OF of the workpiece W accommodated in the processing furnace 2 such as the outer surface OF of the mold D. , And unnecessary gas in the processing furnace 2 can be discharged from the gas discharge port 4. Thereby, the surface treatment suitable for the outer surface OF of the workpiece W can be performed independently of the surface treatment of the inner surface IF of the workpiece W.

さらに、金型Dの冷却穴CC等、被処理物Wの内部空間WIにガス管路5を挿入し、ガス管路制御部6によって、ガス供給口3とは独立して、ガス管路5から被処理物Wの内表面IFの表面処理に必要なガスを適切に供給することができる。また、ガス管路制御部6によって、ガスの供給と排出を切り替え、ガス排出口4とは独立して、ガス管路5から被処理物Wの内部空間WIの不要なガスを適切に排出することができる。これにより、被処理物Wの内表面IFに適した表面処理を、被処理物Wの外表面OFの表面処理と独立して行うことができる。   Further, the gas pipe 5 is inserted into the internal space WI of the workpiece W such as the cooling hole CC of the mold D, and the gas pipe 5 is separated from the gas supply port 3 by the gas pipe controller 6. Therefore, the gas necessary for the surface treatment of the inner surface IF of the workpiece W can be appropriately supplied. In addition, the gas pipe control unit 6 switches between gas supply and discharge, and appropriately discharges unnecessary gas in the internal space WI of the workpiece W from the gas pipe 5 independently of the gas discharge port 4. be able to. Thereby, the surface treatment suitable for the inner surface IF of the workpiece W can be performed independently of the surface treatment of the outer surface OF of the workpiece W.

したがって、本実施形態の表面処理装置1によれば、被処理物Wの内部空間WIに面する内表面IFと被処理物Wの外表面OFとの表面処理の条件が異なる場合でも、内表面IFと外表面OFの表面処理をそれぞれ適切に行うことができる。これにより、例えば、鍛造用の金型Dの外表面OFの表面処理深さを概ね100μm以上かつ120μm以下とし、内表面IFの表面処理深さを概ね60μm以上かつ80μm以下とすることができ、従来よりも金型Dの寿命を延命することが可能になる。   Therefore, according to the surface treatment apparatus 1 of the present embodiment, even when the surface treatment conditions of the inner surface IF facing the inner space WI of the workpiece W and the outer surface OF of the workpiece W are different, the inner surface The surface treatment of the IF and the outer surface OF can be performed appropriately. Thereby, for example, the surface treatment depth of the outer surface OF of the forging die D can be approximately 100 μm or more and 120 μm or less, and the surface treatment depth of the inner surface IF can be approximately 60 μm or more and 80 μm or less, It becomes possible to prolong the life of the mold D as compared with the prior art.

一方、従来の表面処理方法や表面処理装置では、金型の内表面と外表面にそれぞれ最適な表面処理を行うことは困難である。例えば、表1に示すように、金型の外表面に最適な表面処理を行うと、内表面に亀裂が発生しやすくなり、金型の内表面に最適な表面処理を行うと、外表面に亀裂が発生しやすくなる。したがって、従来の表面処理方法や表面処理装置1では、金型の寿命を延命することが困難になる。   On the other hand, with the conventional surface treatment method and surface treatment apparatus, it is difficult to perform optimum surface treatment on the inner surface and the outer surface of the mold. For example, as shown in Table 1, when the optimal surface treatment is performed on the outer surface of the mold, cracks are likely to occur on the inner surface, and when the optimal surface treatment is performed on the inner surface of the mold, Cracks are likely to occur. Therefore, in the conventional surface treatment method and the surface treatment apparatus 1, it is difficult to extend the life of the mold.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1 表面処理装置
2 処理炉
3 ガス供給口
4 ガス排出口
5 ガス管路
6 ガス管路制御部
W 被処理物
WI 内部空間
DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 2 Processing furnace 3 Gas supply port 4 Gas exhaust port 5 Gas pipe line 6 Gas pipe line control part W To-be-processed object WI Internal space

Claims (1)

被処理物を収容する処理炉と、該処理炉へ気体を供給するガス供給口と、前記処理炉から気体を排出するガス排出口とを備える表面処理装置であって、
前記被処理物の内部空間へ挿入されるガス管路と、
前記ガス供給口への気体の供給及び前記ガス排出口からの気体の排出と独立して前記ガス管路への気体の供給と前記ガス管路からの気体の排出とを切り替えるガス管路制御部と、を備えることを特徴とする表面処理装置。
A surface treatment apparatus comprising a processing furnace for storing an object to be processed, a gas supply port for supplying gas to the processing furnace, and a gas discharge port for discharging gas from the processing furnace,
A gas pipe inserted into the internal space of the workpiece;
A gas line control unit that switches between supply of gas to the gas line and discharge of gas from the gas line independently of supply of gas to the gas supply port and discharge of gas from the gas discharge port A surface treatment apparatus comprising:
JP2015239497A 2015-12-08 2015-12-08 Surface treatment apparatus Pending JP2017106062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239497A JP2017106062A (en) 2015-12-08 2015-12-08 Surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239497A JP2017106062A (en) 2015-12-08 2015-12-08 Surface treatment apparatus

Publications (1)

Publication Number Publication Date
JP2017106062A true JP2017106062A (en) 2017-06-15

Family

ID=59059117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239497A Pending JP2017106062A (en) 2015-12-08 2015-12-08 Surface treatment apparatus

Country Status (1)

Country Link
JP (1) JP2017106062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method
JP2019085623A (en) * 2017-11-08 2019-06-06 株式会社デンソー Gas carburization apparatus, and gas carburization method
CN111315913A (en) * 2017-11-08 2020-06-19 株式会社电装 Gas carburizing apparatus and gas carburizing method
CN111315913B (en) * 2017-11-08 2022-03-11 株式会社电装 Gas carburizing apparatus and gas carburizing method

Similar Documents

Publication Publication Date Title
JP6596703B2 (en) Multi-chamber heat treatment equipment
JPWO2016080197A1 (en) Heat treatment device and cooling device
KR20110103326A (en) Vertical heat treatment apparatus and, assembly of pressure detection system and temperature sensor
JP6406883B2 (en) Vacuum heat treatment system
JP2017106062A (en) Surface treatment apparatus
JP6742399B2 (en) Cooling device and heat treatment device
DE50110689D1 (en) Device and method for transporting metallic workpieces and equipment for heat treatment of these workpieces
CN107614709B (en) Heat treatment apparatus
EP1287751A3 (en) Pressure heating method and pressure heating apparatus
US10870909B2 (en) Heat treatment facility
KR100776662B1 (en) Heat treament method and apparatus
US20060124202A1 (en) Nitriding method and device
KR102241731B1 (en) Device for preventing powder adhesion in exhaust line
WO2010087638A3 (en) Batch-type substrate-processing apparatus
JP5582792B2 (en) Heating device
JP2009260243A5 (en) Substrate mounting table for substrate processing apparatus, substrate processing apparatus, and method of manufacturing semiconductor device
JP2010144233A (en) Degassing processing device of vacuum treatment apparatus, and vacuum treatment apparatus
JP2007231367A (en) Heat treatment method and device
JP2010024515A (en) Induction heating device
KR20100064638A (en) Substrate processing apparatus
JP2010007116A (en) Pretreatment method for plating and surface treatment apparatus
KR20080017118A (en) Cooling equipment of diffused furnace device thereof
JP2009191332A (en) Heat treatment apparatus for workpiece, and heat treatment method for workpiece
JP6607706B2 (en) Processing method and apparatus
JP5364314B2 (en) Heat treatment equipment