JP2017083796A - Light distribution control lens - Google Patents

Light distribution control lens Download PDF

Info

Publication number
JP2017083796A
JP2017083796A JP2015215227A JP2015215227A JP2017083796A JP 2017083796 A JP2017083796 A JP 2017083796A JP 2015215227 A JP2015215227 A JP 2015215227A JP 2015215227 A JP2015215227 A JP 2015215227A JP 2017083796 A JP2017083796 A JP 2017083796A
Authority
JP
Japan
Prior art keywords
axis
lens
light source
light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215227A
Other languages
Japanese (ja)
Other versions
JP6604593B2 (en
Inventor
藤 理 一 齋
Riichi Saito
藤 理 一 齋
尾 隆 昭 中
Takaaki Nakao
尾 隆 昭 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamai Electric Lamp Co Ltd
Original Assignee
Hamai Electric Lamp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamai Electric Lamp Co Ltd filed Critical Hamai Electric Lamp Co Ltd
Priority to JP2015215227A priority Critical patent/JP6604593B2/en
Publication of JP2017083796A publication Critical patent/JP2017083796A/en
Application granted granted Critical
Publication of JP6604593B2 publication Critical patent/JP6604593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new lens technique for not only satisfying a prescribed value of a road surface luminance but also further increasing lamp fitting intervals, and in addition capable of uniformly illuminating a roadside, a sidewalk, and a tunnel wall surface.SOLUTION: A light distribution control lens 1 comprises, assuming a Y-axis extending from a light source 5 virtual origin 0, an X-axis passing through the virtual origin 0 and perpendicular to the Y-axis, and a Z-axis passing through the virtual origin 0 and perpendicular to the Y-axis and the X-axis: a one-side inclination convex lens surface part 20 including a lens bottom face 3 and a lens irradiation surface 2 of a lens body 10, the lens irradiation surface 2 arranged at one side on the X-axis from the virtual origin 0, inclining light irradiation L to the one side of the X-axis; the other-side inclination convex lens surface part 21 arranged at the other side of the X-axis from the virtual origin 0, and inclining the light irradiation L to the other side of the X-axis; a one-side concave lens surface part 22 arranged at one side on the Z-axis from the virtual origin 0, and inclining the light irradiation L to the one side on the Z-axis; and the other-side concave lens surface part 23 arranged at the other side on the Z-axis from the virtual origin 0, and inclining the light irradiation L to the one side on the Z-axis.SELECTED DRAWING: Figure 4

Description

この発明は、照明光を所望の範囲に誘導・照射可能とするレンズ技術に関連するものであり、特に、道路やトンネルなど略一定の幅員が一定方向に長く続くような照明対象を、より効率的且つより均質に照明可能とするよう配光制御可能としたレンズを製造、提供する分野は勿論のこと、その輸送、保管、組み立ておよび設置に必要となる設備、器具類を提供、販売する分野から、それら資材や機械装置、部品類に必要となる素材、例えば、木材、石材、各種繊維類、プラスチック、各種金属材料等を提供する分野、それらに組み込まれる電子部品やそれらを集積した制御関連機器の分野、各種計測器の分野、当該設備、器具を動かす動力機械の分野、そのエネルギーとなる電力やエネルギー源である電気、オイルの分野といった一般的に産業機械と総称されている分野、更には、それら設備、器具類を試験、研究したり、それらの展示、販売、輸出入に係わる分野、将又、それらの使用の結果やそれを造るための設備、器具類の運転に伴って発生するゴミ屑の回収、運搬等に係わる分野、それらゴミ屑を効率的に再利用するリサイクル分野などの外、現時点で想定できない新たな分野までと、関連しない技術分野はないほどである。     The present invention relates to a lens technology that can guide and irradiate illumination light to a desired range, and in particular, an illumination target such as a road or a tunnel where a substantially constant width continues in a certain direction is more efficient. In addition to the field of manufacturing and providing lenses that can control light distribution so that they can be illuminated more uniformly and homogeneously, the field of providing and selling equipment and instruments necessary for their transportation, storage, assembly and installation To the materials required for these materials, machinery and equipment, such as wood, stone, various fibers, plastics, various metal materials, etc., electronic components incorporated in them, and control related integration In general, the fields of equipment, various measuring instruments, the equipment, the power machinery that moves the equipment, the electric power that is the energy and the electric and oil fields that are the energy sources. Fields collectively referred to as machinery, as well as testing and researching those facilities and equipment, fields related to their display, sales, import and export, generals, results of their use, and equipment to build them , Technologies that are not related to the fields related to the collection and transportation of garbage debris generated by the operation of instruments, the recycling field that efficiently recycles these garbage debris, and new fields that cannot be envisaged at this time There is no field.

(着目点)
トンネル照明用LED照明灯具は、例えばマルチチップ、COB(Chip On Board)タイプLEDの光源面が一般に平面的であり、従来型の蛍光灯に比較して指向性が強く、限られた範囲に照明光が集中してしまう性質を持つから、複数個のLEDを適宜間隔置き毎に縦横配列し、各LEDモジュールの実装角度を個別に調整し、全体として広範囲且つ均質に照明可能なものとしなければならず、トンネルの基本照明、入口部照明、出口部照明、特殊構造部の照明、接続道路の照明など設置場所や、停電時用照明などのように様々な利用条件下に応じ、LEDの発光数や個別の実装角度を適宜調節しなければトンネル全体に渡って効率的、且つ安全な路面輝度および輝度均斉度を得ることができなくなってしまうという欠点を有していた。
(Points of interest)
The LED lighting fixtures for tunnel lighting, for example, have a multi-chip, COB (Chip On Board) type LED light source surface which is generally flat, and has a higher directivity than a conventional fluorescent lamp, and illuminates a limited range. Due to the nature of light concentration, a plurality of LEDs must be arranged vertically and horizontally at appropriate intervals, and the mounting angle of each LED module must be individually adjusted so that it can be illuminated widely and uniformly as a whole. LED lighting according to various usage conditions such as basic lighting of the tunnel, entrance lighting, exit lighting, lighting of special structures, lighting of connection roads, lighting for power failure, etc. If the number and individual mounting angle are not adjusted appropriately, there is a disadvantage that it is impossible to obtain efficient and safe road surface luminance and luminance uniformity over the entire tunnel. It was.

(従来の技術)
こうした欠点を打開する技術として、本願出願人自らが既に開発済みとした下記特許文献1(1)に示すように、LEDの光源面中央を仮想原点とし、仮想原点に垂直な仮想軸心Y線、仮想原点で仮想軸心Y線に直交し、互いも直交する仮想X線および仮想Z線を設定し、仮想軸心Y線に中心を一致し、仮想Y−Z面を対称境界面とし、光源面からの光束を、仮想Y−X面上の仮想原点から正負無限大双方向に向け、拡散可能な対称形とした凹面形入射双面を設け、凹面形入射双面とはレンズ肉厚分を挟む反対がわの、仮想軸心Y線に中心を一致し、仮想Y−Z面を対称境界面とし、光源面からの光束を、仮想Y−X面上の仮想原点から正負無限大双方向に向け、拡散且つ収束可能な対称形とした凸面形出射双面を設けてなり、より正確な配光制御を実現化し、灯具筐体を小型・軽量化し、一段と経済的に製造、設置可能、且つ効率的な整備を実現化できるものとしたLED用配光制御レンズがある。
(Conventional technology)
As a technique for overcoming such drawbacks, as shown in the following Patent Document 1 (1), which has already been developed by the applicant of the present application, the center of the light source surface of the LED is the virtual origin, and the virtual axis Y line perpendicular to the virtual origin , Set a virtual X-ray and a virtual Z-line that are orthogonal to the virtual axis Y line at the virtual origin and are also orthogonal to each other, match the center to the virtual axis Y-line, and make the virtual YZ plane a symmetric boundary plane, A concave incident double surface that can be diffused by directing the light beam from the light source surface in both positive and negative infinity directions from the virtual origin on the virtual Y-X plane is provided, and the concave incident double surface is the lens thickness On the opposite side of the opposite side, the center coincides with the virtual axis Y line, the virtual YZ plane is the symmetric boundary plane, and the light flux from the light source plane is positive or negative infinity from the virtual origin on the virtual YX plane. A bi-directional, diffusive and convergent convex output double surface is provided for more accurate alignment. Realizing the control, the lamp housing is smaller and lighter, more economical to manufacture, can be installed, there is and efficient maintenance of realization can those with the light distribution control lens for LED.

また、同特許文献1(2)に見られるような、光源装置が、発光素子をホルダの窪みの底に設置し、その出光窓口をレンズで覆い、発光素子を光源とする光を、レンズを通して被照射体へ配光するものであって、レンズが、その光源側レンズ面の中央部入射部位で凹形状面と、その被照射体側レンズ面の中央部の出射部位で凹形状面およびそれの周辺部の出射部位で凸形状面の連続面とを、夫々軸対称に有しており、|r1|<D/2と、|r1|<|r2|と、D<CA1<D×1.5(Dは出光窓口の最大径、r1は光源側レンズ面の凹形状面の中央での曲率半径、r2は被照射体側レンズ面の凹形状面の中央での曲率半径、CA1は光源側レンズ面の凹形状面の入射有効開口径)となって、配光を制御し、放射角が大きくなるに連れて相対光度が弱くなる光源からの光を補償し、被照射面を略均一な照度で照射できる光源装置、およびそれを用いた照明器具技術を提供するものなどがある。     In addition, a light source device, such as that shown in Patent Document 1 (2), installs a light emitting element on the bottom of a recess in a holder, covers the light exit window with a lens, and transmits light using the light emitting element as a light source through the lens. The light is distributed to the irradiated object, and the lens has a concave surface at the central incident portion of the light source side lens surface, and a concave surface at the output portion of the central portion of the irradiated object side lens surface and its Convex-shaped continuous surfaces at the light emitting portions in the peripheral portion are provided in axial symmetry, and | r1 | <D / 2, | r1 | <| r2 |, and D <CA1 <D × 1. 5 (D is the maximum diameter of the light exit window, r1 is the radius of curvature at the center of the concave surface of the light source side lens surface, r2 is the radius of curvature at the center of the concave surface of the irradiated object side lens surface, CA1 is the light source side lens The effective aperture diameter of the concave surface of the surface), control the light distribution, and as the radiation angle increases To compensate for light from a light source pair intensity becomes weak, a light source device capable of irradiating with a substantially uniform illuminance surface to be irradiated, and the like which provides a luminaire technology using the same.

前者特許文献1(1)に示されているようなLED用配光制御レンズは、仮想原点から仮想軸心Y線無限大方向に照射する光源面からの光束を仮想X線両無限大方向にV字形をなすよう傾け、仮想X線方向に長く照射範囲を確保可能とし、且つ、仮想Z線の両無限大方向には、仮想X線方向よりも短い幅範囲に均質な光を照射可能とするものとしてあるから、道路やトンネルなどのように略一定の幅員を有し、一定方向に細長い施設などへの照明に適するものとなるが、例えばトンネル照明の場合には、道路幅員に留まらず、照明灯具を設置したがわの路肩からトンネル壁面まで照明する必要があり、こうした路面から壁面に及ぶ照明とするには、光源面および配光制御レンズの支持角度変更・調整するだけでは、適正な壁面輝度比やグレアTi値規格を満たすことが困難になってしまうという弱点があった。     The light distribution control lens for LED as shown in the former patent document 1 (1) is a light beam from the light source surface that irradiates from the virtual origin to the virtual axis Y-line infinite direction in both virtual X-ray infinite directions. Tilt to form a V-shape, can ensure a long irradiation range in the virtual X-ray direction, and can irradiate homogeneous light in a width range shorter than the virtual X-ray direction in both infinite directions of the virtual Z-ray Therefore, it has a substantially constant width, such as roads and tunnels, and is suitable for lighting facilities that are elongated in a certain direction. For example, in the case of tunnel lighting, it is not limited to the road width. It is necessary to illuminate from the road shoulder to the wall of the tunnel where the lighting fixtures are installed. In order to illuminate from the road surface to the wall surface, it is only necessary to change and adjust the support angle of the light source surface and light distribution control lens. Wall brightness ratio and glare To meet the i value standard there was a weakness that becomes difficult.

また、後者同特許文献1(2)に示めされるような配光制御レンズは、真円形の照明範囲をより広く且つ均質に設定することができるものの、例えば道路やトンネルに設置する場合に、略一定の幅員を有し、一定方向に細長い道路面を均質に照明するには、道路進行方向の設置スパンを道路幅員と同等か、またはそれよりも狭く設定するかする必要があり、より多くの灯具設置数を確保しなければならず、経済的ではないという難点を有していた。
(1)特開2015−118132号公報 (2)特開2010−15898号公報
Further, the light distribution control lens as shown in the latter patent document 1 (2) can set the true circular illumination range wider and more homogeneously. However, when it is installed on a road or a tunnel, for example. In order to uniformly illuminate a road surface that has a substantially constant width and is elongated in a certain direction, it is necessary to set the installation span in the road traveling direction to be equal to or narrower than the road width, and more Many lamp fixtures had to be secured, and it was not economical.
(1) Japanese Unexamined Patent Application Publication No. 2015-118132 (2) Japanese Unexamined Patent Application Publication No. 2010-15898

(問題意識)
上述したとおり、従前までに提案のある各種配光制御レンズは、より広い範囲をより均質に照明可能にしようとするものであったが、何れも道路やトンネルの照明に採用した場合に、道路の進行方向の照明可能範囲をさらに広く設定するのが難しく、しかも路肩や歩道およびトンネル壁面などを、道路走行や歩道の歩行などに適した輝度を確保するよう均質に照明するのが困難であり、設置スパンを短く設定したり、灯具やその光源および配光レンズを、道路幅員に加えトンネル壁をも照明可能とするよう設置角度姿勢を調整したり、トンネル壁面用の照明や歩道用の専用照明を追加設置する必要が出てくるなど、経済的ではないことから、本願出願人は、永年に亘ってトンネル照明灯具の研究、開発、製造および保守管理に携わり、既に自らにおいてLED搭載のトンネル照明灯具を完成し、多岐に渡って提供し続けている中、それらから得た様々な検知、および、ユーザーからの情報などに基づき、路面輝度の規定値を満たすのみに留まらず、一段と設置スパンを延ばすと共に、路肩や歩道、壁面に及ぶ広範囲の、より均質な照明を可能とし、区間毎の灯具台数を削減する如く、更なる改善の可能性を痛感するに至ったものである。
(Awareness of problems)
As described above, the various light distribution control lenses that have been proposed in the past have been intended to enable illumination over a wider area more uniformly. It is difficult to set a wider illumination range in the traveling direction of the vehicle, and it is difficult to uniformly illuminate the shoulders, sidewalks, and tunnel walls to ensure brightness suitable for road driving, walking on the sidewalks, etc. Shorten the installation span, adjust the installation angle and orientation of the lamp, its light source, and light distribution lens so that it can illuminate the tunnel wall as well as the width of the road, exclusive lighting for tunnel walls and sidewalks The applicant has been engaged in the research, development, production and maintenance management of tunnel lighting fixtures for many years because it is not economical, such as the need to install additional lighting. Has completed LED lighting tunnel lighting fixtures and has been providing them in a wide variety of areas, but based on various detections obtained from them, information from users, etc., it can only meet the specified value of road surface brightness. First of all, while extending the installation span further, enabling more uniform lighting over a wide range of road shoulders, sidewalks, and walls, and reducing the number of lamps per section, it has become possible to feel the possibility of further improvement It is.

(発明の目的)
そこで、この発明は、路面輝度の規定値を満たすのみに留まらず、一段と灯具設置間隔を延ばす事ができ、しかも道路幅員に留まらず、路肩や歩道およびトンネル壁面をもより均質に照明可能とする新たなレンズ技術の開発はできないものかとの判断から、逸速くその開発、研究に着手し、長期に渡る試行錯誤と幾多の試作、実験とを繰り返してきた結果、今回、遂に新規な構造の配光制御レンズを実現化することに成功したものであり、以下では、図面に示すこの発明を代表する実施例と共に、その構成を詳述することとする。
(Object of invention)
Therefore, the present invention not only satisfies the specified value of the road surface brightness, but can further extend the lamp installation interval, and not only the width of the road but also more uniformly illuminating the road shoulder, sidewalk, and tunnel wall surface. Judging whether it is possible to develop a new lens technology, we quickly started developing and researching it, and as a result of repeating trial and error over a long period of time and many prototypes and experiments, this time we finally have a new structure. The present invention succeeds in realizing the light control lens, and hereinafter, the configuration thereof will be described in detail together with an embodiment representative of the present invention shown in the drawings.

(発明の構成)
図面に示すこの発明を代表する実施例からも明確に理解されるように、この発明の配光制御レンズは、基本的に次のような構成から成り立っている。
即ち、光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、レンズ本体の光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方に傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の他方に傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設けてなるものとした構成を要旨とする配光制御レンズである。
(Structure of the invention)
As will be clearly understood from the embodiments representing the present invention shown in the drawings, the light distribution control lens of the present invention basically comprises the following configuration.
That is, assuming the Y axis extending in the vertical direction from the light source virtual origin, the X axis passing through the light source virtual origin and orthogonal to the Y axis, and the Z axis passing through the light source virtual origin and orthogonal to the Y axis and the X axis, the light source of the lens body A lens bottom surface facing the lens, and a lens irradiation surface sandwiching the lens main body thick portion from the lens bottom surface, opposite to the light source, and the lens irradiation surface is arranged on one side of the light source virtual origin on the X axis A light source on the Z-axis having a one-convex convex lens surface part that inclines light irradiation to one side of the X-axis, and a second inclined-convex lens surface part that is arranged on the other side from the X-axis light source virtual origin and inclines light irradiation to the other side of the X-axis. Arranged on one side from the virtual origin, one side concave lens surface part that tilts light irradiation to one side on the Z axis, and arranged on the other side from the virtual origin on the Z axis light source, and light irradiation on one side on the Z axis A structure with a concave lens surface on the other side to be tilted. Which is a light distribution control lens to subject matter.

この基本的な構成からなる配光制御レンズは、その表現を変えて示すならば、光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、光源仮想光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源仮想光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方にY軸より20°ないし85°傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の一方とは180°反転したX軸の他方にY軸より20°ないし85°傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設け、一方および他方傾斜凸レンズ面部が、Y軸無限大方向に照射する光源照射光の一部をX軸上光源仮想原点を挟む双方に、40°>170°の挟み角度とするよう均等V分岐・誘導し、且つ、一側および他側凹レンズ面部が、Y軸無限大方向に照射する光源照射光の他部をZ軸上光源仮想原点よりも一側に傾けるよう指向・誘導可能なものとした構成からなる配光制御レンズとなる。     If the light distribution control lens having this basic configuration is expressed in a different manner, the Y axis extending in the vertical direction from the light source virtual origin, the X axis passing through the light source virtual origin and orthogonal to the Y axis, and the light source virtual origin are shown. Assuming the Z axis orthogonal to the Y axis and the X axis, the lens bottom surface facing the light source virtual light source, and the lens irradiation surface that sandwiches the lens body thick part from the lens bottom surface and is opposite to the light source virtual light source And the lens irradiation surface is arranged on one side from the X-axis light source virtual origin, and the one-side inclined convex lens surface portion that inclines the light irradiation on one side of the X-axis by 20 ° to 85 ° from the Y-axis, and the X-axis light source The other side of the X-axis is 180.degree. Inverted from one of the X-axes, and the other is an inclined convex lens surface portion tilted by 20.degree. To 85.degree. From the Y-axis. Arranged on one side and Z One side concave lens surface part that is inclined to one side on the axis, and another side concave lens surface part that is arranged on the other side from the light source virtual origin on the Z axis and tilts light irradiation to one side on the Z axis, and one and the other convex convex lens The surface portion equally V-divides and guides a part of the light source irradiation light irradiated in the Y-axis infinite direction so that the angle between the light source virtual origin on the X-axis is 40 °> 170 °, and one The light distribution control is configured such that the side and other concave lens surface parts can be directed and guided so that the other part of the light source irradiation light that irradiates in the Y-axis infinite direction is tilted to one side with respect to the Z-axis light source virtual origin. Become a lens.

より具体的には、光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、レンズ本体の光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方にY軸より20°ないし85°傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の一方とは180°反転したX軸の他方にY軸より20°ないし85°傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設け、該レンズ底面が、光源に対峙するレンズ底面照明光入射範囲に有ってX軸上光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源に対峙するレンズ底面照明光入射範囲に有ってX軸上光源仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部を有すると共に、光源に対峙するレンズ底面照明光入射範囲周囲からレンズ照射表面外周縁に至る範囲にあってZ軸上光源仮想原点を挟み一側および他側に配し、一方・他方誘導中央レンズ面部から入射した照明光の中、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導する一側・他側凹面形肉厚内反射面部を設けてなるものとした構成からなる配光制御レンズとなる。     More specifically, assuming a Y axis extending vertically from the light source virtual origin, an X axis passing through the light source virtual origin and orthogonal to the Y axis, and a Z axis passing through the light source virtual origin and orthogonal to the Y axis and the X axis, A lens bottom surface facing the light source of the lens body, and a lens irradiation surface sandwiching the lens body thick part from the lens bottom surface, opposite to the light source, and the lens irradiation surface from the light source virtual origin on the X axis One side of the X axis is tilted by 20 ° to 85 ° from the Y axis, and one inclined convex lens surface portion is tilted from the light source virtual origin on the X axis to the other side. On the other side of the X axis reversed by 180 °, the other inclined convex lens surface portion tilted by 20 ° to 85 ° from the Y axis is disposed on one side from the light source virtual origin on the Z axis, and the light irradiation is tilted to one side on the Z axis. One side concave lens surface, and virtual light source on Z axis Provided on the other side from the origin and provided with a concave lens surface on the other side that tilts the light irradiation to one side on the Z-axis, the lens bottom surface is in the lens bottom illumination light incident range facing the light source, and the X-axis light source virtual Located on one side of the origin, branched and condensed toward the inclined convex lens surface part, and the one guiding central lens surface part, and the lens bottom illumination light incident range facing the light source, than the X-axis light source virtual origin Z-axis is located on the other side and has the other guiding central lens surface portion that branches and condenses toward the other inclined convex lens surface portion, and is in the range from the lens bottom illumination light incident range surrounding the light source to the outer periphery of the lens irradiation surface. Place the upper light source virtual origin on one side and the other side, and direct the illumination light that refracts around the lens bottom illumination light incidence range to the lens irradiation surface from the illumination light incident from one or the other guiding central lens surface Reflection / guidance The light distribution control lens having the structure that was made by providing an end-the other side concave wall thickness in the reflecting surface portion that.

これを換言すると、光源発光表面中央に仮想した原点より鉛直方向に伸びる照明光照射垂直成分方向をY軸、光源仮想原点を通りY軸に直交する照明距離拡張方向をX軸、光源仮想原点を通りY軸およびX軸に直交する照明幅方向をZ軸と想定した場合、レンズ本体の光源発光表面に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源発光表面とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、光源仮想原点を挟み照明距離拡張方向X軸上の一方に配し、照明光照射方向を照明距離拡張方向X軸の一方にY軸より20°ないし85°傾けた一方傾斜凸レンズ面部、および、光源仮想原点を挟み照明距離拡張方向X軸上の他方に配し、照明光照射方向を照明距離拡張方向X軸の一方とは180°反転したX軸の他方向にY軸より20°ないし85°傾けた他方傾斜凸レンズ面部を有すると共に、照明幅方向Z軸上の光源仮想原点より何れか一側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾ける一側凹レンズ面部、および、照明幅方向Z軸上の光源仮想原点より何れか他側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾ける他側凹レンズ面部を設け、該レンズ底面が、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部を有すると共に、光源、発光表面に対峙するレンズ底面照明光入射範囲の周囲からレンズ照射表面外周縁に至る範囲にあって照明幅方向Z軸上の光源仮想原点を挟み一側および他側に配し、一方・他方誘導中央レンズ面部から入射した照明光の中、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導する一側・他側凹面形肉厚内反射面部を設けてなるものとした構成からなる配光制御レンズとなる。     In other words, the illumination light irradiation vertical component direction extending in the vertical direction from the virtual origin at the center of the light source emission surface is the Y axis, the illumination distance extending direction passing through the light source virtual origin and orthogonal to the Y axis is the X axis, and the light source virtual origin is Assuming that the illumination width direction perpendicular to the Y-axis and the X-axis is the Z-axis, the lens bottom facing the light-emitting surface of the lens body, and the lens body thick part from the lens bottom, opposite to the light-emitting surface A lens irradiation surface that becomes a gap, and the lens irradiation surface is disposed on one side of the illumination distance extension direction X axis across the light source virtual origin, and the illumination light irradiation direction is set on one side of the illumination distance extension direction X axis Y One inclined convex lens surface inclined by 20 ° to 85 ° from the axis and the other on the illumination distance extension direction X axis across the light source virtual origin, and the illumination light irradiation direction is 180 with one of the illumination distance extension directions X axis ° Inverted X And the other inclined convex lens surface portion inclined at 20 ° to 85 ° from the Y-axis in the other direction, and arranged on either side of the light source virtual origin on the illumination width direction Z-axis, and the illumination light irradiation direction is set to the illumination width direction Z One side concave lens surface inclined to any one side on the axis, and arranged on either side from the light source virtual origin on the illumination width direction Z axis, and the illumination light irradiation direction is any one on the illumination width direction Z axis A concave lens surface portion on the other side inclined to the side, and the lens bottom surface is in the lens bottom surface illumination light incident range facing the light source light emitting surface, and is disposed on one side of the light source virtual origin on the X axis of the illumination distance extension direction, One guiding central lens surface that branches and condenses toward the inclined convex lens surface, and the lens bottom illumination light incident range facing the light source light emitting surface, and the other side of the light source virtual origin on the X axis in the illumination distance extension direction To the other side of the inclined convex lens A light source imaginary on the Z axis in the illumination width direction in the range from the periphery of the lens bottom illumination light incident range facing the light source and the light emitting surface to the outer periphery of the lens illumination surface, with the other guiding central lens surface portion for branching and condensing Reflecting and guiding the illumination light that refracts around the lens bottom illumination light incidence range from the illumination light incident on one side and the other side across the origin and incident from one or the other guide central lens surface Thus, the light distribution control lens having a configuration in which the one-side / other-side concave-shaped inner reflection surface portion is provided.

以上のとおり、この発明の配光制御レンズによれば、従前までのものとは違い、上記したとおりの固有の特徴ある構成から、光源仮想原点より鉛直方向に伸びるY軸に直交するX軸方向のより広い範囲に均質な照明光を高輝度のまま到達することができる上、光源仮想原点を通りY軸およびX軸に直交するZ軸方向には、同Z軸上の光源仮想原点より一側に、均質な照明光を傾け、所望の幅員範囲に的確に高輝度照明可能とすることができるから、所定一方向に配列する照明灯具に組み込み採用することにより、X軸方向に配列する照明灯具同士の間隔を格段に延ばし、必要設置照明灯具数を大幅に削減し、より経済性を高めたものとすることができ、しかもZ軸方向の所望範囲に均質且つ高輝度の照明を実現化することができるから、一定方向に長く続く道路やトンネル用の照明灯具に組み込むことにより、路面輝度の規定値を満たすのみでなく、壁面輝度比やグレアTi値規格を満たす設計とすることができ、道路進行方向の、灯具設置間隔を大幅に延ばし、道路区間毎の灯具設置台数を削減し、充分な安全を確保しつつ、一段と経済的な照明管理を実現化することができ、さらに、道路幅員方向道路端にある路肩や歩道およびトンネル壁面をもより均質に照明することができるものになるという秀でた効果を奏するものとなる。     As described above, according to the light distribution control lens of the present invention, unlike the conventional one, the X-axis direction orthogonal to the Y-axis extending in the vertical direction from the light source virtual origin has a unique configuration as described above. In the Z-axis direction passing through the light source virtual origin and perpendicular to the Y axis and the X axis, the uniform illumination light can reach the wider range of the light source from the light source virtual origin on the same Z axis. The illumination light arranged in the X-axis direction can be tilted to the side and can be illuminated with high brightness precisely in the desired width range. The distance between the lamps can be greatly extended, the number of installed lighting lamps can be greatly reduced, the economy can be improved, and uniform and high-brightness illumination in the desired range in the Z-axis direction can be realized. Can be so constant Incorporated into lighting fixtures for roads and tunnels that last long in the direction, it can be designed not only to meet the specified value of road surface brightness, but also to meet the wall brightness ratio and the glare Ti value standard, The installation interval can be greatly extended, the number of lamps installed in each road section can be reduced, and sufficient safety can be achieved while ensuring sufficient safety. As a result, it is possible to illuminate the walkway and tunnel walls more uniformly.

加えて、レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方にY軸より20°ないし85°傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の一方とは180°反転したX軸の他方にY軸より20°ないし85°傾ける他方傾斜凸レンズ面部を有するものとしたから、一方および他方傾斜凸レンズ面部が、Y軸無限大方向に照射する光源照射光の一部を、X軸上光源仮想原点を挟む双方に、40°>170°の挟み角度とするよう均等V分岐・誘導するものとなり、X軸方向のより広い範囲に均質、且つ一段と効率的に照明するものとすることができるから、X軸方向の灯具設置スパンを大幅に拡大し、道路やトンネルなどの一方向に長い施設の照明を格段に効率的なものとすることができる。     In addition, the lens irradiation surface is arranged on one side from the X-axis light source virtual origin, and the light-illuminated virtual origin surface is inclined on one side of the X-axis and tilted by 20 ° to 85 ° from the Y-axis on the X-axis. Since the other inclined X-axis lens surface is inclined 20 ° to 85 ° with respect to the Y-axis on the other side of the X-axis that is 180 ° inverted from one of the X-axis. However, a part of the light source irradiation light irradiated in the Y-axis infinite direction is equally V-branched and guided so that the sandwich angle is 40 °> 170 ° between both sides of the virtual origin on the X-axis. Since it is possible to illuminate more uniformly and more efficiently in a wider area in the axial direction, the lamp installation span in the X-axis direction is greatly expanded, and lighting of facilities that are long in one direction such as roads and tunnels is possible. Be much more efficient It is possible.

さらに、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設けたものとしたから、一側および他側凹レンズ面部が、Y軸無限大方向に照射する光源照射光の他部をZ軸上光源仮想原点よりも一側に傾けるよう指向・誘導するものとなり、路面輝度の規定値を満たすのみでなく、壁面輝度比やグレアTi値規格を満たす設計とし、照明幅方向であるZ軸方向の所望する範囲に正確且つ均質な照明を実現化し、例えば、レンズ本体の設置姿勢角度を調節せずとも、照明光に道路幅員方向(Z軸方向)への傾きを与え、トンネル壁面や歩道などへも安定且つ均質な光が届くものとすることができる。     Furthermore, it is arranged on one side from the Z-axis light source virtual origin, and is arranged on the other side from the Z-axis light source virtual origin, and the one-side concave lens surface part that tilts the light irradiation to one side on the Z-axis, and the light irradiation is Z Since the other-side concave lens surface portion that is inclined to one side on the axis is provided, the other-side concave lens surface portion irradiates the other part of the light source irradiation light that irradiates in the Y-axis infinite direction from the Z-axis light source virtual origin. Is designed to meet not only the specified value of road surface brightness but also the wall surface brightness ratio and glare Ti value standard, and within the desired range in the Z-axis direction that is the illumination width direction. Realize accurate and uniform illumination, for example, without adjusting the installation posture angle of the lens body, the illumination light is tilted in the road width direction (Z-axis direction), and it is stable and homogeneous even on tunnel walls and sidewalks Light can reach.

レンズ底面が、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部を有するものは、光源発光表面が照射する照射光を、レンズ照射表面の一方および他方傾斜凸レンズ面部夫々に、効率的に屈折、均質に集光可能なものとすることができ、照明光照射垂直成分方向であるY軸無限大方向に向かおうとする照射光を、Y軸−X軸面において光源仮想原点を基点とするV字形に分岐し、照明距離拡張方向であるX軸の両無限大方向に傾け、均質に分散するよう誘導し、一方および他方傾斜凸レンズ面部の夫々に効率的に到達するものとし、一段と高輝度の照明を実現化するものとなる。     The lens bottom surface is in the lens bottom surface illumination light incident range facing the light source light emitting surface, and is placed on one side of the light source virtual origin on the X-axis of the illumination distance extension direction, and branches and converges toward the inclined convex lens surface part. On the other hand, it is located on the other side of the light source virtual origin on the X-axis of the illumination distance extending direction in the lens bottom surface illumination light incident range facing the light source light emitting surface and branching toward the other inclined convex lens surface portion The one having the other guiding central lens surface portion that condenses can efficiently refract and uniformly collect the irradiation light irradiated by the light source emitting surface on one and the other inclined convex lens surface portions of the lens irradiation surface, respectively. Illumination light that is directed to the Y-axis infinity direction, which is the vertical direction of illumination light illumination, can be branched into a V-shape with the virtual light source as the origin on the Y-axis-X-axis plane, and the illumination distance extension direction so That tilted both infinity of X-axis, and induced to homogeneously dispersed, shall one and the other inclined convex surface portion efficiently reach the respective, and which further realizes the illumination of high luminance.

さらに、光源発光表面に対峙するレンズ底面照明光入射範囲の周囲からレンズ照射表面外周縁に至る範囲であって、照明幅方向Z軸上の光源仮想原点を挟み一側および他側に設けた一側・他側凹面形肉厚内反射面部は、レンズ底面照明光入射範囲の一方・他方誘導中央レンズ面部から入射した照明光の中、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導するから、照明幅方向Z軸方向の所望する範囲により均質且つ高輝度の照明を実現化することができる。     In addition, it is a range from the periphery of the lens bottom surface illumination light incident range facing the light source emission surface to the outer periphery of the lens irradiation surface, and is provided on one side and the other side across the light source virtual origin on the illumination width direction Z axis. The side and other concave concave internal reflection surfaces are lenses that refract the illumination light that refracts around the lens bottom illumination light incidence range from among the illumination light incident from one or the other guide center lens surface of the lens bottom illumination light incidence range. Since the light is reflected / guided toward the irradiation surface, uniform and high-luminance illumination can be realized in a desired range in the illumination width direction Z-axis direction.

レンズ底面が、光源に対峙する範囲よりも外がわであって、照明光照射の妨げとならない一箇所か、照明光照射の妨げとならないよう適宜選択した複数箇所か、または、照明光照射の妨げとならない均衡する複数箇所かの何れか一に支持脚部を設けたものは、光源および配光制御レンズのマウントベースや灯具筐体がわなどの被装着がわに、支持台部品などを設ける必要がなく、製造・組み立て工数を大幅削減し、より効率的且つ正確に組み立て可能なものとすることができる。     The bottom surface of the lens is outside the range facing the light source and is one place that does not interfere with illumination light irradiation, or multiple places that are appropriately selected so as not to interfere with illumination light irradiation, or illumination light irradiation If the support legs are installed at any one of the balanced locations that do not interfere, the mounting base of the light source and the light distribution control lens There is no need to provide it, and the number of manufacturing and assembling steps can be greatly reduced, and assembly can be performed more efficiently and accurately.

レンズ照射表面の外周壁輪郭形状を、Y軸無限大方向に向かうに従い漸次階段状に縮小する、フレンネル形としたものは、照明光をより均質に分散し、照明輝度を高めると共に、グレアを低減し、より快適で視認性に秀でた照明を実現化するものとなり、特に交通安全が重視される道路やトンネルなどの照明灯具に適したものとなる。     The outer peripheral wall contour shape of the lens irradiation surface is gradually reduced in a stepped manner toward the infinity direction of the Y axis, and the Frennel shape distributes the illumination light more uniformly, increases the illumination brightness, and reduces the glare. Therefore, it is possible to realize lighting that is more comfortable and has excellent visibility, and is particularly suitable for lighting lamps such as roads and tunnels where traffic safety is important.

レンズ照射表面およびレンズ底面が、Y軸−Z軸面を対称面とした面対称形状のものは、照明距離拡張方向であるX軸方向、および、照明幅方向Z軸方向の所望幅範囲の照明光を、光源仮想原点を境とし、同X軸方向の両無限大方向に同一の範囲、同一の輝度を得るものとするから、複数基の照明灯具をより広い照明灯具間隔とするよう、同X軸方向に配列設置した場合に、同X軸方向の照明範囲における照明輝度を均質に維持することができ、照明灯具の設置数を大幅削減可能とすると共に、均質且つ充分な照明輝度を達成可能なものとすることができる。     When the lens irradiation surface and the lens bottom surface are symmetrical with respect to the Y-axis-Z-axis plane, illumination in the desired width range in the X-axis direction that is the illumination distance extension direction and the illumination width direction Z-axis direction Since the light has the same range and the same brightness in both infinite directions in the same X-axis direction with the light source virtual origin as the boundary, the same number of lighting lamps are set to have wider lighting lamp intervals. When arranged in the X-axis direction, the illumination brightness in the illumination range in the X-axis direction can be maintained uniformly, and the number of lighting fixtures can be greatly reduced, and a uniform and sufficient illumination brightness is achieved. Can be possible.

上記したとおりの構成からなるこの発明の実施に際し、その最良もしくは望ましい形態について説明を加えることにする。
光源は、電源供給を受けて発光し、この発明の配光制御レンズに照明光を照射し、該配光制御レンズによる配光制御の下、所望範囲を所望輝度に照明可能とするよう、充分な出力で安定発光可能とする機能を担い、例えば、水銀灯、ナトリウム灯、蛍光灯、メタルハイドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、HIDランプ(High Intensity Discharje Lamp)、LED(Light Emitting Diode)ランプ、その他の照明用光源とすることができ、後述する実施例にも示すように、マルチチップ、COB・LED(chip on board・Light Emitting Diode)とすることができる。
In implementing the present invention having the above-described configuration, the best or desirable mode will be described.
The light source emits light upon receiving power supply, illuminates the light distribution control lens of the present invention with illumination light, and is capable of illuminating a desired range with a desired luminance under the light distribution control by the light distribution control lens. For example, a mercury lamp, a sodium lamp, a fluorescent lamp, a metal hydride lamp, a sodium lamp, a halogen lamp, a xenon lamp, a HID lamp (High Intensity Discharge Lamp), and an LED (Light Emitting Diode). It can be used as a lamp or other illumination light source, and can also be a multi-chip, COB / LED (chip on board / Light Emitting Diode), as shown in the examples described later.

光源仮想原点は、光源の発光範囲の中央に設定した光源仮想原点ということができ、この発明の配光制御レンズにおける光学的各部形状および配置の三次元的目安となる機能を担っており、より具体的に示すと、照明光照射垂直成分方向を示すY軸、照明距離拡張方向(例えば道路進行方向)を示すX軸、および、照明幅方向(例えば道路幅員方向)を示すZ軸が互いに交叉する一点ということができ、各種ランプ類の発光中心位置とすることが可能である外、後述する実施例にも示すように、マルチチップ、COB・LEDの発光面中央位置に仮想設定したものとすることができる。     The light source virtual origin can be referred to as a light source virtual origin set at the center of the light emission range of the light source, and is responsible for a function serving as a three-dimensional guide for the shape and arrangement of each optical part in the light distribution control lens of the present invention. Specifically, the Y axis indicating the illumination light irradiation vertical component direction, the X axis indicating the illumination distance extending direction (for example, the road traveling direction), and the Z axis indicating the illumination width direction (for example, the road width direction) cross each other. In addition to being able to be the light emission center position of various lamps, as shown in the examples described later, it is assumed that the light emission surface center position of the multichip, COB / LED is virtually set can do.

Y軸は、照明光照射垂直成分方向を仮想的に示す機能を担い、様々な種類の中から選択し、配光制御の対象に選択した光源が、該光源発光点から拡散状に放つ光の中、何れか一方向に照射する方向ということが可能であり、より具体的に示すと、例えばランプ類を光源とする場合には、ランプのフィラメントなどの発光部分の中心位置から、例えば電力供給部(口金や基板など)がわとは反対がわとなる照明方向中央に延伸した仮想直線ということができ、後述する実施例にも示すように、マルチチップ、COB・LEDの発光面中央位置に仮想設定した光源仮想原点から、該マルチチップ、COB・LED発光面から照明方向に向け、垂直に延伸した仮想直線とすることができる。     The Y axis has a function of virtually indicating the illumination light irradiation vertical component direction, selected from various types, and the light source selected as the object of light distribution control diffuses light emitted from the light source emission point in a diffuse manner. In particular, for example, when a lamp is used as a light source, for example, power is supplied from the center position of a light emitting portion such as a filament of the lamp. It can be said that the part (base, substrate, etc.) is an imaginary straight line extending in the center of the illumination direction opposite to the side, and as shown in the examples to be described later, the center position of the light emitting surface of the multichip, COB / LED A virtual straight line extending vertically from the light source virtual origin to the illumination direction from the light emitting surface of the multichip and the COB / LED.

X軸は、光源に対し、この発明の配光制御レンズを組み合わせた場合に、Y軸に直交する一方向に延伸する仮想直線を示す機能を有し、より具体的には、この発明の配光制御レンズが、光源からの照明光をより遠くに到達可能とするよう配光制御しようとする直線方向を示すものであり、後述する実施例にも示すように、トンネルに当該配光制御レンズを組み込んだ照明灯具を設置した場合に、道路進行方向となり、照明距離を拡張すべき方向を示す仮想直線ということができる。     The X axis has a function of showing a virtual straight line extending in one direction perpendicular to the Y axis when the light distribution control lens of the present invention is combined with a light source. More specifically, the X axis of the present invention The light control lens indicates a linear direction in which light distribution control is to be performed so that illumination light from the light source can reach farther. As shown also in an embodiment described later, the light distribution control lens is provided in the tunnel. It can be said that it is a virtual straight line that indicates the direction in which the road travels and the direction in which the illumination distance should be extended.

Z軸は、光源に対し、この発明の配光制御レンズを組み合わせた場合に、光源発光点である光源仮想原点でY軸およびX軸に直交する方向に延伸する仮想直線を示す機能を有していて、より具体的には、この発明の配光制御レンズが、光源からの照明光を所望の幅員範囲に向けてより均質に照射可能とするよう配光制御しようとする直線方向を示すものであり、後述する実施例にも示すように、トンネルに当該配光制御レンズを組み込んだ照明灯具を設置した場合に、道路幅員方向を示す仮想直線とし、道路進行方向を示すX軸に直交する直線として想定したものとすることができる。     The Z-axis has a function of showing a virtual straight line extending in a direction perpendicular to the Y-axis and the X-axis at the light source virtual origin which is the light source emission point when the light distribution control lens of the present invention is combined with the light source. More specifically, the light distribution control lens of the present invention indicates a linear direction in which light distribution control is performed so that illumination light from a light source can be irradiated more uniformly toward a desired width range. As shown in the examples described later, when an illumination lamp incorporating the light distribution control lens is installed in the tunnel, it is a virtual straight line indicating the road width direction and orthogonal to the X axis indicating the road traveling direction. It can be assumed as a straight line.

レンズ本体は、この発明の配光制御レンズの本体となり、照明灯具などに組み込み可能なものとし、光源が発する光を屈折・反射を伴って誘導し、所望の配光制御を可能とする機能を担い、レンズ本体肉厚部の光源と対峙するがわにレンズ底面を設け、該レンズ底面とレンズ本体肉厚部を挟み反対となるがわにレンズ照射表面を設け、レンズ照射表面の適所に一方傾斜凸レンズ面部、他方傾斜凸レンズ面部、一側凹レンズ面部および他側凹レンズ面部を設けたものとしなければならず、より具体的に示すと、後述する実施例にも示すように、レンズ底面の光源に対峙する照明光入射範囲に、一方誘導中央レンズ面部および他方誘導中央レンズ面部を設け、該照明光入射範囲周囲に一側・他側凹面形肉厚内反射面部を設けたものとするのが望ましく、さらに、表現を変えて示すと、石英レンズや蛍石レンズなどのガラスレンズ本体、合成ガラスレンズ本体、または、PMMA(ポリメタクリル酸メチル樹脂)やポリカーボネートなどの有機ガラスやプラスチックレンズ本体とすることが可能であり、適宜コーティングを施したものとすることができる。     The lens body is the main body of the light distribution control lens of the present invention, and can be incorporated into an illumination lamp, etc., and has the function of guiding light emitted from the light source with refraction and reflection to enable desired light distribution control. The opposite side of the lens body is the opposite side of the lens body, and the opposite side of the lens body is the opposite side of the lens body. The inclined convex lens surface part, the other inclined convex lens surface part, the one side concave lens surface part, and the other side concave lens surface part must be provided. More specifically, as shown in the examples described later, Desirably, one guiding central lens surface portion and the other guiding central lens surface portion are provided in the facing illumination light incident range, and one side and the other concave concave thickness reflection surface portion are provided around the illumination light incident range. Furthermore, in other words, a glass lens body such as a quartz lens or a fluorite lens, a synthetic glass lens body, or an organic glass or plastic lens body such as PMMA (polymethyl methacrylate resin) or polycarbonate is used. And can be appropriately coated.

レンズ底面照明光入射範囲は、光源が発する光を、レンズ本体肉厚部に迎え入れると共に、所望する方向に屈折・誘導可能とする機能を担い、一方誘導中央レンズ面部および他方誘導中央レンズ面部を有するものとすべきであり、一方誘導中央レンズ面部は、光源から発する光の一部を、レンズ照射表面一方傾斜凸レンズ面部に向けて分岐するよう屈折する機能を担い、また、他方誘導中央レンズ面部は、光源から発する光の他部を、レンズ照射表面他方傾斜凸レンズ面部に向けて分岐するよう屈折する機能を担っている。     The lens bottom illumination light incident range has a function of allowing light emitted from the light source to enter the thick portion of the lens body and refracting and guiding it in a desired direction, and has one guiding central lens surface portion and the other guiding central lens surface portion. One guiding central lens surface part has a function of refracting a part of the light emitted from the light source so as to be branched toward the lens irradiation surface one inclined convex lens surface part, and the other guiding central lens surface part is The other part of the light emitted from the light source is refracted so as to be branched toward the other side of the lens irradiation surface and the inclined convex lens surface.

レンズ底面一側・他側凹面形肉厚内反射面部は、レンズ底面照明光入射範囲より入射し、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導可能とする機能を担っており、該一側・他側凹面形肉厚内反射面部に照射する光に対し、該一側・他側凹面形肉厚内反射面部の角度を、高反射率を確保可能な形状および姿勢のものとするのが望ましく、高反射率の反射被膜を設けたものとすることができる。     The lens bottom one side and the other side concave-shaped internal reflection surface can reflect and guide the illumination light that is incident from the lens bottom illumination light incidence range and refracts around the lens bottom illumination light incidence range toward the lens irradiation surface. The angle of the one-side / other-side concave inner reflection surface portion is ensured with a high reflectivity with respect to the light irradiated to the one-side / other-side concave inner reflection surface portion. It is desirable to have a possible shape and posture, and a reflective film having a high reflectance can be provided.

レンズ照射表面一方傾斜凸レンズ面部は、レンズ照射表面を通じてレンズ本体肉厚部を抜け、照明光照射垂直成分方向であるY軸の無限大方向、ないし、照明距離拡張方向であるX軸の正負無限方向に向かうよう外がわに照射する光を、光源仮想原点を境とし、照明距離拡張方向であるX軸の一方向に傾斜するよう屈折・誘導可能とする機能を担うもので、高効率に光りを透過し、所望の方向に集光および均質に拡散可能なものとしなければならず、より具体的に示すと、レンズ照射表面のX軸上光源仮想原点より一方に配し、光照射をX軸の一方無限方向にY軸より20°ないし85°傾けるよう屈折・集光および拡散可能な形状のものとすべきであり、他方傾斜凸レンズ面部と共にY軸無限大方向に照射する光源照射光の一部をX軸上光源仮想原点を挟む双方に、40°>170°の挟み角度とするよう均等V分岐・誘導可能なものとするのが望ましく、一方・他方傾斜凸レンズ面部双方の照射光間挟み角度が、40°未満の場合には、X軸方向の照明距離拡張性が損なわれてしまい、照明範囲を狭めてしまうものとなり、また、同挟み角度が170°を超えるものの場合には、Y軸無限大方向の照明光輝度が著しく低下し、効率的且つ均質な照明を実現化することができなくなるという欠点を生ずる虞がある。     The lens irradiation surface, one inclined convex lens surface portion, passes through the lens main body thick portion through the lens irradiation surface, and the infinity direction of the Y axis that is the illumination light irradiation vertical component direction, or the positive and negative infinity direction of the X axis that is the illumination distance extension direction. It has a function to refract and guide the light radiated to the outside toward the light source so that it can be tilted in one direction of the X axis, which is the illumination distance extension direction, with the light source virtual origin as the boundary. More specifically, it can be condensed and uniformly diffused in a desired direction. More specifically, it is arranged on one side of the light source virtual origin on the X-axis of the lens irradiation surface, and the light irradiation is X It should have a shape that can be refracted, condensed and diffused so that it tilts 20 ° to 85 ° from the Y-axis in one infinite direction of the axis, and the light source irradiation light that irradiates in the Y-axis infinite direction together with the inclined convex lens surface portion. Part of X-axis light source It is desirable to be able to equally V-branch and guide so that the angle between 40 ° and 170 ° is sandwiched between both sides of the virtual origin, and the angle between the irradiated light on both the one and other inclined convex lens surfaces is less than 40 ° In this case, the illumination distance expandability in the X-axis direction is impaired, and the illumination range is narrowed. In the case where the sandwich angle exceeds 170 °, the illumination in the Y-axis infinite direction is performed. There is a possibility that the light luminance is remarkably lowered, resulting in the disadvantage that efficient and homogeneous illumination cannot be realized.

レンズ照射表面他方傾斜凸レンズ面部は、レンズ照射表面を通じてレンズ本体肉厚部を抜け、照明光照射垂直成分方向であるY軸の無限大方向、ないし、照明距離拡張方向であるX軸の正負無限方向に向かうよう外がわに照射する光を、光源仮想原点を境とし、照明距離拡張方向であるX軸の他方に傾斜するよう屈折・誘導可能とする機能を有していて、高効率に光りを透過し、所望の方向に集光および均質に拡散可能なものとしなければならず、より具体的に示すと、レンズ照射表面のX軸上光源仮想原点より、一方傾斜凸レンズ面部とは180°反転したX軸の他方に配し、光照射をX軸の他方無限方向にY軸より20°ないし85°傾けるよう屈折・集光および拡散可能な形状のものとすべきである。     The lens irradiation surface, the other inclined convex lens surface part, passes through the lens body thick part through the lens irradiation surface, and the infinity direction of the Y axis that is the illumination light irradiation vertical component direction, or the positive and negative infinity direction of the X axis that is the illumination distance extension direction. It has a function that can refract and guide the light radiated to the outside so as to be inclined toward the other of the X axis, which is the illumination distance extension direction, with the light source virtual origin as the boundary, and shines with high efficiency. More specifically, it can be condensed and uniformly diffused in a desired direction. More specifically, from the virtual origin of the light source on the X axis of the lens irradiation surface, one inclined convex lens surface portion is 180 ° It should be placed on the other side of the inverted X-axis so that it can be refracted, condensed and diffused so that the light irradiation is inclined 20 ° to 85 ° from the Y-axis in the other infinite direction of the X-axis.

レンズ照射表面一側凹レンズ面部および他側凹レンズ面部は、レンズ照射表面を通じてレンズ本体肉厚部を抜け、照明光照射垂直成分方向であるY軸の無限大方向、ないし、照明距離拡張方向X軸に直交する照明幅方向であるZ軸の正負無限大方向に向かおうとする照明光を、該Z軸の正負方向の所望する何れか一方に向けて傾斜するよう屈折・誘導可能とする機能を担い、高効率に光りを透過し、所望の方向に集光および均質に拡散可能なものとしなければならず、より具体的に示すと、後述する実施例にも示すとおり、一側凹レンズ面部は、照明幅方向Z軸上の光源仮想原点より何れか一側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾けるものとなり、他側凹レンズ面部は、照明幅方向Z軸上の光源仮想原点より何れか他側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾けるものとすべきである。     The lens illumination surface one side concave lens surface part and the other side concave lens surface part pass through the lens main body thick part through the lens illumination surface, and the illumination light irradiation vertical component direction is the infinity direction of the Y axis or the illumination distance extending direction X axis. It has a function to refract and guide the illumination light to be directed in the positive and negative infinity direction of the Z axis, which is the orthogonal illumination width direction, so as to incline toward any one of the positive and negative directions of the Z axis. In addition, it must be capable of transmitting light with high efficiency, condensing and uniformly diffusing in a desired direction, and more specifically, as shown in the examples described later, It is arranged on either side of the light source virtual origin on the illumination width direction Z-axis, and the illumination light irradiation direction is inclined to any one side on the illumination width direction Z-axis. Either from the virtual light source origin on the axis Placed on the side, it should be assumed that tilting the illumination light direction to any one side of the illumination width direction Z-axis.

レンズ底面照明光入射範囲は、この発明の配光制御レンズのレンズ本体に、光源が発する照射光を高効率且つ所望の入射角度を持つて入射可能とする機能を有し、光源に対峙するよう設置可能なものとしなければならず、照明光照射垂直成分方向であるY軸に対し垂直な平面状のものとすることが可能である外、照明光照射垂直成分方向であるY軸上の無限遠方向に凹欠する凹面状のものとしたり、照明光照射垂直成分方向であるY軸上の光源仮想原点に向けて突出する凸面状のものとしたりすることが可能であり、望ましくは、後述する実施例にも示すように、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部からなるものとするのが良い。     The lens bottom illumination light incident range has a function that allows the irradiation light emitted from the light source to be incident on the lens body of the light distribution control lens of the present invention with high efficiency and a desired incident angle so as to face the light source. In addition to being able to be installed in a plane that is perpendicular to the Y axis that is the illumination light irradiation vertical component direction, it can be infinite on the Y axis that is the illumination light irradiation vertical component direction. It is possible to use a concave shape that is recessed in the far direction, or a convex shape that protrudes toward the light source virtual origin on the Y-axis that is the illumination light irradiation vertical component direction. As shown in the embodiment, the lens bottom surface illumination light incidence range facing the light source emission surface is arranged on one side of the light source virtual origin on the X axis of the illumination distance extension direction, and toward the inclined convex lens surface part. Branching and condensing while guiding The lens surface and the other of the lens bottom surface illumination light incident range facing the light source light emitting surface, the other being arranged on the other side from the virtual origin on the X axis of the illumination distance extending direction, and branching / condensing toward the other inclined convex lens surface portion It is good to consist of a guidance center lens surface part.

照明光入射範囲の一方誘導中央レンズ面部は、レンズ底面照明光入射範囲の照明距離拡張方向X軸上の光源仮想原点よりも一方となる範囲に入射した照明光を、一方傾斜凸レンズ面部に向けて分岐・集光可能とする機能を有し、一方傾斜凸レンズ面部の光軸に交叉する角度姿勢とした平面状とすることができる外、一方傾斜凸レンズ面部に向けて凹欠する凹面状、または、後述する実施例にも示すように、光源に向けて突出する凸面状の何れか1つの形状のものとすることができる。     The one guiding central lens surface portion of the illumination light incident range is directed toward the one inclined convex lens surface portion with the illumination light incident on one of the ranges from the light source virtual origin on the X-axis of the illumination distance extension direction of the lens bottom surface illumination light incident range. It has a function of allowing branching and condensing, and can be a flat surface with an angular orientation that intersects the optical axis of one inclined convex lens surface part, or a concave surface that is recessed toward one inclined convex lens surface part, or As shown also in the Example mentioned later, it can be set as the thing of any one of the convex surface shape which protrudes toward a light source.

照明光入射範囲の他方誘導中央レンズ面部は、レンズ底面照明光入射範囲の照明距離拡張方向X軸上の光源仮想原点よりも他方となる範囲に入射した照明光を、他方傾斜凸レンズ面部に向けて分岐・集光可能とする機能を担い、他方傾斜凸レンズ面部の光軸に交叉する角度姿勢とした平面状とすることができる外、他方傾斜凸レンズ面部に向けて凹欠する凹面状、または、後述する実施例にも示すように、光源に向けて突出する凸面状の何れか1つの形状のものとすることができる。     The other guiding central lens surface part of the illumination light incident range is directed toward the other inclined convex lens surface part with the illumination light incident on the other side of the light source virtual origin on the X-axis of the illumination distance extension direction of the lens bottom illumination light incident range. In addition to being able to be branched / condensable, it can have a planar shape with an angular orientation that intersects the optical axis of the other inclined convex lens surface portion, or a concave shape that is recessed toward the other inclined convex lens surface portion, or described later As shown also in the embodiment to which it does, it can be set as the thing of any one shape of the convex surface shape which protrudes toward a light source.

レンズ底面一側・他側凹面形肉厚内反射面部は、レンズ本体肉厚部を通り、レンズ底面照明光入射範囲の周囲からレンズ照射表面外周縁に至る範囲に照射する照明光をレンズ照射表面に向けて効率的に反射する機能を担っており、レンズ底面照明光入射範囲に対して適宜入射角度を持ち、レンズ照射表面に対しては適宜反射角度を持つよう、レンズ底面照明光入射範囲およびレンズ照射表面の双方に対峙する平面状とすることができる外、レンズ底面照明光入射範囲およびレンズ照射表面の双方に中央が近付くよう凹欠した凹面状(肉厚中に向けて凸面状)のものとすることができ、肉厚内側に向け、より高反射率を達成可能とする反射被膜を設けたものとすることが可能であり、この発明の実施例にも示すように、レンズ底面照明光入射範囲およびレンズ照射表面の双方肉厚外に向けて突出状となる肉厚内凹面状のものとすることができる。     The lens bottom surface one side and the other side concave-shaped inner reflection surface part passes through the lens body thick part, and the illumination light that irradiates the area from the periphery of the lens bottom illumination light incident range to the outer periphery of the lens irradiation surface. The lens bottom illumination light incident range and the lens bottom illumination light incident range and the lens illumination surface have an appropriate incident angle and an appropriate reflection angle with respect to the lens irradiation surface. In addition to being able to have a flat shape that faces both of the lens irradiation surface, it has a concave shape (convex shape toward the wall thickness) that is recessed so that the center approaches both the lens bottom illumination light incident range and the lens irradiation surface. It is possible to provide a reflective coating that can achieve a higher reflectance toward the inner side of the wall thickness, and as shown in the embodiments of the present invention, the lens bottom illumination Light incident range And it can be made of meat Atsunai concave shape that is protruded toward both meat Atsugai lens irradiation surface.

レンズ底面は、光源に対峙する範囲よりも外がわであって、照明光照射の妨げとならない一箇所か、照明光照射の妨げとならないよう適宜選択した複数箇所か、または、照明光照射の妨げとならない均衡する複数箇所かの何れか一に支持脚部を設けてなるものとすることができ、該支持脚部は、灯具筐体や基板などの固定対象物に対して正確に位置決めし、確りと取付け可能とする機能を担い、レンズ本体とは別体の部品として製造し、脱着可能か、または脱着不能かの何れか一方とするよう後付けしたものとすることができる外、レンズ本体に一体化成型したものとすることができ、ネジやリベット装着用などの取付孔や溝、クランプ機構の一部などのブラケット部などとして設けたものとすることができ、後述する実施例にも示すように、長溝を設けて取り付け位置を微調整可能なものとするのが良い。     The bottom surface of the lens is outside the range facing the light source and is one place that does not interfere with illumination light irradiation, or a plurality of locations that are appropriately selected so as not to interfere with illumination light irradiation, or the illumination light irradiation Supporting leg portions may be provided at any one of a plurality of balanced positions that do not hinder, and the supporting leg portions are accurately positioned with respect to a fixed object such as a lamp housing or a substrate. The lens body, which has a function to make sure that it can be attached, is manufactured as a separate part from the lens body, and can be attached or detached so that it can be attached or detached. And can be provided as mounting holes and grooves for attaching screws and rivets, brackets such as a part of the clamp mechanism, etc. As shown Amount may be capable finely adjusting the mounting position provided long groove.

さらにまた、後述する実施例にも示すように、レンズ照射表面は、その外周壁輪郭形状を、Y軸無限大方向に向かうに従い漸次階段状に縮小する、フレンネル形のものとしてなるものとすることが可能であり、レンズ照射表面およびレンズ底面が、Y軸−Z軸面を対称面とした面対称形状のものとすることができ、そしてまた、レンズ照射表面の一方傾斜凸レンズ面部、他方傾斜凸レンズ面部、一側凹レンズ面部および他側凹レンズ面部の互いの境界部分は、谷状の境界部分とすることが可能であるが、照明の均質化を得るには、境界線を明確化しないよう、できるだけ滑らかな曲面で連続するものとするのが望ましく、例えば、互いの境界部分をフレンネル状の複数の溝や凸条からなるものとしたり、照明光を拡散可能な光学的被膜を設けたものとしたり、磨りガラス状の拡散処理部を設けたものなどとすることが可能である。
以下では、図面に示すこの発明を代表する実施例と共に、その構造について詳述することとする。
Furthermore, as shown in the examples described later, the lens irradiation surface is assumed to have a Frennel shape in which the outer peripheral wall contour shape is gradually reduced in a stepwise manner toward the Y axis infinite direction. The lens irradiation surface and the lens bottom surface can have a plane-symmetric shape with the Y-axis-Z-axis plane as a symmetry plane, and one inclined convex lens surface portion and the other inclined convex lens of the lens irradiation surface. The boundary portion of the surface portion, the concave lens surface portion on one side and the concave lens surface portion on the other side can be a valley-shaped boundary portion, but in order to obtain uniform illumination, as much as possible not to clarify the boundary line It is desirable that it be continuous with a smooth curved surface. For example, the boundary between each other consists of a plurality of frennel-shaped grooves and ridges, or an optical coating capable of diffusing illumination light is provided. Or a thing, it is possible to, such as those having a glassy diffusion processing unit worn.
In the following, the structure of the present invention will be described in detail together with an embodiment representative of the present invention shown in the drawings.

図面は、この発明の配光制御レンズの技術的思想を具現化した代表的な幾つかの実施例を示すものである。
配光制御レンズを示す正面図である。 配光制御レンズを示す側面図である。 配光制御レンズを示す平面図である。 配光制御レンズを示す斜視図である。 配光制御レンズの底面形状を破線で示す斜視図である。 配光制御レンズを断面化して示す正面図である。 配光制御レンズを断面化して示す側面図である。 マウントベース部に搭載した配光制御レンズを示す正面図である。 配光制御レンズを通過する照明光を示す正面図である。 配光制御レンズのY軸−X軸方向の配光性能解析結果を示す規格化ファーフィールド分布断面図である。 配光制御レンズを通過する照明光を示す側面図である。 配光制御レンズのY軸−Z軸方向の配光性能解析結果を示す規格化ファーフィールド分布断面図である。
The drawings show some typical embodiments embodying the technical idea of the light distribution control lens of the present invention.
It is a front view which shows a light distribution control lens. It is a side view which shows a light distribution control lens. It is a top view which shows a light distribution control lens. It is a perspective view which shows a light distribution control lens. It is a perspective view which shows the bottom face shape of a light distribution control lens with a broken line. It is a front view which cuts and shows the light distribution control lens. It is a side view which cuts and shows the light distribution control lens. It is a front view which shows the light distribution control lens mounted in the mount base part. It is a front view which shows the illumination light which passes a light distribution control lens. It is a normalized far field distribution sectional view showing the light distribution performance analysis result of the light distribution control lens in the Y axis-X axis direction. It is a side view which shows the illumination light which passes a light distribution control lens. It is a normalized far field distribution sectional view showing the light distribution performance analysis result of the light distribution control lens in the Y-axis-Z direction.

図1ないし図9および図11に示す事例は、光源5仮想原点0より鉛直方向に伸びるY軸、光源5仮想原点0を通りY軸に直交するX軸、光源5仮想原点0を通りY軸およびX軸に直交するZ軸を想定した場合、レンズ本体10の光源5に対峙するレンズ底面3、およびレンズ底面3からレンズ本体肉厚部10を挟み、光源5とは反対がわとなるレンズ照射表面2を有し、該レンズ照射表面2が、X軸上光源5仮想原点0より一方に配し、光照射LをX軸の一方に傾ける一方傾斜凸レンズ面部20、および、X軸上光源5仮想原点0より他方に配し、光照射LをX軸の他方に傾ける他方傾斜凸レンズ面部21を有すると共に、Z軸上光源5仮想原点0より一側に配し、光照射LをZ軸上の一側に傾ける一側凹レンズ面部22、および、Z軸上光源5仮想原点0より他側に配し、光照射LをZ軸上の一側に傾ける他側凹レンズ面部23を設けてなるものとした、この発明の配光制御レンズにおける代表的な一実施例を示すものである。     The example shown in FIGS. 1 to 9 and FIG. 11 includes a Y-axis extending vertically from the light source 5 virtual origin 0, an X-axis passing through the light source 5 virtual origin 0 and orthogonal to the Y-axis, and a Y-axis passing through the light source 5 virtual origin 0. Assuming the Z axis orthogonal to the X axis, the lens bottom surface 3 facing the light source 5 of the lens body 10, and a lens that sandwiches the lens body thick portion 10 from the lens bottom surface 3 and is opposite to the light source 5 An illumination surface 2, the lens illumination surface 2 is arranged on one side from the virtual origin 0 on the X-axis light source 5, a one-side inclined convex lens surface portion 20 that tilts the light irradiation L to one side of the X-axis, and an X-axis light source 5 is arranged on the other side from the virtual origin 0, and has the other inclined convex lens surface portion 21 for inclining the light irradiation L to the other side of the X axis, and is arranged on one side from the virtual light source 0 on the Z-axis on the Z axis. One side concave lens surface part 22 tilted to one side above and on the Z axis A typical implementation of the light distribution control lens of the present invention, which is provided on the other side of the source 5 virtual origin 0 and provided with the other-side concave lens surface portion 23 for tilting the light irradiation L to one side on the Z axis. An example is given.

それら各図からも明確に把握できるとおり、当該実施例の配光制御レンズ1は、トンネル照明灯具用のものであり、図8に示すように、LED光源5が、灯具筐体内に設けたマウントベース部6の所定箇所に、LED光源5用基板51を貫通状に嵌合し、該LED光源5用基板51表面中央に、所定面積のLED光源5発光表面50を有するマルチチップ、COB・LED(chip on board・Light Emitting Diode)5を組み込み、該マルチチップ、COB・LED5周囲のLED光源5用基板51およびマウントベース部6の表面に、反射シート52を貼着してなるものとし、該マルチチップ、COB・LED5であるLED光源5発光表面50の中央に仮想した原点0を設定し、該仮想した原点0より鉛直方向に伸びる照明光照射垂直成分方向をY軸、光源5仮想原点0を通りY軸に直交する照明距離拡張方向としての道路進行方向をX軸、光源5仮想原点0を通りY軸およびX軸に直交する照明幅方向としての道路幅員方向をZ軸(図2ないし図5、図7に示す)と想定した場合、レンズ本体10のLED光源5発光表面50に対峙するレンズ底面3、およびレンズ底面3からレンズ本体肉厚部10を挟み、LED光源5発光表面50とは反対がわとなるレンズ照射表面2を有するものとする。     As can be clearly seen from these drawings, the light distribution control lens 1 of this embodiment is for a tunnel illumination lamp, and as shown in FIG. 8, the LED light source 5 is mounted in a lamp housing. A multi-chip, COB / LED, in which a substrate 51 for an LED light source 5 is fitted in a predetermined position of the base portion 6 and the LED light source 5 has a light emitting surface 50 in the center of the surface of the substrate 51 for the LED light source 5 (Chip on board / Light Emitting Diode) 5 is incorporated, and a reflective sheet 52 is attached to the surface of the multi-chip, the substrate 51 for the LED light source 5 around the COB / LED 5 and the mount base 6, A virtual origin 0 is set at the center of the light emitting surface 50 of the LED light source 5 which is a multi-chip, COB / LED 5, and lead is generated from the virtual origin 0. The illumination light irradiation vertical component direction extending in the direction is the Y axis, the road traveling direction as the illumination distance extending direction passing through the light source 5 virtual origin 0 and orthogonal to the Y axis is the X axis, and the light source 5 virtual origin 0 is passed through the Y axis and the X axis. When the road width direction as the illumination width direction orthogonal to the Z-axis (shown in FIGS. 2 to 5 and 7) is assumed, the lens bottom surface 3 facing the LED light source 5 light emitting surface 50 of the lens body 10, and the lens It is assumed that the lens main body thick portion 10 is sandwiched from the bottom surface 3 and has a lens irradiation surface 2 opposite to the light emitting surface 50 of the LED light source 5.

図1ないし図9および図11に示すように、当該レンズ照射表面2は、光源5仮想原点0を挟み道路進行方向X軸上の一方に配し、照明光照射方向を道路進行方向X軸の一方に照明光照射垂直成分方向Y軸より20°ないし85°の範囲内となる30°ないし60°光軸を傾けた一方傾斜凸レンズ面部20、および、光源5仮想原点0を挟み道路進行方向X軸上の他方に配し、照明光照射方向を道路進行方向X軸の一方とは180°反転したX軸の他方向に照明光照射垂直成分方向Y軸より20°ないし85°の範囲内となる30°ないし60°光軸を傾けた他方傾斜凸レンズ面部21を有すると共に、道路幅員方向Z軸上の光源5仮想原点0より何れか一側に配し、照明光照射方向を道路幅員方向Z軸上の何れか一側に光軸を傾ける一側凹レンズ面部22、および、道路幅員方向Z軸上の光源5仮想原点0より何れか他側に配し、照明光照射方向を道路幅員方向Z軸上の何れか一側に光軸を傾ける他側凹レンズ面部23を設けたものであり、それら一方傾斜凸レンズ面部20、他方傾斜凸レンズ面部21、一側凹レンズ面部22および他側凹レンズ面部23の互いの境界部分は何れも滑らかに連続する曲面によって接続したものとしてある。     As shown in FIG. 1 to FIG. 9 and FIG. 11, the lens irradiation surface 2 is arranged on one side of the road traveling direction X axis across the light source 5 virtual origin 0, and the illumination light irradiation direction is the road traveling direction X axis. Road traveling direction X across one inclined convex lens surface portion 20 tilted by 30 ° to 60 ° optical axis within a range of 20 ° to 85 ° from the Y axis of illumination light irradiation vertical component direction, and light source 5 virtual origin 0 Arranged on the other side of the axis, the illumination light irradiation direction is in the range of 20 ° to 85 ° from the Y axis of the illumination light irradiation vertical component direction in the other direction of the X axis, which is 180 ° reversed from one of the road traveling direction X axis. The light source 5 on the road width direction Z-axis is arranged on one side of the road width direction Z-axis, and the illumination light irradiation direction is set to the road width direction Z. One-side concave lens that tilts the optical axis to either side of the axis The other side concave lens which is arranged on either side from the virtual origin 0 of the light source 5 on the road width direction Z-axis and tilts the illumination light irradiation direction to any one side on the road width direction Z-axis. A surface portion 23 is provided, and the boundary portions of the one inclined convex lens surface portion 20, the other inclined convex lens surface portion 21, the one side concave lens surface portion 22 and the other side concave lens surface portion 23 are connected by a smoothly continuous curved surface. It is as.

図5ないし図8に示すように、当該レンズ底面3は、LED光源5発光表面50に対峙するレンズ底面3照明光入射範囲30に有って道路進行方向X軸上の光源5仮想原点0よりも一方に配し、一方傾斜凸レンズ面部20に向けて分岐・集光する一方誘導中央レンズ面部31、および、LED光源5発光表面50に対峙するレンズ底面3照明光入射範囲30に有って道路進行方向X軸上の光源5仮想原点0よりも他方に配し、他方傾斜凸レンズ面部21に向け分岐・集光する他方誘導中央レンズ面部32を有すると共に、図2、図7および図11に示すように、LED光源5発光表面50に対峙するレンズ底面3照明光入射範囲30の周囲からレンズ照射表面2外周縁に至る範囲にあって照明幅方向Z軸上の光源5仮想原点0を挟み一側および他側に配し、一方・他方誘導中央レンズ面部31,32から入射した照明光Lの中、レンズ底面3照明光入射範囲30の周囲に屈折する照明光Lをレンズ照射表面3に向けて反射・誘導する一側・他側凹面形肉厚内反射面部33を設けてなるものとし、当該配光制御レンズ1のレンズ照射表面2およびレンズ底面3は、Y軸−Z軸面を対称面とした面対称形状のものとしてある。     As shown in FIGS. 5 to 8, the lens bottom surface 3 is located in the lens bottom surface 3 illumination light incident range 30 facing the light emitting surface 50 of the LED light source 5 and from the light source 5 virtual origin 0 on the road traveling direction X axis. Are arranged on one side, branched to and focused toward the inclined convex lens surface portion 20, and the one guiding central lens surface portion 31 and the lens bottom surface 3 facing the light emitting surface 50 of the LED light source 5 and the illumination light incident range 30 on the road. The light source 5 on the traveling direction X-axis has the other guiding central lens surface portion 32 that is arranged on the other side of the virtual origin 0 and branches and condenses toward the other inclined convex lens surface portion 21, and is shown in FIGS. 2, 7, and 11. As described above, the light source 5 on the Z axis in the illumination width direction in the range from the periphery of the lens bottom surface 3 illumination light incident range 30 facing the LED light source 5 light emitting surface 50 to the outer peripheral edge of the lens illumination surface 2 is sandwiched. Side and The illumination light L, which is arranged on the other side and is refracted around the lens bottom surface 3 illumination light incident range 30 among the illumination light L incident from the one or other guiding central lens surface portions 31 and 32, is reflected toward the lens irradiation surface 3. The one-side / other-side concave-shaped internal reflection surface portion 33 to be guided is provided, and the lens irradiation surface 2 and the lens bottom surface 3 of the light distribution control lens 1 have a Y-axis-Z-axis plane as a symmetry plane. It is assumed that the surface is symmetrical.

図1ないし図7、図9および図11に示すとおり、レンズ底面3が、光源5仮想光源5に対峙する照明光入射範囲30範囲よりも外がわであって、照明光照射Lの妨げとならない箇所であって、道路進行方向X軸の正負無限大方向の均衡する双方適所に、双方の端部夫々に平面視U字形の固定調整ネジ用溝40を凹設したブロック状の支持脚部4,4を設けたものとし、さらに、レンズ照射表面2が、その外周壁輪郭形状を、Y軸無限大方向に向かうに従い漸次階段状に縮小する、フレンネル形のものとしている。     As shown in FIGS. 1 to 7, 9, and 11, the lens bottom surface 3 is outside the illumination light incident range 30 range facing the light source 5 and the virtual light source 5, and the illumination light irradiation L is hindered. Block-like support leg portions that are U-shaped fixed adjustment screw grooves 40 in a plan view at both ends at both locations where the road travel direction X axis is in the positive / negative infinity balance. In addition, the lens irradiation surface 2 has a Frennel shape in which the outer peripheral wall contour shape is gradually reduced in a stepped manner toward the Y axis infinite direction.

(実施例1の作用・効果)
以上のとおりの構成からなるこの発明の配光制御レンズ1は、図6、図8、図9および図10中に示すように、光源5発光表面50から発する照射光Lは、Y軸(照明光照射垂直成分方向)−X軸(道路進行方向)面においてレンズ底面3照明光入射範囲30一方誘導中央レンズ面部31および他方誘導中央レンズ面部32より、レンズ本体(レンズ本体肉厚部)10に入射し、一方誘導中央レンズ面部31は、該一方誘導中央レンズ面部31を通過する照射光Lの一部を一方傾斜凸レンズ面部20に向けて屈折・集光および均質に拡散するよう誘導し、他方誘導中央レンズ面部32が、該他方誘導中央レンズ面部32を通過する照射光Lの一部を他方傾斜凸レンズ面部21に向けて屈折・集光および均質に拡散するよう誘導し、一方および他方傾斜凸レンズ面部20,21が、それら一方および他方傾斜凸レンズ面部20,21から照射する照射光Lを、照明光照射垂直成分方向Y軸を境に道路進行方向X軸の両無限遠方向に30°ないし60°の角度範囲に屈折・集光および均質に拡散するものとなり、換言すると、一方および他方傾斜凸レンズ面部20,21が誘導する照射光Lは、Y軸(照明光照射垂直成分方向)−X軸(道路進行方向)面において仮想原点Oを基点とした、互いの挟み角度が40°>170°の角度範囲内となる60°ないし120°の範囲に屈折・集光および均質拡散するV分岐状に誘導するものとなり、道路進行方向X軸の照明光の到達範囲を格段に拡げ、しかも均質に照明可能なものとすることができる。
(Operation / Effect of Example 1)
As shown in FIGS. 6, 8, 9 and 10, the light distribution control lens 1 of the present invention having the configuration as described above is configured such that the irradiation light L emitted from the light emitting surface 50 of the light source 5 is Y-axis (illumination). The lens main body (lens main body thick portion) 10 from the one guiding central lens surface portion 31 and the other guiding central lens surface portion 32 on the lens bottom surface 3 illumination light incident range 30 on the X-axis (road traveling direction) plane. The one guide central lens surface portion 31 is incident and guides a part of the irradiation light L passing through the one guide center lens surface portion 31 toward the one inclined convex lens surface portion 20 so as to be refracted / condensed and uniformly diffused, while the other The guiding central lens surface portion 32 guides a part of the irradiation light L passing through the other guiding central lens surface portion 32 toward the other inclined convex lens surface portion 21 to be refracted / condensed and homogeneously diffused, and The obliquely inclined convex lens surface portions 20 and 21 irradiate the irradiation light L emitted from one and the other inclined convex lens surface portions 20 and 21 in both infinite directions of the road traveling direction X axis with the illumination light irradiation vertical component direction Y axis as a boundary. In other words, the irradiation light L guided by one and the other inclined convex lens surface portions 20 and 21 is refracted / condensed and uniformly diffused within an angle range of 60 ° to 60 °. -Refraction / condensation and homogeneous diffusion in the range of 60 ° to 120 ° with the angle between 40 °> 170 ° with the virtual origin O as the base point on the X-axis (road traveling direction) plane It is guided in a V-branch shape, and the reachable range of the illumination light in the road traveling direction X-axis can be greatly expanded, and it can be illuminated uniformly.

図2、図6ないし図8、図11および図12に示すように、光源5発光表面50から発する照射光Lは、Y軸(照明光照射垂直成分方向)−Z軸(道路幅員方向)面において一方および他方誘導中央レンズ面部31,32を通過し、レンズ底面3照明光入射範囲30の周囲に屈折する照明光Lの中、道路幅員方向Z軸の仮想原点Oより一側に散乱した照明光Lは、一側凹面形肉厚内反射面部33に略全反射し、レンズ本体肉厚部10中を通過し、レンズ照射表面2に向けて集光および均質に拡散して到達することとなり、また、一方および他方誘導中央レンズ面部31,32を通過し、レンズ底面3照明光入射範囲30の周囲に屈折する照明光Lの中、道路幅員方向Z軸の仮想原点Oより他側に散乱した照明光Lは、他側凹面形肉厚内反射面部33に略全反射し、レンズ本体肉厚部10中を通過し、レンズ照射表面2に向けて集光および均質に拡散しながら到達することになり、レンズ底面3から漏出する照射光L量を大幅に削減し、より効率的且つ高輝度照明を実現化するものとなる。     As shown in FIGS. 2, 6 to 8, 11, and 12, the irradiation light L emitted from the light source 5 emitting surface 50 is a Y-axis (illumination light irradiation vertical component direction) -Z-axis (road width direction) plane. In the illumination light L that passes through the one and the other guide central lens surface portions 31 and 32 and is refracted around the illumination light incident range 30 of the lens bottom 3, the illumination scattered to one side from the virtual origin O of the road width direction Z-axis The light L is substantially totally reflected by the one-side concave thick reflection surface portion 33, passes through the lens main body thick portion 10, and reaches the lens irradiation surface 2 by being condensed and uniformly diffused. In addition, in the illumination light L that passes through one and the other guide central lens surface portions 31 and 32 and is refracted around the illumination light incident range 30 of the lens bottom surface 3, it is scattered to the other side from the virtual origin O of the road width direction Z-axis. The illuminating light L is reflected on the other side of the concave reflection surface 33 is substantially totally reflected, passes through the lens body thick portion 10, reaches the lens irradiation surface 2 while being condensed and uniformly diffused, and the amount of irradiation light L leaking from the lens bottom surface 3 is reduced. It will greatly reduce and realize more efficient and high brightness illumination.

さらに、同図2、図6ないし図8、図11および図12に示すように、光源5発光表面50から発する照射光Lは、Y軸(照明光照射垂直成分方向)−Z軸(道路幅員方向)面においてレンズ底面3照明光入射範囲30一方誘導中央レンズ面部31、他方誘導中央レンズ面部32および一側・他側凹面形肉厚内反射面部33,33からレンズ本体(レンズ本体肉厚部)10を通過し、レンズ照射表面2一側および他側凹レンズ面部22,23に入射する照射光Lの他部は、照明光照射垂直成分方向Y軸無限大方向に照射する光源5照射光LをZ軸上光源仮想原点よりも1°ないし20°その殆どの光束Lが10°一側に向けて傾けるよう指向・誘導するものとしてあるから、道路幅員方向Z軸の、照明を必要とする道路幅員に過不足無く均質且つ高輝度の照明を、より経済的に実現化することができるものとなる。     Further, as shown in FIGS. 2, 6 to 8, 11, and 12, the irradiation light L emitted from the light source 5 emitting surface 50 is Y-axis (illumination light irradiation vertical component direction) -Z-axis (road width). Direction surface) from the lens bottom surface 3 illumination light incident range 30 from the one guiding central lens surface portion 31, the other guiding central lens surface portion 32 and the one-side / other-side concave-thick inner reflection surface portions 33, 33. ) The other part of the irradiation light L that passes through 10 and enters the lens irradiation surface 2 on one side and the other-side concave lens surface portions 22 and 23 is irradiated with the illumination light irradiation vertical component direction Y-axis infinite direction. Is directed and guided so that most of the luminous flux L is tilted toward one side by 10 ° from the virtual origin of the light source on the Z axis, so that illumination in the Z direction of the road width direction is required. Homogeneous and narrow enough for road width The illumination of high luminance, and which can be more economically realized.

そして、図1ないし図12に示すように、レンズ照射表面2の外周壁輪郭形状を、光照射垂直成分方向Y軸無限大方向に向かうに従い漸次階段状に縮小する、フレンネル形のものとしたから、レンズ照射表面2から射出する照明光Lを所望の範囲に集光すると共に均質に拡散し、路面輝度の規定値を充分に満たす上、グレアTi値規格をも満たすものとすることができる。     Then, as shown in FIGS. 1 to 12, the outer peripheral wall contour shape of the lens irradiation surface 2 is made to be a Frennel type that gradually reduces in a stepwise manner toward the light irradiation vertical component direction Y-axis infinite direction. Further, the illumination light L emitted from the lens irradiation surface 2 is condensed in a desired range and is uniformly diffused to sufficiently satisfy the specified value of the road surface luminance, and also to satisfy the glare Ti value standard.

(結 び)
叙述の如く、この発明の配光制御レンズは、その新規な構成によって所期の目的を遍く達成可能とするものであり、しかも製造も容易で、従前からの制御レンズ技術に比較して大幅な広スパン化設置によって照明効率を高め、一定範囲当たりの照明灯具数を大幅削減して格段に低廉化し、遥かに経済的なものとすることができる上、一定照明範囲当たりの設置作業工数、およびメンテナンス工数を大幅に改善し得るものとなることから、従前までは照明灯具設置数の増加によって必要輝度を確保しなければならなかった照明業界および建築業界はものとより、道路照明やトンネル照明の設置、維持および管理の作業工数の削減したい道路管理者においても高く評価され、広範に渡って利用、普及していくものになると予想される。
(Conclusion)
As described above, the light distribution control lens of the present invention makes it possible to achieve the intended purpose uniformly by its novel configuration, and is easy to manufacture, which is much larger than the conventional control lens technology. Wide-span installation can improve lighting efficiency, greatly reduce the number of lighting lamps per fixed range, make it much cheaper, make it much more economical, install man-hours per fixed lighting range, and Since the maintenance man-hours can be greatly improved, the lighting industry and the construction industry, which had previously had to secure the required brightness by increasing the number of lighting fixtures, are more important than the road lighting and tunnel lighting. It is highly appreciated by road managers who want to reduce the number of installation, maintenance, and management work, and is expected to be widely used and spread.

0 光源仮想原点(仮想原点)
L 照射光
Y Y軸(照明光照射垂直成分方向)
X X軸(照明距離拡張方向:道路進行方向)
Z Z軸(照明幅方向;道路幅員方向)
1 配光制御レンズ
10 同 レンズ本体(レンズ本体肉厚部)
2 レンズ照射表面
20 同 一方傾斜凸レンズ面部
21 同 他方傾斜凸レンズ面部
22 同 一側凹レンズ面部
23 同 他側凹レンズ面部
3 レンズ底面
30 同 照明光入射範囲
31 同 一方誘導中央レンズ面部
32 同 他方誘導中央レンズ面部
33 同 一側・他側凹面形肉厚内反射面部
4 支持脚部
40 同 固定調整ネジ用溝
5 光源(LED光源:マルチチップ、COB・LED)
50 同 発光表面
51 同 基板
52 同反射シート
6 マウントベース部(灯具筐体)
0 Light source virtual origin (virtual origin)
L irradiation light Y Y axis (illumination light irradiation vertical component direction)
X X axis (lighting distance extension direction: road traveling direction)
Z Z axis (lighting width direction; road width direction)
1 Light distribution control lens
10 Same lens body (lens body thick part)
2 Lens irradiation surface
20 Same inclined convex lens surface
21 Same as above, Convex convex lens surface
22 Same concave lens surface
23 Same side concave lens surface 3 Lens bottom
30 Same illumination light incident range
31 Same guiding center lens surface
32 On the other hand, guide center lens surface
33 Same-side / other-side concave-shaped inner reflection surface 4 Support leg
40 Same groove for fixing screw 5 Light source (LED light source: multichip, COB / LED)
50 Same light emitting surface
51 Same board
52 Same reflection sheet 6 Mount base (lamp housing)

Claims (7)

光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、レンズ本体の光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方に傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の他方に傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設けてなるものとしたことを特徴とする配光制御レンズ。     Assuming the Y axis extending vertically from the light source virtual origin, the X axis passing through the light source virtual origin and orthogonal to the Y axis, and the Z axis passing through the light source virtual origin and orthogonal to the Y axis and the X axis, confront the light source of the lens body. The lens bottom surface, and a lens irradiation surface that sandwiches the lens main body thick portion from the lens bottom surface and is opposite to the light source. One inclined convex lens surface portion that inclines the irradiation to one side of the X axis, and the other inclined convex lens surface portion that is arranged on the other side from the X axis light source virtual origin and tilts the light irradiation to the other of the X axis, and the Z axis light source virtual origin One side concave lens surface part that is arranged on one side and tilts light irradiation to one side on the Z axis, and other side that is arranged on the other side from the light source virtual origin on the Z axis and light irradiation is tilted to one side on the Z axis A side concave lens surface is provided. Light distribution control lens to. 光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、光源仮想光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源仮想光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方にY軸より20°ないし85°傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の一方とは180°反転したX軸の他方にY軸より20°ないし85°傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設け、一方および他方傾斜凸レンズ面部が、Y軸無限大方向に照射する光源照射光の一部をX軸上光源仮想原点を挟む双方に、40°>170°の挟み角度とするよう均等V分岐・誘導し、且つ、一側および他側凹レンズ面部が、Y軸無限大方向に照射する光源照射光の他部をZ軸上光源仮想原点よりも一側に傾けるよう指向・誘導可能なものとしたことを特徴とする配光制御レンズ。     Assuming a Y-axis extending vertically from the light source virtual origin, an X axis passing through the light source virtual origin and orthogonal to the Y axis, and a Z axis passing through the light source virtual origin and orthogonal to the Y axis and the X axis, confront the light source virtual light source. The lens bottom surface and the lens main body thick part from the lens bottom surface are sandwiched and have a lens irradiation surface opposite to the light source virtual light source, and the lens irradiation surface is arranged on one side from the light source virtual origin on the X axis, X is obtained by irradiating light on one side of the X axis by 20 ° to 85 ° from the Y axis on one inclined convex lens surface and on the other side from the light source virtual origin on the X axis, and inverting the light irradiation by 180 ° from one side of the X axis. One side concave lens surface part which has the other inclined convex lens surface part inclined at 20 ° to 85 ° from the Y axis on the other side of the axis, is arranged on one side from the light source virtual origin on the Z axis, and inclines light irradiation to one side on the Z axis, And the other side from the virtual origin of the light source on the Z axis The other side concave lens surface part that inclines light irradiation to one side on the Z axis is provided, and one and the other inclined convex lens surface part irradiates part of the light source irradiation light that irradiates in the Y axis infinite direction. Both sides of the origin are equally V-branched and guided so as to have an angle of 40 °> 170 °, and the other side of the concave lens surface on one side and the other side irradiates the other part of the light source irradiation light irradiated in the Y axis infinite direction. A light distribution control lens characterized by being capable of being directed and guided so as to be tilted to one side from the virtual origin of the light source on the Z axis. 光源仮想原点より鉛直方向に伸びるY軸、光源仮想原点を通りY軸に直交するX軸、光源仮想原点を通りY軸およびX軸に直交するZ軸を想定した場合、レンズ本体の光源に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、X軸上光源仮想原点より一方に配し、光照射をX軸の一方に傾ける一方傾斜凸レンズ面部、および、X軸上光源仮想原点より他方に配し、光照射をX軸の一方とは180°反転したX軸の他方に傾ける他方傾斜凸レンズ面部を有すると共に、Z軸上光源仮想原点より一側に配し、光照射をZ軸上の一側に傾ける一側凹レンズ面部、および、Z軸上光源仮想原点より他側に配し、光照射をZ軸上の一側に傾ける他側凹レンズ面部を設け、該レンズ底面が、光源に対峙するレンズ底面照明光入射範囲に有ってX軸上光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源に対峙するレンズ底面照明光入射範囲に有ってX軸上光源仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部を有すると共に、光源に対峙するレンズ底面照明光入射範囲周囲からレンズ照射表面外周縁に至る範囲にあってZ軸上光源仮想原点を挟み一側および他側に配し、一方・他方誘導中央レンズ面部から入射した照明光の中、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導する一側・他側凹面形肉厚内反射面部を設けてなるものとしたことを特徴とする配光制御レンズ。     Assuming the Y axis extending vertically from the light source virtual origin, the X axis passing through the light source virtual origin and orthogonal to the Y axis, and the Z axis passing through the light source virtual origin and orthogonal to the Y axis and the X axis, confront the light source of the lens body. The lens bottom surface, and a lens irradiation surface that sandwiches the lens main body thick portion from the lens bottom surface and is opposite to the light source. One inclined convex lens surface portion that inclines the irradiation to one of the X axes, and the other inclined convex lens surface portion that is arranged on the other side from the light source virtual origin on the X axis and inclines the light irradiation to the other of the X axes that is 180 ° reversed from one of the X axes And is arranged on one side of the Z-axis light source virtual origin, and is arranged on the other side of the Z-axis light source virtual origin, and on the other side of the Z-axis light source virtual origin. The other side concave lens surface part which inclines to one side on the Z axis A one-way guiding central lens that has a lens bottom surface in the lens bottom illumination light incident range facing the light source and is arranged on one side of the X-axis light source virtual origin and branches and condenses toward the inclined convex lens surface portion And a lens bottom surface illumination light incident range facing the light source, the other side of the X-axis light source virtual origin, and the other guiding central lens surface portion branching and condensing toward the other inclined convex lens surface portion In the range from the lens bottom illumination light incident area surrounding the light source to the outer periphery of the lens irradiation surface, the virtual origin on the Z axis is placed on one side and the other side, and incident from one or the other guide central lens surface The one-side / other-side concave inner reflection surface part that reflects and guides the illumination light refracted around the lens bottom illumination light incident range among the illuminated illumination light is provided. Features A light distribution control lens. 光源発光表面中央に仮想した原点より鉛直方向に伸びる照明光照射垂直成分方向をY軸、光源仮想原点を通りY軸に直交する照明距離拡張方向をX軸、光源仮想原点を通りY軸およびX軸に直交する照明幅方向をZ軸と想定した場合、レンズ本体の光源発光表面に対峙するレンズ底面、およびレンズ底面からレンズ本体肉厚部を挟み、光源発光表面とは反対がわとなるレンズ照射表面を有し、該レンズ照射表面が、光源仮想原点を挟み照明距離拡張方向X軸上の一方に配し、照明光照射方向を照明距離拡張方向X軸の一方に傾けた一方傾斜凸レンズ面部、および、光源仮想原点を挟み照明距離拡張方向X軸上の他方に配し、照明光照射方向を照明距離拡張方向X軸の一方とは180°反転したX軸の他方向に傾けた他方傾斜凸レンズ面部を有すると共に、照明幅方向Z軸上の光源仮想原点より何れか一側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾ける一側凹レンズ面部、および、照明幅方向Z軸上の光源仮想原点より何れか他側に配し、照明光照射方向を照明幅方向Z軸上の何れか一側に傾ける他側凹レンズ面部を設け、該レンズ底面が、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも一方に配し、一方傾斜凸レンズ面部に向けて分岐・集光する一方誘導中央レンズ面部、および、光源発光表面に対峙するレンズ底面照明光入射範囲に有って照明距離拡張方向X軸上の光源仮想原点よりも他方に配し、他方傾斜凸レンズ面部に向け分岐・集光する他方誘導中央レンズ面部を有すると共に、光源、発光表面に対峙するレンズ底面照明光入射範囲の周囲からレンズ照射表面外周縁に至る範囲にあって照明幅方向Z軸上の光源仮想原点を挟み一側および他側に配し、一方・他方誘導中央レンズ面部から入射した照明光の中、レンズ底面照明光入射範囲の周囲に屈折する照明光をレンズ照射表面に向けて反射・誘導する一側・他側凹面形肉厚内反射面部を設けてなるものとしたことを特徴とする配光制御レンズ。     The illumination light irradiation vertical component direction extending in the vertical direction from the virtual origin at the center of the light source emission surface is the Y axis, the illumination distance extending direction passing through the light source virtual origin and orthogonal to the Y axis is X axis, the light source virtual origin is passed through the Y axis and X Assuming that the illumination width direction orthogonal to the axis is the Z axis, the lens bottom surface facing the light source light emitting surface of the lens body, and the lens body thick part sandwiched from the lens bottom surface, the lens opposite the light source light emitting surface One inclined convex lens surface portion having an irradiation surface, the lens irradiation surface being arranged on one side of the illumination distance extension direction X axis across the light source virtual origin, and the illumination light irradiation direction being inclined to one of the illumination distance extension directions X axis , And the other inclination of the illumination light irradiation direction on the other side of the X axis that is 180 ° reversed from the one of the illumination distance extension direction X axis, arranged on the other side on the X axis of the illumination distance extension direction across the light source virtual origin Has convex lens surface And a one-side concave lens surface portion that is arranged on either side of the light source virtual origin on the illumination width direction Z-axis and tilts the illumination light irradiation direction to any one side on the illumination width direction Z-axis, and illumination width direction Provided on the other side of the light source virtual origin on the Z-axis, and provided with an other-side concave lens surface portion that tilts the illumination light irradiation direction to any one side on the illumination width direction Z-axis, and the lens bottom surface on the light-emitting surface One guiding central lens surface portion that is in one side of the light source virtual origin on the X-axis of the illumination distance in the lens bottom surface illumination light incident range facing, and branches and condenses toward one inclined convex lens surface portion, and The other guiding central lens surface portion that is located on the other side of the light source virtual origin on the X-axis of the illumination distance in the lens bottom surface illumination light incident range facing the light source emitting surface, and branches and condenses toward the other inclined convex lens surface portion With light source, light emitting surface Is located in one side and the other side across the light source virtual origin on the Z-axis of the illumination width direction in the range from the periphery of the lens bottom illumination light incident range facing the lens to the outer periphery of the lens illumination surface, and one or the other guide center lens Among the illumination light incident from the surface part, one side and the other side concave-shaped internal reflection surface part that reflects and guides the illumination light refracted around the lens bottom illumination light incident range toward the lens irradiation surface A light distribution control lens. レンズ底面が、光源に対峙する範囲よりも外がわであって、照明光照射の妨げとならない一箇所か、照明光照射の妨げとならないよう適宜選択した複数箇所か、または、照明光照射の妨げとならない均衡する複数箇所かの何れか一に支持脚部を設けてなる、請求項1ないし4何れか一記載の配光制御レンズ。     The bottom surface of the lens is outside the range facing the light source and is one place that does not interfere with illumination light irradiation, or multiple places that are appropriately selected so as not to interfere with illumination light irradiation, or illumination light irradiation The light distribution control lens according to any one of claims 1 to 4, wherein a support leg portion is provided at any one of a plurality of balanced positions that do not interfere. レンズ照射表面が、その外周壁輪郭形状を、Y軸無限大方向に向かうに従い漸次階段状に縮小する、フレンネル形のものとしてなる、請求項1ないし5何れか一記載の配光制御レンズ。     The light distribution control lens according to any one of claims 1 to 5, wherein the lens irradiation surface has a Frennel shape in which an outer peripheral wall contour shape is gradually reduced in a stepped manner toward the Y axis infinite direction. レンズ照射表面およびレンズ底面が、Y軸−Z軸面を対称面とした面対称形状のものとした、請求項1ないし6何れか一記載の配光制御レンズ。     The light distribution control lens according to any one of claims 1 to 6, wherein the lens irradiation surface and the lens bottom surface have a plane-symmetric shape with a Y-axis-Z-axis plane as a plane of symmetry.
JP2015215227A 2015-10-30 2015-10-30 Light distribution control lens Active JP6604593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215227A JP6604593B2 (en) 2015-10-30 2015-10-30 Light distribution control lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215227A JP6604593B2 (en) 2015-10-30 2015-10-30 Light distribution control lens

Publications (2)

Publication Number Publication Date
JP2017083796A true JP2017083796A (en) 2017-05-18
JP6604593B2 JP6604593B2 (en) 2019-11-13

Family

ID=58711039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215227A Active JP6604593B2 (en) 2015-10-30 2015-10-30 Light distribution control lens

Country Status (1)

Country Link
JP (1) JP6604593B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228921A (en) * 2001-01-29 2002-08-14 Rabo Sufia Kk Bulk type lens, light emitting body using the same, illuminator and optical information system
JP2010015898A (en) * 2008-07-04 2010-01-21 Asahi Rubber Inc Light source device and lighting equipment using the same
US20120039077A1 (en) * 2010-08-11 2012-02-16 Fraen Corporation Area lighting devices and methods
US20120120666A1 (en) * 2009-05-13 2012-05-17 Hella Kgaa Hueck & Co. Street lighting device
JP2012145904A (en) * 2010-12-22 2012-08-02 Panasonic Corp Optical lens, lens unit using the same, and luminaire
US20120287511A1 (en) * 2010-01-25 2012-11-15 Light Prescriptions Innovators, Llc Off-axis collimation optics
JP2016051554A (en) * 2014-08-29 2016-04-11 岩崎電気株式会社 Light source unit and luminaire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228921A (en) * 2001-01-29 2002-08-14 Rabo Sufia Kk Bulk type lens, light emitting body using the same, illuminator and optical information system
JP2010015898A (en) * 2008-07-04 2010-01-21 Asahi Rubber Inc Light source device and lighting equipment using the same
US20120120666A1 (en) * 2009-05-13 2012-05-17 Hella Kgaa Hueck & Co. Street lighting device
US20120287511A1 (en) * 2010-01-25 2012-11-15 Light Prescriptions Innovators, Llc Off-axis collimation optics
US20120039077A1 (en) * 2010-08-11 2012-02-16 Fraen Corporation Area lighting devices and methods
JP2012145904A (en) * 2010-12-22 2012-08-02 Panasonic Corp Optical lens, lens unit using the same, and luminaire
JP2016051554A (en) * 2014-08-29 2016-04-11 岩崎電気株式会社 Light source unit and luminaire

Also Published As

Publication number Publication date
JP6604593B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
EP3063466B1 (en) Illumination device for direct-indirect illumination
WO2012063759A1 (en) Led lighting device
WO2010013672A1 (en) Lighting device
JP2013512549A (en) Lighting equipment and traffic road lighting device
JP5241015B2 (en) Optical lens and road lighting
JP5814847B2 (en) Lighting device
US10267979B2 (en) Wall wash luminaire with light guide and optical element therefore
JP5620285B2 (en) Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device
CN106164581B (en) Illuminator
EP3215788A1 (en) Troffer luminaire
JP2018181726A (en) Luminous flux control member, light emitting device, surface light source device and display device
CN111051770B (en) Light emitting device, surface light source device, and display device
US20150285450A1 (en) Lighting device for indirect illumination
KR20200111616A (en) Lamp for lighting a wall face and lighting device using the same
JP6604593B2 (en) Light distribution control lens
TWI424210B (en) Light source module and light source apparatus
JP6224451B2 (en) LED light distribution control lens
JP5313181B2 (en) Lighting device
JP6831679B2 (en) Optical components and lighting equipment
KR102388733B1 (en) LED lighting device with lens and reflective member with improved luminance and illuminance
KR102389794B1 (en) LED lighting device with lens and reflective member with improved luminance and illuminance
US11221112B2 (en) LED illumination device having light reflecting and transmitting member
WO2020261855A1 (en) Lighting device and lighting system
JP5828604B2 (en) Lighting device
US20200217462A1 (en) Light-emitting diode-type illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6604593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250