JP2017072678A - Exposure equipment, exposure method, and manufacturing method of article - Google Patents

Exposure equipment, exposure method, and manufacturing method of article Download PDF

Info

Publication number
JP2017072678A
JP2017072678A JP2015198420A JP2015198420A JP2017072678A JP 2017072678 A JP2017072678 A JP 2017072678A JP 2015198420 A JP2015198420 A JP 2015198420A JP 2015198420 A JP2015198420 A JP 2015198420A JP 2017072678 A JP2017072678 A JP 2017072678A
Authority
JP
Japan
Prior art keywords
mark
exposure
original
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015198420A
Other languages
Japanese (ja)
Other versions
JP2017072678A5 (en
Inventor
伸彦 籔
Nobuhiko Yabu
伸彦 籔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015198420A priority Critical patent/JP2017072678A/en
Priority to TW105130643A priority patent/TWI655511B/en
Priority to CN201610870966.XA priority patent/CN106560745A/en
Priority to KR1020160128189A priority patent/KR20170041145A/en
Publication of JP2017072678A publication Critical patent/JP2017072678A/en
Publication of JP2017072678A5 publication Critical patent/JP2017072678A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

PROBLEM TO BE SOLVED: To provide exposure equipment advantageous in the point of uniformity in line width.SOLUTION: Exposure equipment that includes an illumination optical system IL for irradiating exposure light on an original plate M and a projection optical system PO for projecting a pattern of the original plate M on a substrate P and performs scanning exposure on the substrate P while moving the substrate P and the original plate M, includes a measuring light source 13 for irradiating a measuring light on a mark, a light receiver 15 for receiving light of a projected image of the mark via the projection optical system PO, and a controller 51 that calculates position information on the mark from the projected image received by the light receiver 15 and controls correcting means 42 for correcting based on the calculated positional information, in which the mark is located outside of an optical path of exposure light that illuminates the original plate M.SELECTED DRAWING: Figure 1

Description

本発明は、露光装置、露光方法、及び物品の製造方法に関する。   The present invention relates to an exposure apparatus, an exposure method, and a method for manufacturing an article.

半導体デバイス等の製造工程の1つであるリソグラフィ工程において、投影光学系を介して基板上の露光領域に原版のパターンを転写する露光装置が使用されている。上記デバイス等の微細化に伴い、露光装置が転写するパターンの線幅均一性の向上が求められている。線幅均一性は、投影光学系の結像性能の変化により低下しうる。投影光学系の結像性能の変化は、投影光学系に含まれる光学部品の振動により起こりうる。特許文献1の露光装置は、投影光学系を含む各部の振動をセンサで検知し、検知した振動に基づいて、投影光学系に含まれる光学素子を振動させることで線幅の変化量を抑えている。特許文献2の露光装置は、投影光学系に含まれる光学部材の姿勢変動を測定し、測定結果に基づいて、原版や基板を移動させることで姿勢変動による転写位置のずれを補正している。   In a lithography process that is one of the manufacturing processes of semiconductor devices and the like, an exposure apparatus that transfers an original pattern to an exposure area on a substrate through a projection optical system is used. With the miniaturization of the above devices and the like, improvement in the line width uniformity of the pattern transferred by the exposure apparatus is required. The line width uniformity can be reduced by a change in the imaging performance of the projection optical system. The change in the imaging performance of the projection optical system can occur due to vibrations of optical components included in the projection optical system. The exposure apparatus of Patent Document 1 detects vibration of each part including the projection optical system with a sensor, and suppresses the change amount of the line width by vibrating the optical element included in the projection optical system based on the detected vibration. Yes. The exposure apparatus disclosed in Patent Document 2 measures the posture variation of the optical member included in the projection optical system, and corrects the transfer position shift due to the posture variation by moving the original or the substrate based on the measurement result.

特開2010−283089号公報JP 2010-283089 A 特開2001−185478号公報JP 2001-185478 A

上記各特許文献の露光装置により線幅均一性をさらに向上させるためには、装置に含まれる光学部品に取り付けるセンサの数、種類を増やすことが必要となるが、これはコストの問題等から現実的ではない。また、いずれの露光装置も、露光領域に転写されたパターンの線幅の変化量を直接求めておらず、検知した振動量等に基づく計算により間接的に求めているため、計算過程において誤差が生じうる。   In order to further improve the line width uniformity by the exposure apparatus of each of the above patent documents, it is necessary to increase the number and types of sensors attached to the optical components included in the apparatus. Not right. In addition, since none of the exposure apparatuses directly determines the amount of change in the line width of the pattern transferred to the exposure area, it is indirectly determined by calculation based on the detected vibration amount, etc. Can occur.

本発明は、例えば、線幅均一性の点で有利な露光装置を提供することを目的とする。   An object of the present invention is to provide an exposure apparatus that is advantageous in terms of line width uniformity, for example.

上記課題を解決するために、本発明は、原版に露光光を照射する照明光学系と、原版のパターンを基板に投影する投影光学系とを備え、基板と原版とを移動させながら、基板を走査露光する露光装置であって、マークに計測光を照射する計測光源と、投影光学系を介してマークの投影像を受光する受光部と、受光部で受光された該投影像からマークの位置情報を算出し、算出された位置情報に基づいた補正を行う補正手段を制御する制御部と、を有し、マークは、原版を照明する露光光の光路外に配置されている、ことを特徴とする。   In order to solve the above-described problems, the present invention includes an illumination optical system that irradiates an original with exposure light and a projection optical system that projects a pattern of the original onto the substrate, and moves the substrate while moving the substrate and the original. An exposure apparatus that performs scanning exposure, a measurement light source that irradiates a mark with measurement light, a light receiving unit that receives a projected image of the mark via a projection optical system, and a position of the mark from the projection image received by the light receiving unit And a control unit that controls correction means that calculates information and performs correction based on the calculated position information, and the mark is disposed outside the optical path of the exposure light that illuminates the original plate And

本発明によれば、線幅均一性の点で有利な露光装置を提供することができる。   According to the present invention, an exposure apparatus that is advantageous in terms of line width uniformity can be provided.

第1実施形態に係る走査型投影露光装置の構成を示す概略図である。It is the schematic which shows the structure of the scanning projection exposure apparatus which concerns on 1st Embodiment. 原版保持部近傍の俯瞰図である。FIG. 3 is an overhead view of the vicinity of an original holding unit. 原版保持部近傍の断面図である。It is sectional drawing of the original holding part vicinity. 基板保持部近傍を示す図であるIt is a figure which shows the board | substrate holding part vicinity. 基板保持部近傍を示す図である。It is a figure which shows the board | substrate holding part vicinity. 第2実施形態に係る走査型投影露光装置の構成を示す概略図である。It is the schematic which shows the structure of the scanning projection exposure apparatus which concerns on 2nd Embodiment. 原版保持部近傍の俯瞰図である。FIG. 3 is an overhead view of the vicinity of an original holding unit. 原版保持部近傍の断面図である。It is sectional drawing of the original holding part vicinity. 基板保持部近傍を示す図である。It is a figure which shows the board | substrate holding part vicinity.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係る走査型露光装置EEの構成を示す概略図である。走査型露光装置EEは、原版Mを照明する照明系IL、原版Mを保持する原版保持部MST、平板ガラス41を含む投影光学系PO、基板Pを保持する基板保持部PST、計測光源13、センサ(受光部)15、駆動部(補正手段)42および制御部51を備える。図中、原版Mおよび基板Pの表面に沿う面をXY平面とし、XY平面に垂直な方向をZ軸、原版Mおよび基板Pの走査方向をY軸とし、Y軸に直交する非走査方向をX軸とする。
(First embodiment)
FIG. 1 is a schematic view showing the configuration of a scanning exposure apparatus EE according to the first embodiment of the present invention. The scanning exposure apparatus EE includes an illumination system IL that illuminates the original M, an original holder MST that holds the original M, a projection optical system PO that includes a flat glass 41, a substrate holder PST that holds the substrate P, the measurement light source 13, A sensor (light receiving unit) 15, a drive unit (correction unit) 42, and a control unit 51 are provided. In the figure, the surface along the surface of the original M and the substrate P is the XY plane, the direction perpendicular to the XY plane is the Z axis, the scanning direction of the original M and the substrate P is the Y axis, and the non-scanning direction orthogonal to the Y axis is The X axis is assumed.

照明系ILは、光源(不図示)および照明光学系(不図示)を有し、原版M上の照明領域をほぼ均一な照度で照明する。光源(不図示)には、例えば、水銀ランプが用いられ、i、h、g線などの水銀ランプの出力波長の一部を露光光として用いる。照明光学系(不図示)は、原版M上で所望の照度分布が得られるように光源から出射される光を集光する。原版Mは、例えば、露光されるべき微細なパターン(例えば回路パターン)が描画されたガラス製の原版である。原版保持部MSTおよび基板保持部PSTをそれぞれ不図示の駆動部により、原版Mと基板Pとを同期させて移動させつつ、投影光学系POを介して基板P上の露光領域に原版Mのパターンを転写する(走査露光)。   The illumination system IL includes a light source (not shown) and an illumination optical system (not shown), and illuminates an illumination area on the original M with a substantially uniform illuminance. For example, a mercury lamp is used as the light source (not shown), and a part of the output wavelength of the mercury lamp, such as i, h, and g lines, is used as exposure light. The illumination optical system (not shown) collects the light emitted from the light source so that a desired illuminance distribution can be obtained on the original M. The original M is, for example, a glass original on which a fine pattern (for example, a circuit pattern) to be exposed is drawn. The pattern of the original M is exposed to the exposure area on the substrate P via the projection optical system PO while moving the original M and the substrate P in synchronization with each other by the drive unit (not shown). Is transferred (scanning exposure).

投影光学系POは、第1平面鏡M1、第1凹面鏡M2、凸面鏡M3、第2凹面鏡M4、第2平面鏡M5および平板ガラス41を有する。ここで、原版Mと第1平面鏡M1との間の光路および第2平面鏡M5と基板Pとの間の光路は平行である。第1平面鏡M1の鏡面を含む平面と第2平面鏡M5の鏡面を含む平面とは、互いに90度の角度をなす。第1平面鏡M1と第2平面鏡M5および第1凹面鏡M2と第2凹面鏡M4は、それぞれ一体として構成されていることが好ましい。   The projection optical system PO includes a first plane mirror M1, a first concave mirror M2, a convex mirror M3, a second concave mirror M4, a second plane mirror M5, and a flat glass 41. Here, the optical path between the original M and the first plane mirror M1 and the optical path between the second plane mirror M5 and the substrate P are parallel. The plane including the mirror surface of the first plane mirror M1 and the plane including the mirror surface of the second plane mirror M5 form an angle of 90 degrees with each other. The first plane mirror M1 and the second plane mirror M5, and the first concave mirror M2 and the second concave mirror M4 are preferably configured integrally.

計測光源13は、LED等の発光素子および照明光学系から構成され、計測光10を−Z方向に出射する。センサ15は、CMOSセンサ等の光検出素子(不図示)および受光光学系(不図示)から構成され、計測光10(計測マーク12の投影像)を検出(受光)する。制御部51は、センサ15の検出信号から像の位置ずれを計算し、駆動部42を制御して平板ガラス41を移動させる。詳細は以下に、後述する。   The measurement light source 13 includes a light emitting element such as an LED and an illumination optical system, and emits the measurement light 10 in the −Z direction. The sensor 15 includes a light detection element (not shown) such as a CMOS sensor and a light receiving optical system (not shown), and detects (receives) the measurement light 10 (projected image of the measurement mark 12). The control unit 51 calculates an image position shift from the detection signal of the sensor 15 and controls the driving unit 42 to move the flat glass 41. Details will be described later.

図2は、原版保持部MSTとその近傍の構造を装置上方(Z軸正の方向)から見た図である。原版保持部MSTは、原版Mのエッジを支持して原版Mを保持する。照明系ILは、照明領域202を照明する。原版保持部MSTは、計測光10が透過する部分において、Y軸方向(走査方向)に延在するスリット状の開口21を有する。開口21と照明系ILとの間には、計測マーク12が配置されている。計測マーク12は、露光装置EEの本体に固定された部材11に設けられている。計測マーク12は、計測光源13から出射した計測光10が照射される。   FIG. 2 is a view of the original holding unit MST and the structure in the vicinity thereof as viewed from above the apparatus (Z-axis positive direction). The original holding unit MST supports the edge of the original M and holds the original M. The illumination system IL illuminates the illumination area 202. The original holding unit MST has a slit-like opening 21 extending in the Y-axis direction (scanning direction) in a portion through which the measurement light 10 is transmitted. A measurement mark 12 is disposed between the opening 21 and the illumination system IL. The measurement mark 12 is provided on the member 11 fixed to the main body of the exposure apparatus EE. The measurement mark 12 is irradiated with the measurement light 10 emitted from the measurement light source 13.

図3は、図2に示す一点鎖線200の位置における断面図である。計測光源13から出射した計測光10は、ミラー14で曲げられ、計測マーク12および開口21を通過する。開口21は、原版保持部MSTのY方向に伸びており、原板ステージMSTをY方向に走査して露光する間、常に計測光10が原板ステージMSTに遮られることなく通過する。計測光10が通過する位置を透明にする場合は、開口21は設けなくてもよい。ミラー14は平板ミラーであり、露光光に干渉しないよう、露光光が通過する領域301の外部(光路外)に配置される。同様に計測マーク12(部材11)も、露光光の光路外に配置される。計測光源13およびミラー14は、それぞれ不図示の保持機構により、計測マーク12が固定されている構造体、つまり、部材11に固定されている。   FIG. 3 is a cross-sectional view at the position of dashed-dotted line 200 shown in FIG. The measurement light 10 emitted from the measurement light source 13 is bent by the mirror 14 and passes through the measurement mark 12 and the opening 21. The opening 21 extends in the Y direction of the original plate holder MST, and the measurement light 10 always passes through the original plate stage MST without being blocked by the original plate stage MST while scanning and exposing the original plate stage MST in the Y direction. When the position through which the measurement light 10 passes is made transparent, the opening 21 may not be provided. The mirror 14 is a flat mirror and is disposed outside (outside the optical path) the region 301 through which the exposure light passes so as not to interfere with the exposure light. Similarly, the measurement mark 12 (member 11) is also arranged outside the optical path of the exposure light. The measurement light source 13 and the mirror 14 are fixed to the structure, that is, the member 11 to which the measurement mark 12 is fixed, by a holding mechanism (not shown).

図4は、基板保持部PSTとその近傍の構造を示す図である。計測光源13から出射し、開口21、計測マーク12および投影光学系POを通過した計測光10は、ミラー16で曲げられ、センサ15に入射する。センサ15の検出面は、計測マーク12と光学的に共役な位置に設置され、計測マーク12の像は投影光学系POを介してセンサ15上に結像する。ミラー16は、平板ミラーであり、露光中に露光光が通過する領域401の外部に配置される。センサ15およびミラー16は、それぞれ保持機構(不図示)により露光装置EEの本体に固定されている。なお、投影光学系POの倍率が−1倍であるため、原版Mのパターン像は、投影光学系PO通過後は、X方向に反転する。したがって、本実施形態に係る計測光10は、投影光学系POを通過後、露光光の+X側を通過して−Z方向に進む。   FIG. 4 is a diagram showing the structure of the substrate holding part PST and the vicinity thereof. The measurement light 10 emitted from the measurement light source 13 and passed through the opening 21, the measurement mark 12, and the projection optical system PO is bent by the mirror 16 and enters the sensor 15. The detection surface of the sensor 15 is placed at a position optically conjugate with the measurement mark 12, and an image of the measurement mark 12 is formed on the sensor 15 via the projection optical system PO. The mirror 16 is a flat mirror and is disposed outside the region 401 through which exposure light passes during exposure. The sensor 15 and the mirror 16 are each fixed to the main body of the exposure apparatus EE by a holding mechanism (not shown). Since the magnification of the projection optical system PO is −1, the pattern image of the original M is inverted in the X direction after passing through the projection optical system PO. Therefore, the measurement light 10 according to the present embodiment passes through the projection optical system PO, passes through the + X side of the exposure light, and proceeds in the −Z direction.

制御部51は、計測マーク12の投影像から計測マーク12の位置情報を算出し、算出結果とあらかじめ定められた所定の位置情報(基準位置)とを比較して変化量(差分)を求める。所定の位置情報とは、センサ15の固定位置座標等である。制御部51は、差分が減少するような制御を行う制御信号を駆動部42に送る。駆動部42は、制御信号に基づいて、平板ガラス41のXY平面に対する角度を変化させる(Z軸方向に傾ける)。これにより、計測光10の光路が変化し、センサ15で検出される計測マーク12の像の位置を補正することができる。   The control unit 51 calculates position information of the measurement mark 12 from the projection image of the measurement mark 12, and compares the calculation result with predetermined position information (reference position) determined in advance to obtain a change amount (difference). The predetermined position information is fixed position coordinates of the sensor 15 or the like. The control unit 51 sends a control signal for performing control such that the difference decreases to the drive unit 42. The drive unit 42 changes the angle of the flat glass 41 with respect to the XY plane based on the control signal (tilt in the Z-axis direction). As a result, the optical path of the measurement light 10 changes, and the position of the image of the measurement mark 12 detected by the sensor 15 can be corrected.

上記基準位置を用いずに計測マーク12の像の位置変化量を検出する方法について説明する。図5は、ミラー16とセンサ15との間にさらに計測マーク701を配置した構成を示す。計測マーク701は、計測マーク12と光学的に共役な位置に設置される。センサ15は、計測マーク12の像と計測マーク701の相対的な位置関係を検出することで、光学像の位置ずれを測定することができる。この場合、センサ15、ミラー16、計測マーク701は同一の構造体(露光装置EEの本体等)に固定されていることが好ましい。   A method for detecting the position change amount of the image of the measurement mark 12 without using the reference position will be described. FIG. 5 shows a configuration in which a measurement mark 701 is further arranged between the mirror 16 and the sensor 15. The measurement mark 701 is placed at a position optically conjugate with the measurement mark 12. The sensor 15 can measure the positional deviation of the optical image by detecting the relative positional relationship between the image of the measurement mark 12 and the measurement mark 701. In this case, the sensor 15, the mirror 16, and the measurement mark 701 are preferably fixed to the same structure (main body of the exposure apparatus EE).

計測マーク12の像と原版Mの像(パターン)とは、いずれも投影光学系POを介して結像しているため、投影光学系POに含まれる光学部品の位置ずれに起因する像の位置ずれは、計測マーク12の像と原版Mの像とで共通である。したがって、計測マーク12の位置ずれを補正することで、基板P上における原版Mの位置ずれを補正することができる。計測光10は、原版保持部MSTがスキャン動作を行っている最中も常にセンサ15に入射するため、走査露光中の位置ずれの変動(光学像の像振動)をリアルタイムに補正できる。   Since both the image of the measurement mark 12 and the image (pattern) of the original M are formed via the projection optical system PO, the position of the image due to the positional deviation of the optical components included in the projection optical system PO. The deviation is common between the image of the measurement mark 12 and the image of the original M. Therefore, the positional deviation of the original M on the substrate P can be corrected by correcting the positional deviation of the measurement mark 12. Since the measuring light 10 is always incident on the sensor 15 even while the original holding unit MST is performing the scanning operation, it is possible to correct in real time the positional deviation fluctuation (image vibration of the optical image) during the scanning exposure.

なお、位置ずれの変動の補正は、平板ガラス41のチルトに加え、またはチルトに変えて、基板保持部PSTまたは原版保持部MSTの位置を制御することにより、位置ずれを補正してもよい。また、上記のように、計測マーク12の検出に関係する各要素(部材11、センサ15等)を一体として構成するのは、振動等の位置ずれ要因を各要素で同一にするためである。したがって、この効果を得られるのであれば、上記本実施形態の構成には限られない。   The correction of the positional deviation may be corrected by controlling the position of the substrate holding unit PST or the original plate holding unit MST in addition to or in place of the tilt of the flat glass 41. Further, as described above, the elements (member 11, sensor 15, etc.) related to the detection of the measurement mark 12 are configured integrally so that the positional deviation factors such as vibration are the same for each element. Therefore, the configuration of the present embodiment is not limited as long as this effect can be obtained.

以上のように、本実施形態によれば、線幅均一性の点で有利な露光装置を提供することができる。   As described above, according to this embodiment, an exposure apparatus that is advantageous in terms of line width uniformity can be provided.

(第2実施形態)
第1実施形態では、照明系ILと原版Mとの間に計測マークを1カ所のみに設置している。これに対し、第2実施形態では、複数箇所に設置する点を特徴とする。図6は、第2実施形態に係る走査型露光装置EEの構成を示す概略図である。第1実施形態と異なる点は、計測光510を出射する計測光源513、計測光源513を検出するセンサ515および駆動部43を備える点である。
(Second Embodiment)
In the first embodiment, measurement marks are installed only at one location between the illumination system IL and the original M. In contrast, the second embodiment is characterized in that it is installed at a plurality of locations. FIG. 6 is a schematic diagram showing the configuration of a scanning exposure apparatus EE according to the second embodiment. The difference from the first embodiment is that a measurement light source 513 that emits measurement light 510, a sensor 515 that detects the measurement light source 513, and a drive unit 43 are provided.

図7は、本実施形態に係る原版保持部MSTとその近傍の構造を装置上方(Z軸正の方向)から見た図である。第1実施形態と異なる点は、原版保持部MSTにおいて、Y軸と平行に伸びるスリット状の開口23を有する点である。この開口部23は、光軸を含むYZ平面に関して開口21と対称に設けられることが好ましい。さらに、開口23と照明系ILとの間に、計測マーク512が配置され、計測マーク512は、露光装置EEの本体に固定されたベース512上に設けられている。これら追加要素は、第1実施形態と同様に、不図示の保持機構により、部材11(露光装置EEの本体)に固定されている。   FIG. 7 is a view of the original holding unit MST and the structure in the vicinity thereof, as viewed from above the apparatus (Z-axis positive direction). The difference from the first embodiment is that the original holding unit MST has a slit-like opening 23 extending parallel to the Y axis. The opening 23 is preferably provided symmetrically with the opening 21 with respect to the YZ plane including the optical axis. Further, a measurement mark 512 is disposed between the opening 23 and the illumination system IL, and the measurement mark 512 is provided on a base 512 fixed to the main body of the exposure apparatus EE. Similar to the first embodiment, these additional elements are fixed to the member 11 (main body of the exposure apparatus EE) by a holding mechanism (not shown).

図8は、図7に示す一点鎖線500の位置における断面図である。第1実施形態と異なる点は、ベース511、計測マーク512、計測光源513およびミラー514を有する点である。これら要素は、原版Mを挟んでYZ平面に関し、部材11、計測マーク12、計測光源13およびミラー14と対称に設けられることが好ましい。計測光源513から出射された計測光510の進行の仕方は第1実施形態と同様である。追加された要素は、第1実施形態と同様に、不図示の保持機構により、部材11(露光装置EEの本体)に固定されている。   FIG. 8 is a cross-sectional view at the position of dashed-dotted line 500 shown in FIG. The difference from the first embodiment is that a base 511, a measurement mark 512, a measurement light source 513, and a mirror 514 are provided. These elements are preferably provided symmetrically with respect to the member 11, the measurement mark 12, the measurement light source 13, and the mirror 14 with respect to the YZ plane across the original M. The way in which the measurement light 510 emitted from the measurement light source 513 travels is the same as in the first embodiment. The added element is fixed to the member 11 (main body of the exposure apparatus EE) by a holding mechanism (not shown) as in the first embodiment.

図9は、基板保持部PSTとその近傍の構造を示す図である。第1実施形態と異なる点は、センサ515およびミラー516を有する点である。これらは、YZ平面に関し、センサ15およびミラー16と対称に設けられることが好ましい。以上の構成によれば、2箇所の計測マークの位置ずれを検出して計測マークの像の回転成分も検出することができる。マークの像の回転成分は、2箇所の計測位置における位置ずれ量の差分として検出される。   FIG. 9 is a diagram showing the structure of the substrate holding part PST and the vicinity thereof. The difference from the first embodiment is that a sensor 515 and a mirror 516 are provided. These are preferably provided symmetrically with the sensor 15 and the mirror 16 with respect to the YZ plane. According to the configuration described above, it is possible to detect the rotational component of the measurement mark image by detecting the displacement of the two measurement marks. The rotation component of the mark image is detected as a difference between the displacement amounts at the two measurement positions.

2箇所の計測位置における位置ずれの差分(回転成分)は平板ガラス41の移動では補正できない。制御部51は、駆動部43を制御することでミラーM1およびミラーM5をZ軸周りに回転させて補正を行う。以上、本実施形態においても第1実施形態と同様の効果を奏する。   The difference (rotational component) of the positional deviation at the two measurement positions cannot be corrected by the movement of the flat glass 41. The control unit 51 controls the driving unit 43 to rotate the mirror M1 and the mirror M5 around the Z axis to perform correction. As described above, this embodiment has the same effects as those of the first embodiment.

(物品の製造方法)
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。さらに、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
(Product manufacturing method)
The method for manufacturing an article according to an embodiment of the present invention is suitable, for example, for manufacturing an article such as a microdevice such as a semiconductor device or an element having a fine structure. In the method for manufacturing an article according to the present embodiment, a latent image pattern is formed on the photosensitive agent applied to the substrate using the above-described exposure apparatus (a step of exposing the substrate), and the latent image pattern is formed in this step. Developing the substrate. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like). The method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

EE 走査型露光装置
IL 照明光学系
PO 投影光学系
13 計測光源
15 受光部
42 補正手段
51 制御部
EE Scanning exposure apparatus IL Illumination optical system PO Projection optical system 13 Measuring light source 15 Light receiving unit 42 Correction means 51 Control unit

Claims (9)

原版に露光光を照射する照明光学系と、前記原版のパターンを基板に投影する投影光学系とを備え、前記基板と前記原版とを移動させながら、前記基板を走査露光する露光装置であって、
マークに計測光を照射する計測光源と、
前記投影光学系を介して前記マークの投影像を受光する受光部と、
前記受光部で受光された該投影像から前記マークの位置情報を算出し、算出された位置情報に基づいた補正を行う補正手段を制御する制御部と、を有し、
前記マークは、前記原版を照明する露光光の光路外に配置されている、
ことを特徴とする露光装置。
An exposure apparatus that includes an illumination optical system that irradiates exposure light onto an original and a projection optical system that projects a pattern of the original onto a substrate, and that scans and exposes the substrate while moving the substrate and the original. ,
A measurement light source for irradiating the mark with measurement light;
A light receiving unit that receives a projected image of the mark via the projection optical system;
A control unit that calculates position information of the mark from the projection image received by the light receiving unit and controls a correction unit that performs correction based on the calculated position information;
The mark is disposed outside the optical path of the exposure light that illuminates the original.
An exposure apparatus characterized by that.
前記原版を保持する原版保持部において、前記計測光が通過する部分が走査方向に延在していることを特徴とする請求項1に記載の露光装置。   The exposure apparatus according to claim 1, wherein in the original holding unit that holds the original, a portion through which the measurement light passes extends in a scanning direction. 前記マークが設けられた部材および前記受光部が共通の構造体に固定されていることを特徴とする請求項1または2に記載の露光装置。   The exposure apparatus according to claim 1, wherein the member provided with the mark and the light receiving portion are fixed to a common structure. 第2のマークに第2の計測光を照射する第2の計測光源と、
前記投影光学系を介して前記第2のマークの第2の投影像を受光する第2の受光部と、を有し、
前記制御部は、前記投影像に加え、前記第2の投影像に基づいて前記補正手段を制御し、
前記第2のマークは、前記露光光および前記計測光の光路外に配置されている、ことを特徴とする請求項1乃至3のうちいずれか1項に記載の露光装置。
A second measurement light source that irradiates the second mark with the second measurement light;
A second light receiving unit that receives a second projected image of the second mark via the projection optical system,
The control unit controls the correction unit based on the second projection image in addition to the projection image,
4. The exposure apparatus according to claim 1, wherein the second mark is disposed outside an optical path of the exposure light and the measurement light. 5.
前記原版を保持する原版保持部において、前記第2の計測光が通過する部分が走査方向に延在していることを特徴とする請求項4に記載の露光装置。   5. The exposure apparatus according to claim 4, wherein, in the original holding unit that holds the original, a portion through which the second measurement light passes extends in a scanning direction. 前記マークが設けられた部材、前記受光部、前記第2のマークが設けられた第2の部材、前記第2の受光部が共通の構造体に固定されていることを特徴とする請求項4または5に記載の露光装置。   5. The member provided with the mark, the light receiving portion, the second member provided with the second mark, and the second light receiving portion are fixed to a common structure. Or the exposure apparatus according to 5. 前記補正手段は、前記投影光学系に含まれる光学部材、前記原版を保持する原版保持部、前記基板を保持する基板保持部のうち少なくとも1つを駆動する駆動部であることを特徴とする請求項1乃至6のうちいずれか1項に記載の露光装置。   The correction means is a drive unit that drives at least one of an optical member included in the projection optical system, an original plate holding unit that holds the original plate, and a substrate holding unit that holds the substrate. Item 7. The exposure apparatus according to any one of Items 1 to 6. 露光光が照射された原版のパターンを基板に投影する投影光学系を備え、前記基板と前記原版とを移動させながら、前記基板を走査露光する露光方法であって、
前記走査露光中に、露光光とは別の光が照射されたマークの投影像を、前記投影光学系を介して受光し、
前記投影像から前記マークの位置情報を算出し、算出された位置情報に基づいた補正を行う補正手段を制御することを特徴とする露光方法。
An exposure method comprising a projection optical system that projects a pattern of an original plate irradiated with exposure light onto a substrate, and scanning and exposing the substrate while moving the substrate and the original plate,
During the scanning exposure, a projected image of the mark irradiated with light different from the exposure light is received through the projection optical system,
An exposure method comprising: calculating position information of the mark from the projected image, and controlling correction means for performing correction based on the calculated position information.
請求項1乃至7のうちいずれか1項に記載の露光装置または請求項8に記載の露光方法を用いて基板を露光する工程と、
前記露光された前記基板を現像する工程と、を含む
ことを特徴とする物品の製造方法。
A step of exposing the substrate using the exposure apparatus according to any one of claims 1 to 7 or the exposure method according to claim 8;
Developing the exposed substrate. A method for manufacturing an article.
JP2015198420A 2015-10-06 2015-10-06 Exposure equipment, exposure method, and manufacturing method of article Pending JP2017072678A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015198420A JP2017072678A (en) 2015-10-06 2015-10-06 Exposure equipment, exposure method, and manufacturing method of article
TW105130643A TWI655511B (en) 2015-10-06 2016-09-22 Exposure apparatus, exposure method, and method of manufacturing the same
CN201610870966.XA CN106560745A (en) 2015-10-06 2016-09-30 Exposure Device, Exposure Method And Manufacturing Method Of Device
KR1020160128189A KR20170041145A (en) 2015-10-06 2016-10-05 Exposure apparatus, exposure method, and method of manufacturing devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198420A JP2017072678A (en) 2015-10-06 2015-10-06 Exposure equipment, exposure method, and manufacturing method of article

Publications (2)

Publication Number Publication Date
JP2017072678A true JP2017072678A (en) 2017-04-13
JP2017072678A5 JP2017072678A5 (en) 2019-06-20

Family

ID=58485736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198420A Pending JP2017072678A (en) 2015-10-06 2015-10-06 Exposure equipment, exposure method, and manufacturing method of article

Country Status (4)

Country Link
JP (1) JP2017072678A (en)
KR (1) KR20170041145A (en)
CN (1) CN106560745A (en)
TW (1) TWI655511B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092130A (en) 2020-01-15 2021-07-23 캐논 가부시끼가이샤 Exposure apparatus, and method of manufacturing article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704660B1 (en) * 1993-04-27 1995-07-13 Sgs Thomson Microelectronics Masks for a double-sided exposure machine.
EP1083462A4 (en) * 1998-03-26 2003-12-03 Nikon Corp Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device
JP5203992B2 (en) * 2008-03-25 2013-06-05 株式会社ニューフレアテクノロジー Electron beam drawing apparatus and electron beam drawing method
US20100092599A1 (en) * 2008-10-10 2010-04-15 Molecular Imprints, Inc. Complementary Alignment Marks for Imprint Lithography
JP5499398B2 (en) * 2009-05-11 2014-05-21 Nskテクノロジー株式会社 Exposure apparatus and exposure method
CN102156392A (en) * 2010-02-11 2011-08-17 中芯国际集成电路制造(上海)有限公司 Device and method for detecting alignment parameter of photoetching machine
WO2011101184A1 (en) * 2010-02-19 2011-08-25 Asml Netherlands B.V. Lithographic apparatus and method of producing a reference substrate
JP5933289B2 (en) * 2012-02-23 2016-06-08 三菱電機株式会社 SOI wafer and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092130A (en) 2020-01-15 2021-07-23 캐논 가부시끼가이샤 Exposure apparatus, and method of manufacturing article
JP2021110905A (en) * 2020-01-15 2021-08-02 キヤノン株式会社 Exposure device, and method for manufacturing article
JP7453790B2 (en) 2020-01-15 2024-03-21 キヤノン株式会社 Exposure device and article manufacturing method

Also Published As

Publication number Publication date
CN106560745A (en) 2017-04-12
KR20170041145A (en) 2017-04-14
TW201714024A (en) 2017-04-16
TWI655511B (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP3890233B2 (en) Positioning stage apparatus, exposure apparatus, and semiconductor device manufacturing method
KR101444981B1 (en) Exposure apparatus, exposure method, and method of manufacturing device
JP5507875B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2018072541A (en) Pattern formation method, positioning method of substrate, positioning device, pattern formation device and manufacturing method of article
US7474381B2 (en) Exposure apparatus and device manufacturing method
KR101779656B1 (en) Exposure apparatus and method for manufacturing article
JP2016008924A (en) Measuring device, lithography device, and manufacturing method for goods
KR20090089820A (en) Exposure apparatus and device manufacturing method
US20150192867A1 (en) Lithography apparatus, lithography method, and method of manufacturing article
JP2017072678A (en) Exposure equipment, exposure method, and manufacturing method of article
JP6061507B2 (en) Exposure method and article manufacturing method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6185724B2 (en) Exposure apparatus and article manufacturing method
JP6139870B2 (en) Exposure method, exposure apparatus, and article manufacturing method
JP2015002260A (en) Lithography apparatus, lithography method, and method of manufacturing article using them
JP2013247304A (en) Substrate holding device, exposure device and device manufacturing method
TWI654485B (en) Detection device, detection method, program, lithography device, and object manufacturing method
JPH11307436A (en) Projection aligner, reticle and reticle aligning method
JP2016009767A (en) Exposure device and method of manufacturing article
JP7222660B2 (en) Stage apparatus, lithographic apparatus, and method of manufacturing article
JP2017156512A (en) Exposure equipment and manufacturing method of article
JP2007129102A (en) Method for calculating correction information and exposure method
JP2023039136A (en) Exposure device, exposure method, and article manufacturing method
JP6053316B2 (en) Lithographic apparatus and article manufacturing method
JP5480601B2 (en) Exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210