JP2017070958A - Au-Sb-Sn SOLDER ALLOY - Google Patents

Au-Sb-Sn SOLDER ALLOY Download PDF

Info

Publication number
JP2017070958A
JP2017070958A JP2015197571A JP2015197571A JP2017070958A JP 2017070958 A JP2017070958 A JP 2017070958A JP 2015197571 A JP2015197571 A JP 2015197571A JP 2015197571 A JP2015197571 A JP 2015197571A JP 2017070958 A JP2017070958 A JP 2017070958A
Authority
JP
Japan
Prior art keywords
mass
solder
alloy
solder alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015197571A
Other languages
Japanese (ja)
Inventor
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015197571A priority Critical patent/JP2017070958A/en
Publication of JP2017070958A publication Critical patent/JP2017070958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive, Pb-free solder alloy for a high temperature which has a solidus line temperature of approximately 300°C or lower and is excellent in wettability, workability, stress relaxation, joint reliability and the like.SOLUTION: The solder alloy has an Sb content of 41.0 mass% or more and 52.0 mass% or less, preferably more than 46.7 mass% and 51.0 mass% or less, an Sn content of 2.0 mass% or more and 11.0 mass% or less, preferably more than 5.8 mass% and 9.0 mass% or less, with the balance being Au and unavoidable impurities.SELECTED DRAWING: None

Description

本発明は、Pbを含まない、いわゆるPbフリーはんだ合金に関し、特に高温用として好適なPbフリーAu−Sb―Sn系はんだ合金に関する。   The present invention relates to a so-called Pb-free solder alloy containing no Pb, and particularly to a Pb-free Au—Sb—Sn solder alloy suitable for high temperature use.

パワートランジスタ用素子のダイボンディングを始めとする各種電子部品の組立工程におけるはんだ付けでは高温はんだ付けが行われており、300〜400℃程度、場合によってそれ以上の比較的高温の融点を有するはんだ合金(以下、「高温用はんだ合金」とも称する)が用いられている。このような高温用はんだ合金としては、従来Pb−5質量%Sn合金に代表されるPb系はんだ合金が主に用いられてきた。   Soldering in the assembly process of various electronic components including die bonding of power transistor elements is performed at high temperature, and a solder alloy having a relatively high melting point of about 300 to 400 ° C. (Hereinafter also referred to as “high temperature solder alloy”). As such a high temperature solder alloy, a Pb solder alloy typified by a Pb-5 mass% Sn alloy has been mainly used.

しかし、近年では、廃棄物による環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えば欧州連合で施行されているRoHS指令ではPbは規制対象物質になっている。こうした動きに対応して、電子部品などの組立の分野においては、Pbを含まない(無鉛)はんだ合金、すなわちPbフリーはんだ合金への代替が進められており、既に中低温用(約140〜230℃)のはんだ合金では、Snを主成分とするPbフリーのはんだ合金が実用化されている。   However, in recent years, there has been a strong movement to limit the use of Pb due to consideration of environmental pollution caused by waste. For example, Pb is a regulated substance in the RoHS directive enforced in the European Union. In response to these movements, in the field of assembling electronic components and the like, replacement with Pb-free (lead-free) solder alloys, that is, Pb-free solder alloys, has already been promoted. In the case of a solder alloy of [° C.], a Pb-free solder alloy containing Sn as a main component has been put into practical use.

例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを1.0質量%以下、Pを0.2質量%以下含有するPbフリーのはんだ合金が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーのはんだ合金が記載されている。   For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 1.0 mass% or less, and P is 0.2 mass%. Pb-free solder alloys containing up to 10% are described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のPbフリーはんだ合金では、Au−Sn系はんだ合金やAu−Ge系はんだ合金が実用化されている。例えばAu系はんだやろう材について、特許文献3には接合面上に枠形状のAu系ろう材を備える封止パッケージ用のリッド又はケースが開示されている。この枠形状のろう材は、粒径10〜300μmのボール状のろう材が整列配置されたものであり、その材質には、Au−Sn系ろう材、Au−Ge系ろう材、Au−Si系ろう材、Au−Sb系ろう材が挙げられている。しかし、これらAu系はんだ合金はAuを主成分とするため非常に高価であり、高い信頼性が求められる光デバイス関係の素子などの用途に限られており、一般的な電子部品等に用いられることはほとんどなかった。   On the other hand, Au—Sn solder alloys and Au—Ge solder alloys have been put to practical use as high-temperature Pb-free solder alloys. For example, regarding Au-based solder and brazing material, Patent Document 3 discloses a lid or case for a sealed package including a frame-shaped Au-based brazing material on a joint surface. This frame-shaped brazing material is formed by arranging ball-shaped brazing materials having a particle diameter of 10 to 300 μm, and includes Au—Sn brazing material, Au—Ge brazing material, Au—Si. Examples thereof include a brazing filler metal and an Au—Sb brazing filler metal. However, these Au-based solder alloys are very expensive because they contain Au as a main component, and are limited to applications such as optical device-related elements that require high reliability, and are used for general electronic components and the like. There was hardly anything.

そこで、一般的な電子部品等に用いられる比較的安価な高温用のはんだ合金においてもPbフリーを実現するため、Bi系はんだ合金やZn系はんだ合金などの研究開発が進められている。例えば、Bi系はんだ合金については、特許文献4にBiを30〜80at%含有し、溶融温度が350〜500℃であるAg−Bi系のろう材が開示されており、特許文献5にBiを含む共晶合金に別の2元共晶合金を加え、更に添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能なはんだ合金の生産方法が開示されている。また、Zn系はんだ合金については、例えば特許文献6にZnに融点を下げるべくAlが添加されたZn−Al合金を基本とし、これにGe又はMgを添加した高温用Zn系はんだ合金が開示されている。この特許文献6には、更にSn又はInを添加することによって、より一層融点を下げる効果があることも記載されている。   Therefore, research and development of Bi-based solder alloys, Zn-based solder alloys, and the like are underway in order to realize Pb-free even in relatively inexpensive high-temperature solder alloys used for general electronic components and the like. For example, for a Bi-based solder alloy, Patent Document 4 discloses an Ag—Bi-based brazing material containing 30 to 80 at% Bi and having a melting temperature of 350 to 500 ° C. A solder alloy production method is disclosed in which the liquidus temperature can be adjusted and the variation can be reduced by adding another binary eutectic alloy to the eutectic alloy contained therein and further adding additional elements. As for the Zn-based solder alloy, for example, Patent Document 6 discloses a high-temperature Zn-based solder alloy based on a Zn-Al alloy in which Al is added to lower the melting point of Zn, and Ge or Mg is added thereto. ing. Patent Document 6 also describes that the addition of Sn or In has an effect of further lowering the melting point.

具体的には、特許文献6には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなる第1のZn合金、Alを5〜9質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなる第2のZn合金、Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなる第3のZn合金、Alを1〜9質量%、Geを0.05〜1質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなる第4のZn合金、Alを1〜9質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなる第5のZn合金、並びにAlを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなる第6のZn合金が記載されている。   Specifically, in Patent Document 6, Al is 1 to 9% by mass, Ge is 0.05 to 1% by mass, the remainder is a first Zn alloy composed of Zn and inevitable impurities, and Al is 5 to 9% by mass. %, Mg is contained in an amount of 0.01 to 0.5% by mass, and the balance is a second Zn alloy composed of Zn and inevitable impurities, Al is 1 to 9% by mass, Ge is 0.05 to 1% by mass, and Mg is 0%. A third Zn alloy containing 0.01 to 0.5% by mass, the balance being Zn and inevitable impurities, Al 1 to 9% by mass, Ge 0.05 to 1% by mass, Sn and / or In 0.5%. A fourth Zn alloy containing 1 to 25% by mass, the balance being Zn and inevitable impurities, Al 1 to 9% by mass, Mg 0.01 to 0.5% by mass, Sn and / or In 0.1% A fifth Zn alloy containing ~ 25% by mass, the balance being Zn and inevitable impurities, and 1-9% by mass of Al, and 0.5% of Ge. A sixth Zn alloy containing 5 to 1% by mass, Mg of 0.01 to 0.5% by mass, Sn and / or In of 0.1 to 25% by mass, the balance being Zn and inevitable impurities is described. Yes.

特開平11−077366号公報Japanese Patent Laid-Open No. 11-077366 特開平08−215880号公報Japanese Patent Laid-Open No. 08-215880 国際公開2008/140033号International Publication No. 2008/140033 特開2002−160089号公報JP 2002-160089 A 特開2006−167790号公報JP 2006-167790 A 特許第3850135号公報Japanese Patent No. 3850135

上記の特許文献3のAu系ろう材は、組成について詳しい記載がなく、Au−Sn系ろう材やAu−Ge系ろう材であれば、一般的によく使用されている共晶点付近のAu−20質量%SnやAu−12.5質量%Geであると推測できるが、Au−Sb系ろう材については現在、世の中でほとんど使用されておらず、組成が不明である。組成範囲が規定されていなければ、当然、液相線温度や固相線温度が定まらず、どのような特徴を有する合金かが全く分からないので、実際にはこのAu−Sb系ろう材を封止パッケージ用のリッドやケースなどに使用するのは難しい。   The Au-based brazing material of the above-mentioned Patent Document 3 has no detailed description of the composition. If the Au-Sn brazing material or the Au-Ge brazing material is used, Au near the eutectic point that is generally used is used. Although it can be estimated that it is -20 mass% Sn or Au-12.5 mass% Ge, the Au-Sb brazing material is hardly used in the world at present, and the composition is unknown. If the composition range is not specified, the liquidus temperature and the solidus temperature are of course not determined, and it is not known at all what kind of characteristics the alloy has. Therefore, the Au—Sb brazing material is actually sealed. It is difficult to use for lids and cases for fastening packages.

上記の特許文献4のAg−Bi系ろう材は液相線温度が400〜700℃と高く、500℃未満が望ましい接合時の作業温度も400〜700℃以上になると推測され、熱可塑性樹脂や熱硬化性樹脂などが多用されている一般的な電子部品や基板の耐熱温度を超えていると考えられる。また、上記の特許文献5の方法は、液相線の温度調整のみを目的として、4元系以上の複雑な多元系はんだ合金を生産することになり、Biの脆弱な機械的特性については効果的な改善がされていない。   The Ag-Bi brazing material described in Patent Document 4 has a liquidus temperature as high as 400 to 700 ° C, and it is presumed that the working temperature during joining, preferably less than 500 ° C, is 400 to 700 ° C or higher. It is considered that the temperature exceeds the heat resistance temperature of general electronic parts and substrates in which thermosetting resins are frequently used. In addition, the method of Patent Document 5 described above produces a complex multi-component solder alloy of quaternary system or more only for the purpose of adjusting the temperature of the liquidus, and is effective for Bi fragile mechanical characteristics. Improvement has not been made.

上記の特許文献6に開示されているZn系はんだ合金は、その組成の範囲内では合金の濡れ性が不十分である場合が多い。すなわち、Zn−Al系合金は融点については300〜400℃程度(Zn−Al共晶温度:381℃)と好ましい範囲にあるものの、主成分であるZnは還元性が強いため自らは酸化されやすく、その結果、濡れ性が極めて悪くなると考えられる。   The Zn-based solder alloy disclosed in Patent Document 6 often has insufficient wettability within the composition range. That is, although the melting point of Zn—Al alloy is in a preferable range of about 300 to 400 ° C. (Zn—Al eutectic temperature: 381 ° C.), Zn, which is the main component, is highly reducible and thus is easily oxidized. As a result, the wettability is considered to be extremely poor.

また、AlはZnよりも更に還元性が強いため、例えば1質量%以上添加した場合でも濡れ性を大きく低下させてしまう。そして、これら酸化されたZnやAlに対しては、GeやSnを添加しても還元することができず、濡れ性を向上させることはできない。更に、Zn−Al系合金にMgなどが添加されると金属間化合物を生成して極めて硬くなり、良好な加工性が得られない場合が生じるという問題がある。例えば、Mgを5質量%以上含有したZn−Al系合金は、加工の困難なワイヤ状やシート状などに加工することが実質的にできなくなる。   Moreover, since Al is more reducible than Zn, for example, even when added in an amount of 1% by mass or more, the wettability is greatly reduced. These oxidized Zn and Al cannot be reduced even if Ge or Sn is added, and the wettability cannot be improved. Furthermore, when Mg or the like is added to the Zn—Al-based alloy, an intermetallic compound is generated and becomes extremely hard, and there is a problem that good workability may not be obtained. For example, a Zn—Al-based alloy containing 5% by mass or more of Mg cannot be processed into a wire shape or a sheet shape that is difficult to process.

このように、従来のPb−5質量%Sn合金、Au−Sn系合金、Au−Ge系合金などに代表される高温用はんだ合金に代替可能な安価な高温用Pbフリーはんだ合金は未だ実用化されていないのが実状である。本発明は、かかる事情に鑑みてなされたものであり、電子部品の組立などの用途に好適な約300℃以下の固相線温度を有し、濡れ性、加工性、応力緩和性及び接合信頼性等に優れ、Au−Sn系はんだやAu−Ge系はんだに比べて格段に安価な高温用のPbフリーはんだ合金を提供することを目的とする。   Thus, low-cost high-temperature Pb-free solder alloys that can replace conventional high-temperature solder alloys represented by Pb-5 mass% Sn alloy, Au-Sn alloy, Au-Ge alloy, etc. are still in practical use. The actual situation is not done. The present invention has been made in view of such circumstances, has a solidus temperature of about 300 ° C. or less suitable for applications such as assembly of electronic components, and has wettability, workability, stress relaxation properties, and bonding reliability. An object of the present invention is to provide a high-temperature Pb-free solder alloy which is excellent in properties and the like and is much cheaper than Au—Sn solder and Au—Ge solder.

上記目的を達成するため、本発明が提供するAu−Sb−Sn系はんだ合金は、Sbの含有量が41.0質量%以上52.0質量%以下、Snの含有量が2.0質量%以上11.0質量%以下であり、残部がAu及び不可避不純物であることを特徴としている。   In order to achieve the above object, the Au—Sb—Sn solder alloy provided by the present invention has an Sb content of 41.0 mass% to 52.0 mass% and an Sn content of 2.0 mass%. The content is 11.0% by mass or less, and the balance is Au and inevitable impurities.

本発明によれば、約280℃の固相線温度を有するため250℃程度のリフロー温度に十分耐えることができ、濡れ性、加工性、応力緩和性及び接合信頼性等に優れると共に、Au−Sn系はんだやAu−Ge系はんだに比べて格段に安価な高温用のPbフリーはんだ合金を提供することができる。   According to the present invention, since it has a solidus temperature of about 280 ° C., it can sufficiently withstand a reflow temperature of about 250 ° C., is excellent in wettability, workability, stress relaxation property, bonding reliability, etc. It is possible to provide a Pb-free solder alloy for high temperatures that is much cheaper than Sn solder and Au—Ge solder.

Au−Sb−Sn系合金のReaction schemeである。It is a reaction scheme of an Au—Sb—Sn alloy. Ni層を有するCu基板上にはんだ合金をはんだ付けした濡れ性評価のための接合体の模式的な断面図である。It is typical sectional drawing of the joined body for the wettability evaluation which soldered the solder alloy on Cu substrate which has Ni layer. はんだ合金で封止された封止性評価のための容器の縦断面図である。It is a longitudinal cross-sectional view of the container for sealing performance evaluation sealed with the solder alloy.

本発明に係るPbフリーはんだ合金は、必須成分としてSb及びSnをそれぞれ41.0質量%以上52.0質量%以下、及び2.0質量%以上11.0質量%以下含有し、残部が製造上不可避的に含まれる元素(不可避不純物とも称する)及びAuからなる。本発明に係るPbフリーはんだ合金の主成分であるAuは、融点が1064℃と電子部品等の接合温度に対して高すぎる。この高温の融点を有するAuを主成分とするPbフリーはんだ合金の融点を280℃付近まで下げて、高温用はんだ合金として使えるようにするため、本発明に係るPbフリーはんだ合金はSbとSnを含有させることが必須となる。   The Pb-free solder alloy according to the present invention contains Sb and Sn as essential components in an amount of 41.0% by mass to 52.0% by mass and 2.0% by mass to 11.0% by mass, respectively, and the balance is manufactured. It consists of an element unavoidably included (also referred to as an inevitable impurity) and Au. Au, which is the main component of the Pb-free solder alloy according to the present invention, has a melting point of 1064 ° C., which is too high for the bonding temperature of electronic parts and the like. In order to reduce the melting point of the Pb-free solder alloy mainly composed of Au having a high melting point to about 280 ° C. so that it can be used as a high-temperature solder alloy, the Pb-free solder alloy according to the present invention contains Sb and Sn. It is essential to contain it.

すなわち、Au−Sb−Sn系はんだ合金とすることにより固相線温度が約280℃になり、250℃程度のリフロー温度に十分耐えることができる。これにより、Si半導体素子接合体、SiC半導体素子接合体、パワートランジスタ用素子などの電子部品のダイボンディングや封止など、各種電子装置の組立工程でのはんだ付けに好適なAu−Sb−Sn系はんだ合金を提供することができる。このAu−Sb−Sn系はんだ合金は、とくに水晶振動子の封止用の封止材として優れている。   That is, by using an Au—Sb—Sn solder alloy, the solidus temperature becomes about 280 ° C., and can sufficiently withstand a reflow temperature of about 250 ° C. As a result, Au-Sb-Sn series suitable for soldering in the assembly process of various electronic devices such as die bonding and sealing of electronic parts such as Si semiconductor element assemblies, SiC semiconductor element assemblies, power transistor elements, etc. A solder alloy can be provided. This Au—Sb—Sn solder alloy is particularly excellent as a sealing material for sealing a crystal resonator.

AuにSbとSnを含有させる2つ目の重要な目的は共晶組織を含むはんだ合金とすることにある。すなわち、SbとSnを含有させることで共晶点付近の組成にすることができ、これにより結晶が微細化するので、例えば、はんだ合金をワイヤ状、リボン状、プリフォーム状、ボール状などのはんだ材に加工するのが非常に容易になる上、クラックが進行しづらくなり、応力緩和性及び接合信頼性が格段に向上する。   The second important purpose of incorporating Sb and Sn into Au is to provide a solder alloy containing a eutectic structure. That is, by containing Sb and Sn, it is possible to make the composition near the eutectic point and thereby the crystal becomes finer. For example, the solder alloy is formed into a wire shape, ribbon shape, preform shape, ball shape, etc. It becomes very easy to process the solder material, and cracks are difficult to progress, and the stress relaxation property and the joint reliability are remarkably improved.

また、実用化されているAu系はんだで使用されているSnやGeよりもSbは酸化されにくく、よってSbを含有させることではんだの濡れ広がり性に大きく寄与させることができる。特に本発明のはんだ合金はAu−20質量%Snに比べてSnの含有量を非常に少なくし、酸化されにくいSbの含有量を多くしているため耐酸化性が向上して優れた濡れ性が得られる。   Further, Sb is less likely to be oxidized than Sn and Ge used in commercially available Au-based solders. Therefore, inclusion of Sb can greatly contribute to the wettability of the solder. In particular, the solder alloy of the present invention has an extremely low Sn content compared to Au-20% by mass Sn, and an increased Sb content that is difficult to oxidize. Is obtained.

SbとSnを含有させる更に重要な目的として、Sbの含有量を41.0質量%以上52.0質量%以下、Snの含有量を2.0質量%以上11.0質量%以下と、従来のAu系はんだ合金よりもSbとSnを多く含有させることにより、はんだ合金のコストを大きく下げることにある。例えばAu−Sb−Sn系合金の共晶点付近の組成であればAu−20質量%Snに比較してAu含有量を約30質量%以上下げることができる。このように高価なAuの含有量を大きく下げることはAu系はんだの適用範囲や市場規模を大きく広げることになることは言うまでもない。以下、かかる本発明のPbフリーのAu−Sb−Sn系はんだ合金についてさらに詳細に説明する。   As a more important purpose of containing Sb and Sn, the Sb content is 41.0% by mass or more and 52.0% by mass or less, and the Sn content is 2.0% by mass or more and 11.0% by mass or less. By adding more Sb and Sn than the Au-based solder alloy, the cost of the solder alloy is greatly reduced. For example, if the composition is in the vicinity of the eutectic point of the Au—Sb—Sn alloy, the Au content can be reduced by about 30% by mass or more compared to Au-20% by mass Sn. Needless to say, greatly reducing the content of such expensive Au greatly increases the application range and market scale of Au solder. Hereinafter, the Pb-free Au—Sb—Sn solder alloy of the present invention will be described in more detail.

Auは本発明のPbフリーAu−Sb−Sn系はんだ合金において、主成分をなす必須元素である。Auはその融点が1064℃と、電子部品用のはんだ材料としてはかなり高い融点を有しているが、SbやSnと合金化することにより融点を大きく下げることができる。すなわち、AuはSbやSnと共晶合金を作り、その共晶点温度はAu−Sn系合金と同じ280℃であり、高温用はんだとして非常に適した融点まで下げることができる。このようにAuとSbとSnの合金化によって融点を電子部品等の接合に適した温度まで下げることにより、Si半導体素子などの高温用デバイスのはんだ付けを最適な温度領域で行うことができ、特に水晶振動子の封止用に適したはんだ合金となるのである。   Au is an essential element constituting the main component in the Pb-free Au—Sb—Sn solder alloy of the present invention. Au has a melting point of 1064 ° C., which is a considerably high melting point as a solder material for electronic components, but can be greatly lowered by alloying with Sb or Sn. That is, Au forms a eutectic alloy with Sb and Sn, and the eutectic point temperature is 280 ° C., which is the same as that of the Au—Sn alloy, and can be lowered to a melting point that is very suitable as a high-temperature solder. Thus, by lowering the melting point to a temperature suitable for bonding of electronic parts and the like by alloying of Au, Sb and Sn, soldering of high temperature devices such as Si semiconductor elements can be performed in an optimum temperature region, In particular, it becomes a solder alloy suitable for sealing a crystal resonator.

これに関し、図1に示すAu−Sb−Sn系合金のReaction Scheme(G. Petzow and Effenberg, “Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams”, VCH)を参照しながら説明する。この図1に示されるように、本発明のPbフリーはんだ合金は、Au、Sb及びSnを必須成分とすることでAuSb及びAuSnの2つの金属間化合物から構成されることが基本となり、その共晶点ではSbの含有率は57at%である。そして、AuSbとAuSnから構成されることからAuの含有率は35.75at%、Snの含有率は7.25at%となる。つまり、質量%で表すとAuの含有率は47.5質量%、Sbの含有率は46.7質量%、Snの含有率は5.8質量%となり、その共晶点温度は280℃である。この280℃という融点はAu−20質量%Snの共晶点温度と全く同じであり、よって本発明のはんだ合金はAu−20質量%Snの代替として全く申し分ないものである。この好適な融点は本発明の重要な特徴の一つである。 This will be described with reference to a reaction scheme (G. Petzow and Effenberg, “Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams”, VCH) of the Au—Sb—Sn alloy shown in FIG. As shown in FIG. 1, the Pb-free solder alloy of the present invention is basically composed of two intermetallic compounds of AuSb 2 and Au 1 Sn 1 by using Au, Sb and Sn as essential components. Thus, the Sb content is 57 at% at the eutectic point. Since it is composed of AuSb 2 and Au 1 Sn 1, the Au content is 35.75 at% and the Sn content is 7.25 at%. That is, in terms of mass%, the Au content is 47.5 mass%, the Sb content is 46.7 mass%, the Sn content is 5.8 mass%, and the eutectic point temperature is 280 ° C. is there. The melting point of 280 ° C. is exactly the same as the eutectic point temperature of Au-20 mass% Sn, and therefore the solder alloy of the present invention is quite satisfactory as an alternative to Au-20 mass% Sn. This preferred melting point is one of the important features of the present invention.

上記したように、本発明のはんだ合金は微細な結晶構造の共晶合金を含むため、加工性に優れ、熱応力等の負荷が加わってもクラックが入りづらく、万一クラックが入っても進展しづらい。加えて本発明のはんだ合金を構成するAuSnはAu−20質量%Snはんだを構成する金属間化合物そのものであり、AuSbはAu−20質量%Snはんだを構成するもう一つの合金である最密六方晶のAuSnよりもすべり面が多く柔軟性に富む。このため、本発明のAu−Sb−Sn系はんだ合金はAu−Sn系はんだ合金やAu−Ge系はんだ合金などよりも加工性や応力緩和性に優れるのである。 As described above, since the solder alloy of the present invention includes a eutectic alloy having a fine crystal structure, it is excellent in workability and hardly cracks even when a load such as thermal stress is applied. difficult. In addition, Au 1 Sn 1 constituting the solder alloy of the present invention is an intermetallic compound itself constituting Au-20 mass% Sn solder, and AuSb 2 is another alloy constituting Au-20 mass% Sn solder. There are more slip planes and more flexibility than some close-packed hexagonal Au 5 Sn. For this reason, the Au—Sb—Sn solder alloy of the present invention is more excellent in workability and stress relaxation than Au—Sn solder alloy and Au—Ge solder alloy.

SbはSnやGeよりも酸化されにくいという優れた性質を有しており、このSbを多く含有することで本発明のはんだ合金は優れた濡れ性が得られる。すなわち酸化されにくいSbを多く含有することによりはんだ接合時などにはんだ合金自身が酸化されにくくなり、濡れ性が著しく向上する。本発明のはんだ合金はこのようなSbの効果によってAu−20質量%Sn合金と比較しても酸化が進行しづらく、よって同等以上の濡れ広がり性が得られる。   Sb has an excellent property that it is less likely to be oxidized than Sn and Ge. By containing a large amount of this Sb, the solder alloy of the present invention has excellent wettability. That is, by containing a large amount of Sb that is difficult to oxidize, the solder alloy itself is less likely to be oxidized at the time of soldering or the like, and the wettability is remarkably improved. The solder alloy of the present invention is less susceptible to oxidation than the Au-20 mass% Sn alloy due to the effect of Sb, and therefore, the wet spreadability equal to or higher than that can be obtained.

更に、本発明のはんだ合金の大きな特徴として低コストであることが挙げられる。すなわち現在高温用Pbフリーはんだ合金として使用されているAu−20質量%SnやAu−12.5質量%GeやAu−3.1質量%SiなどはAu含有量が約80〜97質量%であり、非常に高コストである。一方、本発明のはんだ合金はAu含有量が約50質量%であり、上記した従来のAu系はんだ合金と比べてAu含有量を約30質量%以上下げることができるので非常に低コストであることは明白である。この非常に低コストであるという特徴は本発明のはんだ合金の大きな特徴であり、一般に極めて高価であるAu系はんだ合金のコストを場合によっては半分以下にできるのである。   Furthermore, the low cost is mentioned as a big characteristic of the solder alloy of this invention. That is, Au-20 mass% Sn, Au-12.5 mass% Ge, Au-3.1 mass% Si and the like currently used as Pb-free solder alloys for high temperature have an Au content of about 80 to 97 mass%. There is a very high cost. On the other hand, the solder alloy of the present invention has an Au content of about 50% by mass, and the Au content can be reduced by about 30% by mass or more compared to the above-described conventional Au-based solder alloy, so that the cost is very low. It is obvious. This very low cost feature is a major feature of the solder alloy of the present invention, and the cost of the Au-based solder alloy, which is generally very expensive, can be reduced to half or less in some cases.

上記したような優れた効果を奏するためのSbの含有量は41.0質量%以上52.0質量%以下、好ましくは46.7質量%を超えて51.0質量%以下であり、Snの含有量は2.0質量%以上11.0質量%以下、好ましくは5.8質量%を超えて9.0質量%以下である。Sbの含有量が41.0質量%未満では含有量が少なすぎて共晶点の組成から外れすぎてしまい、液相線温度が高くなりすぎて接合しにくくなったり、AuとSnが様々な金属間化合物を生成して硬くて脆くなったりしてしまう。逆に、Sbの含有量が52.0質量%を超えると液相線温度と固相線温度の差が大きくなりすぎて溶け別れ現象を生じたり、Sbの金属間化合物の割合が多くなりすぎて結晶が粗大化したりすることで接合信頼性の低下を招いてしまう。   The content of Sb for achieving the excellent effects as described above is 41.0% by mass or more and 52.0% by mass or less, preferably more than 46.7% by mass and 51.0% by mass or less. The content is 2.0% by mass or more and 11.0% by mass or less, preferably more than 5.8% by mass and 9.0% by mass or less. If the content of Sb is less than 41.0% by mass, the content is too small and too far from the composition of the eutectic point, the liquidus temperature becomes too high and bonding becomes difficult, and there are various kinds of Au and Sn. Intermetallic compounds are produced and become hard and brittle. On the contrary, if the Sb content exceeds 52.0% by mass, the difference between the liquidus temperature and the solidus temperature becomes too large, resulting in the phenomenon of melting and separation, and the proportion of Sb intermetallic compound is too high. As a result, the crystal becomes coarser, leading to a decrease in bonding reliability.

特にSbの含有量が46.7質量%を超えて51.0質量%以下であれば、接合後の信頼性がより一層向上するので好ましい。すなわち、接合時にSbが接合面のNiやCuと反応して接合後のはんだ母相のSb含有量が共晶点の組成より低くなりやすいため、はんだ組成を共晶点の組成よりSbを多く含有しておくことで接合後に共晶点の組成に近くなり、より高い接合信頼性を得ることができる。   In particular, if the Sb content exceeds 46.7% by mass and is 51.0% by mass or less, the reliability after bonding is further improved, which is preferable. That is, Sb reacts with Ni or Cu on the bonding surface during bonding, and the Sb content of the solder parent phase after bonding tends to be lower than the composition of the eutectic point, so that the solder composition is more Sb than the composition of the eutectic point. By containing, it becomes close to the composition of the eutectic point after bonding, and higher bonding reliability can be obtained.

また、Snの含有量が2.0質量%未満では含有量が少なすぎて共晶点から外れすぎてしまい、共晶点のはんだ合金としての種々の長所が得られなくなってしまう。逆に、Snの含有量が11.0質量%を超えると含有量が多すぎて低融点相を生成したり、AuとSnの金属間化合物が過剰に生成されて硬くて脆くなったりする。   Further, if the Sn content is less than 2.0% by mass, the content is too small to be too far from the eutectic point, and various advantages of the eutectic point as a solder alloy cannot be obtained. On the other hand, if the Sn content exceeds 11.0% by mass, the content is too high and a low melting point phase is generated, or an intermetallic compound of Au and Sn is excessively generated and becomes hard and brittle.

特にSnの含有量が5.8質量%を超えて9.0質量%以下であれば、接合後の信頼性がより一層向上するので好ましい。すなわち、Sn含有量を共晶点の組成より高くすることで接合信頼性が向上する理由は上記したSbの場合と同様であるが、SnはSbよりもNiなどと反応し易いため、より効果が現われやすい。また、接合面にAu層を設けることが多いが、このような場合ははんだ母相中にAuが拡散するため、Auが多くなりやすく、このような観点からも共晶点の組成よりSnやSbを多くしておくことが好ましいのである。   In particular, if the Sn content exceeds 5.8 mass% and is 9.0 mass% or less, the reliability after bonding is further improved, which is preferable. That is, the reason why the bonding reliability is improved by making the Sn content higher than the composition of the eutectic point is the same as in the case of Sb described above. However, since Sn reacts more easily with Ni or the like than Sb, it is more effective. Is likely to appear. In many cases, an Au layer is provided on the bonding surface. In such a case, since Au diffuses into the solder matrix, the amount of Au tends to increase. It is preferable to increase Sb.

[実施例1]
以下、具体的な実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例によって何ら限定されるものではない。まず、原料としてそれぞれ純度99.99質量%以上のAu、Sb、Sn及びGeを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。次に、高周波溶解炉用グラファイトるつぼに、これら原料から所定量を秤量して入れた。
[Example 1]
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples. First, Au, Sb, Sn, and Ge having a purity of 99.99% by mass or more were prepared as raw materials. Large flakes and bulk-shaped raw materials were cut and pulverized, etc. so as to be uniform with no variation in composition depending on the sampling location in the alloy after melting, and were reduced to a size of 3 mm or less. Next, a predetermined amount of these raw materials was weighed into a graphite crucible for a high-frequency melting furnace.

原料の入ったるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく攪拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出し、るつぼ内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型には、シートや打抜き品を製造するための圧延用に厚さ5mm×幅42mm×長さ240mmの板状の合金が得られるものを使用した。   The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per 1 kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly removed, and the molten metal in the crucible was poured into the solder mother alloy mold. The mold used was a plate-like alloy having a thickness of 5 mm, a width of 42 mm, and a length of 240 mm for rolling to produce a sheet or punched product.

このようにして、原料の混合比率を様々に変えた試料1〜20のはんだ母合金を作製した。これらの試料1〜20のはんだ母合金の各々に対して、ICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析を行った。得られた分析結果を下記表1に示す。   In this way, solder mother alloys of Samples 1 to 20 with various mixing ratios of the raw materials were produced. Each of the solder mother alloys of Samples 1 to 20 was subjected to composition analysis using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The obtained analysis results are shown in Table 1 below.

Figure 2017070958
Figure 2017070958

次に、上記試料1〜20のはんだ母合金の各々に対して、下記に示すように温間圧延機を用いてシート状に加工してクラック等の発生率を調べることで1番目の加工性の評価とした。そして、このシート状の試料を用い、プレス機で0.5mm×0.4mmの長方形に打抜いてプリフォーム材(打抜き品)を作り、その打抜き品の合格率を調べることで2番目の加工性の評価とした。   Next, for each of the solder mother alloys of Samples 1 to 20, the first workability is obtained by processing into a sheet using a warm rolling mill as shown below and examining the occurrence rate of cracks and the like. It was evaluated. Then, this sheet-like sample is used to make a preform material (punched product) by punching into a 0.5 mm × 0.4 mm rectangle with a press machine, and the pass rate of the punched product is examined to perform the second processing. Evaluation of sex.

<シートの製造(加工性の評価1)>
準備した厚さ5mm×幅42mm×長さ240mmの板状母合金試料を温間圧延機で圧延した。圧延条件はすべての試料において同じにした。具体的には、圧延回数は5回、圧延速度は15〜30cm/秒、ロール温度は250℃とし、5回の圧延で30.0±1.2μmまで圧延した。圧延後の各試料において、シート10mあたり、クラックやバリが発生しなかった場合を「○」、クラックやバリが1〜3個以上発生した場合を「△」、クラックやバリが4個以上発生した場合を「×」として、1番目の加工性の評価とした。
<Manufacture of sheet (processability evaluation 1)>
The prepared plate-shaped mother alloy sample having a thickness of 5 mm, a width of 42 mm, and a length of 240 mm was rolled with a warm rolling mill. The rolling conditions were the same for all samples. Specifically, the number of rolling was 5 times, the rolling speed was 15 to 30 cm / second, the roll temperature was 250 ° C., and rolling was performed to 30.0 ± 1.2 μm by 5 times rolling. In each sample after rolling, “O” indicates that no cracks or burrs are generated per 10 m of the sheet, “Δ” indicates that 1 to 3 or more cracks or burrs are generated, and 4 or more cracks or burrs are generated. In this case, “x” was designated as the first workability evaluation.

<打抜き(加工性の評価2)>
シート状に加工した各試料をプレス機で打抜いて打抜き品を製造して2番目の加工性の評価を行った。具体的には、縦0.5mm×横0.4mmの長方形の打抜品を各試料1000個ずつ打抜いて製造した。その際、打抜き品にワレ、カケ、バリなどがあった場合を不良品とし、そのようなものが無くきれいな四角に打抜けた場合を良品とし、良品の数を打抜き数(1000)で割り100をかけて合格率(%)を算出した。上記の加工性の評価1及び2の結果を下記表2に示す。
<Punching (workability evaluation 2)>
Each sample processed into a sheet was punched with a press to produce a punched product, and the second workability was evaluated. Specifically, a rectangular punched product having a length of 0.5 mm and a width of 0.4 mm was manufactured by punching 1000 samples. At that time, if there are cracks, burrs, burrs, etc. in the punched product, it will be considered as a defective product, and if there is no such product and it will be punched into a clean square, it will be considered as a non-defective product. Was used to calculate the pass rate (%). The results of the above processability evaluations 1 and 2 are shown in Table 2 below.

Figure 2017070958
Figure 2017070958

上記表2から分かるように、本発明の要件を満たす試料1〜10の各はんだ合金は、各評価項目において良好な特性を示している。すなわち、シートへの加工性の評価ではクラック等の不良は発生せず、打抜き品の合格率は99%以上であり非常に高い合格率を示した。一方、本発明の比較例である試料11〜20の各はんだ合金は、少なくともいずれかの特性において好ましくない結果となった。すなわち、シート加工性の評価ではクラック等が発生した試料が多く、加工性の評価である打抜き品の合格率は高くても88%であった。   As can be seen from Table 2, each of the solder alloys of Samples 1 to 10 that satisfy the requirements of the present invention exhibits good characteristics in each evaluation item. That is, in the evaluation of the workability to the sheet, defects such as cracks did not occur, and the pass rate of the punched product was 99% or more, indicating a very high pass rate. On the other hand, each solder alloy of Samples 11 to 20, which is a comparative example of the present invention, resulted in an undesirable result in at least any of the characteristics. That is, in the evaluation of sheet workability, there were many samples in which cracks and the like occurred, and the acceptance rate of the punched product, which is evaluation of workability, was 88% at the highest.

[実施例2]
実施例1と同様にして原料の混合比率が異なる試料21〜40のはんだ母合金を作製したが、高周波溶解炉で溶融させたるつぼ内の溶湯を流し込む鋳型には、実施例1と異なりボールを製造するための液中アトマイズ用として直径27mmの円柱形状のものを用いた。そして、実施例1と同様にはんだ母合金の各々に対してICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析した。その分析結果を下記表3に示す。
[Example 2]
In the same manner as in Example 1, solder mother alloys of Samples 21 to 40 having different raw material mixing ratios were prepared. However, unlike Example 1, balls were used for the mold into which the molten metal in the crucible melted in the high-frequency melting furnace was poured. A cylinder with a diameter of 27 mm was used for submerged atomization for manufacturing. In the same manner as in Example 1, each solder mother alloy was subjected to composition analysis using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The analysis results are shown in Table 3 below.

Figure 2017070958
Figure 2017070958

次に、上記試料21〜40のはんだ母合金の各々に対して液中アトマイズ装置を用いてボール状に加工し、得られたはんだボールを基板に接合して得た接合体のボイド率を測定して接合性を評価し、さらに接合体のヒートサイクル試験を行って信頼性を評価した。また、はんだボールで封止して得た封止体のリーク状態を確認して封止性を評価した。以下、かかるボール状はんだの製造方法及び各種評価について具体的に説明する。   Next, each of the solder mother alloys of Samples 21 to 40 is processed into a ball shape using a submerged atomizer, and the void ratio of the joined body obtained by joining the obtained solder balls to the substrate is measured. Then, the bondability was evaluated, and the reliability was evaluated by conducting a heat cycle test of the bonded body. Moreover, the sealing state was evaluated by confirming the leakage state of the sealing body obtained by sealing with solder balls. Hereinafter, the manufacturing method and various evaluations of such ball-shaped solder will be specifically described.

<ボール状はんだの製造方法>
準備した試料21〜40のはんだ母合金(直径27mmの円柱状)の各々を液中アトマイズ装置のノズルに投入し、このノズルを300℃に加熱した液体の入った石英管の上部(高周波溶解コイルの中)にセットした。なお、液体には、はんだの酸化抑制効果が大きい油を用いた。そして、ノズル中の母合金を高周波により530℃まで加熱して5分保持した後、不活性ガスによりノズルに圧力を加えてアトマイズを行い、ボール状のはんだ合金を作製した。尚、ボール径は設定値が0.30mmとなるように、予めノズル先端の内径を調整した。得られた各試料のはんだボールに対してそれぞれエタノール洗浄を3回行い、その後、真空乾燥機を用いて45℃の真空中で2時間かけて乾燥した。
<Method of manufacturing ball solder>
Each of the prepared solder mother alloys (columns of 27 mm in diameter) of samples 21 to 40 is put into a nozzle of a submerged atomizer, and this nozzle is heated to 300 ° C. above the quartz tube containing the liquid (high frequency melting coil) Set inside). As the liquid, oil having a great effect of suppressing the oxidation of solder was used. And after heating the mother alloy in a nozzle to 530 degreeC with a high frequency and hold | maintaining for 5 minutes, pressure was applied to the nozzle with the inert gas and it atomized and the ball-shaped solder alloy was produced. Note that the inner diameter of the nozzle tip was adjusted in advance so that the set value of the ball diameter was 0.30 mm. The obtained solder balls of each sample were washed with ethanol three times, and then dried in a vacuum at 45 ° C. for 2 hours using a vacuum dryer.

<接合性の評価(ボイド率の測定)>
接合性を評価するため、試料21〜40の各々を用いて接合体を作製し、そのボイド率を測定した。具体的には、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12L/分の流量で流した。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。
<Evaluation of bondability (measurement of void fraction)>
In order to evaluate the bondability, a bonded body was prepared using each of the samples 21 to 40, and the void ratio was measured. Specifically, a wettability tester (apparatus name: atmosphere control type wettability tester) is started, a double cover is applied to the heater part to be heated, and nitrogen gas is supplied from four locations around the heater part at 12 L / min. The flow rate was. Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated.

ヒーター温度が設定値で安定した後、Niめっき(膜厚:3.0μm)されたCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次にボール状の各はんだ合金試料をCu基板上に載せて25秒加熱した。加熱が完了した後、はんだ付けされたCu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却し、十分に冷却した後大気中に取り出した。   After the heater temperature has stabilized at the set value, a Cu substrate (plate thickness: 0.3 mm) plated with Ni (film thickness: 3.0 μm) is set in the heater part and heated for 25 seconds, and then each ball-shaped The solder alloy sample was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the soldered Cu substrate was picked up from the heater portion, and once installed and cooled in a place where the nitrogen atmosphere next to it was maintained, after sufficiently cooling, it was taken out into the atmosphere.

このようにして図2に示すようなNi層(めっき)2を有するCu基板1上に各試料のはんだ合金3がはんだ付けされた接合体を作製した。そして、得られた接合体に対して、X線透過装置(株式会社東芝製、TOSMICRON−6125)を用いてボイド率を測定した。具体的には、接合体の上部からはんだ合金とCu基板との接合面に対して垂直な方向にX線を透過し、下記計算式1を用いてボイド率を算出した。   In this manner, a joined body in which the solder alloy 3 of each sample was soldered onto the Cu substrate 1 having the Ni layer (plating) 2 as shown in FIG. And the void ratio was measured with respect to the obtained joined_body | zygote using the X-ray transmissive apparatus (The Toshiba Corporation make, TOSMICRON-6125). Specifically, X-rays were transmitted from the upper part of the joined body in a direction perpendicular to the joint surface between the solder alloy and the Cu substrate, and the void ratio was calculated using the following calculation formula 1.

[計算式1]
ボイド率(%)=ボイド面積÷(ボイド面積+はんだ合金とCu基板との接合面積)×100
[Calculation Formula 1]
Void ratio (%) = void area / (void area + joint area between solder alloy and Cu substrate) × 100

<ヒートサイクル試験(信頼性の評価)>
はんだ接合の信頼性を評価するため、試料21〜40の各はんだボールに対してヒートサイクル試験を行った。なお、この試験は、上記接合性の評価と同様にして作製した接合体を各試料2個ずつ用いて行った。まず、各試料2個の接合体に対して、−40℃の冷却と250℃の加熱を1サイクルとして、これをそれぞれ300サイクル及び500サイクル繰り返した。その後、これら接合体を樹脂に埋め込み、断面研磨を行い、SEM(日立製作所製 S−4800)により接合面の観察を行った。接合面にはがれやはんだにクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。
<Heat cycle test (reliability evaluation)>
In order to evaluate the reliability of solder bonding, a heat cycle test was performed on each solder ball of Samples 21-40. Note that this test was performed using two joined samples prepared in the same manner as the evaluation of the bonding property. First, for each of the two bonded samples, cooling at −40 ° C. and heating at 250 ° C. were taken as one cycle, and this was repeated for 300 cycles and 500 cycles, respectively. Then, these bonded bodies were embedded in resin, cross-section polishing was performed, and bonded surfaces were observed with SEM (S-4800, manufactured by Hitachi, Ltd.). The case where the joint surface was peeled or cracked in the solder was indicated as “×”, and the case where there was no such defect and the same joint surface as in the initial state was maintained as “◯”.

<封止性の評価(リーク状態の確認)>
はんだ合金による封止性を確認するため、図3に示すように上部に開口部を備えた容器4を試料21〜40の各はんだ合金3を用いて封止した。具体的には簡易ダイボンダー(ウェストボンド社製、MODEL:7327C)を用いて封止し、窒素フロー中(8L/分)で融点より50℃高い温度で30秒保持した後、窒素フローされたサイドボックスで室温まで十分に冷却し、その後、封止体を大気中に取り出した。このようにして封止された各封止体を水中に2時間浸漬し、その後、水中から封止体を取り出し、解体してリーク状態を確認した。解体した封止体の内部に水が入っていた場合はリークがあったと判断して封止性「×」と評価し、このようなリークが無かった場合は「○」と評価した。上記の接合性、信頼性及び封止性の評価結果を下記表4に示す。
<Evaluation of sealing performance (confirmation of leak condition)>
In order to confirm the sealing performance by the solder alloy, as shown in FIG. 3, the container 4 having an opening in the upper portion was sealed using each solder alloy 3 of the samples 21 to 40. Specifically, it was sealed using a simple die bonder (made by West Bond, MODEL: 7327C), held at a temperature 50 ° C. higher than the melting point in a nitrogen flow (8 L / min) for 30 seconds, and then a nitrogen-flowed side. The box was sufficiently cooled to room temperature, and then the sealing body was taken out into the atmosphere. Each sealing body sealed in this way was immersed in water for 2 hours, and then the sealing body was taken out from the water and disassembled to confirm a leak state. When water was contained in the disassembled sealed body, it was judged that there was a leak and evaluated as “×”, and when there was no such leak, it was evaluated as “◯”. Table 4 below shows the evaluation results of the bondability, reliability, and sealability.

Figure 2017070958
Figure 2017070958

上記表4から分かるように、本発明の要件を満たす試料21〜30の各はんだ合金は、各評価項目において良好な特性を示している。すなわち、接合性の評価であるボイド率についてはほとんどボイドが発生しないことを確認できた。さらに信頼性の評価であるヒートサイクル試験では全ての試料に関して500サイクルまで不良は発生しなかった。封止性の評価においてもリークは無く、良好な封止性が確認できた。このように良好な結果が得られた理由は本発明のはんだ合金が適正な組成範囲内であり、はんだ合金が適切な条件で製造されたからであると言える。   As can be seen from Table 4 above, each of the solder alloys of Samples 21 to 30 satisfying the requirements of the present invention exhibits good characteristics in each evaluation item. In other words, it was confirmed that almost no voids were generated with respect to the void ratio, which is an evaluation of bondability. Furthermore, in the heat cycle test, which is an evaluation of reliability, no defect occurred up to 500 cycles for all samples. There was no leak in the evaluation of sealing performance, and good sealing performance was confirmed. It can be said that the reason why such a good result was obtained was that the solder alloy of the present invention was in an appropriate composition range and the solder alloy was produced under appropriate conditions.

一方、本発明の比較例である試料31〜40の各はんだ合金は、少なくともいずれかの特性において好ましくない結果となった。すなわち、接合性の評価であるボイド率は0.7〜11%程度であり、ボイドがかなりの割合で発生した。信頼性の評価であるヒートサイクル試験では試料39、40を除いた全ての試料で300サイクルまでに不良が発生し、封止性の評価においても試料39、40を除いた全ての試料でリークが発生した。   On the other hand, each of the solder alloys of Samples 31 to 40, which is a comparative example of the present invention, resulted in an undesirable result in at least any of the characteristics. That is, the void ratio, which is an evaluation of bondability, was about 0.7 to 11%, and voids were generated at a considerable rate. In the heat cycle test, which is an evaluation of reliability, defects occurred in all the samples except for the samples 39, 40 up to 300 cycles, and in the sealability evaluation, leaks were observed in all the samples except the samples 39, 40. Occurred.

なお、実施例1及び2のいずれにおいても本発明の要件を満たす試料1〜10、及び試料21〜30のはんだ合金はAu含有量が多くても53質量%程度であり、現在、実用化されている80質量%Au−20質量%Sn合金や88質量%Au−12質量%Ge合金などよりも格段にAu含有量が少なく、よって低コストであることが分かる。   In both Examples 1 and 2, the solder alloys of Samples 1 to 10 and Samples 21 to 30 that satisfy the requirements of the present invention have a maximum Au content of about 53% by mass, and are currently in practical use. It can be seen that the Au content is significantly lower than the 80 mass% Au-20 mass% Sn alloy, 88 mass% Au-12 mass% Ge alloy, etc., which are low in cost.

1 Cu基板
2 Ni層
3 はんだ合金
4 容器


1 Cu substrate 2 Ni layer 3 Solder alloy 4 Container


Claims (4)

Sbの含有量が41.0質量%以上52.0質量%以下、Snの含有量が2.0質量%以上11.0質量%以下であり、残部がAu及び不可避不純物であることを特徴とするAu−Sb−Sn系はんだ合金。   The Sb content is 41.0% by mass or more and 52.0% by mass or less, the Sn content is 2.0% by mass or more and 11.0% by mass or less, and the balance is Au and inevitable impurities. Au-Sb-Sn based solder alloy. 少なくともSbの含有量が46.7質量%を超えて51.0質量%以下であるか又はSnの含有量が5.8質量%を超えて9.0質量%以下であることを特徴とする、請求項1に記載のAu−Sb−Sn系はんだ合金。   The content of Sb is at least 46.7% by mass and 51.0% by mass or less, or the content of Sn is more than 5.8% by mass and 9.0% by mass or less. The Au—Sb—Sn based solder alloy according to claim 1. 請求項1又は2に記載のAu−Sb−Sn系はんだ合金を用いて接合されていることを特徴とするSi半導体素子接合体。   An Si-semiconductor element assembly that is bonded using the Au—Sb—Sn solder alloy according to claim 1. 請求項1又は2に記載のAu−Sb−Sn系はんだ合金を用いて封止されていることを特徴とする水晶振動子封止素子。


A crystal resonator sealing element, wherein the element is sealed using the Au—Sb—Sn solder alloy according to claim 1.


JP2015197571A 2015-10-05 2015-10-05 Au-Sb-Sn SOLDER ALLOY Pending JP2017070958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197571A JP2017070958A (en) 2015-10-05 2015-10-05 Au-Sb-Sn SOLDER ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197571A JP2017070958A (en) 2015-10-05 2015-10-05 Au-Sb-Sn SOLDER ALLOY

Publications (1)

Publication Number Publication Date
JP2017070958A true JP2017070958A (en) 2017-04-13

Family

ID=58539453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197571A Pending JP2017070958A (en) 2015-10-05 2015-10-05 Au-Sb-Sn SOLDER ALLOY

Country Status (1)

Country Link
JP (1) JP2017070958A (en)

Similar Documents

Publication Publication Date Title
US20160375526A1 (en) Au-Sn-Ag BASED SOLDER ALLOY AND ELECTRONIC COMPONENT SEALED WITH THE SAME Au-Sn-Ag BASED SOLDER ALLOY, AND ELECTRONIC COMPONENT MOUNTING DEVICE
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5212573B2 (en) Bi-Al-Zn Pb-free solder alloy
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2017070958A (en) Au-Sb-Sn SOLDER ALLOY
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP2017070960A (en) Au-Sb-Sn SOLDER ALLOY CONTAINING FOURTH OR MORE ELEMENT
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP2017070959A (en) Au-Sb-Sn SOLDER PASTE
JP2011240372A (en) Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn
JP6136853B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2016097444A (en) Pb-FREE Sb-In-BASED SOLDER ALLOY
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au