JP2017069397A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2017069397A
JP2017069397A JP2015193652A JP2015193652A JP2017069397A JP 2017069397 A JP2017069397 A JP 2017069397A JP 2015193652 A JP2015193652 A JP 2015193652A JP 2015193652 A JP2015193652 A JP 2015193652A JP 2017069397 A JP2017069397 A JP 2017069397A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
semiconductor element
package
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015193652A
Other languages
Japanese (ja)
Inventor
宏治 濱口
Koji Hamaguchi
宏治 濱口
蔵渕 和彦
Kazuhiko Kurabuchi
和彦 蔵渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015193652A priority Critical patent/JP2017069397A/en
Publication of JP2017069397A publication Critical patent/JP2017069397A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of increasing the number of contacts between upper- and lower-stage semiconductor devices while suppressing warpage equally to the lower-stage semiconductor device of a semiconductor device with a PoP structure, and of improving a communication speed of data (data communication speed), and to provide a manufacturing method of efficiently manufacturing the semiconductor device at a low cost.SOLUTION: Provided are a semiconductor device and a method of manufacturing the same. In the semiconductor device, on a first substrate, a semiconductor element is connected so that a circuit surface (a first surface) of the semiconductor element is opposed to the substrate. On a second surface at an opposite side to the first substrate, of the semiconductor element, a second substrate on which a terminal to be connected with a second semiconductor device is formed is mounted. The first substrate and the second substrate are fixed via a resin material and electrically connected with each other.SELECTED DRAWING: Figure 10

Description

本発明は、パッケージ・オン・パッケージ構造の半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having a package-on-package structure and a manufacturing method thereof.

代表的な三次元半導体装置として、ロジック系パッケージの上にメモリ系パッケージを積層するパッケージ・オン・パッケージ(以下PoP)がある。PoPは半導体装置上に半導体装置を積層することで面方向の実装密度を高くできることから、スマートフォンやタブレット端末に広く採用されており、高速化、高機能化の必須アイテムとなっている。   As a typical three-dimensional semiconductor device, there is a package-on-package (hereinafter referred to as PoP) in which a memory package is stacked on a logic package. Since PoP can increase the mounting density in the surface direction by stacking semiconductor devices on a semiconductor device, it is widely adopted for smartphones and tablet terminals, and is an essential item for speeding up and increasing functionality.

ところで、PoPは上下の半導体装置を電気的に接続する必要がある。従来、下段の半導体装置は回路基板上に半導体素子をフリップチップ実装しただけの単純な構造であり、上段の半導体装置をはんだボールを介して接続していた。   By the way, PoP needs to electrically connect upper and lower semiconductor devices. Conventionally, the lower semiconductor device has a simple structure in which a semiconductor element is flip-chip mounted on a circuit board, and the upper semiconductor device is connected via a solder ball.

しかしながら、近年の軽薄短小化の要求から、下段の半導体装置の反りが増大し、上段半導体装置との接続を確保することが困難になってきている。そこで、下段半導体装置の半導体素子を封止材で封止し、半導体装置の反りを抑制する構造が提案され、実用化されている(図12、例えば非特許文献1参照)。
上記方法では上下の半導体装置間でデータを相互に通信するための端子は下段パッケージの封止材に貫通ビアを開けることで行う(例えば非特許文献2参照)。このため、半導体装置の通信容量向上のため、上下の半導体装置間の接続端子数を増やすためには下段基板の面積を増やして端子数を増加させるか、樹脂貫通ビア径を細くしてビア密度を上げる必要がある。
しかし、下段基板の面積を増やすのはパッケージサイズ増大につながるため市場要求に反し、樹脂貫通ビアのピッチはCOレーザー加工の制限上0.3mm程度が限界で、ビアを細くして端子密度を増やすことも困難である。
However, due to recent demands for reduction in size, thickness, warpage of the lower semiconductor device has increased, and it has become difficult to ensure connection with the upper semiconductor device. Therefore, a structure in which the semiconductor element of the lower semiconductor device is sealed with a sealing material to suppress warpage of the semiconductor device has been proposed and put into practical use (see, for example, Non-Patent Document 1).
In the above method, terminals for communicating data between upper and lower semiconductor devices are formed by opening through vias in the sealing material of the lower package (see, for example, Non-Patent Document 2). For this reason, in order to increase the communication capacity of the semiconductor device, in order to increase the number of connection terminals between the upper and lower semiconductor devices, the area of the lower substrate is increased to increase the number of terminals, or the through resin via diameter is reduced to reduce the via density. It is necessary to raise.
However, increasing the area of the lower substrate leads to an increase in package size, which is contrary to market requirements, and the pitch of through-plastic vias is limited to about 0.3 mm due to CO 2 laser processing limitations. It is also difficult to increase.

これらを解決できる方法の1つとして、下段パッケージの上面に下段パッケージ基板と電気的に接続された基板を配置する方法が開示されている。
例えば特許文献1では下段半導体素子上にパッケージ接続用基板を配置し、下段半導体素子とパッケージ接続基板、及び下段半導体素子と下段パッケージ基板をそれぞれワイヤボンディングで接続する方法が開示されている。
また、特許文献2ではスペーサーを介して下段半導体素子上にパッケージ接続用基板を配置しパッケージ接続用基板と下段パッケージ基板を直接ワイヤボンディングで接続する方法が開示されている。
あるいは特許文献3のように下段パッケージを1度封止した後、パッケージ接続用基板を配置し、下段パッケージ基板とワイヤボンディングした後、さらに封止して一体化する方法も提案されている。
しかしながら、これら開示されている構造ではいずれもワイヤボンディンが2回必要で、パッケージ接続用基板も多層板が必須となっており、工程が多く、パッケージ接続用基板も高価となり安価に製造する方法とは言いがたい。
As one of the methods that can solve these problems, a method of disposing a substrate electrically connected to the lower package substrate on the upper surface of the lower package is disclosed.
For example, Patent Document 1 discloses a method of disposing a package connection substrate on a lower semiconductor element, and connecting the lower semiconductor element and the package connection substrate, and connecting the lower semiconductor element and the lower package substrate by wire bonding.
Patent Document 2 discloses a method in which a package connection substrate is arranged on a lower semiconductor element via a spacer and the package connection substrate and the lower package substrate are directly connected by wire bonding.
Alternatively, as disclosed in Patent Document 3, after the lower package is sealed once, a package connecting substrate is arranged, wire-bonded to the lower package substrate, and further sealed and integrated.
However, in all of the disclosed structures, wire bonding is required twice, and the package connection substrate is also required to have a multilayer board, which requires many steps, and the package connection substrate is expensive and inexpensive to manufacture. It's hard to say.

特開2011−211077号公報JP 2011-211077 A 特開2011−233672号公報JP 2011-233672-A 特表2008−535264号公報Special table 2008-535264 gazette

Application of Through Mold Via (TMV) as PoP Base Package,Electronic Components and Technology Conference (ECTC),2008Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008 Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB−PoP) Technology,ECTC,2012Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology, ECTC, 2012

三次元対応の半導体装置は、小型化や高密度化の要求が高く、従来のPoP構造の半導体装置をさらに高性能にすることが求められている。また、そのような半導体装置を充分に効率よく、低コストに製造することが求められている。
本発明は、上記課題に鑑みてなされたものであり、現行の封止したPoP構造の半導体装置の下段半導体装置と同等に反りを抑制しつつ、接続端子を増やすことができ、上下の半導体装置間のデータ通信速度を向上できる半導体装置と、その半導体装置を効率よく低コストに製造できる製造方法を提供する。
A three-dimensional semiconductor device is highly demanded for miniaturization and high density, and the conventional PoP structure semiconductor device is required to have higher performance. Also, it is required to manufacture such a semiconductor device sufficiently efficiently and at a low cost.
The present invention has been made in view of the above problems, and can suppress the warpage equivalently to the lower semiconductor device of the current sealed PoP structure semiconductor device while increasing the number of connection terminals, and the upper and lower semiconductor devices A semiconductor device capable of improving the data communication speed and a manufacturing method capable of manufacturing the semiconductor device efficiently and at low cost are provided.

本発明者等は鋭意研究の結果、下記の半導体装置及びその製造方法により当該課題を解決できることを見出した。
即ち、本発明の半導体装置は、第1の基板上に半導体素子が半導体素子の回路面(第1の面)が基板と対面するように接続され、前記半導体素子の前記第1の基板とは反対側の第2の面に第2の半導体装置と接続するための端子を形成した第2の基板が搭載されており、前記第1の基板と前記第2の基板は樹脂材料を介して固定され、かつ電気的に接続されている。
また、本発明の半導体装置は、前記第2の基板の熱膨張率が、前記第1の基板と比較して大きく、かつ、第2の基板の曲げ剛性が、前記第1の基板と比較して小さいと好ましい。
また、本発明の半導体装置は、前記第1の基板として、20℃から260℃の平均熱膨張率が0を超えて12×10−6(/K)以下の基材を用いると好ましい。
また、本発明の半導体装置は、前記第2の基板として、20℃から260℃の平均熱膨張率が15×10−6(/K)以上、70×10−6(/K)以下の基材を用いると好ましい。
また、本発明の半導体装置は、前記樹脂材料が、曲げ剛性Dを基板の厚さをh(mm)、基板の幅をb(mm)、基板の曲げ弾性率をE(GPa)とし、D= E×(b×h)/12 としたとき、第1の基板の曲げ剛性をD1、第2の基板の曲げ剛性をD2とした場合、 D1/D2は100<D1/D2<1000000の比率であると好ましい。
また、本発明の半導体装置は、前記樹脂材料として、20℃から260℃の平均熱膨張係数が25×10−6(/K)以上、200×10−6(/K)以下の絶縁性樹脂接着剤を用いると好ましい。
As a result of intensive studies, the present inventors have found that the problem can be solved by the following semiconductor device and manufacturing method thereof.
That is, in the semiconductor device of the present invention, the semiconductor element is connected on the first substrate so that the circuit surface (first surface) of the semiconductor element faces the substrate, and the first substrate of the semiconductor element is A second substrate on which a terminal for connecting to the second semiconductor device is formed is mounted on the second surface on the opposite side, and the first substrate and the second substrate are fixed via a resin material. And are electrically connected.
In the semiconductor device of the present invention, the thermal expansion coefficient of the second substrate is larger than that of the first substrate, and the bending rigidity of the second substrate is larger than that of the first substrate. And small.
In the semiconductor device of the present invention, it is preferable to use a base material having an average coefficient of thermal expansion of 20 to 260 ° C. exceeding 12 × 10 −6 (/ K) as the first substrate.
In the semiconductor device of the present invention, as the second substrate, an average coefficient of thermal expansion from 20 ° C. to 260 ° C. is 15 × 10 −6 (/ K) or more and 70 × 10 −6 (/ K) or less. It is preferable to use a material.
In the semiconductor device of the present invention, the resin material may have a bending rigidity D, a substrate thickness h (mm), a substrate width b (mm), a substrate bending elastic modulus E (GPa), D = E × (b × h 3 ) / 12 When the bending rigidity of the first substrate is D1 and the bending rigidity of the second substrate is D2, D1 / D2 is 100 <D1 / D2 <1000000 A ratio is preferred.
In the semiconductor device of the present invention, as the resin material, an insulating resin having an average coefficient of thermal expansion from 20 ° C. to 260 ° C. of 25 × 10 −6 (/ K) or more and 200 × 10 −6 (/ K) or less. It is preferable to use an adhesive.

また、本発明の一側面は、上記の半導体装置の製造方法であって、
(I)少なくとも1個の半導体素子を第1の基板上に、半導体素子の回路面が前記第1の基板と対面するように搭載する工程と、
(II)前記半導体素子を実装した第1の基板の半導体素子を搭載した面、第2の基板の前記第1の基板に対して向かい合わる面、又は、その双方の面に樹脂材料を配置する工程と、
(III)前記半導体素子の、第1の基板とは反対側の第2の面に、第2の基板を配置する工程と、
(IV)前記第2の基板と第1の基板の配線を接続する工程と、
(V)前記第2の基板を接続したパッケージ基板を個片に分離する工程と、
を備える半導体装置の製造方法を提供する。
Another aspect of the present invention is a method of manufacturing the above semiconductor device,
(I) mounting at least one semiconductor element on a first substrate so that a circuit surface of the semiconductor element faces the first substrate;
(II) A resin material is disposed on the surface of the first substrate on which the semiconductor element is mounted, the surface on which the semiconductor element is mounted, the surface of the second substrate facing the first substrate, or both surfaces. Process,
(III) disposing a second substrate on the second surface of the semiconductor element opposite to the first substrate;
(IV) connecting the wiring of the second substrate and the first substrate;
(V) separating the package substrate connected to the second substrate into individual pieces;
A method for manufacturing a semiconductor device is provided.

上記半導体装置は、端子を形成した第2の基板を用いるため、従来の下段半導体装置では接続端子を配置できなかった半導体素子の上部を接続端子の配置場所として活用することができ、上段半導体装置と下段半導体装置を接続することができる。また、一般にフレキシブル基板のビアのピッチは樹脂貫通ビアのピッチよりも狭くすることができる。そのため、端子を形成した第2の基板としてフレキシブル基板を用いた場合、接続端子数を増やすことができ、半導体装置の高性能化に対応できる。
また、本発明に使用するフレキシブル基板はパッケージ基板と比較し、熱膨張が大きくてもよい。これにより、第2の基板としてのフレキシブル基板と第1の基板としてのパッケージ基板を、樹脂材料(絶縁樹脂材)を介して配置し、接続端子部を熱圧着すると、フレキシブル基板が大きく熱膨張し、フレキシブル基板がたわむことができる(図9の番号14参照)。このことでフレキシブル基板(第2の基板)とパッケージ基板(第1の基板)の接続端子が接触することができ、ワイヤボンディング等を使用せずにフレキシブル基板とパッケージ基板を接続することができる。
このように本発明は同種の公知のパッケージ作製方法と比較し、ワイヤボンディングなどの工程が少なく、省工程かつ安価に作製することができる。
このため、本発明の半導体装置とその製造方法は微細化と薄型化が必要とされる三次元半導体装置において特に好適であり、反りを抑制することができる。
Since the semiconductor device uses the second substrate on which the terminals are formed, the upper part of the semiconductor element, which cannot arrange the connection terminals in the conventional lower semiconductor device, can be utilized as the arrangement location of the connection terminals. And the lower semiconductor device can be connected. In general, the pitch of the vias of the flexible substrate can be made narrower than the pitch of the through resin vias. Therefore, when a flexible substrate is used as the second substrate on which the terminals are formed, the number of connection terminals can be increased, and high performance of the semiconductor device can be dealt with.
The flexible substrate used in the present invention may have a larger thermal expansion than the package substrate. Accordingly, when the flexible substrate as the second substrate and the package substrate as the first substrate are arranged via the resin material (insulating resin material) and the connection terminal portion is thermocompression bonded, the flexible substrate expands greatly. The flexible substrate can be bent (see reference numeral 14 in FIG. 9). Accordingly, the connection terminals of the flexible substrate (second substrate) and the package substrate (first substrate) can be in contact with each other, and the flexible substrate and the package substrate can be connected without using wire bonding or the like.
As described above, the present invention has fewer steps such as wire bonding and can be manufactured at a reduced cost and at a lower cost than the known package manufacturing method of the same type.
For this reason, the semiconductor device and the manufacturing method thereof of the present invention are particularly suitable for a three-dimensional semiconductor device that requires miniaturization and thinning, and can suppress warping.

本発明に係る一実施形態である半導体装置の製造方法の、第1の基板としてのパッケージ基板に接続端子を形成する工程を示す半導体装置1個分の概略断面図である。It is a schematic sectional drawing for one semiconductor device which shows the process of forming a connection terminal in the package board | substrate as a 1st board | substrate of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、半導体素子の搭載工程を示す概略上面図である。It is a schematic top view which shows the mounting process of the semiconductor element of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、半導体素子の搭載工程を示す半導体装置1個分の概略断面図である。It is a schematic sectional drawing for one semiconductor device which shows the mounting process of the semiconductor element of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、第2の基板としてのフレキシブル基板を示す概略上面図である。It is a schematic top view which shows the flexible substrate as a 2nd board | substrate of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、フレキシブル基板(第2の基板)を示す半導体装置1個分の概略断面図である。It is a schematic sectional drawing for one semiconductor device which shows a flexible substrate (2nd board | substrate) of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、フレキシブル基板(第2の基板)に接続端子を形成した形態を示す半導体装置1個分の概略断面図である。It is a schematic sectional drawing for one semiconductor device which shows the form which formed the connecting terminal in the flexible substrate (2nd board | substrate) of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、パッケージ基板(第1の基板)に樹脂材料としての絶縁性樹脂接着剤を貼り合わせる工程を示す半導体装置1個分の概略断面図である。1 is a schematic cross-sectional view of one semiconductor device showing a step of bonding an insulating resin adhesive as a resin material to a package substrate (first substrate) in a method for manufacturing a semiconductor device according to an embodiment of the present invention. is there. 本発明に係る一実施形態である半導体装置の製造方法の、絶縁性樹脂接着剤を貼り付けたパッケージ基板(第1の基板)にフレキシブル基板(第2の基板)を搭載する工程を示す半導体装置1個分の概略断面図である。The semiconductor device which shows the process of mounting a flexible substrate (2nd board | substrate) on the package board | substrate (1st board | substrate) which affixed the insulating resin adhesive of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention It is a schematic sectional drawing for one piece. 本発明に係る一実施形態である半導体装置の製造方法の、パッケージ基板(第1の基板)の配線とフレキシブル基板(第2の基板)の配線を接合(熱圧着)する工程を示す半導体装置1個分の概略断面図である。A semiconductor device 1 showing a step of bonding (thermocompression bonding) wiring of a package substrate (first substrate) and wiring of a flexible substrate (second substrate) in a method of manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 本発明に係る一実施形態である半導体装置の製造方法の、パッケージ基板に外部接続端子を搭載する工程を示す半導体装置1個分の概略断面図である。It is a schematic sectional drawing for one semiconductor device which shows the process of mounting an external connection terminal in a package board | substrate of the manufacturing method of the semiconductor device which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である半導体装置の製造方法の、フレキシブル基板(第2の基板)を接続したパッケージ基板(第1の基板)をダイシングし、個別の半導体装置に分離する工程を示す概略上面図である。Schematic showing steps of dicing a package substrate (first substrate) to which a flexible substrate (second substrate) is connected in a method for manufacturing a semiconductor device according to an embodiment of the present invention, and separating the substrate into individual semiconductor devices. It is a top view. 従来の半導体装置を説明する概略断面図である。It is a schematic sectional drawing explaining the conventional semiconductor device.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率、接続端子数等は図示の比率、数に限られるものではない。本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratio, the number of connection terminals, etc. in the drawings are not limited to the illustrated ratio and number. In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. In addition, in the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.

図10は、本発明の一実施形態である半導体装置の断面図である。
この半導体装置20の上面に上段半導体装置(第2の半導体装置)との接続のための接続端子(フレキシブル基板上の上下段パッケージを繋ぐ接続端子)12が形成されている。
またフレキシブル基板(第2の基板)の接続端子6は、パッケージ基板(第1の基板)の接続端子4と接続され電気的に接続されている。このため上段半導体装置(第2の半導体装置)と本発明の半導体装置はデータの送受信ができる。
FIG. 10 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention.
On the upper surface of the semiconductor device 20, connection terminals (connection terminals for connecting the upper and lower package on the flexible substrate) 12 for connection with the upper semiconductor device (second semiconductor device) are formed.
The connection terminal 6 of the flexible substrate (second substrate) is connected to and electrically connected to the connection terminal 4 of the package substrate (first substrate). Therefore, the upper semiconductor device (second semiconductor device) and the semiconductor device of the present invention can transmit and receive data.

次に、本発明の一実施形態の、半導体装置を製造する方法について説明する。
以下、図10に示す半導体装置の製造方法を、図1から図11を参照しながら、説明する。
Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described.
A method for manufacturing the semiconductor device shown in FIG. 10 will be described below with reference to FIGS.

第2の半導体装置と接続するための端子を形成した第2の基板として、フレキシブル基板を例に説明する。
まず、必要に応じてフレキシブル基板(第2の基板)5にフレキシブル基板上の上下段パッケージを繋ぐ接続端子12を形成する(図4、5参照)。なお、図1、図3、図5〜10、及び、図12では、1個の半導体素子の場合を例に挙げて、説明する。また、1つの半導体装置において、複数の半導体素子を備えていてもよい。なお、図2、図4、及び、図11では、18個の半導体装置を作製する場合を例に挙げて、説明するが、本実施形態はその限りではない。
搭載するフレキシブル基板5は片面板、両面板、あるいは1層以上の内層を持つ積層板でも良い。実施者が必要な配線数とコストを鑑み選択することができる。また本発明に使われるフレキシブル基板5は、最終的に樹脂材料(絶縁性樹脂接着剤等)を用いて固定されるため、いわゆる耐屈曲性は必ずしも必要はない。
使用可能なフレキシブル基板としてはポリイミド系フレキシブル基板やエポキシ系フレキシブル基板などが例示できる。フレキシブル基板は、ポリイミド樹脂フィルムを用いたものがより好ましい。
第2の基板への端子の形成方法の一例をしめすと、第2の基板としてのフレキシブル基板にレーザー加工機を用いて穴あけ加工を行い、フレキシブル基板を貫通する穴あけを行う(ビアの形成)。レーザー加工機の代わりにエッチングにより穴あけ加工を行ってもよい。そして、必要によりスミアの除去、密着性のための粗化処理を行う。
次いでシード層を形成するため、無電解銅メッキを行う。メッキ厚みは0.3μm程度であり、このフレキシブル基板の表面、裏面にそれぞれドライフィルムレジストをラミネートする。そして、端子、配線、ビア等を形成するためのパターンを形成するためのマスクを密着させ、露光、現像を行い、メッキレジストパターンを形成する。このメッキレジストパターンで被覆されていない箇所を電解銅メッキにより銅メッキを形成する。その後、メッキレジストパターンを剥離液により剥離し、メッキレジストパターンで被覆されたシード層をエッチング液により除去する。そして、必要により、接続端子を除いた部分にソルダーレジストを形成し絶縁被覆する。このようにして図5に示した基板を形成し、図6に示したように接続端子6を設け、端子を形成した第2の基板を得ることができる。
接続端子12(図6の6)の形成方法は、はんだボールの搭載、又は、はんだペーストを用いてマスク印刷等によりバンプ形状に形成するなどの方法が使用できる。
図6の接続端子6の高さは、パッケージ基板(第1の基板)表面と半導体素子裏面(第2の面)までの厚さに合わせて適した厚さにする必要がある。図3に示したようにパッケージ基板表面と半導体素子裏面までの厚さをAとし、接続端子4までの厚さをBとすると、A−Bは−50μm以上、100μm以下、より好ましくは−20μm以上、80μm以下、更に好ましくは0μm以上、60μm以下とすると良い。A−Bが大きいと第2の基板の接続端子と接続できなくなり、A−Bが小さい(マイナス)だと半導体装置の厚みが増加したり、接続端子4の体積が大きくなりすぎ、熱圧着の際に他のバンプと短絡したりする原因となる。
A flexible substrate will be described as an example of the second substrate on which terminals for connecting to the second semiconductor device are formed.
First, the connection terminals 12 that connect the upper and lower packages on the flexible substrate are formed on the flexible substrate (second substrate) 5 as necessary (see FIGS. 4 and 5). 1, 3, 5 to 10, and 12, the case of one semiconductor element will be described as an example. One semiconductor device may include a plurality of semiconductor elements. 2, 4, and 11, the case where 18 semiconductor devices are manufactured will be described as an example, but this embodiment is not limited thereto.
The flexible substrate 5 to be mounted may be a single-sided plate, a double-sided plate, or a laminated plate having one or more inner layers. The practitioner can make a selection in view of the necessary number of wires and cost. Moreover, since the flexible substrate 5 used in the present invention is finally fixed using a resin material (insulating resin adhesive or the like), so-called flex resistance is not necessarily required.
Examples of usable flexible substrates include polyimide-based flexible substrates and epoxy-based flexible substrates. The flexible substrate is more preferably one using a polyimide resin film.
When an example of a method for forming terminals on the second substrate is shown, drilling is performed on the flexible substrate as the second substrate using a laser processing machine, and drilling is performed through the flexible substrate (formation of vias). Drilling may be performed by etching instead of the laser processing machine. Then, if necessary, a roughening process for removing smear and adhesion is performed.
Next, electroless copper plating is performed to form a seed layer. The plating thickness is about 0.3 μm, and a dry film resist is laminated on each of the front and back surfaces of the flexible substrate. Then, a mask for forming a pattern for forming terminals, wirings, vias, and the like is brought into close contact, and exposure and development are performed to form a plating resist pattern. Copper plating is formed by electrolytic copper plating at a portion not covered with the plating resist pattern. Thereafter, the plating resist pattern is stripped with a stripping solution, and the seed layer covered with the plating resist pattern is removed with an etching solution. Then, if necessary, a solder resist is formed on the portion excluding the connection terminals and covered with insulation. In this way, the substrate shown in FIG. 5 is formed, and the connection terminals 6 are provided as shown in FIG. 6 to obtain the second substrate on which the terminals are formed.
As a method for forming the connection terminal 12 (6 in FIG. 6), a method of mounting a solder ball or forming a bump shape by mask printing using a solder paste or the like can be used.
The height of the connection terminal 6 in FIG. 6 needs to be set to a thickness suitable for the thickness from the front surface of the package substrate (first substrate) to the back surface of the semiconductor element (second surface). As shown in FIG. 3, when the thickness from the package substrate surface to the semiconductor element back surface is A and the thickness to the connection terminal 4 is B, AB is -50 μm or more, 100 μm or less, more preferably −20 μm. The thickness is 80 μm or less, more preferably 0 μm or more and 60 μm or less. If AB is large, it is impossible to connect to the connection terminal of the second substrate. If AB is small (minus), the thickness of the semiconductor device increases or the volume of the connection terminal 4 becomes too large. It may cause short circuit with other bumps.

次に第1の基板としてのパッケージ基板を例に説明する。
図1、2に第1の基板としてのパッケージ基板を示した。パッケージ基板1は、両面板、多層板、ビルドアップ基板が用いられ、両面の最外層の端子が必要により電気的に接続されている(図示省略)。基板の半導体素子が搭載される面には、半導体素子の回路面と接続するための端子、端子からの引き出し配線、第2の基板と接続するための端子、基板の反対面へ導通させるための端子等が形成され、基板の半導体素子が搭載される反対面側には、外部接続端子のパッド10等が形成されている。そして、端子周辺は、ソルダーレジストで被覆され、接続端子4が形成されている。
次にパッケージ基板1に半導体素子2を実装する。必要に応じてアンダーフィル3を行っても良い。(図2、図3参照)
図2に示したように第1の基板は、複数個の半導体素子2を搭載できるようにすると一連の工程で多数個の半導体装置を製造でき、これを個別化することで安価に製造することができる。
Next, a package substrate as a first substrate will be described as an example.
1 and 2 show a package substrate as a first substrate. As the package substrate 1, a double-sided board, a multilayer board, and a build-up board are used, and terminals on the outermost layers on both sides are electrically connected as necessary (not shown). On the surface of the substrate on which the semiconductor element is mounted, a terminal for connecting to the circuit surface of the semiconductor element, a lead-out wiring from the terminal, a terminal for connecting to the second substrate, and for conducting to the opposite surface of the substrate Terminals etc. are formed, and pads 10 and the like of external connection terminals are formed on the opposite side of the substrate on which the semiconductor element is mounted. And the terminal periphery is coat | covered with the soldering resist, and the connection terminal 4 is formed.
Next, the semiconductor element 2 is mounted on the package substrate 1. Underfill 3 may be performed as necessary. (See Figs. 2 and 3)
As shown in FIG. 2, if the first substrate can be mounted with a plurality of semiconductor elements 2, a large number of semiconductor devices can be manufactured through a series of steps, and the first substrate can be manufactured at a low cost by individualizing them. Can do.

次いで、接続端子6を形成したフレキシブル基板(第2の基板、図6)の接続端子面又は、パッケージ基板の接続端子4(第1の基板、図1)がある接続端子面、あるいはその両方に絶縁性樹脂接着剤(樹脂材料)7を貼り付ける。ここでは、図7に示したように第1の基板としてのパッケージ基板の接続端子4がある接続端子面に絶縁性樹脂接着剤(樹脂材料)7を貼り付けた。
この時の絶縁性樹脂接着剤の厚さは、図7のようにパッケージ基板表面と半導体素子裏面までの厚さをAとし、パッケージ基板表面と絶縁性樹脂接着剤7の貼付け後の高さをCとすると、A−Cは、−100μm以上、100μm以下、より好ましくは−50μm以上、60μm以下、更に好ましくは−20μm以上、30μm以下とすると良い。A−Cが大きいと接続できなくなり、A−Cが過度に小さいと半導体装置の厚みが増加するため不適切である。
Next, on the connection terminal surface of the flexible substrate (second substrate, FIG. 6) on which the connection terminals 6 are formed, the connection terminal surface on which the connection terminals 4 (first substrate, FIG. 1) of the package substrate are located, or both An insulating resin adhesive (resin material) 7 is attached. Here, as shown in FIG. 7, an insulating resin adhesive (resin material) 7 is attached to the connection terminal surface of the connection substrate 4 of the package substrate as the first substrate.
As shown in FIG. 7, the thickness of the insulating resin adhesive at this time is defined as A from the surface of the package substrate to the back surface of the semiconductor element, and the height of the package substrate surface and the insulating resin adhesive 7 after pasting. Assuming C, AC may be −100 μm or more and 100 μm or less, more preferably −50 μm or more and 60 μm or less, and still more preferably −20 μm or more and 30 μm or less. If A-C is large, connection cannot be established, and if A-C is excessively small, the thickness of the semiconductor device increases.

次に図8、図9に示したようにフレキシブル基板(第2の基板)5とパッケージ基板(第1の基板)1の端子同士を接合する。このときパッケージ基板にフレキシブル基板を位置合わせして搭載する工程(図8)と端子同士を接続する工程(図9)を同時に行っても良いし、別々に行っても良い。
このときフレキシブル基板とパッケージ基板の端子が接続されるためには、フレキシブル基板が伸びてたわむことが好適ある。これを実現するためには、フレキシブル基板の熱膨張係数(熱膨張率)をパッケージ基板の熱膨張係数(熱膨張率)よりも大きくし、フレキシブル基板に熱と圧力を加えて、伸ばしてたわませる方法が合理的である。すなわち、熱圧着であってもよい。なお、フレキシブル基板がたわむ前と、たわんだ後とで、半導体素子がある領域と、半導体素子がない領域との間で、絶縁性樹脂接着剤の厚さが変わっていても、変わっていなくてもよい。
Next, as shown in FIGS. 8 and 9, the terminals of the flexible substrate (second substrate) 5 and the package substrate (first substrate) 1 are bonded to each other. At this time, the step of positioning and mounting the flexible substrate on the package substrate (FIG. 8) and the step of connecting the terminals (FIG. 9) may be performed simultaneously or separately.
At this time, in order to connect the terminals of the flexible substrate and the package substrate, the flexible substrate is preferably stretched and bent. In order to realize this, the thermal expansion coefficient (thermal expansion coefficient) of the flexible board is made larger than the thermal expansion coefficient (thermal expansion coefficient) of the package board, and heat and pressure are applied to the flexible board and stretched. The way to do it is reasonable. That is, thermocompression bonding may be used. In addition, even if the thickness of the insulating resin adhesive is changed between the region where the semiconductor element is present and the region where the semiconductor element is not present before and after the flexible substrate is bent, it does not change. Also good.

このためパッケージ基板(第1の基板)の20℃から260℃の平均熱膨張率は、0×10−6〜12×10−6(/K)が好ましく、2×10−6〜10×10−6(/K)がより好ましく、4×10−6〜8×10−6(/K)が更に好ましい。0×10−6(/K)以上の材料は入手しやすく、12×10−6(/K)以下の基板は半導体素子との接続信頼性が向上し、使用しやすくなる。 Therefore, the average thermal expansion coefficient of the package substrate (first substrate) from 20 ° C. to 260 ° C. is preferably 0 × 10 −6 to 12 × 10 −6 (/ K), and 2 × 10 −6 to 10 × 10. −6 (/ K) is more preferable, and 4 × 10 −6 to 8 × 10 −6 (/ K) is still more preferable. A material of 0 × 10 −6 (/ K) or higher is easily available, and a substrate of 12 × 10 −6 (/ K) or lower improves connection reliability with a semiconductor element and is easy to use.

また、フレキシブル基板(第2の基板)の20℃から260℃の平均熱膨張率は、15×10−6〜70×10−6(/K)が好ましく、20×10−6〜60×10−6(/K)がより好ましく、25×10−6〜50×10−6(/K)が更に好ましい。15×10−6(/K)以上では、熱圧着時に伸びてたわむ効果が向上し、70×10−6(/K)以下であると、フレキシブル基板上に作製する配線の信頼性が向上する。 The average thermal expansion coefficient of the flexible substrate (second substrate) from 20 ° C. to 260 ° C. is preferably 15 × 10 −6 to 70 × 10 −6 (/ K), and 20 × 10 −6 to 60 × 10. −6 (/ K) is more preferable, and 25 × 10 −6 to 50 × 10 −6 (/ K) is still more preferable. When it is 15 × 10 −6 (/ K) or more, the effect of stretching and bending at the time of thermocompression bonding is improved, and when it is 70 × 10 −6 (/ K) or less, the reliability of the wiring formed on the flexible substrate is improved. .

また、フレキシブル基板が伸びてたわむ状態をより確実に実現するために、フレキシブル基板5がパッケージ基板1よりも曲がりやすくてもよい。すなわち、第2の基板が、第1の基板と比較して、曲がりやすくてもよい。言い換えると、第2の基板がフレキシブル基板、第1の基板がリジッド基板の組み合わせであってもよく、第1の基板がフレキシブル基板であって、第2の基板が第1の基板より曲がりやすいフレキシブル基板の組み合わせであってもよい。曲がりやすさは曲げ剛性Dで評価することができ、その値は、基板のような板状の形状の場合、板の厚さをh(mm)、板の幅をb(mm)、材料の弾性率をE(GPa)とし、D= E×(b×h)/12 で表され、値が大きいほど、曲がりにくいことを意味する。
フレキシブル基板(第2の基板)5の曲げ剛性をD2、パッケージ基板(第1の基板)1の曲げ剛性をD1とした場合、フレキシブル基板5とパッケージ基板1の曲げ剛性の比 D1/D2は、100<D1/D2<1000000が好しく、500<D1/D2<500000がより好ましく、1000<D1/D2<100000が更に好ましい。D1/D2が、100を超えることでパッケージ基板1の曲がりが適切に小さくなって半導体装置としての使用に支障が生じにくく、D1/D2が、1000000未満であるような組み合わせはパッケージ基板1が厚くなりすぎないことを意味し、本発明の一対象のPOP構造の半導体装置としても適切といえる。
In addition, the flexible substrate 5 may be more easily bent than the package substrate 1 in order to more reliably realize the state in which the flexible substrate is stretched and bent. That is, the second substrate may be more easily bent than the first substrate. In other words, the second substrate may be a combination of a flexible substrate and the first substrate may be a combination of a rigid substrate, the first substrate is a flexible substrate, and the second substrate is more flexible than the first substrate. It may be a combination of substrates. The bendability can be evaluated by the bending rigidity D. In the case of a plate-like shape such as a substrate, the values are as follows: the thickness of the plate is h (mm), the width of the plate is b (mm), The elastic modulus is E (GPa), and it is expressed by D = E × (b × h 3 ) / 12. The larger the value, the harder it is to bend.
When the bending rigidity of the flexible substrate (second substrate) 5 is D2 and the bending rigidity of the package substrate (first substrate) 1 is D1, the ratio D1 / D2 of the bending rigidity of the flexible substrate 5 and the package substrate 1 is: 100 <D1 / D2 <1000000 is preferable, 500 <D1 / D2 <500000 is more preferable, and 1000 <D1 / D2 <100000 is still more preferable. When D1 / D2 exceeds 100, the bending of the package substrate 1 is appropriately reduced, so that the use as a semiconductor device is hardly hindered, and the combination of D1 / D2 being less than 1000000 is thick. This means that the semiconductor device has a POP structure as an object of the present invention.

端子同士の接合が完了したら絶縁性樹脂接着剤7を本硬化する。本硬化の条件は使用する絶縁性樹脂接着剤に適した条件で行うことができる。
樹脂材料は、絶縁性樹脂接着剤であってもよく、この絶縁性樹脂接着剤の20℃から260℃の平均熱膨張率は、25×10−6〜200×10−6(/K)が好ましく、30×10−6〜170×10−6(/K)がより好ましく、35×10−6〜140×10−6(/K)が更に好ましい。25×10−6(/K)以上であると凸型に反りにくく、200×10−6(/K)以上であると、パッケージが凹型に反りにくく、半導体装置としての使用が容易となるためである。
次に、外部接続端子9を形成する(図10)。外部接続端子9を形成する際には外部接続端子のパッド10等にアンダーバリアメタル層等としてNiメッキやAuメッキを行ってもよい。外部接続端子9は、はんだボールの搭載、又はマスク等を用いてクリームはんだを塗布し、リフローを行う方法等により形成することができる。
When the bonding between the terminals is completed, the insulating resin adhesive 7 is fully cured. The conditions for the main curing can be performed under conditions suitable for the insulating resin adhesive to be used.
The resin material may be an insulating resin adhesive, and the average thermal expansion coefficient of this insulating resin adhesive from 20 ° C. to 260 ° C. is 25 × 10 −6 to 200 × 10 −6 (/ K). 30 × 10 −6 to 170 × 10 −6 (/ K) is more preferable, and 35 × 10 −6 to 140 × 10 −6 (/ K) is still more preferable. When it is 25 × 10 −6 (/ K) or more, it is difficult to warp the convex shape, and when it is 200 × 10 −6 (/ K) or more, the package is difficult to warp to the concave shape, and the use as a semiconductor device becomes easy. It is.
Next, the external connection terminal 9 is formed (FIG. 10). When the external connection terminals 9 are formed, Ni plating or Au plating may be performed on the pads 10 of the external connection terminals as an under barrier metal layer or the like. The external connection terminal 9 can be formed by mounting solder balls or applying a cream solder using a mask or the like and performing reflow.

次に、図11に示したようにダイシングライン11に沿って、ダイシングで個片の半導体装置に分割する。分割方法は、半導体素子分割用のダイサーを利用することができるほか、一般的な半導体装置の分割に使用するものを利用できる。個々の半導体装置に分離したら完成となる。   Next, as shown in FIG. 11, along the dicing line 11, it is divided into individual semiconductor devices by dicing. As a dividing method, a dicer for dividing a semiconductor element can be used, and a method used for dividing a general semiconductor device can be used. It is completed when it is separated into individual semiconductor devices.

本発明は図示した構造だけでなく、請求の範囲の中で必要に応じて変更が可能である。例えば、図9ではフレキシブル基板は4辺でパッケージ基板と接続されているように表したが、1辺でも良いし、2辺でも3辺でも良い。   The present invention is not limited to the illustrated structure, but can be modified as necessary within the scope of the claims. For example, in FIG. 9, the flexible substrate is shown as being connected to the package substrate on four sides, but may be one side, two sides, or three sides.

以上、本発明に係る半導体装置及びその製造方法の実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。   Although the embodiments of the semiconductor device and the manufacturing method thereof according to the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments, and may be appropriately changed without departing from the spirit thereof. .

実施例1
(1)半導体素子の用意
半導体素子として8インチウエハの半導体素子2(株式会社ウォルツ製、商品名「WALTS−TEG CC80−0101JY_(PI)_ModelI」)を準備した。
ウエハ厚みはバックグラインド加工を行い、50μmの厚さに加工した。その後ダイシングを行って縦7.3mm、横7.3mm、厚さ0.05mmの半導体素子を得た。(厚さに端子の高さは含まない)
Example 1
(1) Preparation of Semiconductor Element A semiconductor element 2 (manufactured by Waltz Co., Ltd., trade name “WALTS-TEG CC80-0101JY_ (PI) _ModelI”) was prepared as a semiconductor element.
The wafer thickness was back-grinded to a thickness of 50 μm. Thereafter, dicing was performed to obtain a semiconductor element having a length of 7.3 mm, a width of 7.3 mm, and a thickness of 0.05 mm. (Thickness does not include terminal height)

(2)接続端子の作製
第1の基板としてのパッケージ基板として用意した基板(株式会社ウォルツ製、商品名「WALTS−KIT CC80−0102JY[MAP]」)にクリームはんだをマスク印刷して接続端子を作製した(図1)。作製した端子高さはパッケージ基板の表面から約50μmだった。
なお上記基板の素材として日立化成株式会社製 商品名「MCL−E−679FGBS」が用いられ、基板の素材の平均熱膨張率は7×10−6(/K)、曲げ弾性率(剛性、25℃)は25(GPa)、厚さ0.36(mm)であった。基板の平均熱膨張率は、下記の条件で測定した。
(2) Production of connection terminal Cream solder is mask-printed on a board (product name “WALTS-KIT CC80-0102JY [MAP]”) prepared as a package board as the first board, and the connection terminal is printed It produced (FIG. 1). The produced terminal height was about 50 μm from the surface of the package substrate.
The product name “MCL-E-679FGBS” manufactured by Hitachi Chemical Co., Ltd. is used as the material of the substrate, the average thermal expansion coefficient of the material of the substrate is 7 × 10 −6 (/ K), and the flexural modulus (rigidity, 25 C) was 25 (GPa) and the thickness was 0.36 (mm). The average coefficient of thermal expansion of the substrate was measured under the following conditions.

熱膨張率の測定
各実施例及び比較例で用いたパッケージ基板、フレキシブル基板及び絶縁性樹脂接着剤の20〜260℃での平均熱膨張率は、熱機械分析装置(セイコーインスツル株式会社製、商品名:TMA/SS6100)を用いて、下記条件により測定した。
<測定条件>
・基板のサンプル形状:20mm×3mm×0.1mm
・測定温度領域:室温(20℃)〜260℃
・昇温速度:5℃/min
・測定モード:引張モード
Measurement of thermal expansion coefficient The average thermal expansion coefficient at 20 to 260 ° C. of the package substrate, flexible substrate, and insulating resin adhesive used in each example and comparative example was measured by a thermomechanical analyzer (manufactured by Seiko Instruments Inc., (Trade name: TMA / SS6100) was measured under the following conditions.
<Measurement conditions>
-Sample shape of substrate: 20 mm x 3 mm x 0.1 mm
Measurement temperature range: room temperature (20 ° C.) to 260 ° C.
・ Raising rate: 5 ° C / min
・ Measurement mode: Tensile mode

(3)半導体装置の搭載
フリップチップボンダ(パナソニックファクトリーソリューションズ株式会社製、商品名「FCB3」)を用いて、上記半導体素子をフリップチップ接続でパッケージ基板に搭載した。
搭載後アンダーフィル(日立化成株式会社製 商品名「CEL−C−3750」を半導体素子と基板の間に供給し、175℃、2時間加熱し硬化した(図2、図3参照)。
またパッケージ基板表面と半導体素子裏面までの厚さをAとし、接続端子4の高さをBとすると、A−Bは約60μmだった。
(3) Mounting of Semiconductor Device Using a flip chip bonder (trade name “FCB3” manufactured by Panasonic Factory Solutions Co., Ltd.), the semiconductor element was mounted on a package substrate by flip chip connection.
After mounting, underfill (trade name “CEL-C-3750” manufactured by Hitachi Chemical Co., Ltd.) was supplied between the semiconductor element and the substrate, and heated and cured at 175 ° C. for 2 hours (see FIGS. 2 and 3).
Further, when the thickness from the package substrate surface to the back surface of the semiconductor element is A and the height of the connection terminal 4 is B, AB is about 60 μm.

(4)フレキシブル基板の用意
東レ・デュポン株式会社製 カプトン100H(厚み25μm)を用意した。平均熱膨張係数は27×10−6(/K)、曲げ弾性率(25℃)は3.4(GPa)であった。
(4) Preparation of flexible substrate Kapton 100H (thickness 25 μm) manufactured by Toray DuPont Co., Ltd. was prepared. The average thermal expansion coefficient was 27 × 10 −6 (/ K), and the flexural modulus (25 ° C.) was 3.4 (GPa).

用意したフレキシブル基板にレーザー加工機(日立ビアメカニクス株式会社製、商品名「LC−2F21B/1C」)で穴あけ加工を行った。条件はエネルギー密度1700J/cm、パルス幅80μsとした。この加工によって、フレキシブル基板を貫通するビアを形成した(図4)。 Drilling was performed on the prepared flexible substrate with a laser processing machine (trade name “LC-2F21B / 1C” manufactured by Hitachi Via Mechanics Co., Ltd.). The conditions were an energy density of 1700 J / cm 2 and a pulse width of 80 μs. By this processing, a via penetrating the flexible substrate was formed (FIG. 4).

<シード層の形成>
次いで、無電解銅メッキで銅を0.3μmメッキし、シード層を形成した。
メッキ浴は奥野製薬工業株式会社製ATSアドカッパーIWを用い、32℃、25分の条件で行った。
<Formation of seed layer>
Next, 0.3 μm of copper was plated by electroless copper plating to form a seed layer.
The plating bath was ATS AD COPPER IW manufactured by Okuno Pharmaceutical Co., Ltd., and the conditions were 32 ° C. and 25 minutes.

<ドライフィルムレジストの形成>
ドライフィルムレジスト(日立化成株式会社製、商品名「Photec RY−3525」)を用いて、ロールラミネーターにより、シード層上にラミネートした。次いで、パターンを形成したフォトツールを密着させ、露光機(株式会社オーク製作所製、商品名「EXM−1201型」)を使用して、100mJ/cmのエネルギー量で露光した。次いで、30℃の1質量%炭酸ナトリウム水溶液で、90秒間スプレー現像を行い、ドライフィルムレジストを開口させてレジストパターンを形成した。
表面のパターン形成後、表と同様に裏のパターンを作製した。
パターンは、縦7.3mm、横7.3mmの範囲内にパッド径100μm、パッドピッチ350μm、パッドパターン21列、21行でパッド数441個配置されたもので、最小ライン/最小スペース=25μm/25μmとした。
なお、基板サイズは、横92mm、縦64mmで、縦12mm、横12mmのパターンが17mmピッチで長尺方向に5個短尺方向に3個配置されている基板(すなわち、図4とは異なる基板)を用いた。

<Formation of dry film resist>
Using a dry film resist (manufactured by Hitachi Chemical Co., Ltd., trade name “Phototec RY-3525”), it was laminated on the seed layer with a roll laminator. Subsequently, the photo tool which formed the pattern was stuck, and it exposed by the energy amount of 100 mJ / cm < 2 > using the exposure machine (The Oak Co., Ltd. make, brand name "EXM-1201 type | mold"). Next, spray development was performed for 90 seconds with a 1% by mass sodium carbonate aqueous solution at 30 ° C., and a dry film resist was opened to form a resist pattern.
After the surface pattern was formed, the back pattern was prepared in the same manner as the front.
The pattern has a pad diameter of 100 μm, a pad pitch of 350 μm, a pad pattern of 21 rows, 21 rows, and 441 pads arranged in a range of 7.3 mm in length and 7.3 mm in width. Minimum line / minimum space = 25 μm / The thickness was 25 μm.
The substrate size is 92 mm in width, 64 mm in length, 12 mm in length and 12 mm in width, and a pattern in which 5 in the long direction and 3 in the short direction are arranged at 17 mm pitch (ie, a substrate different from FIG. 4). Was used.

<配線パターンの形成>
次いで、電解銅めっき法により配線パターンを形成した。
メッキ浴は硫酸銅を220g/lの濃度にしたものを用い、25℃、25分の条件で行った。なお、その時の印加電流は34Aであった。
<Formation of wiring pattern>
Next, a wiring pattern was formed by electrolytic copper plating.
The plating bath used was a copper sulfate having a concentration of 220 g / l, and was performed at 25 ° C. for 25 minutes. The applied current at that time was 34A.

<ドライフィルムレジストの除去>
次いで、剥離液によってドライフィルムレジストを除去した。
はく離液はNaOH、3質量%の濃度のものを用い、4分間行った。
<Removal of dry film resist>
Next, the dry film resist was removed with a stripping solution.
The stripping solution used was NaOH having a concentration of 3% by mass, and was performed for 4 minutes.

<シード層の除去>
次いで、エッチング液によりシード層を除去した。
エッチング浴は三菱ガス化学株式会社製WLC−C2を純水で2倍希釈したものを用い、25℃、90秒間行った。
<Removal of seed layer>
Next, the seed layer was removed with an etching solution.
The etching bath was prepared by diluting WLC-C2 manufactured by Mitsubishi Gas Chemical Co., Ltd. with pure water twice and at 25 ° C. for 90 seconds.

<絶縁層の形成>
次いで、配線パターン上に絶縁層を形成した。具体的には、真空ラミネータを用いてソルダーレジスト(日立化成株式会社製、商品名「SN−9000」)をフレキシブル基板に70℃、0.46MPaの圧力で貼り付け、直接描画露光機でUVを0.2J/cmのエネルギー量で、露光した。続いて裏面にも同様の工程で露光を行い、NaOH 1質量%の濃度の現像液で1分間現像した。
次いで、ポストUV照射(2J/cm)を行った後、160℃で窒素雰囲気(酸素濃度50ppm以下)下、1時間、加熱することで、熱硬化を行った。
<Formation of insulating layer>
Next, an insulating layer was formed on the wiring pattern. Specifically, a solder resist (manufactured by Hitachi Chemical Co., Ltd., trade name “SN-9000”) is attached to a flexible substrate using a vacuum laminator at a pressure of 70 ° C. and 0.46 MPa, and UV is directly applied by a drawing exposure machine. The exposure was performed with an energy amount of 0.2 J / cm 2 . Subsequently, the back surface was exposed in the same process and developed with a developer having a concentration of 1% by weight of NaOH for 1 minute.
Next, post-UV irradiation ( 2 J / cm 2 ) was performed, and then thermosetting was performed by heating at 160 ° C. for 1 hour in a nitrogen atmosphere (oxygen concentration of 50 ppm or less).

<上段接続パッドの形成>
上記で作製したソルダーレジスト形成フレキシブル基板を80℃の無電解ニッケルメッキ液(奥野製薬工業株式会社製 商品名「ICPニコロンGM−NP」)に1350秒浸した後、60℃の置換金メッキ液(奥野製薬工業株式会社製 「商品名ムデンノーブルAU」)に900秒浸し、上段接続パッド12にニッケルメッキを約2μm厚、金メッキを約0.05μm厚になるように加工した。(図5、図6参照)。
<Formation of upper connection pads>
The solder resist-formed flexible substrate prepared above is immersed in an electroless nickel plating solution (trade name “ICP Nicolon GM-NP” manufactured by Okuno Pharmaceutical Co., Ltd.) at 80 ° C. for 1350 seconds, and then a substitution gold plating solution (Okuno at 60 ° C.). The product was soaked for 900 seconds in “trade name Muden Noble AU” manufactured by Pharmaceutical Industries, Ltd., and the upper connection pad 12 was processed to have a nickel plating thickness of about 2 μm and a gold plating thickness of about 0.05 μm. (See FIGS. 5 and 6).

(5)絶縁性樹脂接着剤のパッケージ基板への貼り付け
50μm厚の絶縁性樹脂接着剤7(日立化成株式会社製、商品名「HS−260」)を、真空ラミネータを用いてパッケージ基板に70℃、0.46MPaの圧力で貼り付けた(図7参照)。このとき、絶縁性樹脂接着剤の厚さは、半導体素子を埋め込んだため、元のフィルムより厚さが増加し、約60μmであった。
この絶縁性樹脂接着剤を175℃、2時間硬化させたものの20℃から260℃の平均熱膨張率を測定したところ110×10−6(/K)であった。
この時の絶縁性樹脂接着剤の厚さは、図7に示したようにパッケージ基板表面と半導体素子裏面までの厚さをAとし、パッケージ基板表面と絶縁性樹脂接着剤7の貼付け後の高さをCとすると、A−Cは−10μmであった。
(5) Affixing insulating resin adhesive to package substrate 70 μm thick insulating resin adhesive 7 (trade name “HS-260”, manufactured by Hitachi Chemical Co., Ltd.) is applied to the package substrate using a vacuum laminator. C. and a pressure of 0.46 MPa (see FIG. 7). At this time, the thickness of the insulating resin adhesive was about 60 μm, because the semiconductor element was embedded and the thickness increased from the original film.
When this insulating resin adhesive was cured at 175 ° C. for 2 hours, the average coefficient of thermal expansion from 20 ° C. to 260 ° C. was measured to be 110 × 10 −6 (/ K).
As shown in FIG. 7, the thickness of the insulating resin adhesive at this time is set to A from the surface of the package substrate surface to the back surface of the semiconductor element, and the thickness of the package substrate surface and the insulating resin adhesive 7 after pasting is high. Assuming that C is AC, AC was -10 μm.

(6)フレキシブル基板の搭載
(5)で作製した絶縁性樹脂接着剤7付きパッケージ基板に(4)で用意したフレキシブル基板を、位置合わせを行って配置した。その後真空ラミネータを用いて70℃、0.46MPaの圧力で貼り付けた(図8参照)。
(6) Mounting of flexible substrate The flexible substrate prepared in (4) was placed on the package substrate with the insulating resin adhesive 7 prepared in (5) after alignment. Thereafter, it was pasted at 70 ° C. and a pressure of 0.46 MPa using a vacuum laminator (see FIG. 8).

(7)フレキシブル基板の接続
上記(6)でパッケージ基板に貼りあわせたフレキシブル基板とパケージ基板の配線を接続した。角の無いロの字型に縦8mm、横2mmの突起が4個付いたツールを用意し、フリップチップボンダで、接続部温度が260℃になるようにヒーターを設定し、100N、5秒間圧着した(図9参照)。
(7) Connection of flexible substrate The flexible substrate bonded to the package substrate in (6) and the wiring of the package substrate were connected. Prepare a tool with four protrusions 8mm long and 2mm wide in a square shape with no corners, set a heater with a flip chip bonder so that the connection temperature is 260 ° C, and press for 100N for 5 seconds (See FIG. 9).

その後上記パッケージ基板を175℃で2時間保持し、絶縁性樹脂接着剤を硬化させた。   Thereafter, the package substrate was held at 175 ° C. for 2 hours to cure the insulating resin adhesive.

(8)外部接続端子の作製
次に下段パッケージ基板に、はんだボール(直径0.25mm)を搭載し、リフロー装置(株式会社タムラ製作所製、商品名「TNP25−337EM」)を用いて、窒素雰囲気(酸素濃度200ppm以下)で、はんだボールを溶融することで外部接続端子9とした(図10参照)。
(8) Production of external connection terminal Next, a solder ball (diameter 0.25 mm) is mounted on the lower package substrate, and a nitrogen atmosphere is used using a reflow apparatus (trade name “TNP25-337EM” manufactured by Tamura Corporation). The solder balls were melted at an oxygen concentration of 200 ppm or less to form external connection terminals 9 (see FIG. 10).

(9)個片の半導体装置に分割
上記で作製したサンプルを、ダイサー(株式会社ディスコ製 DAD3350)を用いて個片の半導体装置に分割した。ダイサーのブレードは0.2mm幅のものを使用した。分割サイズは縦12mm、横12mmとした(図11参照)。
(9) Dividing into individual semiconductor devices The sample produced above was divided into individual semiconductor devices using a dicer (DAD3350, manufactured by DISCO Corporation). A dicer blade having a width of 0.2 mm was used. The division size was 12 mm in length and 12 mm in width (see FIG. 11).

このときの曲げ剛性はフレキシブル基板(第2の基板)5の曲げ剛性をD2、パッケージ基板(第1の基板)1の曲げ剛性をD1とした場合、D1=25GPa×12mm×(0.36mm)/12=1.17GPa・mm、D2=3.4GPa×12mm×(0.025mm)/12=0.0000531GPa・mmとなり、
D1 / D2は約22000となる。
The bending rigidity at this time is D1 = 25 GPa × 12 mm × (0.36 mm) where D2 is the bending rigidity of the flexible substrate (second substrate) 5 and D1 is the bending rigidity of the package substrate (first substrate) 1. 3 /12=1.17 GPa · mm 4 , D2 = 3.4 GPa × 12 mm × (0.025 mm) 3 /12=0.0000531 GPa · mm 4
D1 / D2 is about 22000.

比較例1
<半導体素子の搭載>
実施例1と同様のパッケージ基板と、半導体素子を用い、実施例1と同様にして、半導体素子をフリップチップ接続でパッケージ基板に搭載し、アンダーフィルを半導体素子と基板の間に供給し硬化した。
Comparative Example 1
<Installation of semiconductor elements>
Using the same package substrate and semiconductor element as in Example 1, the semiconductor element was mounted on the package substrate by flip-chip connection in the same manner as in Example 1, and the underfill was supplied between the semiconductor element and the substrate and cured. .

<封止>
半導体素子を搭載したパッケージ基板を封止材(日立化成株式会社製、商品名「CEL−420」)を用いて、コンプレッション封止装置(アピックヤマダ株式会社製 WCM300)により半導体素子を覆うように封止した。
封止条件は、プレス熱板温度140℃、型締力150KN、キュアタイム300秒とした。
<Sealing>
A package substrate on which a semiconductor element is mounted is sealed using a sealing material (trade name “CEL-420” manufactured by Hitachi Chemical Co., Ltd.) with a compression sealing device (WCM300 manufactured by Apic Yamada Co., Ltd.) so as to cover the semiconductor element. did.
The sealing conditions were a press hot plate temperature of 140 ° C., a mold clamping force of 150 KN, and a cure time of 300 seconds.

次に封止済みサンプルをレーザー加工機(日立ビアメカニクス株式会社製、商品名「LC−2F21B/1C」)で穴あけ加工を行った。条件はエネルギー密度1700J/cm、パルス幅80μsとした。この加工によって、封止材を貫通し、下段パッケージ基板に達するビアの形成を行った(図12参照)。
また、パターンはパッケージの4辺に24穴、3列で形成できたので、合計252接点である。
Next, the sealed sample was drilled with a laser processing machine (trade name “LC-2F21B / 1C” manufactured by Hitachi Via Mechanics Co., Ltd.). The conditions were an energy density of 1700 J / cm 2 and a pulse width of 80 μs. By this processing, a via penetrating the sealing material and reaching the lower package substrate was formed (see FIG. 12).
Further, since the pattern can be formed in 24 holes and 3 rows on the four sides of the package, the total number of contacts is 252.

その後上記半導体装置を175℃で5時間保持し、封止材を硬化させた。   Thereafter, the semiconductor device was held at 175 ° C. for 5 hours to cure the sealing material.

次に下段パッケージ基板にはんだボール(直径0.25mm)を搭載し、リフロー装置(株式会社タムラ製作所製、商品名「TNP25−337EM」)を用いて、窒素雰囲気(酸素濃度200ppm以下)で、はんだボールを溶融することで外部接続端子109とした。   Next, solder balls (diameter 0.25 mm) are mounted on the lower package substrate, and solder is used in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) using a reflow apparatus (trade name “TNP25-337EM” manufactured by Tamura Corporation). The external connection terminal 109 was obtained by melting the ball.

上記で作製したサンプルをダイサー(株式会社ディスコ製 DAD3350)を用いて個片の半導体装置に分割した。ダイサーのブレードは0.2mm幅のものを使用した。分割サイズは縦12mm、横12mmとした。
実施例1、比較例1の上下段パッケージを繋ぐ接続端子数と接点合計数をまとめて表1に示した。
The sample produced above was divided into individual semiconductor devices using a dicer (DAD3350, manufactured by DISCO Corporation). A dicer blade having a width of 0.2 mm was used. The division size was 12 mm in length and 12 mm in width.
Table 1 summarizes the number of connection terminals and the total number of contacts connecting the upper and lower packages of Example 1 and Comparative Example 1.

Figure 2017069397
Figure 2017069397

実施例1は比較例1と比べて上下段を繋ぐ接続端子数が多く、発明の効果が明らかである。   In Example 1, the number of connection terminals connecting the upper and lower stages is larger than that in Comparative Example 1, and the effect of the invention is clear.

以上の結果から、本発明によれば、上下段の接続端子数が多いPoP構造の半導体装置を、一般的に用いられている半導体装置を製造するための装置を利用して製造できる。   From the above results, according to the present invention, it is possible to manufacture a semiconductor device having a PoP structure having a large number of upper and lower connection terminals by using a generally used apparatus for manufacturing a semiconductor device.

本発明の半導体装置は、三次元対応の半導体装置として、スマートフォンやタブレット端末等に使用できる。   The semiconductor device of the present invention can be used for a smartphone, a tablet terminal, or the like as a three-dimensional semiconductor device.

1 パッケージ基板(第1の基板)
2 半導体素子
3 アンダーフィル
4 パッケージ基板の接続端子
5 フレキシブル基板(第2の基板)
6 フレキシブル基板の接続端子
7 絶縁性樹脂接着剤(樹脂材料)
8 パッケージ基板とフレキシブル基板の接続部
9 外部接続端子
10 外部接続端子のパッド
11 ダイシングライン
12 フレキシブル基板上の上下段パッケージを繋ぐ接続端子
13 フレキシブル基板のビア
14 フレキシブル基板のたわみ
20 本発明の下段半導体装置
101 半導体素子
102 アンダーフィル
103 パッケージ基板
107 封止材
108 樹脂貫通ビア(封止樹脂貫通接続端子)
109 外部接続端子
110 上段半導体装置
111 従来構造の下段半導体装置
112 POP構造の半導体装置
1 Package substrate (first substrate)
2 Semiconductor element 3 Underfill 4 Connection terminal of package substrate 5 Flexible substrate (second substrate)
6 Flexible PCB connection terminals 7 Insulating resin adhesive (resin material)
DESCRIPTION OF SYMBOLS 8 Connection part of package substrate and flexible substrate 9 External connection terminal 10 Pad of external connection terminal 11 Dicing line 12 Connection terminal connecting upper and lower packages on flexible substrate 13 Via of flexible substrate 14 Deflection of flexible substrate 20 Lower semiconductor of the present invention Device 101 Semiconductor element 102 Underfill 103 Package substrate 107 Sealing material 108 Through resin via (sealing resin through connection terminal)
109 External connection terminal 110 Upper semiconductor device 111 Lower semiconductor device with conventional structure 112 Semiconductor device with POP structure

Claims (7)

第1の基板上に半導体素子が半導体素子の回路面が基板と対面するように接続され、前記半導体素子の前記第1の基板とは反対側の第2の面に第2の半導体装置と接続するための端子を形成した第2の基板が搭載されており、前記第1の基板と前記第2の基板は樹脂材料を介して固定され、かつ電気的に接続されている半導体装置。   A semiconductor element is connected on the first substrate so that a circuit surface of the semiconductor element faces the substrate, and a second surface of the semiconductor element opposite to the first substrate is connected to the second semiconductor device. A semiconductor device on which a second substrate on which a terminal is formed is mounted, the first substrate and the second substrate being fixed via a resin material and electrically connected. 前記第2の基板の熱膨張率が、前記第1の基板と比較して大きく、かつ、第2の基板の曲げ剛性が、前記第1の基板と比較して小さい、請求項1に記載の半導体装置。   The thermal expansion coefficient of the second substrate is larger than that of the first substrate, and the bending rigidity of the second substrate is smaller than that of the first substrate. Semiconductor device. 前記第1の基板として、20℃から260℃の平均熱膨張率が0を超えて12×10−6(/K)以下の基材を用いた請求項1又は2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a base material having an average coefficient of thermal expansion from 20 ° C. to 260 ° C. exceeding 12 × 10 −6 (/ K) is used as the first substrate. 前記第2の基板として、20℃から260℃の平均熱膨張率が15×10−6(/K)以上、70×10−6(/K)以下の基材を用いた請求項1〜3のいずれか一項に記載の半導体装置。 The base material whose average coefficient of thermal expansion of 20 to 260 degreeC is 15 * 10 < -6 > (/ K) or more and 70 * 10 < -6 > (/ K) or less is used as said 2nd board | substrate. The semiconductor device according to any one of the above. 曲げ剛性Dを、基板の厚さをh(mm)、基板の幅をb(mm)、基板の曲げ弾性率をE(GPa)とし、D= E×(b×h)/12 としたとき、前記第1の基板の曲げ剛性をD1、前記第2の基板の曲げ剛性をD2とした場合、
D1/D2が、100<D1/D2<1000000の比率である、請求項1〜4のいずれか一項に記載の半導体装置。
The bending rigidity D is defined as D = E × (b × h 3 ) / 12 where the thickness of the substrate is h (mm), the width of the substrate is b (mm), and the bending elastic modulus of the substrate is E (GPa). When the bending rigidity of the first substrate is D1, and the bending rigidity of the second substrate is D2,
The semiconductor device according to claim 1, wherein D1 / D2 is a ratio of 100 <D1 / D2 <1000000.
前記樹脂材料が、20℃から260℃の平均熱膨張率が25×10−6(/K)以上、200×10−6(/K)以下の絶縁性樹脂接着剤から構成される請求項1〜5のいずれか一項に記載の半導体装置。
The said resin material is comprised from the insulating resin adhesive whose average thermal expansion coefficient of 20 to 260 degreeC is 25 * 10 < -6 > (/ K) or more and 200 * 10 < -6 > (/ K) or less. The semiconductor device as described in any one of -5.
(I)少なくとも1個の半導体素子を第1の基板上に、半導体素子の回路面が前記第1の基板と対面するように搭載する工程と、
(II)前記半導体素子を実装した第1の基板の半導体素子を搭載した面、第2の基板の前記第1の基板に対して向かい合わる面、又は、その双方の面に樹脂材料を配置する工程と、
(III)前記半導体素子の、第1の基板とは反対側の第2の面に、第2の基板を配置する工程と、
(IV)前記第2の基板と第1の基板の配線を接続する工程と、
(V)前記第2の基板を接続したパッケージ基板を個片に分離する工程と、
を備える半導体装置の製造方法。
(I) mounting at least one semiconductor element on a first substrate so that a circuit surface of the semiconductor element faces the first substrate;
(II) A resin material is disposed on the surface of the first substrate on which the semiconductor element is mounted, the surface on which the semiconductor element is mounted, the surface of the second substrate facing the first substrate, or both surfaces. Process,
(III) disposing a second substrate on the second surface of the semiconductor element opposite to the first substrate;
(IV) connecting the wiring of the second substrate and the first substrate;
(V) separating the package substrate connected to the second substrate into individual pieces;
A method for manufacturing a semiconductor device comprising:
JP2015193652A 2015-09-30 2015-09-30 Semiconductor device and method of manufacturing the same Pending JP2017069397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193652A JP2017069397A (en) 2015-09-30 2015-09-30 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193652A JP2017069397A (en) 2015-09-30 2015-09-30 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2017069397A true JP2017069397A (en) 2017-04-06

Family

ID=58495195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193652A Pending JP2017069397A (en) 2015-09-30 2015-09-30 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017069397A (en)

Similar Documents

Publication Publication Date Title
US9040361B2 (en) Chip scale package with electronic component received in encapsulant, and fabrication method thereof
JP5703010B2 (en) Semiconductor package and manufacturing method thereof
JP5864180B2 (en) Semiconductor package and manufacturing method thereof
JP2009164592A (en) Combined substrate
US8552305B2 (en) Electronic component-embedded printed circuit board
JP5406572B2 (en) Electronic component built-in wiring board and manufacturing method thereof
JPWO2010052942A1 (en) Electronic component built-in wiring board and manufacturing method thereof
JP2013069807A (en) Semiconductor package and method for manufacturing the same
US20100314744A1 (en) Substrate having single patterned metal layer exposing patterned dielectric layer, chip package structure including the substrate, and manufacturing methods thereof
JP2007266111A (en) Semiconductor device, laminated semiconductor device using the same, base substrate, and semiconductor device manufacturing method
JP5003812B2 (en) Printed wiring board and printed wiring board manufacturing method
JP4970388B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20090183906A1 (en) Substrate for mounting device and method for producing the same, semiconductor module and method for producing the same, and portable apparatus provided with the same
JP2004119729A (en) Method of manufacturing circuit device
JP4086607B2 (en) Circuit device manufacturing method
JP5295211B2 (en) Manufacturing method of semiconductor module
JP2017069397A (en) Semiconductor device and method of manufacturing the same
TWI483320B (en) Semiconductor package structure and manufacturing method thereof
JP4605176B2 (en) Semiconductor mounting substrate, semiconductor package manufacturing method, and semiconductor package
JP2002164475A (en) Semiconductor device
JP2005123493A (en) Wiring substrate and element packaging substrate
JP4428376B2 (en) Manufacturing method of semiconductor chip mounting substrate
JP2005251780A (en) Semiconductor circuit component and its manufacturing method
JP2006108130A (en) Semiconductor device and its manufacturing method
JP2004158596A (en) Method for manufacturing circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191010