JP2017066269A - Coating for forming conductive film and manufacturing method of conductive film - Google Patents

Coating for forming conductive film and manufacturing method of conductive film Download PDF

Info

Publication number
JP2017066269A
JP2017066269A JP2015193238A JP2015193238A JP2017066269A JP 2017066269 A JP2017066269 A JP 2017066269A JP 2015193238 A JP2015193238 A JP 2015193238A JP 2015193238 A JP2015193238 A JP 2015193238A JP 2017066269 A JP2017066269 A JP 2017066269A
Authority
JP
Japan
Prior art keywords
conductive film
copper
powder
copper powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015193238A
Other languages
Japanese (ja)
Inventor
英史 藤田
Hidefumi Fujita
英史 藤田
秀治 金田
Hideharu Kaneda
秀治 金田
大輔 伊東
Daisuke Ito
大輔 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015193238A priority Critical patent/JP2017066269A/en
Publication of JP2017066269A publication Critical patent/JP2017066269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film of copper formed on a paper substrate, having remarkably improved weather resistance and conductivity.SOLUTION: A coated film is formed on a paper substrate by using a coating containing a fine copper powder A having average particle diameter of a primary particle of 10 to 100 nm, a coarse copper powder B having cumulative 50% particle diameter Dby a laser diffraction and scattering method of 0.3 to 20.0 μm, copper oxide (CuO) powder having Dof 0.1 to 10.0 μm and a resin D. The coating has a blend composition of the fine copper powder A of 25 to 80 pts.mass, copper oxide powder C of 0.5 to 25 pts.mass and the resin D of 3.0 to 8.0 pts.mass based on total amount 100 pts.mass of the fine copper powder A and the coarse copper powder B. Light burning and hot press at 90 to 190°C are conducted to prepare a conductive film.SELECTED DRAWING: Figure 1

Description

本発明は、紙などの耐熱性の低い基材の表面にアンテナ回路などの導電膜を形成するのに好適な銅含有塗料、およびそれを用いた導電膜の製造方法に関する。   The present invention relates to a copper-containing paint suitable for forming a conductive film such as an antenna circuit on the surface of a substrate having low heat resistance such as paper, and a method for producing a conductive film using the same.

基材上に導電回路を形成するための材料として、銀粉、銅粉などの導電フィラーを含有する導電塗料(導電ペースト、導電インク等と称されることがある)が知られており、広く実用に供されている。導電塗料は基材上に印刷などの方法で塗布された後、焼結によって導電膜とされるのが一般的である。   As a material for forming a conductive circuit on a substrate, a conductive paint containing a conductive filler such as silver powder or copper powder (sometimes called a conductive paste or conductive ink) is known and widely used. It is offered to. In general, the conductive paint is applied on a substrate by a method such as printing, and then is made into a conductive film by sintering.

導電フィラーとしては、耐候性を考慮すると銅粉よりも銀粉の方が有利である。銅は金属表面が酸化しやすいので、使用環境によっては比較的早期に膜の導電性能が劣化する。しかし、銀は高価であるため、銅粉をフィラーに用いた導電塗料を使用したいというニーズも多くある。   As the conductive filler, silver powder is more advantageous than copper powder in consideration of weather resistance. Since copper easily oxidizes the metal surface, the conductive performance of the film deteriorates relatively early depending on the use environment. However, since silver is expensive, there are many needs to use a conductive paint using copper powder as a filler.

一方、RFIDタグのアンテナ基材としては、破壊が容易な紙基材を使用したいというニーズがある。紙は、ポリイミド樹脂などのフレキシブル基材やセラミックスとは異なり、一般的に耐熱温度が低い。そのため、紙基材の表面に導電塗料で導電回路を形成する際には、基材が高温に曝されるような焼結工程を避けなければならない。また、紙は吸湿しやすいので、紙基材上に形成される導電膜には、他の一般的な基材を用いる場合に比べ、より一層の耐候性が要求される。   On the other hand, there is a need to use a paper base material that can be easily destroyed as an antenna base material for an RFID tag. Unlike flexible substrates such as polyimide resin and ceramics, paper generally has a low heat-resistant temperature. Therefore, when forming a conductive circuit with a conductive paint on the surface of a paper substrate, a sintering process in which the substrate is exposed to a high temperature must be avoided. Further, since paper easily absorbs moisture, the conductive film formed on the paper base material is required to have further weather resistance as compared with the case where other general base materials are used.

特許文献1には、厚さ50μmのポリエステルフィルム上に銀粉を用いた導電ペーストでアンテナパターンを印刷し、100℃で乾燥後、120℃でプレスすることにより銀の導電膜を形成した例が示されている(段落0035〜0037)。この手法は、加熱下で加圧することにより印刷導体中の金属粒子を移動させて空隙を減少させて、金属粒子同士の接触面積を増大させることにより、アンテナパターンの抵抗を低下させるものである(段落0034)。焼結工程を採用しないので、耐熱温度が低い基材上に導電膜を形成することも可能である。ただし、この文献に銅ペーストを使用した導電膜の形成例は示されていない。粒子同士の焼結ではなく接触によって導通を確保する技術であるため、焼結薄膜に比べ導電性は劣ると考えられる。   Patent Document 1 shows an example in which an antenna pattern is printed on a polyester film having a thickness of 50 μm with a conductive paste using silver powder, dried at 100 ° C., and then pressed at 120 ° C. to form a silver conductive film. (Paragraphs 0035 to 0037). This technique is to reduce the resistance of the antenna pattern by moving the metal particles in the printed conductor by pressurizing under heating to reduce the voids and increasing the contact area between the metal particles ( Paragraph 0034). Since a sintering process is not employed, it is possible to form a conductive film on a substrate having a low heat-resistant temperature. However, this document does not show an example of forming a conductive film using a copper paste. It is considered that the conductivity is inferior to that of the sintered thin film because it is a technique for ensuring conduction by contact rather than sintering of the particles.

特許文献2には、熱可塑性樹脂、熱硬化性樹脂、硬化剤、金属粒子を含有する導電性組成物を基材基板上に塗布して配線パターンを形成し、熱硬化工程の後、加圧加工することが記載されている。加圧加工には加圧ローラーが使用できるとされる(段落0040、図3)。この加圧加工により、ずり応力が発生して金属粒子が塑性変形し、隣接金属粒子間で圧接され導電性の金属結合が形成されるという(段落0035)。実施例ではポリイミドフィルム上に導電膜が形成されており、銅粒子を用いた例が実施例6に示されている。焼結していないので導電膜中には空隙が多いと考えられ、導電性や耐候性の面で改善の余地がある。   In Patent Document 2, a conductive composition containing a thermoplastic resin, a thermosetting resin, a curing agent, and metal particles is applied onto a substrate substrate to form a wiring pattern, and after the thermosetting step, pressurization is performed. Processing is described. It is said that a pressure roller can be used for pressure processing (paragraph 0040, FIG. 3). By this pressurizing process, shear stress is generated, and metal particles are plastically deformed and pressed between adjacent metal particles to form a conductive metal bond (paragraph 0035). In the example, a conductive film is formed on a polyimide film, and an example using copper particles is shown in Example 6. Since it is not sintered, there are many voids in the conductive film, and there is room for improvement in terms of conductivity and weather resistance.

特許文献3には、フレキシブル基板上に銅ナノ粒子含有インクで塗膜を形成し、光を照射して銅粒子を焼結させる技術が記載されている。これは、光を受けた金属粒子が直接発熱する現象を利用して焼結させるものである。以下、この発熱現象を利用して焼結させる処理を「光焼成」と言う。光焼成では耐熱温度の低い基材を使用することが可能である。しかしその場合、下地の基材が過度に昇温しない範囲に銅粒子の発熱量を抑制する必要がある。耐熱温度の低い基材上で導電性および耐候性に優れた銅の導電膜を光焼成によって形成することは、困難である。   Patent Document 3 describes a technique of forming a coating film with a copper nanoparticle-containing ink on a flexible substrate, and irradiating light to sinter the copper particles. This is to sinter using the phenomenon that the metal particles receiving light generate heat directly. Hereinafter, the process of sintering using this exothermic phenomenon is referred to as “light baking”. In the light baking, it is possible to use a substrate having a low heat-resistant temperature. However, in that case, it is necessary to suppress the calorific value of the copper particles in a range where the temperature of the base material is not excessively increased. It is difficult to form a copper conductive film having excellent conductivity and weather resistance on a substrate having a low heat-resistant temperature by photo-baking.

特許文献4〜6には、酸化銅(CuO)を配合した塗膜を光焼成により導電膜とする技術が開示されている。しかし、これらは酸化銅の配合割合が多く、紙などの耐熱性の低い基材に損傷を与えないような光焼成の条件では焼結が不十分となり、導電塗膜を形成することが困難である。また、これらの文献には紙基材上に形成した導電塗膜の耐候性を改善する手法についても開示がない。   Patent Documents 4 to 6 disclose techniques for using a coating film containing copper oxide (CuO) as a conductive film by light baking. However, these contain a large amount of copper oxide, and sintering is insufficient under conditions of light firing that does not damage low heat-resistant substrates such as paper, making it difficult to form a conductive coating film. is there. Further, these documents do not disclose a technique for improving the weather resistance of a conductive coating film formed on a paper substrate.

特開2000−105809号公報JP 2000-105809 A 特開2013−134914号公報JP2013-134914A 特表2010−528428号公報Special table 2010-528428 gazette 特開2013−196881号公報JP2013-196881A 特開2014−199720号公報JP 2014-199720 A 特開2014−191974号公報JP 2014-191974 A

本発明は、紙基材などの耐熱温度の低い基材上に、光焼成を利用して導電性および耐候性に優れた導電膜を形成するのに適した導電膜形成用の銅粉含有塗料を提供することを目的とする。また、その銅粉含有塗料を用いて紙基材上に導電性および耐候性の高い導電膜を形成する技術を開示しようというものである。   The present invention relates to a copper powder-containing paint for forming a conductive film, which is suitable for forming a conductive film having excellent conductivity and weather resistance on a substrate having a low heat-resistant temperature such as a paper substrate by utilizing photo-baking. The purpose is to provide. Moreover, it is going to disclose the technique which forms the electrically conductive film with high electroconductivity and a weather resistance on a paper base material using the copper powder containing coating material.

上記目的は、一次粒子の平均粒子径が10〜100nmの微細銅粉Aと、レーザー回折・散乱法による体積基準の累積50%粒子径D50が0.3〜20.0μmの粗大銅粉Bと、同D50が0.1〜10.0μmの酸化銅(CuO)粉Cと、樹脂Dを含有する塗料であって、前記微細銅粉Aは銅粒子表面にアゾール化合物の被覆層を有するものであり、微細銅粉Aと粗大銅粉Bの合計量100質量部に対し、微細銅粉A:25〜80質量部、酸化銅粉C:0.5〜25質量部、樹脂D:3.0〜8.0質量部の配合組成を有する導電膜形成用塗料によって達成される。 The purpose is to make fine copper powder A having an average primary particle diameter of 10 to 100 nm and coarse copper powder B having a volume-based cumulative 50% particle diameter D 50 by laser diffraction / scattering method of 0.3 to 20.0 μm. And D 50 is a paint containing 0.1 to 10.0 μm of copper oxide (CuO) powder C and resin D, and the fine copper powder A has a coating layer of an azole compound on the surface of the copper particles. The total amount of fine copper powder A and coarse copper powder B is 100 parts by mass, fine copper powder A: 25-80 parts by mass, copper oxide powder C: 0.5-25 parts by mass, resin D: 3 This is achieved by a paint for forming a conductive film having a composition of 0.0 to 8.0 parts by mass.

上記微細銅粉Aの一次粒子平均粒子径は以下のようにして定めることができる。
〔微細銅粉Aの一次粒子平均粒子径の測定方法〕
測定対象である粉体をSEM(走査型電子顕微鏡)により観察する。無作為に観察視野を設定する。観察視野内において、粒子の全体像を表す輪郭が把握できる全ての粒子(すなわち粒子の一部が他の粒子に遮られているか視野外にはみ出ているために粒子の輪郭が把握できない粒子を除く全ての粒子)を選択する。この方法で選択した粒子を「選択粒子」と呼ぶ。全ての選択粒子についてそれぞれ、SEM像における粒子の輪郭からその粒子の投影面積Sを求める。投影面積Sは画像処理を利用して測定することができる。その投影面積Sと等しい面積を持つ円の直径Dを、その粒子の円相当径Dとする。測定対象となる選択粒子の総数Nが200個以上となるまで、観察視野の設定および選択粒子の測定を繰り返す。個々の選択粒子の円相当径Dの総和を選択粒子の総数Nで除した値を、当該粉体の一次粒子の平均粒子径とする。
The primary particle average particle diameter of the fine copper powder A can be determined as follows.
[Measurement method of average particle diameter of primary particles of fine copper powder A]
The powder to be measured is observed with an SEM (scanning electron microscope). Set the field of view at random. All the particles that can grasp the outline representing the whole image within the observation field (that is, particles that cannot be grasped because the part of the particle is obstructed by other particles or is out of the field of view) All particles). The particles selected by this method are called “selected particles”. The projected area S of each selected particle is determined from the particle outline in the SEM image. The projected area S can be measured using image processing. The diameter D of a circle having an area equal to the projected area S is defined as the equivalent circle diameter D of the particle. The setting of the observation field and the measurement of the selected particles are repeated until the total number N of the selected particles to be measured reaches 200 or more. A value obtained by dividing the sum of the equivalent circle diameters D of the individual selected particles by the total number N of the selected particles is defined as the average particle size of the primary particles of the powder.

前記アゾール化合物としては例えばベンゾトリアゾール(BTA)が挙げられる。
前記樹脂Dは、90〜190℃の範囲において常温よりも変形抵抗が小さいものであることが好ましい。「常温よりも変形抵抗が小さい」に該当するケースとして、一定の塑性ひずみを付与するのに必要なエネルギーが常温(20±15℃)よりも小さくなるケースや、常温では流動性を示さないものが流動性を示すようになるケースが挙げられる。樹脂Dとして例えばポリビニルピロリドン(PVP)を含有させることが好ましい。
Examples of the azole compound include benzotriazole (BTA).
The resin D preferably has a deformation resistance smaller than room temperature in the range of 90 to 190 ° C. Cases that fall under “less deformation resistance than room temperature” include cases where the energy required to give a certain plastic strain is less than room temperature (20 ± 15 ° C.), or those that do not exhibit fluidity at room temperature There is a case where becomes fluid. For example, polyvinyl pyrrolidone (PVP) is preferably contained as the resin D.

上記塗料は、前記A、B、CのフィラーとDの樹脂が均一に混合されたものである。A〜Dの材料は用途に応じて適切な溶剤とともに混合され、ペースト(混練物)あるいはインクとして基材上に塗布される。溶剤としては例えばエチレングリコール等のグリコール系溶剤が挙げられる。   The paint is obtained by uniformly mixing the fillers of A, B, and C and the resin of D. The materials A to D are mixed together with an appropriate solvent depending on the application, and applied as a paste (kneaded material) or ink onto the substrate. Examples of the solvent include glycol solvents such as ethylene glycol.

また、導電膜の製造方法として、紙基材上に、上記の塗料により塗膜を形成する工程(塗膜形成工程)、
前記塗膜に、240〜600nmの範囲内に波長成分を有する光を照射することにより、焼結導電膜を得る工程(光焼成工程)、
前記焼結導電膜を90〜190℃に加熱した状態で紙基材とともに加圧することにより、焼結導電膜中の空隙体積を減少させる工程(加熱プレス工程)、
を有する導電膜の製造方法が提供される。
Moreover, as a manufacturing method of an electrically conductive film, the process (coating film formation process) of forming a coating film with said coating material on a paper base material,
A step of obtaining a sintered conductive film by irradiating the coating film with light having a wavelength component within a range of 240 to 600 nm (photo-baking step);
A step of reducing the void volume in the sintered conductive film (heating press step) by pressurizing the sintered conductive film together with the paper substrate while being heated to 90 to 190 ° C.,
There is provided a method for producing a conductive film comprising:

前記光焼成工程では、酸化銅の還元により放出された酸素を利用して樹脂の燃焼を促進させることができる。すなわち、光焼成工程は、酸化銅の還元および銅の焼結を生じさせるとともに、樹脂を燃焼させて、前記塗膜よりも樹脂含有量の少ない焼結導電膜を得る工程である。
加熱プレス工程は、残留樹脂を揮発および膜の外部に排除させながら焼結導電膜中の空隙体積を減少させる工程である。加圧方法として、ロールプレスによりロール軸方向単位長さあたり90〜2000N/mmの荷重(以下これを「線圧」ということがある)を付与する手法を適用することが好ましい。
In the photo-baking step, the combustion of the resin can be promoted using oxygen released by the reduction of copper oxide. That is, the photo-baking step is a step of causing reduction of copper oxide and sintering of copper and burning the resin to obtain a sintered conductive film having a resin content smaller than that of the coating film.
The hot pressing step is a step of reducing the void volume in the sintered conductive film while volatilizing the residual resin and removing it outside the film. As a pressurizing method, it is preferable to apply a method of applying a load of 90 to 2000 N / mm per unit length in the roll axial direction (hereinafter sometimes referred to as “linear pressure”) by a roll press.

上記導電膜の平均膜厚は例えば5.0〜20.0μmである。その平均膜厚は以下のようにして求めることができる。
〔導電膜の平均膜厚の測定方法〕
厚さ方向に平行な導電膜断面のSEM(走査型電子顕微鏡)観察画像において、導電膜の厚さを、膜厚方向に対して直角方向に長さ100μm以上にわたって等間隔に20箇所以上で測定し、それらの測定値の相加平均値を平均膜厚とする。ロールプレス法で加熱プレスを行った導電膜である場合は厚さ方向およびロールプレス時の材料進行方向に平行な導電膜断面を観察する。
The average film thickness of the conductive film is, for example, 5.0 to 20.0 μm. The average film thickness can be determined as follows.
[Measurement method of average film thickness of conductive film]
In the SEM (scanning electron microscope) observation image of the cross section of the conductive film parallel to the thickness direction, the thickness of the conductive film is measured at 20 or more points at equal intervals over a length of 100 μm or more in the direction perpendicular to the film thickness direction. The arithmetic average value of these measured values is taken as the average film thickness. In the case of a conductive film that has been heat-pressed by a roll press method, a cross-section of the conductive film parallel to the thickness direction and the material traveling direction during the roll press is observed.

ここで、「紙」とは、JIS P0001:1998「紙・板紙及びパルプ用語」の番号4004に定義されている通り、植物繊維その他の繊維をこう着させて製造したものを意味し、素材として合成高分子物質を用いて製造した合成紙や、繊維状無機材料を配合したものも含む。樹脂等により表面処理が施されているものであっても構わない。   Here, “paper” means a material produced by attaching plant fibers or other fibers as defined in the number 4004 of JIS P0001: 1998 “Paper, paperboard, and pulp terms”. Also included are synthetic papers produced using synthetic polymer materials and those blended with fibrous inorganic materials. The surface treatment may be performed with a resin or the like.

本発明によれば、耐熱温度が低い紙基材上に形成された銅の導電膜において、導電性および耐候性を顕著に改善することが可能となる。防錆剤を使用しなくても優れた耐候性を呈する。この導電膜は導電フィラーとして銀粉ではなく銅粉を使用しているので、原料コストが銀導電膜より安い。この導電膜の好適な用途の例として、破壊が容易な紙基材を使用したRFIDタグのアンテナ回路が挙げられる。特に、酒類の商品管理タグなど、湿気による性能劣化の抑制が重視される用途において、本発明の導電膜は極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, in the copper electrically conductive film formed on the paper base material with low heat-resistant temperature, it becomes possible to improve a conductivity and a weather resistance notably. Excellent weather resistance even without the use of rust inhibitors. Since this conductive film uses copper powder instead of silver powder as the conductive filler, the raw material cost is lower than that of the silver conductive film. As an example of a suitable application of this conductive film, there is an antenna circuit of an RFID tag using a paper base material that can be easily broken. In particular, the conductive film of the present invention is extremely useful in applications where importance is placed on suppression of performance deterioration due to moisture, such as merchandise management tags for alcoholic beverages.

実施例1で得られた加熱ロールプレス後の塗膜の断面SEM写真。The cross-sectional SEM photograph of the coating film after the heating roll press obtained in Example 1. FIG. 図1の紙基材近傍付近(深部)についての拡大SEM写真。The enlarged SEM photograph about the paper substrate vicinity vicinity (deep part) of FIG. 比較例1で得られた加熱ロールプレス後の塗膜の断面SEM写真。The cross-sectional SEM photograph of the coating film after the heating roll press obtained by the comparative example 1. FIG. 図3の紙基材近傍付近(深部)についての拡大SEM写真。The enlarged SEM photograph about the paper substrate vicinity vicinity (deep part) of FIG. 比較例5で得られた加熱ロールプレス後の塗膜の断面SEM写真。The cross-sectional SEM photograph of the coating film after the heating roll press obtained by the comparative example 5. FIG. 比較例6で得られたロールプレス後の塗膜の断面SEM写真。The cross-sectional SEM photograph of the coating film after the roll press obtained by the comparative example 6. FIG.

本発明では紙基材上に形成された銅の導電膜において耐候性に優れるものを得る技術を提供する。紙基材は可撓性を有し、易破壊性にも優れる。その反面、ポリイミド樹脂などの従来多用されている可撓性基材と比較して、耐熱温度が低い。発明者らは、銅粉含有塗料(銅ペースト)を用いて光照射による発熱を利用して焼結を生じさせる手法(光焼成)により、紙基材上に導電膜を形成することが可能であることを確認し、その技術を特願2013−254606に開示した。また、その焼結導電膜を緻密化し、導電性や耐候性を改善する手法(加熱プレス)を特願2015−051888に開示した。本発明では、その光焼成および加熱プレスの技術を利用するとともに、塗料の配合組成に工夫を加え、耐候性の更なる向上を図る。   The present invention provides a technique for obtaining a copper conductive film formed on a paper substrate that has excellent weather resistance. The paper substrate has flexibility and is excellent in easy breakability. On the other hand, the heat resistant temperature is lower than that of a flexible base material such as polyimide resin that has been widely used. The inventors can form a conductive film on a paper substrate by a technique (photo-firing) in which sintering is caused by using heat generated by light irradiation using a copper powder-containing paint (copper paste). It was confirmed that the technology was disclosed in Japanese Patent Application No. 2013-254606. Further, Japanese Patent Application No. 2015-051888 discloses a method (heating press) for densifying the sintered conductive film to improve conductivity and weather resistance. In this invention, while utilizing the technique of the photobaking and a heat press, a device is added to the compounding composition of a coating material, and a weather resistance is improved further.

《塗料》
銅粉含有塗料を構成する銅粉は、焼結しやすい性質を有していることが必要である。粒子径が100nm程度以下の銅ナノ粒子は焼結温度が低く、光焼成に適している。種々検討の結果、一次粒子の平均粒子径が10〜100nmの微細銅粉を塗料中に含有させる。この種の微細銅粉を本明細書では「微細銅粉A」と呼ぶ。微細銅粉Aの一次粒子の平均粒子径は30〜70nmであることがより好ましい。
"paint"
The copper powder constituting the copper powder-containing coating must have a property that facilitates sintering. Copper nanoparticles having a particle size of about 100 nm or less have a low sintering temperature and are suitable for light firing. As a result of various studies, fine copper powder having an average primary particle size of 10 to 100 nm is contained in the paint. This type of fine copper powder is referred to herein as “fine copper powder A”. The average particle diameter of primary particles of the fine copper powder A is more preferably 30 to 70 nm.

微細銅粉Aは、ベンゾトリアゾール(BTA)等のアゾール化合物で被覆された銅粒子からなるものであることが好ましい。特願2013−254606に開示したように、表面をアゾール化合物で被覆した銅ナノ粒子は保存安定性に優れるとともに、光の吸収性が向上して光照射による焼結が生じやすくなる。アゾール化合物は分子内に共役二重結合を有するため、約400nm以下の紫外線波長領域で光を吸収して熱に変換する作用を発揮する。銅原子の電子を振動させて金属銅自身からの発熱を起こすために、本発明では波長600nm以下の光の照射を必要とするが、紫外線波長領域にも波長成分を有するスペクトルの光を照射することにより、アゾール化合物被覆層の発熱効果を享受することができ、光照射による焼結がより一層生じやすくなる。   The fine copper powder A is preferably composed of copper particles coated with an azole compound such as benzotriazole (BTA). As disclosed in Japanese Patent Application No. 2013-254606, copper nanoparticles whose surface is coated with an azole compound are excellent in storage stability and light absorption is improved, and sintering due to light irradiation is likely to occur. Since the azole compound has a conjugated double bond in the molecule, it exhibits an action of absorbing light and converting it into heat in an ultraviolet wavelength region of about 400 nm or less. In order to generate heat from the metal copper itself by vibrating the electrons of the copper atom, in the present invention, irradiation with light having a wavelength of 600 nm or less is required. However, light having a spectrum having a wavelength component is also irradiated in the ultraviolet wavelength region. Thus, the heat generation effect of the azole compound coating layer can be enjoyed, and sintering by light irradiation is more likely to occur.

塗料中には微細銅粉Aに加えて、平均粒子径が0.3〜20.0μmの粗大銅粉を含有させる。この種の粗大銅粉を本明細書では「粗大銅粉B」と呼ぶ。粗大銅粉Bの平均粒子径は、レーザー回折・散乱法による体積基準の累積50%粒子径D50によって表すことができる。粗大銅粉Bの粒子径D50は5.0〜15.0μmであることがより好ましい。粗大銅粉Bが混在していると、微細銅粉Aの銅粒子が焼結する際の収縮が緩和されて銅の焼結構造体にクラックが入ることが抑制され、導電性および耐候性の向上に有利となる。粗大銅粉Bとしてフレーク状銅粉を採用することがより好ましい。フレーク状銅粉は、球状あるいは樹枝状銅粉をボールミル等により機械的に偏平化したものである。 In addition to the fine copper powder A, the coating material contains coarse copper powder having an average particle size of 0.3 to 20.0 μm. This type of coarse copper powder is referred to herein as “coarse copper powder B”. The average particle diameter of the coarse copper powder B can be represented by a volume-based cumulative 50% particle diameter D 50 by a laser diffraction / scattering method. The particle diameter D 50 of the coarse copper powder B is more preferably 5.0 to 15.0 μm. When coarse copper powder B is mixed, shrinkage when copper particles of fine copper powder A are sintered is alleviated and cracks are suppressed in the copper sintered structure, and conductivity and weather resistance are reduced. It is advantageous for improvement. It is more preferable to employ a flaky copper powder as the coarse copper powder B. The flaky copper powder is obtained by mechanically flattening a spherical or dendritic copper powder with a ball mill or the like.

本発明では、微細銅粉A、粗大銅粉Bに加え、上記D50が0.1〜10.0μmの酸化銅(CuO)粉を含有させる。この酸化銅粉を本明細書では「酸化銅粉C」と呼ぶ。酸化銅粉Cの粒子径D50は0.5〜5.0μmであることがより好ましい。塗料中に酸化銅粉Cが混合されていると、光焼成時に微細銅粉Aの発熱および酸化銅粉C自身の発熱によって、酸化銅CuOが塗膜中に存在する有機成分の炭素などと反応して還元され、塗膜中に酸素が放出される。その酸素により後述の樹脂Dが燃焼し、塗膜中に存在する樹脂成分の含有量を減少させることができる。酸化銅粉Cとして、粒子表面がベンゾトリアゾール(BTA)等のアゾール化合物で被覆されたものを使用してもよい。その場合、光焼成時にアゾール化合物の発熱により、上記還元反応および樹脂の燃焼を促進される。酸化銅粉Cは粒状(機械的な偏平化処理を施していないもの)であってもよいし、フレーク状(機械的に偏平化したもの)であってもよい。 In the present invention, in addition to the fine copper powder A and the coarse copper powder B, the copper oxide (CuO) powder having the D 50 of 0.1 to 10.0 μm is contained. This copper oxide powder is referred to herein as “copper oxide powder C”. The particle diameter D 50 of the copper oxide powder C is more preferably 0.5 to 5.0 μm. When the copper oxide powder C is mixed in the paint, the copper oxide CuO reacts with the organic component carbon or the like present in the coating film due to the heat generation of the fine copper powder A and the heat generation of the copper oxide powder C itself during light firing. As a result, oxygen is released into the coating film. The resin D described later burns with the oxygen, and the content of the resin component present in the coating film can be reduced. As the copper oxide powder C, a powder whose surface is coated with an azole compound such as benzotriazole (BTA) may be used. In that case, the reduction reaction and the combustion of the resin are promoted by the exothermic heat of the azole compound at the time of photocalcination. The copper oxide powder C may be granular (not mechanically flattened) or flaky (mechanically flattened).

塗膜中には1種または2種以上の樹脂成分を含有させる。この樹脂を本明細書では「樹脂D」と呼ぶ。樹脂Dは導電膜形成用塗料に適度な粘性を付与して塗布性(印刷性)を向上させる作用や、光焼成後の焼結導電膜と基材の密着性を向上させる作用を有する。樹脂Dとしては、例えばポリビニルピロリドン(PVP)やポリビニルブチラール(PVB)が好適である。これらの樹脂は、90〜190℃の範囲において常温よりも変形抵抗が小さくなる。
上記以外の塗料構成成分としては、溶剤、分散剤、その他の添加剤が挙げられる。溶剤としては、例えばエチレングリコール等のグリコール系溶剤が好適である。分散剤としては、フィラーの粒子表面と溶剤に親和性を有するものを選択すればよい。溶剤、樹脂、分散剤については特願2013−254606で種々のものを開示した。本発明においてもそれらを適用することができる。その他の添加剤として例えば塩化ナトリウムを添加することができる。塩化ナトリウムは焼結促進剤としての作用を呈する。
One or two or more resin components are contained in the coating film. This resin is referred to herein as “resin D”. Resin D has the effect | action which provides moderate viscosity to the coating material for electrically conductive film formation, and improves applicability | paintability (printability), and the effect | action which improves the adhesiveness of the sintered electrically conductive film after light baking, and a base material. As the resin D, for example, polyvinyl pyrrolidone (PVP) or polyvinyl butyral (PVB) is suitable. These resins have a lower deformation resistance than room temperature in the range of 90 to 190 ° C.
Examples of paint constituents other than the above include solvents, dispersants, and other additives. As the solvent, for example, a glycol solvent such as ethylene glycol is suitable. A dispersant having an affinity for the filler particle surface and the solvent may be selected. Various solvents, resins, and dispersants are disclosed in Japanese Patent Application No. 2013-254606. They can also be applied in the present invention. For example, sodium chloride can be added as another additive. Sodium chloride acts as a sintering accelerator.

後述の光焼成および加熱プレスによって紙基材等の易破壊性基材上に耐候性の良好な銅の導電膜を形成するためには、塗料の配合組成が重要となる。
微細銅粉Aの配合割合は、微細銅粉Aと粗大銅粉Bの合計量100質量部(以下、これを「銅粉総量100質量部」ということがある。)に対し、25〜80質量部とする。30〜60質量部とすることがより好ましい。微細銅粉Aは光焼成での発熱源となり、焼結の進行を担う。微細銅粉Aの含有量が少なすぎると銅の焼結構造体を構築することが困難となる。微細銅粉Aの含有量が多すぎると焼結による収縮が大きくなり、導電膜にクラックが生じて導電性が低下しやすい。
In order to form a copper conductive film with good weather resistance on an easily breakable substrate such as a paper substrate by light baking and heating press described later, the blend composition of the coating material is important.
The blending ratio of the fine copper powder A is 25 to 80 mass with respect to the total amount of 100 mass parts of the fine copper powder A and the coarse copper powder B (hereinafter, this may be referred to as “total copper powder 100 mass parts”). Part. It is more preferable to set it as 30-60 mass parts. The fine copper powder A becomes a heat source in the light firing and is responsible for the progress of sintering. If the content of the fine copper powder A is too small, it is difficult to construct a copper sintered structure. When there is too much content of the fine copper powder A, shrinkage | contraction by sintering will become large, a crack will arise in an electrically conductive film, and electroconductivity will fall easily.

酸化銅粉Cの配合割合は、銅粉総量100質量部に対し、0.5〜25質量部とする。1.0〜10.0質量部とすることがより好ましい。酸化銅粉Cは光焼成時に塗膜中へ酸素を放出し、樹脂Dの燃焼を助ける。酸化銅粉Cの含有量が少なすぎると酸素の放出量が少なくなり、光焼成工程での樹脂の燃焼除去量が減少する。その場合、最終的に導電塗膜中の樹脂含有量が多くなり、導電性低下や耐候性低下の要因となる。一方、酸化銅粉Cの含有量が多すぎると光焼成により還元されずに酸化銅のまま塗膜中に存在する量が多くなる。塗膜中に酸化銅の存在量が多くなると良好な導電性を有する導電膜が形成できない。銅粒子間の導通が酸化銅粒子によって妨げられる程度が大きくなると、膜の導電性がほとんど発現しない場合もある。紙基材のような耐熱性の低い基材を使用した場合、光焼成での発熱量増大は基材の損傷を招くため、多量の酸化銅粉Cを十分に還元して良好な導電性を確保することは難しい。また、仮に光焼成において酸化銅が十分に還元されるに足る発熱が可能であってとしても、酸化銅粉Cの量が多い場合には、酸素消失に伴う塗膜中の空隙割合が増えて金属銅の存在が「疎」である焼結導電膜となり、導電性が不十分となりやすい。従って本発明では、塗料中の酸化銅粉Cの配合量は上記のように制限する必要がある。   The compounding ratio of the copper oxide powder C is 0.5 to 25 parts by mass with respect to 100 parts by mass of the total amount of copper powder. It is more preferable to set it as 1.0-10.0 mass parts. The copper oxide powder C releases oxygen into the coating during light baking, and helps burn the resin D. If the content of the copper oxide powder C is too small, the amount of released oxygen is decreased, and the amount of resin burned and removed in the light baking step is reduced. In that case, the resin content in the conductive coating film eventually increases, which causes a decrease in conductivity and weather resistance. On the other hand, when there is too much content of the copper oxide powder C, the quantity which exists in a coating film as copper oxide will not increase by light baking but will reduce. When the amount of copper oxide present in the coating film increases, a conductive film having good conductivity cannot be formed. If the degree to which conduction between copper particles is hindered by the copper oxide particles is increased, the conductivity of the film may be hardly expressed. When a base material with low heat resistance such as a paper base material is used, an increase in the amount of heat generated by light firing causes damage to the base material. Therefore, a large amount of copper oxide powder C is sufficiently reduced to provide good conductivity. It is difficult to secure. Further, even if heat generation sufficient to sufficiently reduce the copper oxide is possible in the light baking, if the amount of the copper oxide powder C is large, the void ratio in the coating film accompanying the disappearance of oxygen increases. The presence of metallic copper is a “sparse” sintered conductive film, and the electrical conductivity tends to be insufficient. Therefore, in this invention, it is necessary to restrict | limit the compounding quantity of the copper oxide powder C in a coating material as mentioned above.

樹脂Dの配合割合は、銅粉総量100質量部に対し、3.0〜8.0質量部とする。4.0〜7.5質量部とすることがより好ましい。樹脂Dの含有量が少なすぎると塗料の粘度を十分に確保することが難しくなり、塗膜形成不良(印刷不良)を起こしやすい。また、光焼成後の導電膜と基材の密着性が低下し、アブレーション(膜荒れ)の原因となる。樹脂Dの含有量が多すぎると光焼成での燃焼や、後述の加圧プレスでの排除によっても、最終的に導電塗膜中に残存する樹脂成分の量が多くなり、導電性や耐候性の低下を招く。
分散剤の配合割合は、銅粉総量100質量部に対し、例えば0.5〜5.0質量部とすることができる。
塩化ナトリウムなどの焼結促進剤を添加する場合は、銅粉総量100質量部に対し、例えば塩素の量が0.1〜2.0質量部とすることができる。
The blending ratio of the resin D is 3.0 to 8.0 parts by mass with respect to 100 parts by mass of the total amount of copper powder. It is more preferable to set it as 4.0-7.5 mass parts. When the content of the resin D is too small, it becomes difficult to ensure a sufficient viscosity of the coating material, and a coating film formation failure (printing failure) is likely to occur. Moreover, the adhesiveness of the electrically conductive film after light baking and a base material falls, and causes ablation (film roughness). If the content of the resin D is too large, the amount of the resin component finally remaining in the conductive coating film will increase due to combustion by light firing or elimination by a pressure press described later, resulting in conductivity and weather resistance. Cause a decline.
The blending ratio of the dispersant can be set to, for example, 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the total amount of copper powder.
When adding sintering promoters, such as sodium chloride, the quantity of chlorine can be 0.1-2.0 mass parts with respect to 100 mass parts of copper powder total amount, for example.

《導電膜の製造方法》
〔塗膜形成工程〕
紙基材の上に上記の塗料を塗布する。例えばスクリーン印刷によって所定の回路パターンが得られるように塗布する手法が採用できる。塗布後には、紙基材が熱により劣化しない温度範囲、かつ銅粉の酸化や焼結が生じない温度範囲に加熱して溶剤成分をできるだけ揮発除去させ光焼成に供するための塗膜を形成する。光焼成時に溶剤成分が残留していると溶剤成分の揮発によりアブレーション(膜荒れ)が発生しやすくなる。この予備的な加熱処理を「予備焼成」と呼ぶ。予備焼成は、例えば真空乾燥機やIRランプヒーターを用いて行うことができる。真空乾燥機の場合は、真空引きされた減圧雰囲気下で50〜200℃より好ましくは50〜120℃の範囲に加熱し、10〜180min保持することが好適である。IRランプヒーターの場合は、大気中において例えば熱量140〜600Jで5〜20sec加熱する方法が採用できる。予備焼成後の銅粉含有塗膜の平均厚さは例えば5〜20μmとすることができる。この塗膜平均厚さは、レーザー顕微鏡を用いて塗膜表面とその近傍の紙基材表面の高低差を無作為に100箇所以上測定して相加平均することにより求めることができる。
<< Method for Manufacturing Conductive Film >>
[Coating film forming process]
The paint is applied on a paper substrate. For example, it is possible to adopt a method of coating so that a predetermined circuit pattern is obtained by screen printing. After coating, the paper substrate is heated to a temperature range in which it does not deteriorate due to heat, and a temperature range in which copper powder is not oxidized or sintered to remove the solvent component as much as possible to form a coating film for use in light baking. . If the solvent component remains at the time of light firing, ablation (film roughness) is likely to occur due to volatilization of the solvent component. This preliminary heat treatment is called “pre-baking”. Pre-baking can be performed using, for example, a vacuum dryer or an IR lamp heater. In the case of a vacuum dryer, it is preferable to heat in a vacuum-evacuated reduced pressure atmosphere to a temperature of 50 to 200 ° C., more preferably 50 to 120 ° C., and hold for 10 to 180 minutes. In the case of an IR lamp heater, for example, a method of heating for 5 to 20 seconds with an amount of heat of 140 to 600 J in the atmosphere can be employed. The average thickness of the copper powder-containing coating film after preliminary firing can be set to, for example, 5 to 20 μm. The average thickness of the coating film can be obtained by randomly measuring the height difference between the surface of the coating film and the surface of the paper base material in the vicinity thereof with a laser microscope and performing arithmetic averaging on 100 or more points.

〔光焼成工程〕
上記のようにして形成された銅粉含有塗膜に光を照射し、その光による微細銅粉Aの発熱を利用して塗膜中に銅の焼結構造体を形成させる。銅原子の電子を振動させて金属銅からの発熱を起こすためには、波長600nm以下の光を照射する必要があり、例えば240〜600nmの範囲内に波長成分を有する光を照射することが効果的である。この波長範囲の光は上述のようにアゾール化合物被覆層の発熱にも有効となる。
[Photo-baking process]
The copper powder-containing coating film formed as described above is irradiated with light, and a copper sintered structure is formed in the coating film using the heat generated by the fine copper powder A by the light. In order to generate heat from the metal copper by vibrating the electrons of the copper atom, it is necessary to irradiate light having a wavelength of 600 nm or less. For example, it is effective to irradiate light having a wavelength component in the range of 240 to 600 nm. Is. Light in this wavelength range is also effective for heat generation of the azole compound coating layer as described above.

紙基材上に形成された銅粉含有塗膜に上記波長域の光が照射されると、その光が届く範囲にある塗膜表層部付近の微細銅粉A、粗大銅粉Bおよび酸化銅粉Cの粒子が発熱する。これらのうち微細銅粉Aを構成する銅ナノ粒子は焼結開始温度が低いので、塗膜表層部付近で速やかに焼結が起こる。酸化銅粉Cも、粒子が微細である場合には自らの発熱によって銅への還元および焼結に至ることがある。酸化銅粉Cの表面にアゾール化合物被覆層を有している場合には、そのアゾール化合物の光の吸収による発熱によって酸化銅粉Cの昇温が一層起こりやすい。表層部で発生した熱の伝導により、光が届かない内部の微細粒子も焼結していく。微細粒子で焼結が生じると、その焼結部分に隣接する粗大銅粉Bにも焼結が及ぶ。また、酸化銅粉Cが粗大粒子である場合も表層部からの熱伝導により銅へ還元され、上記粗大銅粉Bと同様に周囲の銅と焼結する。このようにして塗膜中には銅の焼結構造体が形成される。その間、時間にして約1sec程度であり、焼結構造体の厚さも薄いので、光照射を止めると塗膜温度は急速に低下する。そのため、光照射の条件を適切にコントロールすることにより下地の紙基材を焼損させることなく、焼結を終了させることができる。   When light in the above wavelength range is irradiated onto the copper powder-containing coating film formed on the paper substrate, fine copper powder A, coarse copper powder B, and copper oxide in the vicinity of the coating surface layer in the range that the light reaches. The particles of powder C generate heat. Among these, the copper nanoparticles constituting the fine copper powder A have a low sintering start temperature, so that sintering occurs rapidly in the vicinity of the coating surface layer. The copper oxide powder C may also be reduced to copper and sintered by its own heat generation when the particles are fine. When the azole compound coating layer is provided on the surface of the copper oxide powder C, the temperature rise of the copper oxide powder C is more likely to occur due to heat generation due to light absorption of the azole compound. Due to the conduction of heat generated in the surface layer part, the fine particles inside which light does not reach are also sintered. When sintering occurs with fine particles, the sintering also reaches coarse copper powder B adjacent to the sintered portion. Moreover, also when the copper oxide powder C is coarse particles, it is reduced to copper by heat conduction from the surface layer portion, and is sintered with surrounding copper in the same manner as the coarse copper powder B. In this way, a sintered copper structure is formed in the coating film. In the meantime, it takes about 1 sec in time and the thickness of the sintered structure is thin, so when the light irradiation is stopped, the coating film temperature rapidly decreases. Therefore, the sintering can be completed without burning the underlying paper substrate by appropriately controlling the light irradiation conditions.

酸化銅粉Cは、光焼成時に温度が上昇すると、塗膜中に存在する有機成分の炭素などと反応し、金属銅へ還元される。このときに塗膜中に放出された酸素によって樹脂Dの燃焼が促進され、酸化銅粉Cが存在しない塗料を使用した場合と比べ、樹脂の残存量が少ない銅の焼結構造体が得られる。この段階で樹脂の残存量が低減されていると、後工程の加熱プレスを多量の樹脂が詰まっている状態で実施する場合と比べ、最終的に樹脂成分の残存量が少ない導電膜を得ることができ、アンテナ等の導電回路の耐候性向上に有利となる。   When the temperature of the copper oxide powder C rises during photo-baking, it reacts with carbon or the like of organic components present in the coating film, and is reduced to metallic copper. At this time, the combustion of the resin D is promoted by the oxygen released into the coating film, and a sintered structure of copper with a small amount of residual resin can be obtained as compared with the case where a coating without the copper oxide powder C is used. . If the residual amount of the resin is reduced at this stage, it is possible to finally obtain a conductive film with a small residual amount of the resin component as compared with the case where the subsequent heat press is carried out in a state where a large amount of the resin is clogged. This is advantageous for improving the weather resistance of a conductive circuit such as an antenna.

光照射の光源としてはキセノンフラッシュランプなどが適用できる。キセノン光は200〜800nmを含む波長範囲をカバーするスペクトルを有するので、銅粉含有塗膜の光焼成工程には好適である。キセノンフラッシュランプを使用する場合、パルス周期500〜2000μs、パルス電圧1600〜3800Vの範囲で最適な条件を設定することができる。下地の紙基材へのダメージが回避され、基材直上まで焼結が達成できる最適な条件は、使用する塗料の配合組成、予備焼成条件、塗膜厚さ、紙基材の耐熱性などに応じて、予め予備実験により把握しておくことができる。工業的生産においてはその予備実験データに基づいて光焼成の条件を設定すればよい。前記の銅粉含有塗膜は、光焼成工程を経て紙基材上で銅の焼結構造体を主体とする導電膜となる。この膜を「焼結導電膜」と呼ぶ。   A xenon flash lamp or the like can be used as a light source for light irradiation. Since xenon light has a spectrum covering a wavelength range including 200 to 800 nm, it is suitable for the photo-baking step of the copper powder-containing coating film. When a xenon flash lamp is used, optimum conditions can be set in the range of a pulse cycle of 500 to 2000 μs and a pulse voltage of 1600 to 3800V. The optimal conditions for avoiding damage to the underlying paper substrate and achieving sintering up to just above the substrate are the composition of the paint used, the pre-baking conditions, the coating thickness, the heat resistance of the paper substrate, etc. Accordingly, it can be grasped in advance by a preliminary experiment. In industrial production, light firing conditions may be set based on the preliminary experimental data. The copper powder-containing coating film becomes a conductive film mainly composed of a sintered copper structure on a paper base material through a light baking process. This film is called “sintered conductive film”.

〔加熱プレス工程〕
焼結導電膜を構成する銅の焼結構造体の内部には、まだ樹脂が残存しているが、光焼成工程で樹脂が燃焼することにより形成されたボイド(空隙)や、塗料に含まれていた溶剤等の有機成分が揮発することによって形成されたボイドが多く存在する。このようなボイドが潰れるように焼結導電膜を加圧すれば、銅充填率が増大し、導電性が向上する。フィルム状物体を加圧する一般的な手段としてロールプレス法が知られている。
[Hot press process]
Resin still remains inside the copper sintered structure that constitutes the sintered conductive film, but is contained in voids or voids formed by the resin burning in the photo-baking process, and in the paint. There are many voids formed by volatilization of organic components such as the solvent. If the sintered conductive film is pressurized so that such voids are crushed, the copper filling rate is increased and the conductivity is improved. A roll press method is known as a general means for pressurizing a film-like object.

RFIDタグのアンテナ回路では、導電性の向上は通信距離の向上等、アンテナ性能にも有利に働くと考えられる。ただし、プラスチック基材と比べ吸湿性の高い紙基材を用いた場合には、高温高湿雰囲気に放置した場合にアンテナ性能が劣化しにくい性質、すなわち「耐候性」に優れることが実用上極めて重要となる。紙基材上に形成した焼結導電膜を単にロールプレスにより加圧して銅充填率を高めるだけでは、初期の導電性(アンテナ性能)を向上させる効果は認められるものの、耐候性(アンテナ性能の耐劣化性)を十分に改善することは困難である。   In the antenna circuit of the RFID tag, it can be considered that the improvement in conductivity is advantageous for the antenna performance, such as the improvement of the communication distance. However, when using a paper substrate with higher hygroscopicity than a plastic substrate, it is extremely practical that the antenna performance is difficult to deteriorate when left in a high-temperature, high-humidity atmosphere, that is, it has excellent "weather resistance". It becomes important. Although the effect of improving the initial conductivity (antenna performance) is recognized by simply pressurizing the sintered conductive film formed on the paper substrate with a roll press to increase the copper filling rate, the weather resistance (of the antenna performance) is recognized. It is difficult to sufficiently improve (deterioration resistance).

詳細な検討の結果、焼結導電膜を下地の紙基材とともに加圧する際に、その加圧を90〜190℃といった温度に加熱した状態で行うことによって、耐候性を付与することができることがわかった。加熱した状態で加圧することを本明細書では「加熱プレス」と呼ぶ。加熱により焼結導電膜中に残存する樹脂の変形抵抗が低下して、加圧時に樹脂が動きやすくなり、残存する樹脂の一部は焼結導電膜の外部に排除される。焼結導電膜中に存在する樹脂の量が減ることによって、加熱プレス後の導電膜における銅充填率が増大し、導電膜の電気抵抗が減少する。電気抵抗の減少はアンテナ性能(通信距離)の向上をもたらす。一方、内部に残存する樹脂は、ある程度の吸湿性を有する。内部のボイド(空隙)は湿分の伝播経路となる。内部に残存する樹脂の量が少なく、かつボイド(空隙)の体積が少ない銅導電膜ほど、湿分による金属銅の酸化が抑制され、耐候性に優れる。光焼成時に樹脂を燃焼させて膜中の樹脂含有量を減少させ、更にその後に加熱プレスで樹脂含有量を減少させた導電膜は、酸化銅を含有しない塗料を用いた場合や、加熱のない常温でのプレスを行った場合と比べ、樹脂の量が減少しているので耐候性が高い。加熱プレスはロールプレスにより行うことが効果的である。   As a result of detailed examination, when pressurizing the sintered conductive film together with the underlying paper base material, it is possible to impart weather resistance by performing the pressurization while heating to a temperature of 90 to 190 ° C. all right. In this specification, pressurization in a heated state is referred to as “heating press”. The deformation resistance of the resin remaining in the sintered conductive film is reduced by heating, and the resin easily moves during pressurization, and a part of the remaining resin is excluded outside the sintered conductive film. By reducing the amount of resin present in the sintered conductive film, the copper filling rate in the conductive film after hot pressing increases, and the electrical resistance of the conductive film decreases. Reduction in electrical resistance results in improved antenna performance (communication distance). On the other hand, the resin remaining inside has a certain level of hygroscopicity. Internal voids (voids) provide a moisture propagation path. The smaller the amount of resin remaining inside and the smaller the volume of voids (voids), the more the copper copper conductive film is oxidized by moisture and the weather resistance is excellent. The conductive film in which the resin content in the film is reduced by burning the resin at the time of light firing and the resin content is further reduced by a heating press is used when a paint not containing copper oxide is used or when there is no heating. Compared to the case of pressing at room temperature, the amount of resin is reduced, so the weather resistance is high. It is effective to perform the heating press by a roll press.

ロールプレスに用いるワークロール(被プレス材料に押し当てるロール)の直径は100〜500mmの範囲で選択することができ、250〜450mmとすることがより好ましい。加圧荷重(線圧)はロール軸方向単位長さあたり90〜2000N/mmとすることが好ましい。また、加圧時の焼結導電膜温度は90〜190℃とすることが好ましい。特に、樹脂Dとしてガラス転移温度Tgが90〜190℃の範囲に有る樹脂を適用し、加圧時の焼結導電膜温度をTg以上190℃以下の温度とすることがより好ましい。加熱プレス時の雰囲気は、一般的には大気中で問題ないが、銅の酸化の影響がみられる場合は窒素雰囲気中で行えばよい。線圧が高すぎる場合や温度が高すぎる場合は、紙基材が損傷しやすい。線圧が低すぎる場合や温度が低すぎる場合は、ロールによる加圧を利用して樹脂を導電膜の外部に十分に排除することが難しく、また、銅の充填率向上にも不利となる。そのため、耐候性の改善が不十分となる。加熱の方法は、ワークロールの表面をロール内部または外部のヒーターで加熱する方法が一般的である。通常、加熱されたロールの表面温度を「加圧時の焼結導電膜温度」とみなすことができる。ロールプレス時のワークロール周速(すなわち材料の進行速度)は0.5〜5m/minとすることが好ましい。加熱ロールプレス工程後の導電膜の平均膜厚は用途に応じて例えば5〜20μmの範囲となるように調整すればよい。   The diameter of the work roll (roll pressed against the material to be pressed) used for the roll press can be selected in the range of 100 to 500 mm, and more preferably 250 to 450 mm. The pressure load (linear pressure) is preferably 90 to 2000 N / mm per unit length in the roll axis direction. Moreover, it is preferable that the sintered electrically conductive film temperature at the time of pressurization shall be 90-190 degreeC. In particular, it is more preferable to apply a resin having a glass transition temperature Tg in the range of 90 to 190 ° C. as the resin D, and set the temperature of the sintered conductive film at the time of pressurization to a temperature of Tg to 190 ° C. The atmosphere during the hot pressing is generally not a problem in the air, but if the influence of copper oxidation is observed, it may be performed in a nitrogen atmosphere. When the linear pressure is too high or the temperature is too high, the paper substrate is easily damaged. When the linear pressure is too low or the temperature is too low, it is difficult to sufficiently remove the resin to the outside of the conductive film using the pressurization by the roll, and it is disadvantageous for improving the copper filling rate. Therefore, the improvement of weather resistance is insufficient. As a heating method, a method of heating the surface of the work roll with a heater inside or outside the roll is generally used. Usually, the surface temperature of the heated roll can be regarded as “sintered conductive film temperature during pressurization”. The work roll peripheral speed (that is, the material traveling speed) during roll pressing is preferably 0.5 to 5 m / min. What is necessary is just to adjust the average film thickness of the electrically conductive film after a heating roll press process so that it may become the range of 5-20 micrometers according to a use.

〔銅粉含有塗料の作製〕
微細銅粉Aを以下の手法により作製した。硫酸銅五水和物(JX日鉱日石金属製)280gと、ベンゾトリアゾール(BTA)(和光純薬工業製)1gを純水1330gに溶解させた溶液aを用意した。50質量%水酸化ナトリウム水溶液(和光純薬工業製)20を純水900gで希釈した溶液bを用意した。80質量%ヒドラジン一水和物(大塚化学製)150gを純水1300gで希釈した溶液cを用意した。溶液aと溶液bを撹拌しながら混合し、液温を60℃に調整したのち、この混合液に撹拌下で溶液cを30sec以内の時間で全量添加し、金属銅の粒子を還元析出させた。この反応は約5minで終了した。反応後の液(スラリー)を固液分離したのち純水で洗浄し、回収した固形分にエチレングリコール(和光純薬工業製、試薬特級)を通液して、エチレングリコール中に微細銅粉Aが分散した分散液を得た。この微細銅粉AはBTAで被覆された銅粒子で構成されている。この微細銅粉AをFE−SEM(電界放出型走査電子顕微鏡)(日立製作所製、S−4700)を用いて観察したところ、ほぼ球形の粒子で構成されていた。上掲の「微細銅粉Aの一次粒子平均粒子径の測定方法」に従う微細銅粉Aの平均粒子径は、作製ロットにより僅かな変動はあるが、いずれのロットにおいても50±5nmの範囲に入っていた。
[Preparation of paint containing copper powder]
Fine copper powder A was produced by the following method. A solution a in which 280 g of copper sulfate pentahydrate (manufactured by JX Nippon Mining & Metals) and 1 g of benzotriazole (BTA) (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1330 g of pure water was prepared. A solution b obtained by diluting a 50 mass% sodium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries) 20 with 900 g of pure water was prepared. A solution c was prepared by diluting 150 g of 80% by mass hydrazine monohydrate (manufactured by Otsuka Chemical) with 1300 g of pure water. The solution a and the solution b were mixed with stirring, and the liquid temperature was adjusted to 60 ° C., and then the solution c was added to the mixed solution with stirring within a time of 30 seconds to reduce and precipitate metallic copper particles. . This reaction was completed in about 5 minutes. The liquid (slurry) after the reaction is separated into solid and liquid, washed with pure water, and ethylene glycol (manufactured by Wako Pure Chemical Industries, special grade) is passed through the collected solids to obtain fine copper powder A in ethylene glycol. A dispersion liquid was obtained. The fine copper powder A is composed of copper particles coated with BTA. When this fine copper powder A was observed using an FE-SEM (field emission scanning electron microscope) (S-4700, manufactured by Hitachi, Ltd.), it was composed of substantially spherical particles. The average particle diameter of the fine copper powder A according to the above-mentioned “Measurement method of the average particle diameter of the primary particles of the fine copper powder A” varies slightly depending on the production lot, but in the range of 50 ± 5 nm in any lot. It was in.

粗大銅粉Bは、市販の電解銅粉(福田金属箔社製、FCC115)を振動ミルで粉砕することによって作製したフレーク状銅粉を使用した。粉砕条件は、滑材:ステアリン酸0.5質量%、元粉量:870g、ビーズ量:11.105kg(ポット容量に対して90堆積%)、ビーズ径:3.0mm、ポット容量:3.5L、振幅:5.8mm、周波数:30Hz(インバーター設定値60Hz)、粉砕時間:30〜120min、雰囲気:窒素置換とした。レーザー回折式粒度分布測定装置(日機装社製、マイクロトラックMT3300EXII)により粗大銅粉Bの粒度分布を測定したところ、体積基準の累積50%粒子径D50は6.6μmであった。 As the coarse copper powder B, a flaky copper powder prepared by pulverizing commercially available electrolytic copper powder (manufactured by Fukuda Metal Foil Co., Ltd., FCC115) with a vibration mill was used. The pulverization conditions were: lubricant: stearic acid 0.5% by mass, original powder amount: 870 g, bead amount: 11.105 kg (90% deposition relative to pot volume), bead diameter: 3.0 mm, pot volume: 3. 5 L, amplitude: 5.8 mm, frequency: 30 Hz (inverter set value 60 Hz), grinding time: 30 to 120 min, atmosphere: nitrogen substitution. When the particle size distribution of the coarse copper powder B was measured with a laser diffraction particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT3300EXII), the cumulative 50% particle size D 50 on a volume basis was 6.6 μm.

酸化銅(CuO)粉Cとして、以下の4種類のもの(記号C1〜C4)を用意した。
〔酸化銅粉C1〕
水酸化ナトリウム水溶液に1、2、3−ベンゾトリアゾール(BTA)を含有させた後、硫酸銅を添加してCu(OH)2の中和沈殿物を生成させ、このCu(OH)2を60℃に昇温してCuOとした。反応後の液(スラリー)を固液分離したのち純水で洗浄し、粒子表面にBTA被覆層を有する酸化銅粉C1からなる固形分を回収した。この固形分にエチレングリコールを通液して、エチレングリコール中に酸化銅粉C1が分散した分散液を得た。上記のレーザー回折式粒度分布測定装置により酸化銅粉C1の粒度分布を測定したところ、体積基準の累積50%粒子径D50は0.8μmであった。
〔酸化銅粉C2〕
上記酸化銅粉C1の製造において、水酸化ナトリウム水溶液に1、2、3−ベンゾトリアゾール(BTA)を含有しない液を使用することによって、粒子表面にBTA被覆層を有しない酸化銅粉C2を得た。上記のレーザー回折式粒度分布測定装置により酸化銅粉C2の粒度分布を測定したところ、体積基準の累積50%粒子径D50は1.3μmであった。
〔酸化銅粉C3〕
和光純薬工業製の酸化銅(CuO)試薬を酸化銅粉C3とした。上記のレーザー回折式粒度分布測定装置により酸化銅粉C3の粒度分布を測定したところ、体積基準の累積50%粒子径D50は3.4μmであった。
〔酸化銅粉C4〕
上記酸化銅粉C3で使用した酸化銅(CuO)試薬50g、1、2、3−ベンゾトリアゾール(BTA)1g、イソプロピルアルコール200gを1h撹拌混合したのち、ろ過、乾燥を行い、粒子表面にBTA被覆層を有する酸化銅粉C4を得た。上記のレーザー回折式粒度分布測定装置により酸化銅粉C4の粒度分布を測定したところ、体積基準の累積50%粒子径D50は3.4μmであった。
As the copper oxide (CuO) powder C, the following four types (symbols C1 to C4) were prepared.
[Copper oxide powder C1]
After containing an aqueous solution of sodium 1,2,3-benzotriazole hydroxide (BTA), to produce by the addition of copper sulfate Cu (OH) 2 neutralized precipitate the Cu (OH) 2 60 The temperature was raised to 0 ° C. to obtain CuO. The liquid (slurry) after the reaction was subjected to solid-liquid separation and then washed with pure water, and a solid content made of copper oxide powder C1 having a BTA coating layer on the particle surface was recovered. Ethylene glycol was passed through this solid content to obtain a dispersion in which copper oxide powder C1 was dispersed in ethylene glycol. When the particle size distribution of the copper oxide powder C1 was measured by the laser diffraction particle size distribution measuring apparatus, the 50% cumulative particle diameter D 50 on a volume basis was 0.8 μm.
[Copper oxide powder C2]
In the production of the copper oxide powder C1, by using a liquid not containing 1,2,3-benzotriazole (BTA) in the sodium hydroxide aqueous solution, a copper oxide powder C2 having no BTA coating layer on the particle surface is obtained. It was. When the particle size distribution of the copper oxide powder C2 was measured by the laser diffraction particle size distribution measuring apparatus, the cumulative 50% particle diameter D 50 on a volume basis was 1.3 μm.
[Copper oxide powder C3]
The copper oxide (CuO) reagent made from Wako Pure Chemical Industries was used as the copper oxide powder C3. When the particle size distribution of the copper oxide powder C3 was measured by the laser diffraction particle size distribution measuring apparatus, the cumulative 50% particle diameter D 50 on a volume basis was 3.4 μm.
[Copper oxide powder C4]
After stirring and mixing 50 g of the copper oxide (CuO) reagent used in the copper oxide powder C3, 1 g of 1,2,3-benzotriazole (BTA) and 200 g of isopropyl alcohol for 1 h, filtration and drying are performed, and the particle surface is coated with BTA A copper oxide powder C4 having a layer was obtained. When the particle size distribution of the copper oxide powder C4 was measured with the laser diffraction particle size distribution measuring apparatus, the cumulative 50% particle diameter D 50 on a volume basis was 3.4 μm.

樹脂Dとして、重量平均分子量が45,000、ガラス転移温度Tgが約160℃のポリビニルピロリドン(PVP)(第一工業製薬製、ピッツコールK−30)を用意した。樹脂Dは、エチレングリコール(和光純薬工業製、試薬特級)と溶解して、エチレングリコール溶媒中に上記樹脂60質量%を含有するものを後述の塗料の調合に用いた。
溶剤として、エチレングリコール(和光純薬工業製、試薬特級)に塩化ナトリウム5質量%を混合したものを用意した。
分散剤として、有効成分であるナフタレンスルホン酸ホルムアルデヒド縮合物アンモニウム塩を40質量%含有する界面活性剤(花王製、デモールNL)を用意した。
As resin D, polyvinyl pyrrolidone (PVP) (Pittskol K-30, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) having a weight average molecular weight of 45,000 and a glass transition temperature Tg of about 160 ° C. was prepared. Resin D dissolved in ethylene glycol (manufactured by Wako Pure Chemical Industries, special grade of reagent) and containing 60% by mass of the resin in an ethylene glycol solvent was used for the preparation of the coating material described later.
A solvent prepared by mixing 5% by mass of sodium chloride with ethylene glycol (manufactured by Wako Pure Chemical Industries, reagent special grade) was prepared.
As a dispersant, a surfactant (made by Kao, Demol NL) containing 40% by mass of an ammonium salt of naphthalenesulfonic acid formaldehyde condensate as an active ingredient was prepared.

微細銅粉Aの分散液、分散剤、樹脂D、溶剤、粗大銅粉B、酸化銅粉(上記C1〜C4のいずれか)を、表1に示す配合割合で混合してペースト状の塗料を調合した。表1中に記載した「銅粉含有量」は塗料中に占める微細銅粉Aと粗大銅粉Bの合計含有量(質量%)を意味し、「酸化銅含有量」は塗料中に占める酸化銅粉(上記C1〜C4のいずれか)の含有量(質量%)を意味する。比較例3については、銅粉を配合せずフィラーの全量が酸化銅粉C3であるため、表1中の「銅粉総量100質量部に対する配合割合」を記載している欄には[ ]を付して「酸化銅粉100質量部に対する配合割合」を示した。Clの質量部は塩化ナトリウム含有溶剤により添加されるNaClのCl分の配合割合である。   A dispersion of fine copper powder A, dispersant, resin D, solvent, coarse copper powder B, copper oxide powder (any one of the above C1 to C4) are mixed at a blending ratio shown in Table 1 to obtain a paste-like paint. Prepared. The “copper powder content” described in Table 1 means the total content (mass%) of fine copper powder A and coarse copper powder B in the paint, and “copper oxide content” is the oxidation in the paint. It means content (mass%) of copper powder (any of said C1-C4). For Comparative Example 3, the copper powder was not blended and the total amount of filler was copper oxide powder C3. Therefore, in the column describing “mixing ratio with respect to 100 parts by mass of copper powder” in Table 1, [] It attached and showed "the mixture ratio with respect to 100 mass parts of copper oxide powder." The part by mass of Cl is the proportion of NaCl added by the sodium chloride-containing solvent.

〔塗膜形成〕
紙基材として、市販の塗工紙(三菱製紙製、DFカラーM70)を用意した。スクリーン版として、メッシュ数200LPI、線径40μm、紗厚80μm、乳剤厚10μmのスクリーン版(ソノコム製、ST200−40−80)を用意した。紙基材上に、スクリーン版を使用して、上記銅粉含有塗料によりRFID用アンテナ回路パターンをスクリーン印刷し、予備焼成として真空乾燥機により100℃で60minの真空乾燥を施し、銅粉含有塗膜を得た。このアンテナ回路パターンの導電長は146mm、回路の描画領域は約70mm×15mm、線幅は約0.8mmである。
[Coating formation]
A commercially available coated paper (manufactured by Mitsubishi Paper Industries, DF color M70) was prepared as a paper substrate. As a screen plate, a screen plate (ST200-40-80, manufactured by Sonocom Co., Ltd.) having a mesh number of 200 LPI, a wire diameter of 40 μm, a wrinkle thickness of 80 μm, and an emulsion thickness of 10 μm was prepared. Using a screen plate on a paper substrate, the RFID antenna circuit pattern is screen-printed with the above-mentioned copper powder-containing paint, preliminarily baked at 100 ° C. for 60 minutes with a vacuum dryer, and then coated with copper powder. A membrane was obtained. The antenna circuit pattern has a conductive length of 146 mm, a circuit drawing area of about 70 mm × 15 mm, and a line width of about 0.8 mm.

〔光焼成〕
上記予備焼成後の塗膜に、パルス照射装置(Xenon社製、Sinteron2000)を使用して、キセノンフラッシュランプにより200〜800nmを含む波長範囲をカバーするスペクトルの光を照射し、紙基材上に焼成膜を形成した。パルス周期は2000μs、パルス電圧は2500〜3000Vの範囲とし、一部の例を除き密着性の良好な(膜の剥がれがない)導電膜が得られる条件とした。なお、光焼成によって紙基材上に密着性の良好な導電膜を形成することができなかった例(比較例2、3、4)は、後工程へ進めることができず、この段階で実験を中止した。
[Light baking]
Using a pulse irradiation device (Xenon, Sinteron 2000), the pre-baked coating film is irradiated with light having a spectrum covering a wavelength range including 200 to 800 nm by a xenon flash lamp, and is applied onto a paper substrate. A fired film was formed. The pulse period was 2000 μs and the pulse voltage was in the range of 2500 to 3000 V. Except for some examples, the conditions were such that a conductive film with good adhesion (no film peeling) was obtained. In addition, the examples (Comparative Examples 2, 3, and 4) in which a conductive film having good adhesion could not be formed on the paper base material by light baking could not proceed to the subsequent process, and an experiment was conducted at this stage. Canceled.

〔ロールプレス〕
光焼成後の塗膜(焼結導電膜)を紙基材とともにロールプレス機を用いて加圧した。ワークロールは直径400mmのスチールロールである。ロール内部のヒーターによりロール表面温度をコントロールできるようになっている。ロール軸方向単位長さあたりの荷重(線圧)および加圧時の温度は表1に記載の条件とした。ワークロール周速は1m/minとした。このようにして平均膜厚5〜20μmの導電膜を得た。
[Roll press]
The coated film (sintered conductive film) after light firing was pressed together with a paper substrate using a roll press. The work roll is a steel roll having a diameter of 400 mm. The roll surface temperature can be controlled by a heater inside the roll. The load per unit length in the roll axis direction (linear pressure) and the temperature at the time of pressurization were as shown in Table 1. The work roll peripheral speed was 1 m / min. Thus, a conductive film having an average film thickness of 5 to 20 μm was obtained.

図1に、実施例1で得られたロールプレス後の塗膜の断面SEM写真を例示する。図2に、図1の紙基材近傍付近(深部)についての拡大SEM写真を示す。写真の長辺方向がロールプレス時の材料進行方向に相当する(以下の各断面SEM写真において同じ)。図3に、比較例1(酸化銅粉を含有しない塗料を用いたもの)で得られたロールプレス後の塗膜の断面SEM写真を例示する。図4に、図3の紙基材近傍付近(深部)についての拡大SEM写真を示す。実施例1、比較例1では、いずれも緻密な構造の導電膜が得られている。ただし、比較例1(図4)では微細銅粉A粒子の焼結の程度が緩く、周囲に多量の樹脂(グレーに見える部分)が残存しているが、実施例1(図2)では比較例1に比べ樹脂の残存が少ないことがわかる。実施例1の場合、光焼成時に酸化銅粉から放出した酸素を利用して樹脂の燃焼が促進し、光焼成によって塗膜中の樹脂含有量が減少したものと考えられる。   In FIG. 1, the cross-sectional SEM photograph of the coating film after the roll press obtained in Example 1 is illustrated. FIG. 2 shows an enlarged SEM photograph of the vicinity (deep part) of the vicinity of the paper substrate of FIG. The long side direction of the photograph corresponds to the material traveling direction at the time of roll pressing (the same applies to the following cross-sectional SEM photographs). In FIG. 3, the cross-sectional SEM photograph of the coating film after the roll press obtained by the comparative example 1 (The thing using the coating material which does not contain copper oxide powder) is illustrated. FIG. 4 shows an enlarged SEM photograph of the vicinity (deep part) of the vicinity of the paper substrate of FIG. In Example 1 and Comparative Example 1, a conductive film having a dense structure is obtained. However, in Comparative Example 1 (FIG. 4), the degree of sintering of the fine copper powder A particles is moderate, and a large amount of resin (portion that looks gray) remains around, but in Example 1 (FIG. 2), comparison is made. It can be seen that the resin remains less than in Example 1. In the case of Example 1, it is considered that the combustion of the resin is promoted using oxygen released from the copper oxide powder at the time of light baking, and the resin content in the coating film is reduced by the light baking.

図5、図6に、それぞれ比較例5、6で得られたロールプレス後の導電膜の断面SEM写真を例示する。比較例5(図5)では、微細銅粉Aを配合していないため、塗膜の断面が十分に緻密化しなかった。比較例6(図6)では、ロールプレスを加熱せずに常温で行ったので、塗膜中に樹脂の残存が多く確認され、緻密な膜が得られなかった。   5 and 6 illustrate cross-sectional SEM photographs of the conductive films after roll pressing obtained in Comparative Examples 5 and 6, respectively. In Comparative Example 5 (FIG. 5), since the fine copper powder A was not blended, the cross section of the coating film was not sufficiently densified. In Comparative Example 6 (FIG. 6), since the roll press was performed at room temperature without heating, a large amount of resin remained in the coating film, and a dense film was not obtained.

〔導電性による耐候性の評価〕
紙基材上に形成したロールプレス後の塗膜(ロールプレスを施していない例では光焼成後の塗膜)について、ライン長146mmにおける電気抵抗をテスター(CUSTOM社製、CDM−03D)により測定した。また、その測定値に基づいて線幅および平均膜厚から体積抵抗率を算出した。
次いで、当該塗膜を紙基材ごと恒温恒湿装置内で85℃、85%RHの条件で24h保持する促進耐候性試験に供し、その後、上記と同様に電気抵抗を測定し、体積抵抗率を算出した。
[Evaluation of weather resistance by conductivity]
The electrical resistance at a line length of 146 mm was measured with a tester (CDM-03D, manufactured by CUSTOM) for the coating film after roll pressing formed on the paper substrate (coating film after photobaking in the case where roll pressing was not performed). did. Further, the volume resistivity was calculated from the line width and the average film thickness based on the measured values.
Subsequently, the coating film was subjected to an accelerated weathering test in which the paper substrate and the paper substrate were held for 24 hours under the conditions of 85 ° C. and 85% RH in a constant temperature and humidity device. Was calculated.

〔RFIDタグの作製〕
紙基材上に形成したロールプレス後の塗膜(ロールプレスを施していない例では光焼成後の塗膜。いずれも上記耐候性評価に使用したものとは別に印刷した塗膜。)を、アンテナとして試験に供した。アンテナ上に、ICチップを実装し、防錆剤を使用せずに、ラミネート用接着剤により厚さ16μmのPETフィルムでラミネートし、紙基材を有するRFIDタグを得た。
[Production of RFID tags]
A roll-pressed coating film formed on a paper substrate (in the case where the roll press is not applied, a coating film after photo-baking. Both are coated separately from those used for the weather resistance evaluation), It used for the test as an antenna. An IC chip was mounted on the antenna and laminated with a 16 μm thick PET film with a laminating adhesive without using a rust preventive agent to obtain an RFID tag having a paper substrate.

〔通信距離による耐候性の評価〕
上記のようにして作製した各RFIDタグについて、通信距離測定器(Voyantic社製、tagformance)を用いて、電波暗箱(マイクロニクス社製、MY1530)中での800MHz〜1100MHzの周波数領域(ISO/IEC 18000−6C規格に準拠)における通信距離(Theoretical read range forward)を測定した。この測定に先立って、この条件における環境設定(tagformance付属のリファレンスタグによる設定)を行った。
次に、上記各RFIDタグを恒温恒湿装置内で85℃、85%RHの条件で168h保持する促進耐候性試験に供し、その後、上記と同様に通信距離を測定した。
[Evaluation of weather resistance by communication distance]
About each RFID tag produced as mentioned above, the frequency range (ISO / IEC) of 800 MHz to 1100 MHz in an anechoic box (Micronics, MY1530) using a communication distance measuring device (Voyantic, tagformance). The communication distance (theoretical read range forward) in 18000-6C standard) was measured. Prior to this measurement, the environment was set under these conditions (setting using a reference tag attached to tagformance).
Next, the RFID tags were subjected to an accelerated weathering test in which the RFID tags were held in a constant temperature and humidity device at 168 h under the conditions of 85 ° C. and 85% RH, and then the communication distance was measured in the same manner as described above.

促進耐候性試験前の通信距離を「初期通信距離」、促進耐候性試験後の通信距離を「耐候性試験後通信距離」と呼ぶ。ここでは、800〜1100MHz帯での最大通信距離の測定値を各RFIDタグの「初期通信距離」および「耐候性試験後通信距離」として採用し、これらを下記(1)式に代入して促進耐候性試験前後での通信距離維持率を求めた。
通信距離維持率(%)=耐候性試験後通信距離(m)/初期通信距離(m)×100 …(1)
この通信距離維持率が80%以上であれば、紙基材を用いたRFIDタグとして実用的な耐候性を有すると評価できる。
以上の結果を表2に示す。
The communication distance before the accelerated weather resistance test is called “initial communication distance”, and the communication distance after the accelerated weather resistance test is called “communication distance after weather resistance test”. Here, the measured value of the maximum communication distance in the 800 to 1100 MHz band is adopted as the “initial communication distance” and “communication distance after weather resistance test” of each RFID tag, and these are substituted into the following equation (1) for promotion. The communication distance maintenance rate before and after the weather resistance test was obtained.
Communication distance maintenance rate (%) = communication distance after weathering test (m) / initial communication distance (m) × 100 (1)
If this communication distance maintenance rate is 80% or more, it can be evaluated that it has practical weather resistance as an RFID tag using a paper substrate.
The results are shown in Table 2.

各実施例のものは、微細銅粉A、粗大銅粉B、酸化銅粉C、樹脂Dを所定の割合で配合した塗料を使用し、光焼成後に所定温度で加熱プレスを施したことにより、紙基材上に導電性および耐候性に優れる導電膜を形成することができた。特に、本質的に吸湿性を有する紙基材を用いたRFIDタグにおいて、防錆剤の塗布を省略したにもかかわらず、極めて高い耐候性が得られることが確認された。   The thing of each Example uses the coating which mix | blended the fine copper powder A, the coarse copper powder B, the copper oxide powder C, and the resin D in the predetermined ratio, and by performing the heat press at the predetermined temperature after the light firing, A conductive film having excellent conductivity and weather resistance could be formed on the paper substrate. In particular, it has been confirmed that an extremely high weather resistance can be obtained in an RFID tag using a paper substrate having essentially hygroscopic properties, even though the application of a rust inhibitor is omitted.

これに対し、比較例1は酸化銅粉Cを含有しない塗料を用いたので光焼成での樹脂の燃焼が実施例のものより少なく、最終的に樹脂含有量の多い導電膜となった。その結果、導電性および耐候性に劣った。比較例2、3は酸化銅粉Cの配合量が過剰である塗料を用いたもの、比較例4は粗大銅粉Bを含有しない塗料を用いたものである。これら比較例2、3、4はいずれも紙基材の損傷が生じない条件での光焼成では銅の焼結構造体を構築することができず、導電膜が得られなかった。比較例5は微細銅粉Aを含有しない塗料を用いたものである。この場合、粗大銅粉B同士の接触により塗膜の導通は得られたが、導電性および耐候性は悪かった。比較例6は常温でロールプレスを行ったので樹脂含有量の多い導電膜となり、導電性および耐候性に劣った。   On the other hand, since the coating material which does not contain the copper oxide powder C was used for the comparative example 1, the combustion of the resin by light baking was less than the thing of an Example, and finally became the electrically conductive film with much resin content. As a result, the conductivity and weather resistance were inferior. Comparative Examples 2 and 3 use a paint in which the amount of copper oxide powder C is excessive, and Comparative Example 4 uses a paint that does not contain coarse copper powder B. In all of Comparative Examples 2, 3, and 4, the sintered structure of copper could not be constructed by light firing under the condition that the paper base material was not damaged, and no conductive film was obtained. Comparative Example 5 uses a paint that does not contain fine copper powder A. In this case, conduction of the coating film was obtained by contact between the coarse copper powders B, but conductivity and weather resistance were poor. Since the comparative example 6 performed the roll press at normal temperature, it became an electrically conductive film with much resin content, and was inferior to electroconductivity and a weather resistance.

Claims (7)

一次粒子の平均粒子径が10〜100nmの微細銅粉Aと、レーザー回折・散乱法による体積基準の累積50%粒子径D50が0.3〜20.0μmの粗大銅粉Bと、同D50が0.1〜10.0μmの酸化銅(CuO)粉Cと、樹脂Dを含有する塗料であって、微細銅粉Aと粗大銅粉Bの合計量100質量部に対し、微細銅粉A:25〜80質量部、酸化銅粉C:0.5〜25質量部、樹脂D:3.0〜8.0質量部の配合組成を有する導電膜形成用塗料。 Fine copper powder A having an average primary particle diameter of 10 to 100 nm, coarse copper powder B having a volume-based cumulative 50% particle diameter D 50 by laser diffraction / scattering method of 0.3 to 20.0 μm, and D 50 is a paint containing 0.1 to 10.0 μm of copper oxide (CuO) powder C and resin D, and the fine copper powder is 100 parts by mass of the fine copper powder A and the coarse copper powder B. A: Paint for conductive film formation which has a compounding composition of 25-80 mass parts, copper oxide powder C: 0.5-25 mass parts, and resin D: 3.0-8.0 mass parts. 前記微細銅粉Aは銅粒子表面にアゾール化合物の被覆層を有するものである請求項1に記載の塗料。   The paint according to claim 1, wherein the fine copper powder A has a coating layer of an azole compound on the surface of the copper particles. 前記アゾール化合物がベンゾトリアゾール(BTA)である請求項2に記載の塗料。   The paint according to claim 2, wherein the azole compound is benzotriazole (BTA). 前記樹脂Dとしてポリビニルピロリドン(PVP)を含有する請求項1〜3のいずれか1項に記載の塗料。   The paint according to any one of claims 1 to 3, wherein the resin D contains polyvinylpyrrolidone (PVP). グリコール系溶剤を含有する請求項1〜5のいずれか1項に記載の塗料。   The coating material of any one of Claims 1-5 containing a glycol-type solvent. 紙基材上に、請求項1〜5のいずれか1項に記載の塗料により塗膜を形成する工程(塗膜形成工程)、
前記塗膜に、240〜600nmの範囲内に波長成分を有する光を照射することにより、焼結導電膜を得る工程(光焼成工程)、
前記焼結導電膜を90〜190℃に加熱した状態で紙基材とともに加圧することにより、焼結導電膜中の空隙体積を減少させる工程(加熱プレス工程)、
を有する導電膜の製造方法。
A process of forming a coating film on the paper substrate with the paint according to any one of claims 1 to 5 (coating film forming process),
A step of obtaining a sintered conductive film by irradiating the coating film with light having a wavelength component within a range of 240 to 600 nm (photo-baking step);
A step of reducing the void volume in the sintered conductive film (heating press step) by pressurizing the sintered conductive film together with the paper substrate while being heated to 90 to 190 ° C.,
The manufacturing method of the electrically conductive film which has this.
加熱プレス工程において、前記焼結導電膜を90〜190℃に加熱した状態で紙基材とともにロールプレスによりロール軸方向単位長さあたり90〜2000N/mmの荷重を付与して加圧する請求項6に記載の導電膜の製造方法。   7. In the hot pressing step, the sintered conductive film is heated to 90 to 190 ° C. and pressed together with a paper base by applying a load of 90 to 2000 N / mm per unit length in the roll axial direction with a roll press. The manufacturing method of the electrically conductive film of description.
JP2015193238A 2015-09-30 2015-09-30 Coating for forming conductive film and manufacturing method of conductive film Pending JP2017066269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015193238A JP2017066269A (en) 2015-09-30 2015-09-30 Coating for forming conductive film and manufacturing method of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015193238A JP2017066269A (en) 2015-09-30 2015-09-30 Coating for forming conductive film and manufacturing method of conductive film

Publications (1)

Publication Number Publication Date
JP2017066269A true JP2017066269A (en) 2017-04-06

Family

ID=58491538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015193238A Pending JP2017066269A (en) 2015-09-30 2015-09-30 Coating for forming conductive film and manufacturing method of conductive film

Country Status (1)

Country Link
JP (1) JP2017066269A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096799A (en) * 2017-11-27 2019-06-20 旭化成株式会社 Manufacturing method of electromagnetic wave shield sheet and electromagnetic wave shield sheet
WO2019124420A1 (en) 2017-12-22 2019-06-27 三井金属鉱業株式会社 Conductive film manufacturing method
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition
WO2020153101A1 (en) 2019-01-23 2020-07-30 大陽日酸株式会社 Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
US12012523B2 (en) 2018-03-28 2024-06-18 Mitsui Mining & Smelting Co., Ltd. Conductive film formation composition and method for manufacturing conductive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096799A (en) * 2017-11-27 2019-06-20 旭化成株式会社 Manufacturing method of electromagnetic wave shield sheet and electromagnetic wave shield sheet
WO2019124420A1 (en) 2017-12-22 2019-06-27 三井金属鉱業株式会社 Conductive film manufacturing method
US11195635B2 (en) 2017-12-22 2021-12-07 Mitsui Mining & Smelting Co., Ltd. Conductive film manufacturing method
US12012523B2 (en) 2018-03-28 2024-06-18 Mitsui Mining & Smelting Co., Ltd. Conductive film formation composition and method for manufacturing conductive film
JP2020111682A (en) * 2019-01-11 2020-07-27 Jx金属株式会社 Conductive composition
WO2020153101A1 (en) 2019-01-23 2020-07-30 大陽日酸株式会社 Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
KR20210113194A (en) 2019-01-23 2021-09-15 다이요 닛산 가부시키가이샤 Method for manufacturing a conductive paste, a substrate with an electrically conductive film, and a substrate with an electrically conductive film

Similar Documents

Publication Publication Date Title
JP2017066269A (en) Coating for forming conductive film and manufacturing method of conductive film
KR101668586B1 (en) Electroconductive paste
JP5843821B2 (en) Metal powder paste and method for producing the same
TWI522402B (en) A method for producing a slurry composition
TWI741023B (en) Silver coated alloy powder, conductive paste, electronic component and electrical device
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
WO2020032161A1 (en) Bonding composition, bonding structure of electric conductor, and method for manufacturing same
JP5038935B2 (en) Conductive paste for multilayer ceramic capacitor internal electrode
JP2017155166A (en) Joining composition
TW201731612A (en) Copper particle, preparation method thereof, paste for forming electric-conductive film, and objects
TWI694469B (en) Composition for forming conductive pattern and method of forming conductive pattern
JP7171703B2 (en) Conductive film-forming composition and method for producing conductive film
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP2008285589A (en) Resin composition, conductive paste, and ceramic paste
JP2015065123A (en) Conductive paste, conductive thin film, and circuit
KR20170110613A (en) Conductive fine particles
JP2017069012A (en) Conductive paste and method of manufacturing conductive film using the same
WO2016147509A1 (en) Electroconductive film and method for manufacturing same
JP6263146B2 (en) Substrate with conductive film, method for producing the same, and conductive paste for polyimide substrate
JP6232904B2 (en) Conductive paste, conductive thin film and electric circuit
WO2020153101A1 (en) Electroconductive paste, substrate equipped with electroconductive film, and method for manufacturing substrate equipped with electroconductive film
JP2008143922A (en) Modified polyvinyl acetal resin, coating paste, electroconductive paste and ceramic paste
JP2010274424A (en) Method for manufacturing ceramic green sheet and ceramic multilayered substrate
JP2015069752A (en) Conductive paste, metallic thin film, and method for producing the same
JP6232889B2 (en) Conductive paste, metal thin film, and manufacturing method thereof