JP2017059578A - Solar battery and solar battery manufacturing method - Google Patents

Solar battery and solar battery manufacturing method Download PDF

Info

Publication number
JP2017059578A
JP2017059578A JP2015180720A JP2015180720A JP2017059578A JP 2017059578 A JP2017059578 A JP 2017059578A JP 2015180720 A JP2015180720 A JP 2015180720A JP 2015180720 A JP2015180720 A JP 2015180720A JP 2017059578 A JP2017059578 A JP 2017059578A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
glass
conductive
bus electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015180720A
Other languages
Japanese (ja)
Inventor
浩一 上迫
Koichi Kamisako
浩一 上迫
傑也 新井
Takuya Arai
傑也 新井
ミエ子 菅原
Mieko Sugawara
ミエ子 菅原
小林 賢一
Kenichi Kobayashi
賢一 小林
秀利 小宮
Hidetoshi Komiya
秀利 小宮
正五 松井
Shogo Matsui
正五 松井
周平 横山
Shuhei Yokoyama
周平 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Art Beam Co Ltd
Tokyo University of Agriculture and Technology NUC
Original Assignee
Art Beam Co Ltd
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Art Beam Co Ltd, Tokyo University of Agriculture and Technology NUC filed Critical Art Beam Co Ltd
Priority to JP2015180720A priority Critical patent/JP2017059578A/en
Priority to TW105118737A priority patent/TWI603486B/en
Priority to KR1020160078501A priority patent/KR101791480B1/en
Priority to CN201610536758.6A priority patent/CN106531814B/en
Publication of JP2017059578A publication Critical patent/JP2017059578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To decrease an amount of silver to be used or eliminate its use, and to reduce an amount of lead (lead glass) to be used or eliminate its use, in a solar battery and a solar battery manufacturing method.CONSTITUTION: A solar battery comprises: an area formed on a substrate, which produces a high electron concentration when irradiated with light or the like; an insulating film formed over the area, which allows light or the like to travel therethrough; and a bus electrode for extracting electrons from an electron extraction port formed in the insulating film. In the solar battery, conductive paste is mixed with conductive glass as glass frit of 100% by weight ratio to form the bus electrode, and the resultant mixture is baked to form the bus electrode. The solar battery is characterized in that conductive glass is used as the conductive paste.SELECTED DRAWING: Figure 1

Description

本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜に形成した電子取出口から電子を取り出すバス電極を有する太陽電池および太陽電池の製造方法に関するものである。   The present invention creates a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and then emits electrons from an electron outlet formed in the insulating film. The present invention relates to a solar cell having a bus electrode for taking out and a method for manufacturing the solar cell.

従来、再生可能エネルギー利用の一つである太陽電池は、20世紀の主役である半導体技術をベースにその開発が行われている。人類の生存を左右する地球レベルの重要な開発である。その開発の課題は太陽光を電気エネルギーに変換する効率ばかりではなく製造コストの低減および無公害という課題にも向き合いながら進められている。これらを実現する取り組みは、特に、電極に使用されている銀(Ag)や鉛(Pb)の使用量を低減ないし無くすことが重要とされている。   Conventionally, solar cells, which are one of the uses of renewable energy, have been developed based on semiconductor technology, which is the leading role in the 20th century. It is an important development at the global level that affects the survival of humankind. The challenge of the development is progressing while facing not only the efficiency of converting sunlight into electric energy but also the problem of reduction in manufacturing costs and pollution-free. In efforts to achieve these, it is particularly important to reduce or eliminate the amount of silver (Ag) and lead (Pb) used in the electrodes.

一般に、太陽電池の構造は、図10の(a)の平面図および(b)の断面図に示すように、太陽光エネルギーを電気エネルギーに変換するN型/P型のシリコン基板43、シリコン基板43の表面の反射を防止および絶縁体薄膜である窒化シリコン膜45、シリコン基板43中に発生した電子を取り出すフィンガー電極42、フィンガー電極42で取り出した電子を集めるバスバー電極41、バスバー電極41に集めた電子を外部に取り出す引出リード電極47の各要素より構成されている。   In general, as shown in a plan view of FIG. 10A and a cross-sectional view of FIG. 10B, a solar cell has an N-type / P-type silicon substrate 43 that converts solar energy into electric energy, a silicon substrate, and the like. 43 prevents the reflection of the surface of the silicon nitride film 45, which is an insulating thin film, the finger electrode 42 that extracts the electrons generated in the silicon substrate 43, the bus bar electrode 41 that collects the electrons extracted by the finger electrode 42, and the bus bar electrode 41 It consists of each element of the lead electrode 47 for taking out the electrons to the outside.

このうち、バスバー電極(バス電極)41およびフィンガー電極42に銀および鉛(鉛ガラス)が使用されており、これの銀の使用量を無くし、あるいは低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くし、低コストかつ無公害にすることが望まれていた。   Of these, silver and lead (lead glass) are used for the bus bar electrode (bus electrode) 41 and the finger electrode 42, and the amount of silver used is eliminated or reduced, and the use of lead (lead glass). It has been desired to reduce or eliminate the amount, to make it low cost and no pollution.

上述した従来の図10の太陽電池の構成要素のうち、フィンガー電極42などに銀および鉛(バインダーとしての鉛ガラス)が使用されており、これの銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くし、太陽電池の製造コストの低減かつ無公害にするという課題があった。   Among the components of the conventional solar cell of FIG. 10 described above, silver and lead (lead glass as a binder) are used for the finger electrode 42 and the like, and the amount of silver used is eliminated or reduced, and There was a problem of reducing or eliminating the amount of lead (lead glass) used, reducing the manufacturing cost of the solar cell, and making it pollution-free.

本発明者らは、ペーストに後述するNTAガラス100%を用いてバス電極等を実験的に作成したところ上述した従来の銀ペーストを用いてバス電極等を作成したときと変わらないあるいは優れた特性を有する太陽電池の作成が可能(後述する)であることを発見した。   The inventors of the present invention experimentally created bus electrodes and the like using NTA glass 100%, which will be described later, in the paste, and the same characteristics as when the bus electrodes and the like were created using the above-described conventional silver paste or excellent characteristics. It has been found that it is possible to create a solar cell having the following (described later).

本発明は、これら発見に基づき、銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くすために、太陽電池の構成要素であるバス電極(バスバー電極)などを形成するのに、ペーストをバナジン酸塩ガラス(以下、導電性のNTAガラスという、”NTA”は登録商標5009023号))で作成して焼成し、銀および鉛(鉛ガラス)の使用量を無くし、ないし低減することを可能とした。   Based on these findings, the present invention eliminates or reduces the amount of silver used, and reduces or eliminates the amount of lead (lead glass) used, such as a bus electrode (bus bar electrode) that is a component of a solar cell. The paste is made of vanadate glass (hereinafter referred to as conductive NTA glass, “NTA” is registered trademark No. 5009023) and fired to reduce the amount of silver and lead (lead glass) used. It can be eliminated or reduced.

そのため、本発明は、基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に領域の上に光などを透過する絶縁膜を形成し、絶縁膜に形成した電子取出口から電子を取り出すバス電極を有する太陽電池において、バス電極を形成するために、導電性ペーストにガラスフリットとして導電性ガラスを重量比100%で焼成してバス電極を形成し、導電性ペーストとして導電性ガラスを使用するようにしている。   Therefore, the present invention creates a region that generates a high electron concentration when light or the like is irradiated on a substrate, and forms an insulating film that transmits light or the like on the region, and an electron outlet formed in the insulating film. In a solar cell having a bus electrode for taking out electrons from the conductive electrode, the bus electrode is formed by baking conductive glass as a glass frit at a weight ratio of 100% to form a bus electrode. Glass is used.

この際、導電性ガラスを重量比100%に代えて、導電性ガラスを重量比100%から71%とし残りを銀とするようにしている。   At this time, the conductive glass is changed to 100% by weight, and the conductive glass is made from 100% to 71% by weight, and the rest is made of silver.

また、導電性ガラスは、少なくともバナジウムあるいはバナジウムとバリウムを含むバナシン酸ガラスとするようにしている。   The conductive glass is vanadate glass containing at least vanadium or vanadium and barium.

また、導電性ガラスを混入して焼成する工程の時間は、長くても1分以内、1秒以上であるようにしている。   Moreover, the time of the process which mixes and heats conductive glass is made into 1 second or more within 1 minute at the longest.

また、導電性ガラスは、Pbフリーであるようにしている。   The conductive glass is Pb free.

また、フィンガー電極を焼成したときに、フィンガー電極が高電子濃度領域に一端を有し、かつ他端はバス電極の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成するようにしている。   In addition, when the finger electrode is baked, the finger electrode has one end in the high electron concentration region, and the other end forms a portion that is the same as the height of the upper surface of the bus electrode or a portion protruding through the upper surface of the bus electrode. Yes.

また、焼成して形成したバス電極の上にリード電極を設けるようにしている。   A lead electrode is provided on the bus electrode formed by firing.

また、焼成して形成したバス電極の上にリード電極を超音波半田付けで形成し、リード電極の接するバス電極、フィンガー電極、およびその他の部分に接合し、リード電極の接着強度を向上させるようにしている。   In addition, the lead electrode is formed by ultrasonic soldering on the fired bus electrode and bonded to the bus electrode, finger electrode, and other parts that are in contact with the lead electrode, so as to improve the adhesive strength of the lead electrode I have to.

本発明は、上述したように、導電性のNTAガラス100%、更に71%程度迄(更に含有量を少なくしても可)を従来の銀ペーストの代わりに用いて焼成することにより、従来の銀ペースト中の銀の使用量を無くし、あるいは低減し、かつ鉛(鉛ガラス)の利用量を低減ないし無くすことができた。これらにより、下記の特徴がある。   In the present invention, as described above, conductive NTA glass 100%, further up to about 71% (further content can be reduced) is used instead of the conventional silver paste, and is fired. The amount of silver used in the silver paste can be eliminated or reduced, and the amount of lead (lead glass) used can be reduced or eliminated. These have the following characteristics.

第1に、太陽電池のバスバー電極(バス電極)を形成するのに導電性のバナジン酸塩ガラスであるNTAガラス(登録商標第5009023号、特許第5333976号)100%、更に71%程度迄を銀ペーストの代わりに用い、Agの使用量を無くし、ないし低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くすことができた。   First, NTA glass (registered trademark No. 5009023, Patent No. 5333976), which is a conductive vanadate glass, is used to form a bus bar electrode (bus electrode) of a solar cell. It was used in place of the silver paste to eliminate or reduce the amount of Ag used, and further to reduce or eliminate the amount of lead (lead glass) used.

第2に、バスバー電極(バス電極)をNTAガラス100%ないし71%程度(更に含有量を少なくしても可)を用いることにより、太陽光エネルギーを電子エネルギーに変換する効率がほぼ同じあるいは若干高い、バスバー電極としての効果を発揮する電極形成が現初期段階の実験結果として得られた(図9参照)。これはNTAガラスが(1)導電性を有すること、(2)NTAガラスを用いたことでフィンガー電極が当該バスバー電極(バス電極)の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分が形成され、これら部分がリード電極の超音波半田付けで接合され、結果として高電子濃度領域とリード電極とが直接にフィンガー電極で接続されること、その他の要因(例えば下記の「第3に」を参照)に起因すると考察される。   Secondly, the efficiency of converting solar energy into electronic energy is almost the same or slightly higher by using about 100% to 71% of NTA glass as a bus bar electrode (bus electrode). A high electrode formation exhibiting the effect as a bus bar electrode was obtained as an experimental result in the initial stage (see FIG. 9). This is because NTA glass is (1) conductive, and (2) the NTA glass is used so that the finger electrode has the same height as the upper surface of the bus bar electrode (bus electrode) or the portion protruding through the upper surface. These portions are joined by ultrasonic soldering of the lead electrode, and as a result, the high electron concentration region and the lead electrode are directly connected by finger electrodes, and other factors (for example, “third” described below) This is considered to be caused by

第3に、従来と異なり、フィンガー電極の形成とバスバー電極の形成とを異なるガラスフリットを含有したペーストを用いることにある。従来、フィンガー電極の形成においてはファイアリングと呼ばれる現象を生ずる必要があった。これは、銀の焼結助剤として用いているガラスフリットの中の成分分子、例えば鉛ガラス中の鉛分子の働きによってシリコン基板の表層に形成された窒化シリコン膜の絶縁層を突き破ってフィンガー電極を形成するようにしてシリコン基板に生成された電子を効率よく集めていた。しかし、バスバー電極の形成については、ファイヤリング現象は必要でない。従来はバスバー電極も鉛成分を含んだ鉛ガラスを焼結助剤にして焼結していたので構造は異なるもののバスバー電極とシリコン基板との電気的な導通路が形成されて変換効率を低減する事となっていた。バスバー電極形成に用いる焼結助剤をファイヤリング現象の生じないNTAガラスを用いることによって変換効率の低減を無くすことができた。   Third, unlike the prior art, the finger electrode and the bus bar electrode are formed using a paste containing glass frit that is different. Conventionally, it has been necessary to generate a phenomenon called firing in the formation of finger electrodes. This is a finger electrode that breaks through the insulating layer of the silicon nitride film formed on the surface layer of the silicon substrate by the action of component molecules in the glass frit used as a sintering aid for silver, for example, lead molecules in lead glass. As a result, the electrons generated on the silicon substrate were efficiently collected. However, the firing phenomenon is not necessary for the formation of the bus bar electrode. Conventionally, the bus bar electrode was also sintered using lead glass containing lead component as a sintering aid, but although the structure is different, an electrical conduction path between the bus bar electrode and the silicon substrate is formed to reduce the conversion efficiency. It was a thing. By using NTA glass that does not cause the firing phenomenon as the sintering aid used for forming the bus bar electrode, reduction in conversion efficiency could be eliminated.

第4に、銀粉末材料の使用による太陽電池のコスト高(原材料費高)の問題がある。また、銀材料の過剰な需要によって材料調達の問題も浮上している。導電ガラスであるNTAガラスの含有比率100%ないし71%に大幅に増加してその分の銀量を少なくしても変換効率を低減することなく太陽電池を作製出来ることができたことは産業界に大きなインパクトを与えると思慮する。   Fourth, there is a problem of high cost (raw material cost) of solar cells due to the use of silver powder material. The problem of material procurement has also emerged due to excessive demand for silver materials. The industry has been able to produce solar cells without reducing the conversion efficiency even if the content ratio of NTA glass, which is a conductive glass, is greatly increased to 100% to 71% and the amount of silver is reduced accordingly. I think it will have a big impact on

第5に、従来のバスバー電極の形成に使用していた鉛ガラスの使用を無くすこと、即ち鉛フリーにすることができた。これによって鉛公害の環境問題を皆無にすることが可能となる。   Fifth, it was possible to eliminate the use of lead glass that was used to form the conventional bus bar electrode, that is, lead-free. This makes it possible to eliminate the environmental problems of lead pollution.

図1は、本発明の1実施例構造図(工程の完成図:断面図)を示す。   FIG. 1 shows a structural diagram of one embodiment of the present invention (process completion drawing: sectional view).

図1において、シリコン基板11は、公知の半導体のシリコン基板である。   In FIG. 1, a silicon substrate 11 is a known semiconductor silicon substrate.

高電子濃度領域(拡散ドーピング層)12は、シリコン基板11の上に所望のp型/n型の層を拡散ドーピングなどで形成した公知の領域(層)であって、図では上方向から太陽光が入射するとシリコン基板11で電子を発生(発電)し、その電子を蓄積する領域である。ここでは、蓄積した電子は電子取出口(フィンガー電極(銀))14によって上方向に取り出されるものである(発明の効果参照)。   The high electron concentration region (diffusion doping layer) 12 is a known region (layer) in which a desired p-type / n-type layer is formed on the silicon substrate 11 by diffusion doping or the like. This is a region where electrons are generated (power generation) in the silicon substrate 11 when light is incident and the electrons are accumulated. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver)) 14 (see the effect of the invention).

絶縁膜(窒化シリコン膜)13は、太陽光を通過(透過)させ、かつバスバー電極15と高電子濃度領域14とを電気的に絶縁する公知の膜である。   The insulating film (silicon nitride film) 13 is a known film that allows sunlight to pass (transmits) and electrically insulates the bus bar electrode 15 from the high electron concentration region 14.

電子取出口(フィンガー電極(銀))14は、高電子濃度領域12中に蓄積した電子を絶縁膜13に形成した穴を介して取り出す口(フィンガー電極)である。フィンガー電極14は、本発明では、図示のように、バスバー電極15をNTAガラス100%(ないし71%程度)で焼成した場合には、フィンガー電極14がバスバー電極15の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成(焼成)し、高電子濃度領域12中の電子を当該フィンガー電極14を介してリード線17に直接に流入させる(電子を直接に取り出させる)ことが可能となる。つまり、高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加された経路2)との2つの経路で高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことができ、結果として、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくすることが可能となり、損失を低減して結果として太陽電池の効率を向上させることができる。   The electron take-out port (finger electrode (silver)) 14 is a port (finger electrode) that takes out electrons accumulated in the high electron concentration region 12 through a hole formed in the insulating film 13. In the present invention, as shown in the figure, when the bus bar electrode 15 is baked with NTA glass 100% (or about 71%), the finger electrode 14 is the same as the height of the upper surface of the bus bar electrode 15 or It is possible to form (fire) a portion that penetrates and protrudes to the upper surface, and allows electrons in the high electron concentration region 12 to directly flow into the lead wire 17 through the finger electrodes 14 (directly take out electrons). Become. That is, the high electron concentration region 12, the finger electrode 14, the bus bar electrode 15, and the route 1 of the lead wire 17 (conventional route 1), and the high electron concentration region 12, the finger electrode 14, and the route 2 of the lead wire 17 (in the present invention). Electrons (current) in the high electron concentration region 12 can be extracted to the outside through the lead wire 17 through two routes including the added route 2). As a result, the high electron concentration region 12 and the lead wire 17 It is possible to make the resistance value between the two very small, thereby reducing the loss and consequently improving the efficiency of the solar cell.

バスバー電極(電極1(NTAガラス100%))15は、複数の電子取出口(フィンガーバー電極)14を電気的に接続する電極であって、Agの使用量を無くす、ないし削減する対象の電極である(発明の効果参照)。   A bus bar electrode (electrode 1 (NTA glass 100%)) 15 is an electrode for electrically connecting a plurality of electron outlets (finger bar electrodes) 14, and an electrode to be used to eliminate or reduce the amount of Ag used (See the effect of the invention).

裏面電極(電極2(アルミ))16は、シリコン基板11の下面に形成した公知の電極である。   The back electrode (electrode 2 (aluminum)) 16 is a known electrode formed on the lower surface of the silicon substrate 11.

リード線(ハンダ形成)17は、複数のバスバー電極15を電気的に連結した電子(電流I)を外部に取り出したり、更に、本発明ではフィンガー電極14がバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分に、当該リード線を超音波半田付けして接合し電子(電流)を外部に取出したりするリード線である。   The lead wire (solder formation) 17 takes out electrons (current I) electrically connected to the plurality of bus bar electrodes 15 to the outside, and in the present invention, the finger electrode 14 has the same height as the upper surface of the bus bar electrode 15. It is a lead wire that takes out the electrons (current) to the outside by ultrasonic soldering the lead wire to the portion or the protruding portion.

以上の図1の構造のもとで、上から下方向に太陽光を照射すると、太陽光はリード線17および電子取出口14の無い部分と絶縁膜13を通過し、シリコン基板11に入射して電子を発生する。その後、高電子濃度領域12に蓄積した電子は、電子取出口(フィンガー電極)14、バスバー電極15、リード線17の経路1、および電子取出口(フィンガー電極)14、リード線17の経路2の両経路を介して外部に取り出される。この際、図2から図9で後述するように、バスバー電極15を、ペーストにガラスフリットとしてNTAガラス(導電性ガラス)100%ないし71%(更に少なくても可、図9参照)を混入して焼成して形成し、Agの使用量を無くし、ないし低減することが可能となる。以下順次詳細に説明する。   Under the structure shown in FIG. 1, when sunlight is irradiated from the top to the bottom, the sunlight passes through the portion without the lead wire 17 and the electron outlet 14 and the insulating film 13 and enters the silicon substrate 11. To generate electrons. Thereafter, the electrons accumulated in the high electron concentration region 12 pass through the electron take-out port (finger electrode) 14, the bus bar electrode 15, the route 1 of the lead wire 17, and the electron take-out port (finger electrode) 14 and the route 2 of the lead wire 17. It is taken out via both paths. At this time, as will be described later with reference to FIGS. 2 to 9, the bus bar electrode 15 is mixed with NTA glass (conductive glass) 100% to 71% (more or less, see FIG. 9) as a glass frit in the paste. It is possible to eliminate or reduce the amount of Ag used. Details will be sequentially described below.

図2は、本発明の動作説明フローチャートを示し、図3および図4は各工程の詳細構造を示す。   FIG. 2 is a flowchart for explaining the operation of the present invention, and FIGS.

図2において、S1は、シリコン基板を準備する。   In FIG. 2, a silicon substrate is prepared in S1.

S2は、クリーニングする。これらS1、S2は、図3の(a)に示すように、S1で準備したシリコン基板11の面(高電子濃度領域12を形成する面)を綺麗にクリーニングする。   In S2, cleaning is performed. These S1 and S2 cleanly clean the surface (surface on which the high electron concentration region 12 is formed) of the silicon substrate 11 prepared in S1, as shown in FIG.

S3は、拡散ドーピングする。これは、図3の(b)に示すように、図3の(a)でクリーニングしたシリコン基板11の上に公知の拡散ドーピングを行い、高電子濃度領域12を形成する。   S3 is diffusion doped. As shown in FIG. 3B, this involves performing known diffusion doping on the silicon substrate 11 cleaned in FIG. 3A to form a high electron concentration region 12.

S4は、反射防止膜(窒化シリコン膜)を形成する。これは、図3の(c)に示すように、図3の(b)の高電子濃度領域12を形成した上に、反射防止膜(太陽光を通過させ、かつ表面反射を可及的に低減した膜)として例えば窒化シリコン膜を公知の手法で形成する。   In S4, an antireflection film (silicon nitride film) is formed. As shown in FIG. 3 (c), the high electron concentration region 12 of FIG. 3 (b) is formed, and an antireflection film (sunlight is passed through and surface reflection is made as much as possible. For example, a silicon nitride film is formed by a known method as the reduced film.

S5は、フィンガー電極をスクリーン印刷する。これは、図3の(d)に示すように、図3の(c)の窒化シリコン膜13を形成した上に、形成するフィンガー電極14のパターンをスクリーン印刷する。印刷材料は、例えば銀にフリットとして鉛ガラスを混入したものを用いる。   S5 screen-prints the finger electrodes. As shown in FIG. 3 (d), the pattern of the finger electrode 14 to be formed is screen-printed on the silicon nitride film 13 shown in FIG. 3 (c). As the printing material, for example, silver mixed with lead glass as a frit is used.

S6は、フィンガー電極を焼成し、ファイヤースルーさせる。これは、図3の(d)でスクリーン印刷したフィンガー電極14のパターン(銀と鉛ガラスのフリットを混入したもの)を焼成し、図3の(e)に示すように、窒化シリコン膜13にファイヤースルーさせてその中に銀(導電性)を形成したフィンガー電極14を形成する。   In S6, the finger electrode is fired and fired through. This is because the finger electrode 14 pattern (mixed with silver and lead glass frit) screen-printed in FIG. 3D is fired, and as shown in FIG. The finger electrode 14 in which silver (conductivity) is formed is formed through fire-through.

S7は、バスバー電極(電極1)をスクリーン印刷する。これは、図4の(f)に示すように、図3の(e)のフィンガー電極14を形成した上に、形成するバスバー電極15のパターンをスクリーン印刷する。印刷材料は、例えばフリットとしてNTAガス(100%)のものを用いる。   S7 screen-prints the bus bar electrode (electrode 1). As shown in FIG. 4 (f), the pattern of the bus bar electrode 15 to be formed is screen-printed on the finger electrode 14 shown in FIG. 3 (e). For the printing material, for example, NTA gas (100%) is used as a frit.

S8は、バスバー電極を焼成する。これは、図3の(f)でスクリーン印刷したバスバー電極15のパターン(NTAガラス(100%)のフリット)を焼成(焼成時間は長くても1分以内、1〜3秒以上で焼成)し、図4の(g)に示すように、バスバー電極15が最上層に形成され、かつ本発明の特徴である、フィンガー電極14が当該最上層に形成されたバスバー電極15の上面と同じ高さの部分、あるいは突き抜けた部分が形成される。   In S8, the bus bar electrode is fired. This is because the bus bar electrode 15 pattern (NTA glass (100%) frit) screen-printed in (f) of FIG. 3 is fired (fired within 1 minute at most, 1-3 seconds or longer). As shown in FIG. 4G, the bus bar electrode 15 is formed in the uppermost layer, and the finger electrode 14 is the same height as the upper surface of the bus bar electrode 15 formed in the uppermost layer, which is a feature of the present invention. Or a portion that has been penetrated.

尚、S5及びS7の印刷を行い、両者を同時に焼成してもよい。   Note that S5 and S7 may be printed and both may be fired simultaneously.

S9は、裏面電極(電極2)を形成する。これは、図4の(h)に示すように、シリコン基板11の下側(裏面)に例えばアルミ電極を形成する。   S9 forms a back electrode (electrode 2). For example, as shown in FIG. 4H, an aluminum electrode is formed on the lower side (back surface) of the silicon substrate 11, for example.

S10は、リード線をハンダ形成する。これは、図4の(i)に示すように、図4の(g)のバスバー電極を電気的に接続するリード線をハンダで形成、例えば超音波半田付けで形成して電気的に接続すると、高電子濃度領域12、フィンガー電極14、バスバー電極16、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加した経路2)との両経路で、高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことが可能となり、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくしてロスを低減して太陽電池の効率を向上させることができる。すなわち、本発明で追加した経路2は、フィンガー電極14の一端が高電子濃度領域12の中にあり、他端がNTAガラス100%のバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分があり、この部分にリード線が直接接合(超音波半田付けで直接接合)されるので、高電子濃度領域12、フィンガー電極14、リード線17の経路2が形成される。なお、経路1は、従来の経路である。   S10 solders the lead wire. As shown in FIG. 4 (i), when the lead wires for electrically connecting the bus bar electrodes in FIG. 4 (g) are formed by soldering, for example, by ultrasonic soldering, they are electrically connected. High electron concentration region 12, finger electrode 14, bus bar electrode 16, path 1 of lead wire 17 (conventional path 1) and high electron concentration region 12, finger electrode 14, lead wire 17 path 2 (added in the present invention) In both the paths 2) and 2), the electrons (current) in the high electron concentration region 12 can be taken out via the lead wire 17, and the resistance between the high electron concentration region 12 and the lead wire 17 can be extracted. The value can be made very small to reduce loss and improve solar cell efficiency. That is, in the path 2 added in the present invention, one end of the finger electrode 14 is in the high electron concentration region 12, and the other end is a portion that is the same height as the top surface of the bus bar electrode 15 made of NTA glass 100% or a portion that penetrates. Since the lead wire is directly joined to this portion (direct joining by ultrasonic soldering), the path 2 of the high electron concentration region 12, the finger electrode 14, and the lead wire 17 is formed. The route 1 is a conventional route.

以上の工程により、シリコン基板に太陽電池を作成することが可能となる。   Through the above steps, a solar cell can be formed on the silicon substrate.

図5は、本発明の詳細説明図(バスバー電極の焼成)を示す。   FIG. 5 is a detailed explanatory view (firing of the bus bar electrode) of the present invention.

図5の(a)はバスバー電極を銀100%、NTA0%(重量比)で焼成した例を模式的に示し、図5の(b)はバスバー電極を銀50%、NTA50%(重量比)で焼成した例を模式的に示し、図5の(c)はバスバー電極をNTA100%(重量比)で焼成した例を模式的に示す。焼成時間は、長くても1分以内で、1〜3秒以上とした。   5A schematically shows an example in which the bus bar electrode is baked with 100% silver and 0% NTA (weight ratio), and FIG. 5B shows the bus bar electrode with 50% silver and NTA 50% weight ratio. FIG. 5C schematically shows an example in which the bus bar electrode is fired at 100% NTA (weight ratio). The firing time was set to 1 to 3 seconds or longer within 1 minute at the longest.

図5の(a)と図5の(b)と図5の(c)とで図示のようにほぼ同構造となるように形成した太陽電池の試作実験では下記のような実験結果が得られた。   In a prototype experiment of a solar cell formed to have substantially the same structure as shown in FIGS. 5A, 5B, and 5C, the following experimental results are obtained. It was.

太陽電池の変換効率
図5の(a)のAg 100%、NTA 0 % 平均約17.0%
図5の(b)のAg 50%、NTA 50% 平均約17.0%
図5の(c)のAg 0%、NTA 100% 平均約17.2%
試作実験結果は、バスバー電極のパターンを印刷する材料として、図5の(a)と、図5の(b)とでは太陽電池を作成したときの変換効率が平均約17.0%でほぼ同じ結果が得られ、更に、図5の(c)では変換効率が平均約17.2%が得られた。これら図5の(a)から(c)のいずれもほぼ同じ変換効率の範囲内か、あるいは図5の(c)のNTA 100%が若干高い変換効率であることが初期実験結果から判明する。尚、NTAガラスは、バナジウム、バリウム、鉄から構成され、特に鉄は内部的に強く結合して当該内部に留まっており、他の材料と混合してもその結合性は極めて小さい性質を有すること(特許第5333976号等参照)、更に既述した本発明の高電子濃度領域とリード線との間の経路(経路1と、経路2とが並列)の改善によると推測される。
Conversion efficiency of solar cells
Fig. 5 (a) Ag 100%, NTA 0% Average 17.0%
Fig. 5 (b) Ag 50%, NTA 50% Average about 17.0%
Fig. 5 (c) Ag 0%, NTA 100% Average 17.2%
As a result of the prototype experiment, the conversion efficiency when solar cells are formed is almost the same at an average of about 17.0% in FIG. 5 (a) and FIG. 5 (b) as materials for printing the bus bar electrode pattern. The result was obtained. Further, in FIG. 5C, the average conversion efficiency was about 17.2%. It can be seen from the initial experimental results that all of (a) to (c) in FIG. 5 are within the same conversion efficiency range, or that NTA 100% in FIG. 5 (c) has a slightly higher conversion efficiency. NTA glass is composed of vanadium, barium, and iron. In particular, iron is strongly bonded internally and stays in the interior, and its bonding property is extremely small even when mixed with other materials. (See Japanese Patent No. 5333976 and the like), and it is presumed to be due to the improvement of the path between the high electron concentration region of the present invention and the lead wire (path 1 and path 2 are in parallel).

図6および図7は、本発明の説明図(バスバー電極)を示す。   6 and 7 are explanatory diagrams (bus bar electrodes) of the present invention.

図6の(a)および図6の(b)はNTA 50%、Ag50%のものであって、図6の(a)は全体平面図を示し、図6の(b)は拡大図を示す。図7の(c)はNTA 100% Ag 0%のものであって、図7の(c)は拡大図を示す。   6 (a) and 6 (b) are NTA 50% and Ag 50%, FIG. 6 (a) shows an overall plan view, and FIG. 6 (b) shows an enlarged view. . FIG. 7 (c) shows NTA 100% Ag 0%, and FIG. 7 (c) shows an enlarged view.

図6の(a)および図6の(b)において、バスバー電極15は、図6の(a)の全体平面図に示すように、長いバー状の電極であって、これを光学顕微鏡で拡大すると図6の(b)に示すような構造が観察された。   6 (a) and 6 (b), the bus bar electrode 15 is a long bar-shaped electrode as shown in the overall plan view of FIG. 6 (a), and this is enlarged by an optical microscope. Then, a structure as shown in FIG. 6B was observed.

図6の(b)において、バスバー電極15は、従来のAgと鉛ガラスのフリットで焼成した場合にはAgが均一に分散していたが、本発明のAgとNTAガラスのフリットで焼成(長くても1分以内、1〜3秒以上の焼成)した場合には当該図6の(b)に示すように、バスバー電極15の中央部分にAgが集まって形成されることが判明した。そのため、発明の効果の欄で説明したように、AgにNTAガラスを混入して短時間焼成(長くても1分、1〜3秒以上の焼成)するとAgが中央部分に集まって導電性が向上し(従来はAgは均一に分散していた場合に比較して導電性が向上し)、かつNTAガラス自身も導電性を有することなどの総合的な作用によりAgの割合を減らしてNTAガラスを増やしても、太陽電池として製造した場合の変換効率は既述したように約16.9%と実験ではほぼ同じ結果が得られた。   In FIG. 6 (b), the bus bar electrode 15 was uniformly dispersed when fired with conventional Ag and lead glass frit, but it was fired with the Ag and NTA glass frit of the present invention (longer). In the case of firing within 1 minute for 1 to 3 seconds or more, it has been found that Ag is collected and formed in the central portion of the bus bar electrode 15 as shown in FIG. Therefore, as explained in the column of the effect of the invention, when NTA glass is mixed with Ag and fired for a short time (at least 1 minute, firing for 1 to 3 seconds or more), Ag collects in the central portion and becomes conductive. NTA glass is improved by reducing the Ag ratio due to comprehensive actions such as improved (conventionally improved Ag compared to the case where Ag was dispersed uniformly in the past) and NTA glass itself also has conductivity. As described above, the conversion efficiency when manufactured as a solar cell was about 16.9% even in the experiment.

尚、焼成温度は、500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図6の(b)のような構造が得られず、実験で決定することが必要である。   The firing temperature is 500 ° C. to 900 ° C., but it is necessary to determine the optimum temperature by experiment when it is produced as a solar cell. If it is too low or too high, the structure as shown in FIG. 6B cannot be obtained, and it is necessary to determine by experiment.

図7の(c)において、バスバー電極15は、図示の中央部分の横方向の幅の広いバー状の電極であって、本発明に係るNTA 100%の拡大写真の1例を示す。   In FIG. 7C, the bus bar electrode 15 is a bar-shaped electrode having a wide lateral width at the center portion shown in the figure, and shows an example of an enlarged photograph of 100% NTA according to the present invention.

この図7の(c)のバスバー電極15は、縦方向に幅の狭いフィンガー電極14が当該バスバー電極15を突き抜けて上側に少し突出した部分があり、かつ当該突出した部分の周囲が元のフィンガー電極14の幅よりも太くなっていることが判明する。そして、図示のバスバー電極15の上に、当該バスバー電極15の幅と同じ、若干小さい、あるいは若干大きい幅で、後述する図8で詳細に説明するように、超音波半田付けすることにより、既述した経路1(光電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1)および経路2(光電子濃度領域12、フィンガー電極14、リード線17の経路2)の両経路で高濃度電子領域と当該リード線とを導電接続し、電子(電流)の損失を低減して外部に効率的に取り出すことが可能となり、図6の(a)、(b)とほぼ同じ変換効率、あるいは若干高い変換効率(約17.2%)が得られた。   The bus bar electrode 15 in FIG. 7C has a portion in which the finger electrode 14 having a narrow width in the vertical direction protrudes through the bus bar electrode 15 and slightly protrudes upward, and the periphery of the protruding portion is the original finger. It turns out that it is thicker than the width of the electrode 14. Then, ultrasonic soldering is performed on the bus bar electrode 15 as shown in FIG. 8 to be described later in detail with a width that is the same as the width of the bus bar electrode 15, slightly smaller or slightly larger. High in both paths 1 (path 1 of photoelectron concentration region 12, finger electrode 14, bus bar electrode 15, lead wire 17) and path 2 (path 2 of photoelectron concentration region 12, finger electrode 14, lead wire 17) described above. The concentration electron region and the lead wire are conductively connected to reduce the loss of electrons (current) and can be efficiently extracted to the outside. The conversion efficiency is substantially the same as (a) and (b) of FIG. Alternatively, a slightly high conversion efficiency (about 17.2%) was obtained.

尚、焼成温度は、図6の(a)、(b)とほぼ同じ500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図7の(c)のような構造が得られず、実験で決定することが必要である。   The firing temperature is approximately 500 ° C. to 900 ° C., which is almost the same as in FIGS. 6A and 6B, but it is necessary to determine the optimum temperature by experiment when it is fabricated as a solar cell. If it is too low or too high, the structure as shown in FIG. 7C cannot be obtained, and it is necessary to determine by experiment.

図8は、本発明の説明図(超音波半田付け)を示す。これは、既述した図7の(c)のNTA 100% の場合のものである(尚、同様に、図6の(a)、(b)に適用してもよい)。   FIG. 8 shows an explanatory diagram (ultrasonic soldering) of the present invention. This is the case of NTA 100% in FIG. 7C described above (in the same manner, it may be applied to FIGS. 6A and 6B).

図8の(a)は、フィンガー電極14を焼成した後の状態を示す。   FIG. 8A shows a state after the finger electrode 14 is fired.

図8の(b)は、図8の(a)のバスバー電極15の上に、点線で示す、ここでは、若干大きめ(あるいは同じ、あるいは小さくてもよい)のリード線17を半田付けする従来の例を示す。この従来の例では、通常の半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合するが、フィンガー電極14の突出していない部分(NTA100%の部分)とリード線17とは十分に半田接合しなく、機械的強度が十分ではない。一方、後述する図8の(c)の超音波半田付けした場合には、半田接合し、機械的強度が大幅に向上した。   FIG. 8B shows a conventional soldering of a slightly larger (or the same or smaller) lead wire 17 shown by a dotted line on the bus bar electrode 15 of FIG. 8A. An example of In this conventional example, since normal soldering is performed, the portion (Ag) where the finger electrode 14 protrudes and the lead wire 17 are soldered together, but the portion where the finger electrode 14 does not protrude (portion of NTA 100%) The lead wire 17 is not sufficiently soldered and the mechanical strength is not sufficient. On the other hand, when ultrasonic soldering of FIG. 8C described later was performed, soldering was performed and the mechanical strength was greatly improved.

図8の(c)は、図8の(a)のバスバー電極15(図7の(c)のバスバー電極15)の上に、点線で示す、若干大きめのリード線17を超音波半田付けする本発明の例を示す。この本発明の例では、超音波半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合し、更に、フィンガー電極14のない部分(NTA100%の部分)とリード線17とも半田接合し、機械的強度が大幅に向上すると共に、既述した経路2(高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路2)の導電性が向上した。   In FIG. 8C, a slightly larger lead wire 17 indicated by a dotted line is ultrasonically soldered on the bus bar electrode 15 in FIG. 8A (the bus bar electrode 15 in FIG. 7C). The example of this invention is shown. In this example of the present invention, since the soldering is performed by ultrasonic soldering, the portion (Ag) from which the finger electrode 14 protrudes and the lead wire 17 are soldered together, and further, the portion without the finger electrode 14 (portion of NTA 100%) The lead wire 17 is also soldered to significantly improve the mechanical strength, and the conductivity of the path 2 (the high electron concentration region 12, the finger electrode 14, the bus bar electrode 15, the path 2 of the lead wire 17) described above is improved. did.

図9は、本発明の測定例(効率)を示す。本図9は、既述したバスバー電極15について、NTAを100%から70%に変化させたときの良好な測定例であって、図9の横軸はサンプルの番号を示し、縦軸は効率(%)を示す。サンプルは、
・NTA 100% Ag 0%
・NTA 90% Ag 10%
・NTA 80% Ag 20%
・NTA 70% Ag 30%
とし、これらで太陽電池を作成し、各測定結果(効率)は図示の通りであった。尚、初期実験であるので、測定結果には図示のようにかなりのバラツキがあるが、16.9から17.5の範囲内に収まっており、NTA 100%でバスバー電極15を作成(つまり、Agなしで作成)して太陽電池を製造した場合でも、NTA 70%(あるいは、更に80%、90%)に比して同程度ないし若干高い効率が得られ、NTA 100%でも使えることが判明した(発明者らはこの事実を発見した)。
FIG. 9 shows a measurement example (efficiency) of the present invention. FIG. 9 shows an example of good measurement when the NTA is changed from 100% to 70% for the bus bar electrode 15 described above. The horizontal axis in FIG. 9 indicates the sample number, and the vertical axis indicates the efficiency. (%). sample,
・ NTA 100% Ag 0%
・ NTA 90% Ag 10%
・ NTA 80% Ag 20%
・ NTA 70% Ag 30%
These were used to make solar cells, and each measurement result (efficiency) was as shown. In addition, since it is an initial experiment, there are considerable variations in the measurement results as shown in the figure, but they are within the range of 16.9 to 17.5, and the bus bar electrode 15 is created with NTA 100% (that is, Even when a solar cell is manufactured without using Ag), it is found that the efficiency is comparable or slightly higher than that of NTA 70% (or 80%, 90%) and can be used even with NTA 100%. (The inventors found this fact).

本発明の1実施例構造図(工程の完成図:断面図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の動作説明フローチャートである。It is an operation | movement explanatory flowchart of this invention. 本発明の詳細工程説明図(その1)である。It is detailed process explanatory drawing (the 1) of this invention. 本発明の詳細工程説明図(その2)である。It is detailed process explanatory drawing (the 2) of this invention. 本発明の詳細説明図(バスバー電極の焼成)である。It is detailed explanatory drawing (baking of a bus-bar electrode) of this invention. 本発明の説明図(バスバー電極)である。It is explanatory drawing (bus-bar electrode) of this invention. 本発明の説明図(バスバー電極)である。It is explanatory drawing (bus-bar electrode) of this invention. 本発明の説明図(超音波半田付け)である。It is explanatory drawing (ultrasonic soldering) of this invention. 本発明の測定例(効率)である。It is a measurement example (efficiency) of the present invention. 従来技術の説明図である。It is explanatory drawing of a prior art.

11:シリコン基板
12:高電子濃度領域(拡散ドーピング)
13:絶縁膜(窒化シリコン膜)
14:電子取出口(フィンガー電極)
15:バスバー電極
16:裏面電極
17:リード線
11: Silicon substrate 12: High electron concentration region (diffusion doping)
13: Insulating film (silicon nitride film)
14: Electron outlet (finger electrode)
15: Bus bar electrode 16: Back electrode 17: Lead wire

Claims (12)

基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に該領域の上に光などを透過する絶縁膜を形成し、該絶縁膜に形成した電子取出口から電子を取り出すバス電極を有する太陽電池において、
前記バス電極を形成するために、導電性ペーストにガラスフリットとして導電性ガラスを重量比100%で焼成してバス電極を形成し、導電性ペーストとして導電性ガラスを使用したことを特徴とする太陽電池。
A region that generates a high electron concentration when light or the like is irradiated on the substrate is formed, and an insulating film that transmits light or the like is formed on the region, and electrons are taken out from an electron outlet formed in the insulating film. In a solar cell having a bus electrode,
In order to form the bus electrode, the conductive electrode is baked at a weight ratio of 100% as a glass frit to the conductive paste to form the bus electrode, and the conductive glass is used as the conductive paste. battery.
前記導電性ガラスを重量比100%に代えて、導電性ガラスを重量比100%から70%以上とし残りを銀としたことを特徴とする請求項1記載の太陽電池。   2. The solar cell according to claim 1, wherein the conductive glass is replaced with a weight ratio of 100%, the conductive glass is made from 100% to 70% or more, and the remainder is silver. 前記導電性ガラスは、少なくともバナジウムあるいはバナジウムとバリウムを含むバナシン酸ガラスとしたことを特徴とする請求項1あるいは請求項2記載の太陽電池。   3. The solar cell according to claim 1, wherein the conductive glass is vanadate glass containing at least vanadium or vanadium and barium. 前記導電性ガラスを混入して焼成する工程の時間は、長くても1分以内、1秒以上であることを特徴とする請求項1から請求項3のいずれかに記載の太陽電池。   4. The solar cell according to claim 1, wherein a time of the step of mixing and baking the conductive glass is within 1 minute at most and 1 second or longer. 前記導電性ガラスは、Pbフリーであることを特徴とする請求項1から請求項4のいずれかに記載の太陽電池。   The solar cell according to any one of claims 1 to 4, wherein the conductive glass is Pb-free. 前記フィンガー電極(電子取出口)を焼成したときに、当該フィンガー電極が前記高電子濃度領域に一端を有し、かつ他端はバス電極の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成したことを特徴とする請求項1から請求項5のいずれかに記載の太陽電池。   When the finger electrode (electron outlet) is fired, the finger electrode has one end in the high electron concentration region, and the other end is the same as the height of the upper surface of the bus electrode or a portion protruding through the upper surface The solar cell according to claim 1, wherein the solar cell is formed. 前記焼成して形成したバス電極の上に前記リード電極を設けたことを特徴とする請求項1から請求項6のいずれかに記載の太陽電池。   The solar cell according to any one of claims 1 to 6, wherein the lead electrode is provided on the fired bus electrode. 前記焼成して形成したバス電極の上にリード電極を超音波半田付けで形成し、リード電極の接するバス電極、フィンガー電極、およびその他の部分に接合し、当該リード電極の接着強度を向上させたことを特徴とする請求項1から請求項7のいずれかに記載の太陽電池。   A lead electrode was formed by ultrasonic soldering on the fired bus electrode, and joined to the bus electrode, finger electrode, and other parts with which the lead electrode is in contact, thereby improving the adhesive strength of the lead electrode The solar cell according to claim 1, wherein: 基板上に光などを照射したときに高電子濃度を生成する領域を作成すると共に該領域の上に光などを透過する絶縁膜を形成し、該絶縁膜に形成した電子取出口から電子を取り出すバス電極を有する太陽電池の製造方法において、
前記バス電極を形成するために、導電性ペーストにガラスフリットとして導電性ガラスを重量比100%で焼成してバス電極を形成し、導電性ペーストとして導電性ガラスを使用するステップ
を有することを特徴とする太陽電池の製造方法。
A region that generates a high electron concentration when light or the like is irradiated on the substrate is formed, and an insulating film that transmits light or the like is formed on the region, and electrons are taken out from an electron outlet formed in the insulating film. In a method for manufacturing a solar cell having a bus electrode,
In order to form the bus electrode, the method includes a step of baking the conductive glass as a glass frit on the conductive paste at a weight ratio of 100% to form the bus electrode, and using the conductive glass as the conductive paste. A method for manufacturing a solar cell.
前記導電性ガラスを重量比100%に代えて、導電性ガラスを重量比100%から70%以上とし残りとして銀を混入したことを特徴とする請求項1記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the conductive glass is replaced with a weight ratio of 100%, the conductive glass is made from 100% to 70% or more, and silver is mixed as a balance. 前記導電性ガラスは、少なくもとバナジウムあるいはバナジウムとバリウム含むバナジン酸塩ガラスとしたことを特徴とする請求項9記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 9, wherein the conductive glass is vanadium glass containing at least vanadium or vanadium and barium. 前記導電性ガラスを混入して焼成する工程の時間は、長くても1分以内、1秒以上であることを特徴とする請求項9から請求項11のいずれかに記載の太陽電池の製造方法。   The method for producing a solar cell according to any one of claims 9 to 11, wherein a time of the step of mixing and baking the conductive glass is 1 minute or less within 1 minute at the longest. .
JP2015180720A 2015-09-14 2015-09-14 Solar battery and solar battery manufacturing method Pending JP2017059578A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015180720A JP2017059578A (en) 2015-09-14 2015-09-14 Solar battery and solar battery manufacturing method
TW105118737A TWI603486B (en) 2015-09-14 2016-06-15 Solar cell and method of manufacturing the same
KR1020160078501A KR101791480B1 (en) 2015-09-14 2016-06-23 Solar cell and process of manufacture of solar cell
CN201610536758.6A CN106531814B (en) 2015-09-14 2016-07-08 The manufacturing method of solar cell and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180720A JP2017059578A (en) 2015-09-14 2015-09-14 Solar battery and solar battery manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020124565A Division JP7058390B2 (en) 2020-07-21 2020-07-21 Solar cells and methods for manufacturing solar cells

Publications (1)

Publication Number Publication Date
JP2017059578A true JP2017059578A (en) 2017-03-23

Family

ID=58343503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180720A Pending JP2017059578A (en) 2015-09-14 2015-09-14 Solar battery and solar battery manufacturing method

Country Status (4)

Country Link
JP (1) JP2017059578A (en)
KR (1) KR101791480B1 (en)
CN (1) CN106531814B (en)
TW (1) TWI603486B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112352321A (en) * 2018-06-26 2021-02-09 亚特比目有限会社 Solar cell and method for manufacturing solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299021B2 (en) * 2003-02-19 2009-07-22 ヤマト電子株式会社 Sealing material and sealing paste
US8093491B2 (en) * 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
JP4885781B2 (en) * 2007-03-30 2012-02-29 日立粉末冶金株式会社 Conductive paste
DE112010001377B4 (en) * 2009-03-27 2019-09-05 Hitachi Powdered Metals Co., Ltd. A glass composition, composition for an electric conductive paste containing the same, electrode wiring member, and electronic component
KR100978636B1 (en) 2009-09-30 2010-08-27 한밭대학교 산학협력단 The conductive material embedded glass frit or the conductive material coated glass frit and their fabrication method
CN101789456A (en) * 2010-03-05 2010-07-28 西安宏星电子浆料科技有限责任公司 Lead-free aluminum paste for solar battery
CN102376379B (en) * 2010-08-13 2016-04-20 三星电子株式会社 Conducting paste and comprise the electronic device of electrode and solar cell that are formed with it
WO2012173203A1 (en) * 2011-06-14 2012-12-20 京セラ株式会社 Solar cell and method for manufacturing same
KR20130117345A (en) * 2012-04-17 2013-10-25 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 Tellurium inorganic reaction systems for conductive thick film paste for solar cell contacts
EP2839510A4 (en) * 2012-04-18 2015-12-02 Heraeus Precious Metals North America Conshohocken Llc Methods of printing solar cell contacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112352321A (en) * 2018-06-26 2021-02-09 亚特比目有限会社 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
KR20170032164A (en) 2017-03-22
TW201721889A (en) 2017-06-16
CN106531814A (en) 2017-03-22
KR101791480B1 (en) 2017-10-30
CN106531814B (en) 2018-07-06
TWI603486B (en) 2017-10-21

Similar Documents

Publication Publication Date Title
KR20200138136A (en) Solar cell and process of manufacture of solar cell
KR102230367B1 (en) Solar cell and manufacturing method of solar cell
KR102002796B1 (en) Method of ultrasonic soldering and ultrasonic soldering device
CN104716213B (en) Photovoltaic battery module and preparation method thereof
JP7058390B2 (en) Solar cells and methods for manufacturing solar cells
TWI603486B (en) Solar cell and method of manufacturing the same
JP6659074B2 (en) NTA paste
JP2020141141A (en) Solar battery and manufacturing method for solar battery
JP5541395B2 (en) Manufacturing method of solar cell
JP6325925B2 (en) Solar cell module and method for manufacturing solar cell module
JP2021022735A (en) Solar battery and manufacturing method thereof
JP5105427B2 (en) A method for forming a fired electrode and a method for producing a photoelectric conversion element using the method.
TW201336093A (en) Solar cell and its manufacturing method
JP2015026718A (en) Electrode for solar battery cell, and method for manufacturing electrode for solar battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200721

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200819

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200825

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201110

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201215

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210202

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309