JP2017050428A - インプリント装置、インプリント方法および物品の製造方法 - Google Patents

インプリント装置、インプリント方法および物品の製造方法 Download PDF

Info

Publication number
JP2017050428A
JP2017050428A JP2015173272A JP2015173272A JP2017050428A JP 2017050428 A JP2017050428 A JP 2017050428A JP 2015173272 A JP2015173272 A JP 2015173272A JP 2015173272 A JP2015173272 A JP 2015173272A JP 2017050428 A JP2017050428 A JP 2017050428A
Authority
JP
Japan
Prior art keywords
substrate
amount
shape
imprint
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015173272A
Other languages
English (en)
Other versions
JP6732419B2 (ja
Inventor
祐司 坂田
Yuji Sakata
祐司 坂田
渡辺 豊
Yutaka Watanabe
豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015173272A priority Critical patent/JP6732419B2/ja
Priority to PCT/JP2016/003705 priority patent/WO2017038026A1/en
Priority to KR1020187009097A priority patent/KR102074088B1/ko
Publication of JP2017050428A publication Critical patent/JP2017050428A/ja
Application granted granted Critical
Publication of JP6732419B2 publication Critical patent/JP6732419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

【課題】 重ね合せ精度を向上させることができる、インプリント装置を提供することを目的とする。【解決手段】 基板上のインプリント材と型とを接触させて前記インプリント材のパターンを形成するインプリント装置であって、基板を吸着して移動する移動部と、制御部と、を有し、前記制御部が、前記移動部に吸着する前の前記基板の反り形状の情報を用いて、前記移動部に吸着された前記基板面上の各位置における位置ずれ量を表す式を求め、前記位置ずれ量を表す式を用いて前記基板面上の複数位置における位置ずれ量を計算し、前記複数位置における位置ずれ量に基づいて前記基板のショット領域に関するディストーション成分を求め、前記ディストーション成分に応じて、前記型と前記基板の少なくとも一方の形状または位置を制御する。【選択図】 図2

Description

本発明は、インプリント装置、インプリント方法および物品の製造方法に関する。
半導体デバイスやMEMSなどの微細化の要求が進み、従来のフォトリソグラフィー技術に加え、ウエハ、ガラスプレート、フィルム状基板等の基板上の未硬化樹脂を型で成形し、樹脂のパターンを基板上に形成する微細加工技術が注目を集めている。この技術は、インプリント技術とも呼ばれ、基板上に数ナノメートルオーダーの微細な構造体を形成することができる。
特許文献1では、インプリント技術を用いたリソグラフィ装置(インプリント装置)において、デバイスの製造の点で有利なステップアンドフラッシュ式インプリントリソグラフィ(SFIL)を応用した装置が開示されている。
このようなインプリント装置では、まず、基板上のインプリント領域であるショット領域に紫外線硬化樹脂(インプリント材、光硬化性樹脂)を塗布する。次に、基板と型を接近させ、この樹脂を型のパターン領域に充填させる。そして、紫外線を照射して樹脂を硬化させたうえで引き離す。以上の工程をもって、樹脂のパターンが基板上に形成される。
上記インプリント装置でナノメートルオーダーの微細パターン形成を量産工程へ適用するには、重ね合わせ精度の向上が求められており、そのためには、型のパターン領域と基板上のショット領域との位置合せが重要である。
また、上記のようなインプリント装置では、型のパターン領域と基板上のショット領域との位置合せに、ダイバイダイアライメント方式を用いることができる。この方式では、基板上のショット領域ごとに、型に設けられた型側マークおよび基板に設けられた基板側マークを光学的に検出して、型のパターン領域と基板上のショット領域間の、位置ずれおよび形状差を補正する。
特許文献2では、型を外力等で変形させる形状補正機構と、基板を熱で変形させる加熱機構とを組み合わせることで、型と基板のパターン形状を補正し、パターン形状の位置の補正を精度よく行う方法を開示している。
特許第4185941号 特開2013−98291号
半導体デバイスの高集積化に伴い、配線の微細化や多層化が進んでいる。配線の多層化により、半導体製造工程の後工程になるに従い、成膜中に発生した膜歪みが蓄積し基板全体に反りを生じさせる現象が見られる。反った基板に対しては、インプリント装置の基板ステージの基板チャックが基板を吸着して保持することによって、基板を平面に矯正する。そのとき、基板チャック上の基板に大きな歪み(ディストーション)が発生する。大きな歪みを補正するためには、アライメント動作の処理時間も増大する。また、インプリント装置においては、型を樹脂に押し付けた状態の充填中にもアライメント動作を行うが、適切な残膜厚にするために充填時間があらかじめ一定の時間に設定されている。ここで残膜厚とは、硬化した樹脂で形成される凹凸パターンの凹部の表面(底面)と、インプリント時の基板の表面との間の樹脂の厚みである。大きな歪が発生した場合、設定された充填時間内にアライメント動作が完了しないことがある。したがって、型と基板の位置合せが十分にできない可能性があり、重ね合わせ精度が低下するといった問題がある。
そこで、本発明は、重ね合せ精度を向上させることができるインプリント装置、インプリント方法および物品の製造方法を提供することを目的とする。
上記課題を解決する本発明の一側面としてのインプリント装置は、基板上のインプリント材と型とを接触させて前記インプリント材のパターンを形成するインプリント装置であって、基板を吸着して移動する移動部と、制御部と、を有し、前記制御部が、前記移動部に吸着する前の前記基板の反り形状の情報を用いて、前記移動部に吸着された前記基板面上の各位置における位置ずれ量を表す式を求め、前記位置ずれ量を表す式を用いて前記基板面上の複数位置における位置ずれ量を計算し、前記複数位置における位置ずれ量に基づいて前記基板のショット領域に関するディストーション成分を求め、前記ディストーション成分に応じて、前記型と前記基板の少なくとも一方の形状または位置を制御することを特徴とする。
本発明によれば、重ね合せ精度を向上させることができる、インプリント装置、インプリント方法および物品の製造方法を提供することができる。
実施例1に係るインプリント装置の代表的な装置構成を示した図である。 ウエハの反り形状から変換行列を求めるフローチャートを示した図である。 反り形状とディストーションの対応関係を示した図である。 反り形状を表す式の係数と反り形状の対応関係を示した図である。 位置ずれ量を表す式の係数とウエハのディストーション形状の対応関係を示した図である。 被処理ウエハの反り形状によるディストーションに応じて補正を行い、ショット領域をインプリントするフローチャートを示した図である。 ショット領域に関する位置ずれと変形を示した図である。 プリアライメントユニットを示した図である。
以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。
図1〜図7を用いて、実施例1に係るインプリント装置について説明する。
図1は実施例1に係るインプリント装置の代表的な装置構成を示した図である。インプリント装置1は、物品としての半導体デバイスなどのデバイスの製造に使用され、被処理基板であるウエハ上(基板上)の未硬化樹脂をモールド(型)で成形し、ウエハ上に樹脂のパターンを形成する装置である。なお、ここでは光硬化法を採用したインプリント装置とする。また、図1においては、ウエハ上の樹脂に対して紫外線を照射する照明系の光軸に平行にZ軸を取り、Z軸に垂直な平面内に互いに直交するX軸およびY軸を取っている。インプリント装置1は、まず、光照射部2と、モールド保持機構3と、ウエハステージ4と、塗布部5と、ウエハ加熱機構6と、制御部7とを備える。
光照射部2は、インプリント処理の際に、モールド8に対して紫外線9を照射する。この光照射部2は、光源(不図示)と、この光源から照射された紫外線9をインプリントに適切な光に調整するための光学素子(不図示)とを含む。なお、本実施例では光硬化法を採用するために光照射部2を設置しているが、例えば、熱硬化法を採用する場合には、光照射部2に換えて、熱硬化性樹脂を硬化させるための熱源部を設置することとなる。
モールド8は、外周形状が矩形であり、ウエハ11に対する面に3次元状に形成されたパターン領域(例えば、回路パターンなどの転写すべき凹凸パターン)8aを含む。また、モールド8の材質は、石英など紫外線9を透過させることが可能な材料である。さらに、モールド8は、紫外線9が照射される面に、モールド8の変形を容易とするためのキャビティ(凹部)8bを有する形状としても良い。キャビティ8bは、円形の平面形状を有し、厚み(深さ)は、モールド8の大きさや材質により適宜設定される。また、後述するモールド保持機構3内の開口領域17に、この開口領域17の一部とキャビティ8bとで囲まれる空間12を密閉空間とする光透過部材13を設置し、圧力調整装置(不図示)により空間12内の圧力を制御する構成もあり得る。例えば、モールド8とウエハ11上の樹脂14との押し付けに際し、圧力調整装置により空間12内の圧力をその外部よりも高く設定する。そして、モールド8のパターン領域8aは、ウエハ11に向かい凸形に撓み、樹脂14に対してパターン領域8aの中心部から接触する。これにより、パターン領域8aと樹脂14との間に気体(空気)が閉じ込められるのを抑え、パターン領域8aの凹凸部に樹脂14を隅々まで充填させることができる。
モールド保持機構3は、まず、真空吸着力や静電力によりモールド8を引き付けて保持するモールドチャック15と、このモールドチャック15を保持し、モールド8(モールドチャック15)を移動させるモールド駆動機構(駆動部)16とを有する。モールドチャック15およびモールド駆動機構16は、光照射部2の光源から照射された紫外線9がウエハ11に向けて照射されるように、中心部(内側)に開口領域17を有する。さらに、モールド保持機構3は、モールドチャック15におけるモールド8の保持側に、モールド8の側面に外力または変位を与えることによりパターン領域8aの形状を変更する倍率補正機構(型変形部)18を有する。この倍率補正機構18は、モールド8の形状を変形させることで、ウエハ11のショット形状に対してパターン領域8aの形状を合わせることができる。
モールド駆動機構16は、モールド8とウエハ11上の樹脂14との押し付け、または引き離しを選択的に行うようにモールド8をZ軸方向に移動させる。このモールド駆動機構16に採用可能なアクチュエータとしては、例えば、リニアモータまたはエアシリンダがある。また、モールド8の高精度な位置決めに対応するために、粗動駆動系や微動駆動系などの複数の駆動系から構成されていても良い。さらに、Z軸方向だけでなく、X軸方向やY軸方向、またはθ(Z軸周りの回転)方向の位置調整機能や、モールド8の傾きを補正するためのチルト機能などを有する構成もあり得る。なお、インプリント装置1における押し付けおよび引き離し動作は、上述のようにモールド8をZ軸方向に移動させることで実現しても良い。また、ウエハステージ4をZ軸方向に移動させることで実現しても良く、または、その双方を相対的に移動させても良い。
ウエハ11は、例えば、単結晶シリコン基板やSOI(Silicon on Insulator)基板であり、この被処理面には、パターン領域8aにより成形される紫外線硬化樹脂(以下「樹脂」という)14が塗布される。
ウエハステージ(基板ステージ、移動部)4は、ウエハ11を保持(吸着)し、モールド8とウエハ11上の樹脂14との押し付けに際し、モールド8と樹脂14との位置を制御する。このウエハステージ4は、ウエハ11を、吸着力により保持するウエハチャック(基板保持部)19と、このウエハチャック19を機械的手段により保持し、XY平面内で移動可能とするステージ駆動機構20とを有する。特に、本実施例のウエハチャック19は、ウエハ11の裏面を複数の領域で分割し、吸着保持可能とする複数の吸着部(不図示)を備える。これらの吸着部は、それぞれ上記とは別の圧力調整装置(不図示)に接続されている。この圧力調整装置は、ウエハ11と吸着部との間の圧力を減圧するよう調整し吸着力を発生させることでウエハ11をチャック面上に保持しつつ、さらに、各吸着部にてそれぞれ独立して圧力値(吸着力)を変更可能とする。なお、設置する吸着部の数(分割数)は、特に限定するものではなく、任意の数で良い。また、ウエハチャック19は、その表面上にモールド8をアライメントする際に利用する基準マーク21を有する。ステージ駆動機構20は、アクチュエータとして、例えばリニアモータを採用し得る。ステージ駆動機構20も、X軸およびY軸の各方向に対して、粗動駆動系や微動駆動系などの複数の駆動系から構成されていても良い。さらに、Z軸方向の位置調整のための駆動系や、ウエハ11のθ方向の位置調整機能、またはウエハ11の傾きを補正するためのチルト機能などを有する構成もあり得る。
塗布部5は、ウエハ11上に樹脂(未硬化樹脂)14を塗布する。ここで、この樹脂14は、紫外線9を受光することにより硬化する性質を有する光硬化性樹脂(インプリント材)であり、半導体デバイス製造工程などの各種条件により適宜選択される。また、塗布部5の吐出ノズルから吐出される樹脂14の量も、ウエハ11上に形成される樹脂14の所望の厚さや、形成されるパターンの密度などにより適宜決定される。1度の押印動作に必要な樹脂14の塗布位置と塗布量は液滴パターンによってあらかじめ決められている。液滴パターンは、1つのショット領域を、例えば、複数の矩形領域に分割して、分割領域毎に樹脂14の塗布量を定めている。塗布部5は、液滴パターンに従って、樹脂を基板上のショット領域に吐出する。
ウエハ加熱機構(基板変形部)6は、ウエハステージ4上に載置されたウエハ11の形状、具体的には、インプリント装置1に搬入されたウエハ11上に存在するショット形状を変更するために、ウエハ11を加熱する。このウエハ加熱機構6としては、例えば、図1に示すように、光照射部2と同様にモールド8を透過してウエハ11に向けて光を照射することでウエハ11を加熱する加熱用光源を採用し得る。この加熱用光源が照射する光は、赤外線など、ウエハ11に吸収され、光硬化性を有する樹脂が感光(硬化)しない特定の波長帯域に波長が存在する光である。また、この場合のウエハ加熱機構6は、加熱用光源(不図示)に加えて、加熱用光源から照射された光をインプリントに適切な光に調整するための複数の光学素子(不図示)を含み得る。この加熱用光源を用いる他に、ウエハ加熱機構6としては、例えば、ウエハチャック19などに直接ウエハ11を加熱するヒータ(不図示)を設置する構成もあり得る。
制御部7は、インプリント装置1の各構成要素の動作および調整などを制御し得る。制御部7は、例えば、コンピュータなどで構成され、インプリント装置1の各構成要素に回線を介して接続され、プログラムなどにしたがって各構成要素の制御を実行し得る。なお、制御部7は、インプリント装置1の他の部分と一体で(共通の筐体内に)構成しても良い。し、インプリント装置1の他の部分とは別体で(別の筐体内に)構成しても良い。この制御部7は、ウエハチャック19の面に垂直な方向のウエハ11の変位情報、すなわちウエハ11の反り量の情報を入力とする。反り量の情報は、インプリント装置1とは別の測定機器であらかじめ測定しておくなどして取得する。それを、装置のオペレータが装置のコンソールなどから、あるいは、インプリント装置1がLANなどのネットワークに接続されている場合、そのネットワークを通じて外部から装置に入力される。制御部7は、その反り量の情報を元に、ウエハ11がパターン形成される状態、すなわちウエハチャック19に吸着された状態における、ウエハチャック19の面に平行な方向のウエハ11のショット領域の推定変位量、すなわちディストーションを算出する。
また、インプリント装置1は、開口領域17内にアライメント計測系22を備える。アライメント計測系22は、例えば、ウエハアライメントとして、ウエハ11上に形成されたアライメントマークと、モールド8に形成されたアライメントマークとのX軸およびY軸の各方向への位置ずれを計測する。
また、インプリント装置1は、ウエハステージ4を載置するベース定盤24と、モールド保持機構3を固定するブリッジ定盤25と、ベース定盤24から延設され、ブリッジ定盤25を支持するための支柱26とを備える。さらに、インプリント装置1は、モールド8を装置外部からモールド保持機構3へ搬送するモールド搬送機構(不図示)と、ウエハ11を装置外部からウエハステージ4へ搬送する基板搬送機構(不図示)とを備える。
ウエハ11はウエハカセット(不図示)などに入れられた状態でインプリント装置1にセットされる。ウエハカセット内には少なくとも1枚、通常は複数枚のウエハが格納されている。そして基板搬送機構により、1枚のウエハがウエハカセットから取り出され、後述のプリアライメントユニット(測定部)30に置かれる。プリアライメントユニット30でウエハ11の方位や位置の補正などが行われた後、基板搬送機構によりウエハ11がウエハチャック19にセットされ、インプリント処理される。インプリント処理を終えたウエハ11は基板搬送機構によりウエハチャック19上から取り除かれウエハカセットに回収されるとともに、プリアライメントユニット30で待機していた次のウエハがウエハチャック19にセットされる。このようにして次々とウエハがインプリント処理される。
次に、インプリント装置1によるインプリント処理について説明する。まず、制御部7は、基板搬送機構によりウエハ11を搬入させ、ウエハステージ4上のウエハチャック19にウエハ11を載置および固定させる。次に、制御部7は、ステージ駆動機構20を駆動させ、ウエハ11上に存在するショット領域を塗布部5による塗布位置へ移動させる。次に、制御部7は、塗布部5に対し、塗布工程としてショット領域上に樹脂14を塗布させる。次に、制御部7は、ステージ駆動機構20を再駆動させ、ウエハ11上のショット領域がパターン領域8aの直下に位置するように移動させる。次に、制御部7は、押型工程として、モールド駆動機構16を駆動させ、ウエハ11上の樹脂14にモールド8を押し付ける。この押し付けにより、樹脂14は、パターン領域8aの凹凸部に充填される。また、制御部7は、アライメント計測系22によりウエハ11上に形成されたアライメントマークと、モールド8に形成されたアライメントマークとの位置ずれ量を計測させる。その位置ずれ量に基づき、モールド駆動機構16と、ウエハステージ4と、倍率補正機構18と、ウエハ加熱機構6とにより、パターン領域8aとウエハ11上のショット領域とを位置合せするアライメント動作をさせる。この状態で、制御部7は、硬化工程として、光照射部2にモールド8の上面から紫外線9を照射させ、モールド8を透過した紫外線9により樹脂14を硬化させる。そして、樹脂14が硬化した後に、制御部7は、離型工程として、モールド駆動機構16を再駆動させ、モールド8を樹脂14から引き離す。これにより、ウエハ11上のショット領域の表面には、パターン領域8aの凹凸部に倣った3次元形状の樹脂14のパターン(層)が成形される。このような一連のインプリント動作をウエハステージ4の駆動によりショット領域を変更しつつ複数回実施することで、1枚のウエハ11上に複数の樹脂14のパターンを成形することができる。
次に、反り形状の情報から求めたディストーションに応じて、補正を行う方法の例を示す。図2はウエハの反り形状から変換行列を求めるフローチャートを示した図である。
S01では、インプリント装置がウエハ(基板)の反り形状の情報を取得して、制御部7の記憶装置に記憶する。少なくとも1枚のウエハについて、ウエハチャックに吸着される前の状態における反り形状の情報を、インプリント装置の外部、または内部の測定機器によって測定して、複数の反り形状の情報を取得する。ここで、反り形状の情報とは、ウエハ面の中心を通り、ウエハ面と平行な平坦面に対する、ウエハ上の、少なくとも1点における反り量(当該平坦面からの距離)である。または、有限要素法などの手法を用いた計算機シミュレーションによって、様々な反り形状のウエハについて、反り形状の情報を取得しても良い。また、インプリント装置が反り形状の情報を外部から取得しても良く、例えば、オペレータによってインプリント装置のコンソールなどから反り形状の情報を入力しても良い。または、インプリント装置がLANなどのネットワークに接続している場合、外部の測定機器、サーバー、その他のネットワークに接続している装置が、ネットワーク経由でインプリント装置に反り形状の情報を入力しても良い。
S02では、制御部7が、取得した反り形状の情報から反り形状を表す式を事前に求める。ここで、反り形状の情報と反り形状を表す式について説明する。図3は、反り形状とディストーションの対応関係を示した図である。反り形状に対する、そのウエハをチャックに吸着したときに発生するディストーションを示している。図3(a)は、反りのないフラットなウエハを斜め上から見た図を示し、図3(b)は、そのウエハをチャックに吸着したときの状態を上から見た図を示す。図3(b)において、周辺の円形の線はウエハ端を表し、内部の格子状の線はウエハのグリッドを示している。図3(b)は反りのないウエハに対する図なので、ディストーションは発生していない。次に、図3(c)および(d)は下凸形状に反ったウエハに対して、同様に斜め上から見た図と上から見た図である。図3(d)において点線はディストーションのない状態のウエハグリッドを示し、実線が吸着によって歪んだウエハグリッドを示している。ディストーションのない状態のグリッドに対し、縮む方向にディストーションが発生しグリッドが変形している。なお、これらの図は、反りの状態やディストーションが分かりやすくなるように誇張して描かれており、実際には、反り量は数百μm〜数mm、位置ずれ量は数百nm〜数μm程度である場合が多い。ここで、位置ずれ量とは、ウエハ上(基板上)の、少なくとも1点における、長方形の格子形状からなる、位置ずれのないウエハグリッドに対する、ウエハ上におけるx、y方向(2方向)に関する変位量である。次に、図3(e)および(f)は、上凸形状に反ったウエハに対して、同様に斜め上から見た図と上から見た図である。さらに、図3(g)および(h)は、鞍型形状に反ったウエハに対して、同様に斜め上から見た図と上から見た図である。鞍型形状に反ったウエハの場合、ディストーションは非回転対称な形状になる。このように、反り形状とディストーションとの間には図3に示したような相関があることが分かっているので、この相関を利用して反り形状をディストーションに変換する変換式を構成することができる。
まず、反り形状表す式(第1の式)の一般式として、以下に示す式(1)を用いる。本実施例では、反り形状を表す式として、ウエハ面上(基板面上)の座標を表すx、yの高次多項式を用いる。
z=C00+C10x+C01y+C20x+C11xy+C02y+C30x+C21xy+C12xy+C03y ・・・(1)
ここで、ウエハ面上にウエハ中心を原点とするx、y座標をとり、それらと直交する方向にz座標をとる。式(1)中のzは、点(x、y)におけるウエハの高さ、すなわち反り量を表す。C00、C10、C01などは係数である。これらの係数の項の中で、C00の項はウエハ全体の上下移動、C10とC01の項はウエハ全体の傾斜を表す項なので、反り形状とは関連がなく、ウエハステージ4の位置、及び回転の制御により補正することができる。したがって、反り形状を表現するのは、C20以降の項である。
図4は、反り形状を表す式の係数と反り形状の対応関係を示した図である。図4は、式(1)の各項の係数、つまり、C20〜C03(反り形状の係数セットC)に対応する反り形状を示している。通常多く見られるなめらかな形状の反り形状はこれらの項の線形結合で表現することができ、実際、図3に示した下凸形状、上凸形状、鞍型形状の反り形状もこれらの項の組み合せで表現可能である。なお、この式で十分に表現できないような高次のうねり成分を含むような反り形状を表現したい場合は、適宜、式(1)の次数、項の数を増やせば良い。また、高次のうねり成分を含むような反り形状を表現する必要はなく、演算時間を短縮したい場合には、式(1)の次数、項の数を減らしても良く、少なくとも2次以上の高次多項式を用いれば良い。
反り形状を式(1)で表現する場合は、取得したウエハ面内の複数の点(x、y)における反り量(z)を用いて、式(1)に最小自乗法などの手法でフィッティングすることにより、反り形状の係数セットCを求めることができる。求めた反り形状の係数セットCを式(1)に適用することで、反り形状を表す式を求めることができる。
S03では、S01で反り形状の情報を取得したウエハをウエハステージ4上のウエハチャック19に搬送して、S04では、制御部7が、前記ウエハについて位置ずれ量の情報を取得する。
前記ウエハがウエハチャック19に取り付けられた状態で、アライメント計測系22(計測部)がウエハ面内の複数のアライメントマークを計測することによって、前記アライメントマークにおける位置ずれ量の情報を取得する。または、前記アライメントマークを計測せずに、有限要素法などの手法を用いた計算機シミュレーションによって位置ずれ量の情報を取得しても良い。また、インプリント装置が位置ずれ量の情報を外部から取得しても良い。例えば、オペレータによってインプリント装置のコンソールなどから位置ずれ量の情報を入力しても良い。または、インプリント装置がLANなどのネットワークに接続している場合、外部の測定機器、サーバー、その他のネットワークに接続している装置が、ネットワーク経由でインプリント装置に位置ずれ量の情報を入力しても良い。
S05では、制御部7が、取得した位置ずれ量から位置ずれ量を表す式を事前に求める。ここで、ウエハチャック19にウエハを吸着した時の位置ずれ量を表す式(第2の式)の一般式として、以下に示す式(2)を用いる。本実施例では、位置ずれ量を表す式として、ウエハ面上の座標を表すx、yの高次多項式を用いる。
Δx=A00+A10x+A01y+A20x+A11xy+A02y+A30x+A21xy+A12xy+A03y
Δy=B00+B10x+B01y+B20x+B11xy+B02y+B30x+B21xy+B12xy+B03y ・・・(2)
x、yは、式(1)と同じく、ウエハ面上における任意の点の座標を表す。また、Δxは、点(x、y)における位置ずれ量のx成分、Δyは、同じく位置ずれ量のy成分を表す。A00、A10、...A03、B00、B10、...、B03は式(2)の係数である。
図5は、位置ずれ量を表す式の係数とウエハのディストーション形状の対応関係を示した図である。式(2)の係数の項に対する、ウエハのディストーション形状を示している。一般的なディストーション形状はこれらの項の線形結合で表現することができる。図3に示したディストーション形状も、これらの項の組み合せで表現可能である。ただし、A00とB00の項は、ウエハ全体のシフトを表す項なので、ウエハステージ4の位置の制御により補正することができる。したがって、ディストーション形状を表現するのは、A10以降およびB10以降の項の係数(位置ずれ量の係数セットA)である。なお、式(2)で十分に表現できないような高次のうねり成分を含むようなディストーション形状を表現したい場合は、適宜、式(2)の次数、項の数を増やせば良い。また、高次のうねり成分を含むようなディストーション形状を表現する必要はなく、演算時間を短縮したい場合には、式(2)の次数、項の数を減らしても良く、少なくとも1次以上の高次多項式を用いれば良い。
位置ずれ量を式(2)で表現する場合は、取得したウエハ面内の複数の点(x、y)における位置ずれ量を用いて、式(2)に最小自乗法などの手法でフィッティングすることにより、位置ずれ量の係数セットAを求めることができる。求めた位置ずれ量の係数セットAを式(2)に適用することで、位置ずれ量を表す式を求めることができる。
S06では、制御部7が、事前に取得し、または求めた反り形状の係数セットCと位置ずれ量の係数セットAから変換行列Mを求め、S07では、求めた変換行列Mを制御部7の記憶装置(不図示)に記憶する。
反り形状を表す式と、位置ずれ量を表す式の変換をする式(第3の式)、つまり、反り形状の係数セットCと位置ずれ量の係数セットAから変換行列Mを求める式として、以下の式(3)を用いる。
Figure 2017050428
ここで、M11、M12などは変換行列Mの要素である。本実施例の場合、反り形状の係数が7個、位置ずれ量の係数が18個であるため、変換行列Mは18行7列の行列になり、要素は全部で126個になる。これら126個の変換行列Mの要素を求めるために、少なくとも1枚のウエハについて、反り形状と、ウエハチャックに吸着された状態でのウエハ面上の複数箇所(位置)の位置ずれ量とを測定して、反り形状と、位置ずれ量の複数のデータとを取得する。または、有限要素法などの手法を用いた計算機シミュレーションによって、複数の反り形状のウエハについて、反り形状と位置ずれ量を取得しても良い。取得した反り形状と位置ずれ量から反り形状の係数セットCと位置ずれ量の係数セットAを求める。求めた反り形状の係数セットCと位置ずれ量の係数セットAを式(3)に当てはめ、最小自乗法などの手法でフィッティングすることにより、変換行列Mの要素を求めることができる。なお、反り形状の係数セットCと位置ずれ量の係数セットAは、それぞれ1セットに限られず、複数セットから変換行列Mを求めても良い。求めた変換行列Mの要素を、制御部7の記憶装置に保存する。
図6は被処理ウエハ(被処理基板)の反り形状によるディストーションに応じて補正を行い、ショット領域をインプリントするフローチャートを示した図である。S08では、図2のS01と同様の方法で、被処理ウエハの反り形状の情報を取得する。ここで、被処理ウエハとは、インプリント装置によってインプリント処理される(インプリント材のパターンを形成する)予定のウエハである。
S09では、制御部7が、図2のS02と同様の方法で、取得した反り形状の情報から反り形状を表す式を求める。
S10では、前記被処理ウエハをウエハステージ4上のウエハチャック19に搬送する。
S11では、制御部7が、S09で求めた反り形状を表す式の反り形状の係数セットCと、図2のS07で制御部7の記憶装置に記憶した変換行列Mとの積を計算することによって、位置ずれ量の係数セットAを求める。式(2)に求めた係数セットを適用することで位置ずれ量を表す式を求める。
S12では、被処理ウエハのショット領域をインプリントする前に、ショット領域毎の位置ずれ量、ディストーション成分を求める。制御部7において、ショット領域内の少なくとも2点以上(例えば、ショット領域の四隅の4点)のウエハ面上の座標を、位置ずれ量を表す式に代入して被処理ウエハ上(被処理基板上)の複数位置における位置ずれ量を求める。ここで、前記座標はディストーションが発生していない状態の座標であり、設計値から得ることができる。求めた位置ずれ量から、ウエハグリッドとショット形状についてのディストーション成分を求めることで、ディストーション検出を行う。ここで、ウエハグリッドとは、ウエハ上にショット領域が配列された格子を表し、ショット形状とはウエハ上の各ショット領域の形状を表している。求めるディストーション成分は、そのショット領域に関する位置ずれ、ショット回転、ショット倍率変化等のディストーション成分であり、最小自乗法などの手法を用いて求める。
図7は、ショット領域に関する位置ずれと変形を示した図である。図7において、点線で示した線のうち、外側の枠がショット領域の境界を示し、内側の格子がショット内グリッドを示しており、いずれも位置ずれや変形がない状態を示している。また、実線で示したのは、位置ずれや変形がある状態でのショット領域の境界とショット内グリッドである。図7(a)はショット領域のx方向の位置ずれを示し、図7(b)はショット領域のy方向の位置ずれを示す。また、図7(c)はショット倍率変化を示し、図7(d)はショット回転を示す。ショット領域内の少なくとも2点以上の複数位置における位置ずれ量からこれらのディストーション成分を求めるには、最小自乗法などの手法を用いると良い。
S13では、求めたディストーション成分に応じて、ショット領域の位置ずれ、ショット回転、ショット倍率変化等の補正を行って、ショット領域をインプリントする。ウエハの反りを矯正する際に発生するディストーションによって、ウエハグリッドの変形と、ショット形状の変形の両方が発生する。そのため、本実施例では、ウエハグリッドとショット形状の両方についての位置と形状の補正を行う。ショット領域の位置ずれ(x方向、y方向)がウエハグリッドの変形に相当する成分であり、ウエハステージ4の位置を制御することによりショット領域の位置ずれの補正をする。また、ショット回転はウエハステージ4の回転を制御することにより補正をする。そして、ショット倍率変化がショット形状の変形に相当し、これは、倍率補正機構18を用いてモールド8のパターン領域8aの形状を変化させることにより、ショット倍率変化の補正をする。
また、ショット領域の位置ずれについては、モールド駆動機構16の位置を制御することによりショット領域の位置ずれの補正をしても良く、ショット回転については、モールド駆動機構16の回転を制御することにより補正をしても良い。
このように、ディストーション成分に応じて、モールドと被処理ウエハの少なくとも一方の形状または位置を制御することで、補正することができる。
また、塗布工程において、塗布部5がウエハ11上に樹脂14を塗布するに際し、ディストーション成分に応じて、樹脂14の塗布位置と塗布量の少なくとも一方を調整しても良い。前述の通り、樹脂14の塗布位置と塗布量は液滴パターンによってあらかじめ決められている。しかし、従来技術においてはウエハの反りによるディストーションを考慮して、前記塗布位置と塗布量を決めていなかった。よって、前記ディストーションに応じた適切な塗布位置、塗布量とならず、型のパターンに樹脂が十分に充填せず、パターンや残膜厚の異常といった問題が生じる可能性があった。そこで、前記ディストーションに応じて、樹脂14の塗布位置と塗布量の少なくとも一方を調整する必要がある。
樹脂14の塗布位置と塗布量の少なくとも一方を調整する方法の一例について説明する。液滴パターンの分割領域の中心位置の位置ずれに基づいて、各分割領域の塗布量を増減することで、樹脂14の塗布位置と塗布量の少なくとも一方を補正することができる。例えば、第1の分割領域の中心位置が+X方向にずれることで、第1の分割領域の+X方向にある第2の分割領域の中心位置に一致したとする。この場合は、第1の分割領域の塗布量を全て、第2の分割領域の塗布量に加算して、第1の分割領域の塗布量を全て減算して0として、樹脂の塗布位置を補正する。また、第1の分割領域の中心位置が+X方向にずれることで、第2の分割領域の中心位置との中間点に一致したとする。この場合は、第1の分割領域の塗布量の半分を、第2の分割領域の塗布量に加算して、第1の分割領域の塗布量を半分に減算することで、樹脂の塗布量を補正する。第1の分割領域の中心位置が−X方向や±Y方向にずれても、同様の方法で各分割領域の塗布量を増減する。このように、全ての分割領域について、分割領域の中心位置の位置ずれと、周辺の分割領域の中心位置との距離の割合に応じて、塗布量を増減することで、樹脂14の塗布位置と塗布量の少なくとも一方を補正することができる。なお、樹脂14の塗布位置と塗布量の補正は、単独で実施しても良いし、前述のモールドと被処理ウエハの形状または位置の補正と共に実施しても良い。
さらに、補正するディストーション成分としては、ショット倍率変化以外にも、縦横倍率差成分や平行四辺形成分(skew成分)、台形成分などがある。図7(e)が縦横倍率差成分を示し、図7(f)が平行四辺形成分を示し、図7(g)および図7(h)が台形成分を示す。これらについても補正を行えば、より効果的にディストーションを補正することができる。この場合、ショット領域内の少なくとも2点以上の複数位置における位置ずれ量から、縦横倍率差成分、平行四辺形成分、台形成分といったディストーション成分を、最小自乗法などの手法を用いて求める。ここで、ディストーション成分を、ショット領域内の位置ずれ量から、最小自乗法を用いて求める方法を説明する。例えば、x方向の位置ずれをS、y方向の位置ずれをS、同様にショット回転量をR,R、ショット倍率変化量をM、M、縦横倍率差変化量をA、A、ショットの平行四辺形変化量をB、Bとする。ショット領域内の点(x、y)における位置ずれ量δ、δは、次の式のようにx、yの関数で表すことができる。
δ(x、y)=S−R+M+A+B
δ(x、y)=S+R+M−A+B
ショット領域内に含まれる複数の点の座標を、(x、y)、(x、y)、...、(x、y)とし、それらの点におけるx方向およびy方向の位置ずれ量を、それぞれ、(Δx、Δy)、(Δx、Δy)、...、(Δx、Δy)とする。ここで、Ωを以下のように定義する。
Ω=Σi=1〜n(Δx−δ(x、y))+Σi=1〜n(Δy−δ(x、y))
このΩを最小にするようなS、S、M、R、A、Bを求めることにより、ショット領域内の位置ずれ量から、ディストーション成分を求めることができる。なお、求めるディストーション成分は、1つであっても良いし、複数種のディストーション成分であっても良い。
なお、ショット形状のディストーション成分は、ショット倍率変化、縦横倍率差成分、平行四辺形成分、台形成分に限定されない。例えば、ショット領域の位置ずれ量の演算点を増やし樽形や糸巻き形の変形成分を計算し補正することができる。また、他にも補正を行うことができるディストーション成分があれば、補正するディストーション成分に加えて良い。また、樽形や糸巻き形等の高次の変形成分については、ウエハ加熱機構6を用いてウエハ11上のショット形状を変更することにより補正しても良い。
上述の補正を、ウエハ11上の樹脂14にモールド8を押し付ける前に完了することで、その後に行われるアライメント動作時間を短縮することができ、スループットが向上する。また、アライメント動作において、パターン領域8aは、樹脂14から受ける力により変形する場合がある。その場合、上述の補正によって、ウエハ11上の樹脂14にモールド8を押し付けた後のアライメント動作における補正量が小さくなり、パターン領域8aが樹脂14から受ける力が弱まり、パターン領域8aの変形を小さくするという効果もある。
また、上述の補正の内、ウエハステージ4、倍率補正機構18、モールド駆動機構16、またはウエハ加熱機構6を用いた補正については、ウエハ11上の樹脂14にモールド8を押し付けた後、光照射部2により紫外線9を照射させる直前まで実施しても良い。
また、図6のS10はS13よりも前であれば、他のステップとの順番は図6の順番に限定されない。また、他のステップと並行で実行しても良い。
また、図6のS12では、制御部7で、ショット領域毎のディストーション成分を、各ショット領域をインプリントする直前に求めている。この場合、ディストーション成分を求めるために時間がかかると、スループットが低下してしまう。そこで、スループットの低下を抑えるために、反り形状の情報を取得した後に全ショット領域のディストーション成分を求めても良い。
また、図6のS08〜S12においては、被処理ウエハ上のアライメントマークを計測せずに、ショット領域毎の位置ずれ量、ディストーション成分を求めている。さらに重ね合せ精度を向上させるために、一部のアライメントマークを計測して位置ずれ量を求め、位置ずれ量を表す式から求めた位置ずれ量と組み合せて、ディストーション成分を求めても良い。例えば、半数のアライメントマークをあらかじめ計測するものとして定めておき、計測しないアライメントマークの位置ずれ量については、位置ずれ量を表す式から求めても良い。または、アライメントマークが正常に計測できない場合に、位置ずれ量を表す式から位置ずれ量を求めても良い。
S14では、制御部7が、被処理ウエハの全ショット領域をインプリントしたかを判断する。全ショット領域をインプリントした場合は、被処理ウエハのインプリント処理を終了する。全ショット領域をインプリントしていない場合は、S12に戻り次のショット領域のウエハグリッドとショット形状のディストーション成分を求める。
なお、図2のS02、または図6のS09で求める、反り形状の係数セットC、または、図2のS05、または図6のS11で求める、位置ずれ量の係数セットAは、外部装置で求めて、外部装置から制御部7が事前に取得しても良い。例えば、外部の測定機器で反り形状、位置ずれ量を測定、または外部の情報処理装置で計算によって取得する。そして、外部の情報処理装置により係数セットを求める。そのようにして求めた係数セットを、オペレータによってコンソールなどからインプリント装置に入力しても良い。または、インプリント装置がLANなどのネットワークに接続している場合、外部の測定機器、サーバー、その他のネットワークに接続している装置が、ネットワーク経由でインプリント装置に係数セットを入力しても良い。
また、反り形状と位置ずれを表現する式は、高次多項式に限られず、他の関数系の式を用いても良い。
したがって、実施例1に係るインプリント装置によれば、ウエハグリッドとショット形状の補正ができるので、重ね合せ精度を向上させることができる。
実施例2に係るインプリント装置について説明する。なお、ここで言及しない事項は、実施例1に従い得る。
本実施例では、反り形状と位置ずれ量を表す式の一般式として、単位円内で直交する性質のあるZernike多項式を用いる。
まず、図2のS02において求める、反り形状を表す式について説明する。
反り形状を以下に示す式(4)を用いて表す。
z=C(r,θ)+C(r,θ)+・・・+C(r,θ) ・・・(4)
ここで、ウエハ面上にウエハ中心を原点とするr、θ座標をとり、ウエハ面と直交する方向にz座標をとる。式(4)中のzは、点(r、θ)におけるウエハの高さ、すなわち反り量を表す。なお、ウエハ内のr、θ座標をウエハ半径で規格化して用いると良い。C、C、...、Cは反り形状の係数セットCである。また、Z、Z、...、ZはZernike多項式を構成する関数であり、例えば、以下のように表せる。
(r,θ)=1
(r,θ)=rcosθ
(r,θ)=rsinθ
(r,θ)=2r−1
(r,θ)=rcos2θ
(r,θ)=rsin2θ
(r,θ)=(3r−2r)cosθ
(r,θ)=(3r−2r)sinθ
(r,θ)=6r−6r+1
なお、この式で十分に表現できないような高次のうねり成分を含むような反り形状を表現したい場合は、適宜、式(4)の次数、項の数を増やせば良い。例えば、36項までのZernike多項式がよく用いられる。また、高次のうねり成分を含むような反り形状を表現する必要はなく、演算時間を短縮したい場合には、式(4)の次数、項の数を減らしても良い。
また、式(4)の反り形状の係数セットCは、実施例1と同様の方法で求めることができる。求めた反り形状の係数セットCを式(4)に適用することで、反り形状を表す式を求めることができる。
次に、図2のS05において求める、位置ずれ量を表す式について説明する。
位置ずれ量を表す式についても、同様に式(5)のように表すことができる。
Δr=A(r,θ)+A(r,θ)+・・・+A(r,θ)
Δθ=B(r,θ)+B(r,θ)+・・・+B(r,θ)
・・・(5)
ここで、r、θは、式(4)と同じく、ウエハ面上の任意の点を表す。また、Δrは、(r、θ)における位置ずれ量のr成分、Δθは、同じく位置ずれ量のθ成分を表す。なお、ウエハ内のr、θ座標をウエハ半径で規格化して用いると良い。A、A、...、A9、、B、...、Bは位置ずれ量の係数セットAである。また、Z、Z、...、Zは、Zernike多項式を構成する関数であり、式(4)と同様である。
なお、この式で十分に表現できないような高次のうねり成分を含むようなディストーション形状を表現したい場合は、適宜、式(5)の次数、項の数を増やせば良い。例えば、36項までのZernike多項式がよく用いられる。また、高次のうねり成分を含むようなディストーション形状を表現する必要はなく、演算時間を短縮したい場合には、式(5)の次数、項の数を減らしても良い。
また、式(5)の位置ずれ量の係数セットAは、実施例1と同様の方法で求めることができる。求めた位置ずれ量の係数セットAを式(5)に適用することで、位置ずれ量を表す式を求めることができる。
次に、図2のS06において求める、変換行列Mについて説明する。
反り形状を表す式と、位置ずれ量を表す式の変換をする式(第3の式)、反り形状の係数セットCと位置ずれ量の係数セットAから変換行列Mを求めるには、以下の式(6)を用いる。
Figure 2017050428
ここで、M11、M12などは変換行列Mの要素である。本実施例の場合、反り形状の係数が9個、位置ずれ量の係数が18個であるため、変換行列Mは18行9列の行列になり、要素は全部で162個になる。
また、式(6)の変換行列Mの要素は、実施例1と同様の方法で求めることができる。
なお、反り形状と位置ずれを表現する関数系は別であって良いので、実施例1で用いた高次多項式(式(1)、式(2))とZernike多項式(式(4)、式(5))を自由に組み合せて用いても良い。また、高次多項式、Zernike多項式に限らず、他の関数系の式を用いても良い。
したがって、実施例2に係るインプリント装置によれば、ウエハグリッドとショット形状の補正ができるので、重ね合せ精度を向上させることができる。
実施例3に係るインプリント装置について説明する。なお、ここで言及しない事項は、実施例1、及び実施例2に従い得る。
本実施例では、図2のS01で取得する反り形状の情報を、インプリント装置内のプリアライメントユニット30にて測定して取得する。図8はプリアライメントユニット30を示した図である。ロボットハンドによりウエハカセットから取り出されたウエハ11は、プリアライメントユニット30に搬送される。プリアライメントユニット30は回転可能に構成してあり、搬送したウエハ11を回転する。プリアライメントユニット30には観察カメラ31が設けられており、これにより回転しているウエハの周縁部(エッジ)付近を観察する。このとき、回転中心がウエハ11の中心とずれていた場合、ウエハ11のエッジが回転に伴い動いて見えるので、回転中心の補正を行い、回転中心とウエハ11の中心を一致させる。また、ウエハ11には方位の基準となるノッチまたはオリフラが設けられており、観察カメラ31ではそれを検出することによりウエハ11の方位合せを行う。
ウエハ11の回転中心合せと方位合せが終了すると、次に、プリアライメントユニット30に設けられたz変位測定ユニット32により、ウエハ11のエッジ付近のz変位を測定する。z変位測定ユニット32は、測定ポイントに光線を投射し、その反射光の位置を読みとってz変位を測定している。なお、z変位を測定するのは、レーザ変位計など別の手段であっても良い。ウエハ11を回転しながらz変位測定を行うことにより、ウエハ11のエッジの一周分のz変位情報が得られる。そのz変位とウエハ11の方位の情報は、反り形状の情報として制御部7に送られる。そこで、最小自乗法などの手法によって以下の三角多項式(7)にフィッティングされる。
z=C0+C1cosθ+S1sinθ+C2cos2θ+S2sin2θ+C3cos3θ+S3sin3θ ・・・(7)
ここで、ウエハ面上にウエハ中心を原点とするθ座標をとり、ウエハ面と直交する方向にz座標をとる。式(7)中のzは、ウエハ11のエッジ付近のθ座標におけるウエハの高さ、すなわち反り量を表す。C、C、...、Sは反り形状の係数セットCである。なお、この式で十分に表現できないような高次のうねり成分を含むような反り形状を表現したい場合は、適宜、式(7)の次数、項の数を増やせば良い。また、高次のうねり成分を含むような反り形状を表現する必要はなく、演算時間を短縮したい場合には、式(7)の次数、項の数を減らしても良い。
また、式(7)の反り形状を表す式は、実施例1と同様の方法で求めることができる。また、位置ずれ量を表す式については、実施例1の式(2)、または実施例2の式(5)と同様とすることができ、位置ずれ量を表す式も同様に求めることができる。
この反り形状を表す式から、実施例1と同様に、変換行列Mを介して位置ずれ量を計算することができる。なお、式(8)の位置ずれ量の係数セットAは、実施例1と同様である。
Figure 2017050428
また、式(8)の変換行列Mの要素は、実施例1と同様の方法で求めることができる。
また、図6のS08で取得する反り形状の情報も、インプリント装置内のプリアライメントユニット30にて測定して取得することができる。
本実施例では、ウエハの周縁部分のz変位を測定する方式としたが、z変位測定ユニットを移動可能に構成して、ウエハの内側から外側にかけて複数の径におけるウエハのz変位を測定すると、さらに効果的に反り形状を測定することが可能である。この場合、実施例1、実施例2の方法で反り形状を表す式を求めることができる。
したがって、実施例3に係るインプリント装置によれば、ウエハグリッドとショット形状の補正ができるので、重ね合せ精度を向上させることができる。また、プリアライメントユニット30で被処理ウエハの反り形状の情報を取得することができるので、さらにスループットの低下を抑えることができる。
(物品の製造方法)
物品として、例えば、デバイス(半導体デバイス、磁気記憶媒体、液晶表示素子等)、カラーフィルター、またはハードディスク等の製造方法について説明する。かかる製造方法は、インプリント装置を用いてパターンを基板(ウエハ、ガラスプレート、フィルム状基板等)に形成する工程を含む。かかる製造方法は、パターンを形成された基板を処理する工程を更に含む。該処理ステップは、該パターンの残膜を除去するステップを含みうる。また、該パターンをマスクとして基板をエッチングするステップなどの周知の他のステップを含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性および生産コストの少なくとも1つにおいて有利である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。また、実施例1〜実施例3に係るインプリント装置は、単独で実施するだけでなく、実施例1〜実施例3の全ての組合せで実施することができる。

Claims (26)

  1. 基板上のインプリント材と型とを接触させて前記インプリント材のパターンを形成するインプリント装置であって、
    基板を吸着して移動する移動部と、
    制御部と、を有し、
    前記制御部が、前記移動部に吸着する前の前記基板の反り形状の情報を用いて、前記移動部に吸着された前記基板面上の各位置における位置ずれ量を表す式を求め、
    前記位置ずれ量を表す式を用いて前記基板面上の複数位置における位置ずれ量を計算し、前記複数位置における位置ずれ量に基づいて前記基板のショット領域に関するディストーション成分を求め、
    前記ディストーション成分に応じて、前記型と前記基板の少なくとも一方の形状または位置を制御する
    ことを特徴とするインプリント装置。
  2. 前記位置ずれ量を表す式は基板面上の2方向に関するものであり、前記複数位置における位置ずれ量は基板面上の2方向に関するものである
    ことを特徴とする、請求項1に記載のインプリント装置。
  3. 前記ディストーション成分は複数種のディストーション成分である
    ことを特徴とする、請求項1又は請求項2に記載のインプリント装置。
  4. 前記制御部は、前記反り形状の情報に基づいて前記基板の形状を表す式としての第1の式を求め、
    前記第1の式を、変換手段によって、前記基板面上の複数位置における前記位置ずれ量を表す式としての第2の式に変換し、
    前記第2の式を用いて、前記複数位置における位置ずれ量を計算する
    ことを特徴とする、請求項1乃至請求項3のいずれか1項に記載のインプリント装置。
  5. 前記変換手段は、前記第1の式の複数の係数の値から前記第2の式の複数の係数の値を求めるための変換行列である
    ことを特徴とする、請求項4に記載のインプリント装置。
  6. 前記変換行列は、前記第1の式の一般式と前記基板とは別の基板の前記移動部により吸着される前の反り形状の情報とを用いて得られる前記別の基板の形状を表す式と、前記第2の式の一般式と前記別の基板を前記移動部により吸着したときの前記別の基板面上の複数位置における2方向の位置ずれ量とを用いて得られる前記別の基板面上の各位置における2方向の位置ずれ量を表す式とから、求められたものである
    ことを特徴とする、請求項5に記載のインプリント装置。
  7. 前記制御部は、前記型のパターン領域が前記ショット領域に重なるように前記移動部により前記基板の位置を制御する
    ことを特徴とする、請求項1乃至請求項6のいずれか1項に記載のインプリント装置。
  8. 型のパターン領域の形状を変更する型変形部を有し、
    前記制御部は、前記型のパターン領域が前記ショット領域に重なるように前記型変形部を用いて前記型の形状を制御する
    ことを特徴とする、請求項1乃至請求項7のいずれか1項に記載のインプリント装置。
  9. 基板上のショット領域の形状を変更する基板変形部を有し、
    前記制御部は、前記型のパターン領域が前記ショット領域に重なるように前記基板変形部を用いて前記基板の形状を制御する
    ことを特徴とする、請求項1乃至請求項8のいずれか1項に記載のインプリント装置。
  10. 型を移動する駆動部を有し、
    前記制御部は、前記型のパターン領域が前記ショット領域に重なるように前記駆動部を用いて前記型の位置を制御する
    ことを特徴とする、請求項1乃至請求項9のいずれか1項に記載のインプリント装置。
  11. 前記第1の式は、少なくとも2次以上の高次多項式で表される式である
    ことを特徴とする、請求項4乃至請求項10のいずれか1項に記載のインプリント装置。
  12. 前記第1の式は、Zernike多項式または三角多項式で表される式である
    ことを特徴とする、請求項4乃至請求項10のいずれか1項に記載のインプリント装置。
  13. 前記第2の式は、少なくとも2次以上の高次多項式で表される式である
    ことを特徴とする、請求項4乃至請求項12のいずれか1項に記載のインプリント装置。
  14. 前記第2の式は、Zernike多項式で表される式である
    ことを特徴とする、請求項4乃至請求項12のいずれか1項に記載のインプリント装置。
  15. 前記制御部は、外部から入力された、前記反り形状の情報を保持する
    ことを特徴とする、請求項1乃至請求項14のいずれか1項に記載のインプリント装置。
  16. 前記反り形状を測定する測定部を有し、
    該測定部を用いて前記反り形状の情報を得る
    ことを特徴とする、請求項1乃至請求項14のいずれか1項に記載のインプリント装置。
  17. 前記基板面上の位置ずれ量を計測する計測部を有し、
    前記制御部は、前記計測部により計測された、基板面上の位置ずれ量の情報から前記第2の式を求める
    ことを特徴とする、請求項4乃至請求項16のいずれか1項に記載のインプリント装置。
  18. 基板上のインプリント材と型とを接触させて前記インプリント材のパターンを形成するインプリント装置であって、
    基板上に樹脂を塗布する塗布部と、
    制御部と、を有し、
    前記制御部は、前記基板のショット領域に関するディストーション成分に応じて、前記塗布部を用いて前記インプリント材の塗布位置と塗布量の少なくとも一方を制御する
    ことを特徴とするインプリント装置。
  19. 基板を吸着して移動する移動部を有し、
    前記制御部が、前記移動部に吸着する前の前記基板の反り形状の情報を用いて、前記移動部に吸着された前記基板面上の各位置における位置ずれ量を表す式を求め、
    前記位置ずれ量を表す式を用いて前記基板面上の複数位置における位置ずれ量を計算し、前記複数位置における位置ずれ量に基づいて前記基板のショット領域に関するディストーション成分を求める
    ことを特徴とする、請求項18に記載のインプリント装置。
  20. 基板上のインプリント材と型とを接触させて前記インプリント材のパターンを形成するインプリント方法であって、
    移動部に吸着する前の前記基板の反り形状の情報を用いて、前記移動部に吸着された前記基板面上の各位置における位置ずれ量を表す式を求める工程と、
    前記位置ずれ量を表す式を用いて前記基板面上の複数位置における位置ずれ量を計算し、前記複数位置における位置ずれ量に基づいて前記基板のショット領域に関するディストーション成分を求める工程と、
    前記ディストーション成分に応じて、前記型と前記基板の少なくとも一方の形状または位置を制御する工程と、を有する
    ことを特徴とするインプリント方法。
  21. 前記位置ずれ量を表す式は基板面上の2方向に関するものであり、前記複数位置における位置ずれ量は基板面上の2方向に関するものである
    ことを特徴とする、請求項20に記載のインプリント方法。
  22. 前記ディストーション成分は複数種のディストーション成分である
    ことを特徴とする、請求項20又は請求項21に記載のインプリント方法。
  23. 前記反り形状の情報に基づいて前記基板の形状を表す式としての第1の式を求める工程と、
    前記第1の式を、前記基板面上の複数位置における前記位置ずれ量を表す式としての第2の式に変換する工程と、
    前記第2の式を用いて、前記複数位置における位置ずれ量を計算する工程と、を有する
    ことを特徴とする、請求項20乃至請求項22のいずれか1項に記載のインプリント方法。
  24. 前記変換する工程は、前記第1の式の複数の係数の値から前記第2の式の複数の係数の値を求めるための変換行列を用いて行う
    ことを特徴とする、請求項23に記載のインプリント方法。
  25. 前記変換行列は、前記第1の式の一般式と前記基板とは別の基板の前記移動部により吸着される前の反り形状の情報とを用いて得られる前記別の基板の形状を表す式と、前記第2の式の一般式と前記別の基板を前記移動部により吸着したときの前記別の基板面上の複数位置における2方向の位置ずれ量とを用いて得られる前記別の基板面上の各位置における2方向の位置ずれ量を表す式とから、求められたものである
    ことを特徴とする、請求項24に記載のインプリント方法。
  26. 請求項1乃至請求項19のいずれか1項に記載のインプリント装置を用いて、パターンを基板に形成する工程と、
    前記工程で前記パターンを形成された前記基板を処理する工程と、を有する
    ことを特徴とする物品の製造方法。
JP2015173272A 2015-09-02 2015-09-02 インプリント装置、インプリント方法および物品の製造方法 Active JP6732419B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015173272A JP6732419B2 (ja) 2015-09-02 2015-09-02 インプリント装置、インプリント方法および物品の製造方法
PCT/JP2016/003705 WO2017038026A1 (en) 2015-09-02 2016-08-10 Imprint apparatus, imprint method, and product manufacturing method
KR1020187009097A KR102074088B1 (ko) 2015-09-02 2016-08-10 임프린트 장치, 임프린트 방법 및 물품 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173272A JP6732419B2 (ja) 2015-09-02 2015-09-02 インプリント装置、インプリント方法および物品の製造方法

Publications (2)

Publication Number Publication Date
JP2017050428A true JP2017050428A (ja) 2017-03-09
JP6732419B2 JP6732419B2 (ja) 2020-07-29

Family

ID=58186941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173272A Active JP6732419B2 (ja) 2015-09-02 2015-09-02 インプリント装置、インプリント方法および物品の製造方法

Country Status (3)

Country Link
JP (1) JP6732419B2 (ja)
KR (1) KR102074088B1 (ja)
WO (1) WO2017038026A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049456A (ja) * 2015-09-02 2017-03-09 キヤノン株式会社 ディストーション検出方法、露光装置、露光方法、およびデバイス製造方法
KR20190003391A (ko) * 2017-06-30 2019-01-09 캐논 가부시끼가이샤 임프린트 장치 및 물품의 제조 방법
WO2019163565A1 (ja) * 2018-02-26 2019-08-29 キヤノン株式会社 インプリント方法、インプリント装置、モールドの製造方法、および、物品の製造方法
JP2019165091A (ja) * 2018-03-19 2019-09-26 キヤノン株式会社 インプリント装置、および、物品の製造方法
JP2021072352A (ja) * 2019-10-30 2021-05-06 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233174B2 (ja) * 2018-05-17 2023-03-06 キヤノン株式会社 インプリント装置、物品製造方法、平坦化層形成装置、情報処理装置、及び、決定方法
JP7116605B2 (ja) * 2018-06-28 2022-08-10 キヤノン株式会社 インプリント材のパターンを形成するための方法、インプリント装置、インプリント装置の調整方法、および、物品製造方法
TWI836577B (zh) * 2022-01-25 2024-03-21 日商鎧俠股份有限公司 半導體製造系統與半導體裝置的製造方法
US20240266233A1 (en) * 2023-02-08 2024-08-08 Applied Materials, Inc. Influence function-based mitigation of substrate deformation with film deposition and ion implantation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060617A (ja) * 1999-08-20 2001-03-06 Canon Inc 基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイスの製造方法
JP2004335808A (ja) * 2003-05-08 2004-11-25 Sony Corp パターン転写装置、パターン転写方法およびプログラム
JP2006269867A (ja) * 2005-03-25 2006-10-05 Canon Inc 露光装置
US20070278712A1 (en) * 2006-05-31 2007-12-06 Canon Kabushiki Kaisha Pattern forming method and pattern forming apparatus
JP2013055327A (ja) * 2011-08-11 2013-03-21 Canon Inc インプリント装置および物品の製造方法
JP2014053333A (ja) * 2012-09-04 2014-03-20 Toshiba Corp インプリント装置およびインプリント方法
JP2014056893A (ja) * 2012-09-11 2014-03-27 Dainippon Printing Co Ltd ナノインプリントリソグラフィ用テンプレートの製造方法
JP2014138041A (ja) * 2013-01-15 2014-07-28 Canon Inc 処理装置及びデバイスの製造方法
JP2015128145A (ja) * 2013-11-26 2015-07-09 キヤノン株式会社 検出装置、インプリント装置、および物品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809802B1 (en) * 1999-08-19 2004-10-26 Canon Kabushiki Kaisha Substrate attracting and holding system for use in exposure apparatus
JP4185941B2 (ja) 2006-04-04 2008-11-26 キヤノン株式会社 ナノインプリント方法及びナノインプリント装置
US8310031B2 (en) 2010-07-30 2012-11-13 Memc Electronic Materials, Inc. Semiconductor and solar wafers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060617A (ja) * 1999-08-20 2001-03-06 Canon Inc 基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイスの製造方法
JP2004335808A (ja) * 2003-05-08 2004-11-25 Sony Corp パターン転写装置、パターン転写方法およびプログラム
JP2006269867A (ja) * 2005-03-25 2006-10-05 Canon Inc 露光装置
US20070278712A1 (en) * 2006-05-31 2007-12-06 Canon Kabushiki Kaisha Pattern forming method and pattern forming apparatus
JP2013055327A (ja) * 2011-08-11 2013-03-21 Canon Inc インプリント装置および物品の製造方法
JP2014053333A (ja) * 2012-09-04 2014-03-20 Toshiba Corp インプリント装置およびインプリント方法
JP2014056893A (ja) * 2012-09-11 2014-03-27 Dainippon Printing Co Ltd ナノインプリントリソグラフィ用テンプレートの製造方法
JP2014138041A (ja) * 2013-01-15 2014-07-28 Canon Inc 処理装置及びデバイスの製造方法
JP2015128145A (ja) * 2013-11-26 2015-07-09 キヤノン株式会社 検出装置、インプリント装置、および物品の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049456A (ja) * 2015-09-02 2017-03-09 キヤノン株式会社 ディストーション検出方法、露光装置、露光方法、およびデバイス製造方法
KR20190003391A (ko) * 2017-06-30 2019-01-09 캐논 가부시끼가이샤 임프린트 장치 및 물품의 제조 방법
KR102293478B1 (ko) 2017-06-30 2021-08-26 캐논 가부시끼가이샤 임프린트 장치 및 물품의 제조 방법
WO2019163565A1 (ja) * 2018-02-26 2019-08-29 キヤノン株式会社 インプリント方法、インプリント装置、モールドの製造方法、および、物品の製造方法
JP2019149415A (ja) * 2018-02-26 2019-09-05 キヤノン株式会社 インプリント方法、インプリント装置、モールドの製造方法、および、物品の製造方法
KR20200118207A (ko) 2018-02-26 2020-10-14 캐논 가부시끼가이샤 임프린트 방법, 임프린트 장치, 몰드의 제조 방법, 및 물품 제조 방법
JP7022615B2 (ja) 2018-02-26 2022-02-18 キヤノン株式会社 インプリント方法、インプリント装置、モールドの製造方法、および、物品の製造方法
JP2019165091A (ja) * 2018-03-19 2019-09-26 キヤノン株式会社 インプリント装置、および、物品の製造方法
JP2021072352A (ja) * 2019-10-30 2021-05-06 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
US11835871B2 (en) 2019-10-30 2023-12-05 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and article manufacturing method
JP7451141B2 (ja) 2019-10-30 2024-03-18 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法

Also Published As

Publication number Publication date
WO2017038026A1 (en) 2017-03-09
KR20180048912A (ko) 2018-05-10
KR102074088B1 (ko) 2020-02-05
JP6732419B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6732419B2 (ja) インプリント装置、インプリント方法および物品の製造方法
JP6140966B2 (ja) インプリント装置、それを用いた物品の製造方法
JP5686779B2 (ja) インプリント装置、それを用いた物品の製造方法
JP5759303B2 (ja) インプリント装置、それを用いた物品の製造方法
JP2013098291A (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
US9387607B2 (en) Imprint apparatus, imprint method, and method for producing device
JP6300459B2 (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
JP6029494B2 (ja) インプリント方法およびインプリント装置、それを用いた物品の製造方法
JP6029268B2 (ja) インプリント装置、それを用いた物品の製造方法
JP5637785B2 (ja) 原版、及びそれを用いた物品の製造方法
JP2005108975A (ja) 微細加工装置
TWI720301B (zh) 壓印裝置及製造物品的方法
JP2016063054A (ja) インプリント方法、インプリント装置、および物品の製造方法
JP6385177B2 (ja) モールド、インプリント装置および物品製造方法
JP2016018824A (ja) インプリント装置及び物品の製造方法
JP2013125817A (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
JP6600391B2 (ja) ナノインプリントリソグラフィにおけるテンプレートの歪みのリアルタイム補正
JP2017139268A (ja) インプリント装置及び物品の製造方法
JP2016103603A (ja) モールドおよびその製造方法、インプリント方法、ならびに、物品製造方法
JP6395352B2 (ja) インプリント装置およびインプリント方法、それを用いた物品の製造方法
JP2013038137A (ja) モールド、インプリント装置、インプリント方法及び物品の製造方法
JP2014022378A (ja) インプリント装置、それを用いた物品の製造方法
JP7027037B2 (ja) モールドの複製方法、インプリント装置、および物品の製造方法
JP2020092178A (ja) インプリント装置、インプリント方法及び物品の製造方法
JP2021086908A (ja) インプリント装置、インプリント方法、物品の製造方法、基板、および、型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R151 Written notification of patent or utility model registration

Ref document number: 6732419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151