JP2017044453A - Net-like body with leg - Google Patents

Net-like body with leg Download PDF

Info

Publication number
JP2017044453A
JP2017044453A JP2015169189A JP2015169189A JP2017044453A JP 2017044453 A JP2017044453 A JP 2017044453A JP 2015169189 A JP2015169189 A JP 2015169189A JP 2015169189 A JP2015169189 A JP 2015169189A JP 2017044453 A JP2017044453 A JP 2017044453A
Authority
JP
Japan
Prior art keywords
net
foot
mesh
filament
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015169189A
Other languages
Japanese (ja)
Other versions
JP6765792B2 (en
Inventor
洋一 尾▲崎▼
Yoichi Ozaki
洋一 尾▲崎▼
慶介 大武
Keisuke Otake
慶介 大武
岸 英雄
Hideo Kishi
英雄 岸
治美 尾▲崎▼
Harumi Ozaki
治美 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURESUTO KK
WORLD NEW SERAMII KK
Original Assignee
KURESUTO KK
WORLD NEW SERAMII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURESUTO KK, WORLD NEW SERAMII KK filed Critical KURESUTO KK
Priority to JP2015169189A priority Critical patent/JP6765792B2/en
Publication of JP2017044453A publication Critical patent/JP2017044453A/en
Application granted granted Critical
Publication of JP6765792B2 publication Critical patent/JP6765792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a net-like body for increasing an electric power reduction effect compared to a conventional one.SOLUTION: A net-like body with a leg as a net-like body 1 which is arranged in a movement path of air of a heat exchanger includes: a leg part 14a comprising a plurality of projections on one or both of one surface and the other surface of the net-like body; and ceramics layers at least on the surfaces of the net-like body and the leg part. The net-like body has a shape where a plurality of stripes 11a and 12a cross each other, and the stripe preferably has a core material comprising a synthetic resin material, and a ceramics layer arranged on the front surface side of the core material. With this, it is possible to decrease a mixing amount of ceramics, and reduce electric power consumed for heat exchange of the heat exchanger. The net-like body contains for instance, 0.5 μg or more of ceramics per cmof the net-like body.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換器の空気の移動経路に配置して使用する足付網状体に関する。 TECHNICAL FIELD The present invention relates to a legged net used by being arranged in an air movement path of a heat exchanger.

環境負荷の低減、経費節減等のために空気調和機、冷蔵設備などの消費エネルギーを低減することが望まれている。 It is desired to reduce energy consumption of air conditioners, refrigeration facilities, etc. in order to reduce environmental burdens and reduce costs.

例えば、以下の特許文献1では、加熱溶融させた低密度ポリエチレンと、所定の化学的組成のセラミックス粉末とを混合してペレットとして、ペレットを加熱溶融させて金型を使用して網状に成形することが記載されている。この空調ネットを空気調和機の室内機及び室外機それぞれの吸入口に配置すると、消費電力が低減されるとされている。 For example, in the following Patent Document 1, low-density polyethylene that has been heated and melted and ceramic powder having a predetermined chemical composition are mixed to form pellets, and the pellets are heated and melted and molded into a net using a mold. It is described. It is said that if this air conditioning net is arranged at the inlet of each of the indoor unit and outdoor unit of the air conditioner, power consumption is reduced.

特開2014−224621号公報JP 2014-224621 A

特許文献1の網状体では、電力の低減効果は45%程度であるとされており、より電力の低減効果を高めることが望まれる。 In the mesh body of Patent Document 1, it is said that the power reduction effect is about 45%, and it is desired to increase the power reduction effect.

本発明は、従来よりも電力、燃料用の気体等の使用量の低減効果を高めた網状体を提供することを目的とする。 It is an object of the present invention to provide a net-like body that has an improved effect of reducing the amount of power, gas for fuel, etc. used than before.

熱交換器の空気の移動経路に配置される網状体であって、網状体の一方の面及び他方の面のうちいずれか一方又は両方に複数の突条からなる足部を備えており、網状体及び足部は少なくともその表面にセラミクス層を備えてなる足付網状体により、上記の課題を解決する。本発明者らは、遠赤外線の放射量と消費されるエネルギー量の低減との間に相関関係があることを見出し、従来に比較してより電力の低減効果を高めることに成功した。 A net-like body disposed in the air movement path of the heat exchanger, the net-like body comprising a plurality of protrusions on one or both of one side and the other side of the net-like body. The body and the foot part solve the above-described problems by a legged mesh body having a ceramic layer on at least the surface thereof. The present inventors have found that there is a correlation between the amount of radiation of far-infrared rays and the reduction of the amount of energy consumed, and succeeded in enhancing the power reduction effect as compared with the conventional art.

網状体は複数の線条が交差する形状であり、線条は、合成樹脂材料から構成される芯材と、芯材の表面側に配されるセラミクス層とを有するものであることが好ましい。これにより、セラミクスの配合量を減らし、かつ熱交換器の熱交換に費やされる電力を低減することが可能になる。網状体は、例えば、セラミクスを網状体1cmあたり0.5μg以上含有してなるものである。 The net-like body has a shape in which a plurality of filaments intersect, and the filaments preferably have a core material composed of a synthetic resin material and a ceramic layer disposed on the surface side of the core material. Thereby, it becomes possible to reduce the compounding quantity of ceramics and to reduce the electric power consumed for heat exchange of the heat exchanger. The net-like body is, for example, one containing 0.5 μg or more of ceramics per 1 cm 2 of the net-like body.

芯材は軟質合成樹脂材料から構成することが好ましい。これにより、熱交換器の吸気口又は排気口の形状に合わせて網状体を変形させて固定することができる。 The core material is preferably composed of a soft synthetic resin material. Thereby, a mesh body can be deform | transformed and fixed according to the shape of the inlet port or exhaust port of a heat exchanger.

線条は空気が移動する方向に沿って配される複数の第1線条と、第1の方向に交差する方向に配される複数の第2線条とが交差する形状であり、足部は、第1線条及び第2線条のいずれか一方の延在方向に沿って連続するものであることが好ましい。これにより、第1線条又は第2線条に沿って空気を流入又は流出させることができるので、空気の流れが妨げられにくくすることができる。 The filament is a shape in which a plurality of first filaments arranged along the direction in which the air moves and a plurality of second filaments arranged in a direction intersecting the first direction intersect, Is preferably continuous along the extending direction of either the first filament or the second filament. Thereby, since air can be flowed in or out along a 1st filament or a 2nd filament, the flow of air can be made hard to be prevented.

足部を設けることで網状体の線条を特段太く設計しなくても網状体の表面積を大きくすることが可能である。このため網状体の目開きを自由に設定することが可能になる。例えば、網状体は目開きが30%〜80%であることが好ましい。 By providing the foot portion, it is possible to increase the surface area of the reticulate body without designing the reed filaments to be particularly thick. For this reason, it is possible to freely set the mesh openings. For example, the mesh body preferably has an opening of 30% to 80%.

足部の突出高さは高いほど表面積が増大するので好ましい。例えば、足部の突出高さは0.8〜3.0mmであることが好ましい。 A higher protrusion height of the foot is preferable because the surface area increases. For example, it is preferable that the protrusion height of the foot is 0.8 to 3.0 mm.

網状体及び足部はその表面にセラミクス層を備えるため、網状体表面にセラミクスが集中している。このため、少ないセラミクスの添加量でも遠赤外線の放射量を大きくすることができる。さらに当該網状体は足部を備えているため、網状体の表面積を大きくして遠赤外線の放射量を大きくすることができる。遠赤外線の放射量を大きくすることで、熱交換器における熱交換の効率を高めて熱交換に要する消費エネルギーを低く抑えることができる。 Since the mesh body and the foot are provided with a ceramic layer on the surface thereof, the ceramics are concentrated on the surface of the mesh body. For this reason, the amount of far-infrared radiation can be increased even with a small amount of ceramics added. Further, since the mesh body has a foot portion, the surface area of the mesh body can be increased to increase the amount of far infrared radiation. By increasing the far-infrared radiation amount, it is possible to increase the efficiency of heat exchange in the heat exchanger and reduce the energy consumption required for heat exchange.

網状体の一実施形態の平面図である。It is a top view of one embodiment of a net-like body. 図1のAA部分の断面図である。It is sectional drawing of the AA part of FIG. 別実施形態の網状体の図2相当の断面図である。It is sectional drawing equivalent to FIG. 2 of the mesh body of another embodiment. 別実施形態の網状体の平面図である。It is a top view of the net body of another embodiment. 図4のC部分の拡大図である。FIG. 5 is an enlarged view of a portion C in FIG. 4. 図4のBB部分の断面図である。It is sectional drawing of the BB part of FIG. 網状体の設置個所を模式的に示した図面である。It is drawing which showed typically the installation location of a net-like body. 図7の室内機のみを拡大して示した断面図である。It is sectional drawing which expanded and showed only the indoor unit of FIG.

図面を参照しつつ本発明の網状体の実施形態について説明する。 An embodiment of a mesh body of the present invention will be described with reference to the drawings.

図1及び2に、本発明の網状体の一実施形態を示す。図1に示したように、本実施形態の網状体1は平面視及び底面視において格子状の形態を有している。この網状体1は、一の方向に平行に配列された複数の第1線条11aと、当該線条11aに交差する方向に配置される複数の第2線条12aとからなる。第1線条11aと第2線条12aとは直交関係にあり、複数の方形の網目13が形成される。図2に示したように、この網状体11aは、複数の第1線条11aから平面側に突出する足部14aを備える。足部14aは第1線条11aの延在方向に沿って連続する。足部14aの短手方向の幅は第1線条14aの短手方向の幅よりも小さく構成されている。第1線条11a、第2線条12b、及び足部14aは一体に成形されている。足部14aは、第1線条11aに替えて第2線条12aに設けて第2線条12aの延在方向に沿って連続するようにしてもよいし、第1線条11a及び第2線条12aの両方に足部14a、14bを設けて、第1線条11aの延在方向及び第2線条12aの延在方向に沿って連続するようにしてもよい。 1 and 2 show an embodiment of the mesh body of the present invention. As shown in FIG. 1, the net-like body 1 of this embodiment has a lattice-like form in a plan view and a bottom view. The net-like body 1 is composed of a plurality of first filaments 11a arranged in parallel to one direction and a plurality of second filaments 12a arranged in a direction intersecting with the filaments 11a. The first filaments 11a and the second filaments 12a are orthogonal to each other, and a plurality of rectangular meshes 13 are formed. As shown in FIG. 2, the mesh body 11 a includes feet 14 a that protrude from the plurality of first filaments 11 a to the plane side. The foot portion 14a continues along the extending direction of the first filament 11a. The width in the short direction of the foot portion 14a is configured to be smaller than the width in the short direction of the first filament 14a. The first filament 11a, the second filament 12b, and the foot 14a are integrally formed. The foot portion 14a may be provided on the second filament 12a instead of the first filament 11a so as to continue along the extending direction of the second filament 12a, or the first filament 11a and the second filament 14a. The leg portions 14a and 14b may be provided on both of the filaments 12a so as to be continuous along the extending direction of the first filaments 11a and the extending direction of the second filaments 12a.

上記の網状体1では、足部14aが平面側に突出する構成である。足部14aは底面側に突出する構成としてもよいし、図3に示した網状体2のように底面側及び底面側の両方に突出する構成としてもよい。網状体2は、両面に足部14a、14bを設けた点以外は網状体1と同様の構成である。足部14a、14bが両面側に突出する場合において、足部の突出高さは底面側の高さ(H2)と平面側の高さ(H1)の合計値とする。 The mesh body 1 has a structure in which the foot portion 14a protrudes to the plane side. The foot portion 14a may be configured to protrude to the bottom surface side, or may be configured to protrude to both the bottom surface side and the bottom surface side as in the net 2 shown in FIG. The mesh body 2 has the same configuration as the mesh body 1 except that the legs 14a and 14b are provided on both sides. In the case where the feet 14a and 14b protrude on both sides, the protruding height of the feet is the sum of the bottom side height (H2) and the plane side height (H1).

本実施形態の網状体の網目13は方形であるが、例えば図4ないし6に示した網状体3のように6角形状としてもよい。この網状体3では、第1線条11cは約120°程度傾斜し、第2線線条12cは約60°傾斜して、交点15において互いに交差する。この実施形態では、第1線条11cに足部14cを設けて第1線条11cの延在方向に連続するようにしているが、第2線条12cに足部を設けて第2線条12cの延在方向に沿って連続するようにしてもよいし、第1線条11c及び第2線条12cの両方に足部を設けて第1線条11cの延在方向及び第2線条12cの延在方向のそれぞれに連続するようにしてもよい。その他の実施形態として、網目の形状を5角形など多角形や円形に変更してもよい。図4ないし図6では、作図の都合から足部14cを太線で示した。 Although the mesh 13 of the mesh body of the present embodiment is a square, it may be a hexagon like the mesh 3 shown in FIGS. In the net 3, the first filaments 11 c are inclined by approximately 120 °, and the second filaments 12 c are inclined by approximately 60 °, and intersect each other at the intersection 15. In this embodiment, the foot 14c is provided on the first wire 11c so as to be continuous in the extending direction of the first wire 11c, but the foot is provided on the second wire 12c to provide the second wire. You may make it continue along the extension direction of 12c, or provide a foot part in both the 1st filament 11c and the 2nd filament 12c, and the extension direction of the 1st filament 11c and the 2nd filament You may make it continue in each of the extending direction of 12c. In another embodiment, the mesh shape may be changed to a polygon such as a pentagon or a circle. 4 to 6, the foot portion 14c is indicated by a bold line for the convenience of drawing.

上述の網状体1、2、3は共に、図2、図3、及び図6に示したように、合成樹脂材料から構成される芯材16a、16b、16cと、芯材の表面側に配されるセラミクス層17a、17b、17cとを有する。セラミクス層17a、17b、17cは、例えば、セラミクスの粉末を任意の塗料に分散させて合成樹脂材料からなる芯材16a、16b、16cに付着させる。付着の方法としては、例えば、セラミクスを含む溶剤への浸漬、刷毛若しくはローラによる塗布、又はエアブラシやスプレー等による散布が挙げられる。散布は歩留まりが低下するので塗布又は浸漬に撚るのが好ましい。芯材16a、16b、17cは射出成型によって足部、第1線条、及び第2線条を一体に成形した。 As shown in FIGS. 2, 3, and 6, the nets 1, 2, and 3 described above are arranged on the core materials 16 a, 16 b, and 16 c made of synthetic resin material and on the surface side of the core material. Ceramic layers 17a, 17b, and 17c. The ceramic layers 17a, 17b, and 17c are, for example, dispersed ceramic powder in an arbitrary paint and adhered to the cores 16a, 16b, and 16c made of a synthetic resin material. Examples of the adhesion method include immersion in a solvent containing ceramics, application with a brush or a roller, or spraying with an air brush or spray. Since spraying reduces the yield, it is preferable to twist the coating or dipping. The core members 16a, 16b, and 17c were integrally formed with the foot, the first filament, and the second filament by injection molding.

上記の塗料としては、水性塗料及び油性塗料の両方を使用することができる。空気調和機の室内機や食品陳列棚の冷蔵設備に網状体を使用する場合は、VOCの発生が少ない水性塗料を使用することが好ましい。塗膜形成成分は、例えば、アクリル樹脂、ウレタン樹脂、メラミン樹脂などが挙げられる。ウレタン樹脂は経時的に加水分解が進む。メラミン樹脂は、合成の過程で使用するホルムアルデヒドが残留する可能性がある。耐候性と安全性の点でアクリル樹脂を塗膜形成成分として好適に採用することができる。 As the paint, both water-based paint and oil-based paint can be used. When using a net-like body for an indoor unit of an air conditioner or a refrigerator for a food display shelf, it is preferable to use a water-based paint that generates less VOC. Examples of the coating film forming component include an acrylic resin, a urethane resin, and a melamine resin. Urethane resin undergoes hydrolysis over time. Melamine resin may leave formaldehyde used in the process of synthesis. An acrylic resin can be suitably employed as a coating film forming component in terms of weather resistance and safety.

遠赤外線は物質の表面から約200μmの深さでほとんど吸収されて熱に変化する。このためセラミクスを合成樹脂材料に練り込んでしまうと単位添加量当たりの消費エネルギーの低減効果は小さくなる。上記の網状体1、2、3ではセラミクス層17a、17b、17cを浸漬、塗布、噴霧等の方法によって網状体の表面に形成して、単位添加量当たりの消費エネルギーの低減効果が大きくなるようにしている。例えば、網状体1cmあたり0.5μg以上セラミクスを含有させるようにすることが好ましい。遠赤外線の透過力は限られているためセラミクスを多量に含有させても消費エネルギーの低減効果の伸びは頭打ちになる。セラミクスの添加量の上限は1cmあたり50μg以下とすることが好ましく、20μg以下とすることがより好ましい。 Far-infrared rays are almost absorbed at a depth of about 200 μm from the surface of the material and change into heat. For this reason, if ceramics is kneaded into a synthetic resin material, the effect of reducing energy consumption per unit addition amount becomes small. In the above nets 1, 2, and 3, the ceramic layers 17a, 17b, and 17c are formed on the surface of the net by dipping, coating, spraying, or the like, so that the effect of reducing energy consumption per unit addition amount is increased. I have to. For example, it is preferable to contain 0.5 μg or more of ceramics per 1 cm 2 of the mesh. Since far-infrared transmission power is limited, even if a large amount of ceramics is contained, the effect of reducing the energy consumption will reach its peak. The upper limit of the amount of ceramic added is preferably 50 μg or less per 1 cm 2 , and more preferably 20 μg or less.

セラミクス層17a、17b、17cには、アイボリーなどの暖色系の顔料や青などの寒色系の顔料、黒などの暗色系の顔料を配合してもよい。物体の温度が高いほど遠赤外線の放射量が大きくなるため、セラミクス層17a、17b、17cには黒色顔料などの暗色系の顔料を併せて配合することが好ましい。黒色顔料に日光などが当たるとセラミクス層17a、17b、17cの温度が上昇する。これによって遠赤外線の放射量を高めることができる。さらに、セラミクス層17a、17b、17cは、芯材16a、16b、16cを被覆して紫外線が芯材に直接当たらないようにする。これによって、網状体の劣化を防止することができる。セラミクスを合成樹脂材料に練り込んで構成した網状体の場合は3〜4年程度で劣化し交換が必要になる。セラミクス層を芯材の上に設ける構成では、耐用年数を8年以上に延ばすことが可能になる。 The ceramic layers 17a, 17b, and 17c may be blended with a warm color pigment such as ivory, a cold color pigment such as blue, and a dark color pigment such as black. As the temperature of the object increases, the amount of far-infrared radiation increases. Therefore, it is preferable to mix dark pigments such as black pigments in the ceramic layers 17a, 17b, and 17c. When the black pigment is exposed to sunlight or the like, the temperature of the ceramic layers 17a, 17b, and 17c increases. This can increase the amount of far-infrared radiation. Furthermore, the ceramic layers 17a, 17b, and 17c cover the core materials 16a, 16b, and 16c so that ultraviolet rays do not directly hit the core material. Thereby, it is possible to prevent the mesh body from being deteriorated. In the case of a network formed by kneading ceramics into a synthetic resin material, it deteriorates in about 3 to 4 years and needs to be replaced. In the configuration in which the ceramic layer is provided on the core material, the service life can be extended to 8 years or more.

セラミクスは、遠赤外線の放射率が高いものを使用することが好ましい。例えば、波長4.5μm〜20.0μmの範囲における積分放射率が80%〜99%のものを使用することが好ましく、85%〜99%のものを使用することがより好ましい。積分放射率は、日本電子製のフーリエ変換赤外分光光度計(FT−IR)、及び日本電子製の赤外放射ユニット(IR−IRR200)を使用し、検出器としてMCTを使用して波長4.5μm〜20.0μmの範囲において分解能16cm-1で放射率を測定し、波長4.5μm〜20.0μmの範囲における放射率を積分して積分放射率を求める。測定温度は40℃で実施し、当該測定温度とはT熱電対を用いて測定したサンプルの表面温度である。 It is preferable to use ceramics having a high far-infrared emissivity. For example, it is preferable to use one having an integrated emissivity of 80% to 99% in a wavelength range of 4.5 μm to 20.0 μm, and more preferably 85% to 99%. The integral emissivity is a wavelength of 4 using a Fourier transform infrared spectrophotometer (FT-IR) manufactured by JEOL and an infrared radiation unit (IR-IRR200) manufactured by JEOL, using MCT as a detector. The emissivity is measured with a resolution of 16 cm −1 in the range of 5 μm to 20.0 μm, and the integrated emissivity is obtained by integrating the emissivity in the wavelength range of 4.5 μm to 20.0 μm. The measurement temperature is 40 ° C., and the measurement temperature is the surface temperature of the sample measured using a T thermocouple.

上記の網状体を構成する芯材16a、16b、16cは、軟質合成樹脂材料であるエチレン酢酸ビニル共重合体(EVA)で構成している。EVAは、酢酸ビニルユニットに起因する柔軟さを備える。その他のエラストマーで芯材を構成してもよい。軟質合成樹脂材料で網状体を構成することで、通風口の形状に沿うように網状体を湾曲させてセットすることが可能になる。例えば、図7及び図8に示すように、空気調和機の室内機に網状体を用いる場合に、室内機19の湾曲部18に沿うように網状体16を湾曲させて容易に固定することができる。 The core materials 16a, 16b, and 16c constituting the above-mentioned network are made of an ethylene vinyl acetate copolymer (EVA) that is a soft synthetic resin material. EVA has the flexibility due to the vinyl acetate unit. You may comprise a core material with another elastomer. By configuring the mesh body with the soft synthetic resin material, the mesh body can be curved and set so as to follow the shape of the vent hole. For example, as shown in FIGS. 7 and 8, when a mesh body is used for an indoor unit of an air conditioner, the mesh body 16 can be easily bent and fixed along the curved portion 18 of the indoor unit 19. it can.

網状体に弾性を持たせておけば網状体をロール状に巻き取って巻回物とし、この巻回物を施工現場に容易に運搬して使用することが可能になる。例えば、空気調和機の室内機もしくは室外機の吸気口の寸法に合致するように巻回物から網状体を切り出して吸気口の全体を覆うように設置することが容易である。 If the mesh body is made elastic, the mesh body can be wound into a roll to form a wound product, which can be easily transported to the construction site for use. For example, it is easy to cut out the mesh body from the wound material so as to match the size of the air inlet of the air conditioner indoor unit or outdoor unit, and to install the entire air inlet.

図6及び図7において模式的に示したように、室内機19は、ファン20と、熱交換器21と、ダストフィルタ22とを内蔵する。図6及び図7の例では、カバー23とダストフィルタ22との間に網状体1、2又は3を挟んで固定する。図示は省略するが、室外に配置される室外機24も同様に熱交換器及びファンを内蔵し、さらにコンプレッサー(図示略)を内蔵する。室外機と室内機は配管25で接続されており、配管25の内部を熱交換媒体が循環する。部屋30の任意の位置に室内機19が固定される。 As schematically shown in FIGS. 6 and 7, the indoor unit 19 includes a fan 20, a heat exchanger 21, and a dust filter 22. In the example of FIGS. 6 and 7, the mesh bodies 1, 2, or 3 are sandwiched and fixed between the cover 23 and the dust filter 22. Although illustration is omitted, the outdoor unit 24 arranged outdoors also incorporates a heat exchanger and a fan, and further incorporates a compressor (not shown). The outdoor unit and the indoor unit are connected by a pipe 25, and a heat exchange medium circulates inside the pipe 25. The indoor unit 19 is fixed at an arbitrary position in the room 30.

カバー23の黒く塗りつぶした部分が吸気口26となっており、図1、図4、図7及び図8において矢印D又は矢印Eで示したように、この空気調和機では網状体の面に対して平行に空気が流入する。図1において示した矢印D及び図5に示した矢印Eは、図8における矢印D又は矢印Eと一致する方向を示す。このとき空気の流入方向に対して複数の足部14a又は14cが沿うように網状体を配置すれば、網状体1、2、3によって空気の流入が阻害されず好ましい。例えば、網状体1及び2の場合は空気の流入方向に対して足部を備える第1線条が平行になるように網状体を配置する。なお、上記の例では、室外機の吸気口28にも網状体を配置し、室内機の排気口27及び室外機24の排気口29には網状体を配置していない。 The blackened portion of the cover 23 is an intake port 26. As shown by arrows D or E in FIGS. 1, 4, 7, and 8, in this air conditioner, the surface of the mesh body is Air flows in parallel. An arrow D shown in FIG. 1 and an arrow E shown in FIG. 5 indicate directions that coincide with the arrow D or the arrow E in FIG. At this time, it is preferable to arrange the mesh body so that the plurality of legs 14a or 14c are along the air inflow direction because the mesh bodies 1, 2, and 3 do not inhibit the inflow of air. For example, in the case of the mesh bodies 1 and 2, the mesh bodies are arranged so that the first filaments having the foot portions are parallel to the air inflow direction. In the above example, a mesh body is also arranged at the intake port 28 of the outdoor unit, and no mesh body is arranged at the exhaust port 27 of the indoor unit and the exhaust port 29 of the outdoor unit 24.

遠赤外線の放射量を大きくするには、網状体の芯材を太くして網状体の表面積を大きくすることが想定される。しかし、芯材を太くすると目開きが小さくなりこれに伴って網状体を介した通風量が小さくなって熱交換器に十分な量の空気が供給されなくなる場合がある。本実施形態の網状体では、足部を設けることで遠赤外線の放射量を大きくするため、目開きを自由に設定することができる。目開きは30%以上かつ80%以下の範囲で設定することが好ましく、38%以上かつ58%以下であることが好ましい。 In order to increase the amount of far-infrared radiation, it is assumed that the core of the mesh body is thickened to increase the surface area of the mesh body. However, if the core is made thicker, the mesh opening becomes smaller, and accordingly, the air flow rate through the mesh body becomes smaller, and a sufficient amount of air may not be supplied to the heat exchanger. In the net-like body of the present embodiment, the amount of far infrared radiation is increased by providing the foot portion, so that the mesh opening can be freely set. The opening is preferably set in the range of 30% to 80%, and more preferably 38% to 58%.

足部の突出高さは高いほど表面積が増大するので好ましい。一方で、空気調和機や冷蔵設備の吸気口又は排気口には空間に限りがある。そこで足部の突出高さは0.8mm以上かつ3.0mm以下の範囲で設定することが好ましい。上限は施工性を考慮し2.0mmとすることがより好ましい。 A higher protrusion height of the foot is preferable because the surface area increases. On the other hand, there is a limit to the space at the intake or exhaust port of an air conditioner or refrigeration equipment. Therefore, it is preferable to set the protruding height of the foot within a range of 0.8 mm or more and 3.0 mm or less. The upper limit is more preferably 2.0 mm in consideration of workability.

以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.

〔実施例1〕
EVA樹脂を射出成型して、以下の表1の実施例1の欄に記載した目開きを有し、図1と同様の形状を有する格子状の網状体を製造した。足部の高さ(H1)は1.5mm、第1線条及び第2線上の断面は直径約2mmの略円形である。
[Example 1]
EVA resin was injection-molded to produce a lattice-like net having the mesh described in the column of Example 1 in Table 1 and having the same shape as FIG. The foot height (H1) is 1.5 mm, and the cross sections on the first and second lines are substantially circular with a diameter of about 2 mm.

粒径25〜53μmセラミクス粉末と、市販の黒色の水性アクリル塗料とを、水で90容量%に希釈した水性アクリル塗料100gに対してセラミクス粉末20gを添加、混合してセラミクス塗料を得た。この塗料を刷毛を使って網状体1cm当たりのセラミクスが2μgとなるように塗布して乾燥させて芯材の表面側にセラミクス層を備える網状体を得た。上記のセラミクス粉末は、以下の測定条件で求めた積分放射率が95%程度である。
測定機器:日本電子製のフーリエ変換赤外分光光度計(FT−IR)、日本電子製の赤外放射ユニット(IR−IRR200)
波長範囲:波長4.5μm〜20.0μm
分解能:16cm-1
検出器:広帯域MCT
測定温度T熱電対を用いて測定したサンプル表面温度:40℃
A ceramic paint was obtained by adding and mixing 20 g of ceramic powder to 100 g of an aqueous acrylic paint obtained by diluting a ceramic powder having a particle size of 25 to 53 μm and a commercially available black aqueous acrylic paint to 90% by volume with water. This paint was applied with a brush so that the ceramics per 1 cm 2 of the mesh was 2 μg and dried to obtain a mesh having a ceramic layer on the surface side of the core. The above-mentioned ceramic powder has an integrated emissivity of about 95% obtained under the following measurement conditions.
Measuring equipment: Fourier transform infrared spectrophotometer (FT-IR) manufactured by JEOL, Infrared radiation unit (IR-IRR200) manufactured by JEOL
Wavelength range: wavelength 4.5 μm to 20.0 μm
Resolution: 16cm -1
Detector: Broadband MCT
Measurement temperature T Sample surface temperature measured using a thermocouple: 40 ° C

上記のセラミクス粉末としては、シリカ60質量%、アルミナ30質量%、酸化鉄2.4質量%、酸化カリウム1.9質量%、酸化銅1.6質量%、酸化カルシウム1.4質量%、酸化ナトリウム1.4質量%、酸化チタン0.73質量%、マグネシア0.5質量%を含有するものを使用した。化学的組成は蛍光X線分析による。その製造は、天然鉱石を粉砕し、これに水を添加してペースト状にした。ペーストを所定の形状に成形して1300℃に至るまで10時間程度焼結し、焼結体を粉砕してこれを篩にかけて分級した。 As the above ceramic powder, 60% by mass of silica, 30% by mass of alumina, 2.4% by mass of iron oxide, 1.9% by mass of potassium oxide, 1.6% by mass of copper oxide, 1.4% by mass of calcium oxide, oxidation What contained 1.4 mass% sodium, 0.73 mass% titanium oxide, and 0.5 mass% magnesia was used. Chemical composition is determined by X-ray fluorescence analysis. In the production, natural ore was pulverized and water was added thereto to make a paste. The paste was molded into a predetermined shape and sintered for about 10 hours until reaching 1300 ° C., and the sintered body was pulverized and classified by sieving.

〔実施例2ないし4〕
目開きを表1の実施例1ないし4の該当欄に記載のように変更した他は実施例1と同様の条件で実施例2ないし4に係る網状体を製作した。
[Examples 2 to 4]
Reticulated bodies according to Examples 2 to 4 were produced under the same conditions as in Example 1 except that the mesh opening was changed as described in the corresponding column of Examples 1 to 4 in Table 1.

〔比較例1ないし3〕
目開きを表1の比較例1ないし3の該当欄に記載のようにした点、足部を備えない点、及び網状体を構成するEVA樹脂を加圧下で加熱溶融して押し出して射出成型する際にセラミクス粉末を溶融した樹脂に対して添加したのち網状にした点以外は実施例1と同様の条件で網状体を作製した。合成樹脂を加圧下で加熱溶融する際にセラミクス粉末を添加することを以下においては練り込みと称する。
[Comparative Examples 1 to 3]
The points where the mesh openings are as described in the corresponding columns of Comparative Examples 1 to 3 in Table 1, the point where the feet are not provided, and the EVA resin constituting the mesh body are heated and melted under pressure to be extruded and injection molded. A network was produced under the same conditions as in Example 1 except that the ceramic powder was added to the molten resin and then made into a network. In the following, adding ceramic powder when the synthetic resin is heated and melted under pressure is referred to as kneading.

Figure 2017044453
Figure 2017044453

上記のようにして作製した実施例1ないし4に係る網状体と比較例1ないし3に係る網状体を図7に記載したように部屋に設置した空気調和機の室内機の吸気口及び室外機の吸気口にそれぞれ設置・固定して、電力の低減効果を調べた。網状体を全く配置しなかったときの消費電力を基準として、各実施例及び比較例において何パーセント消費電力が低減されたか求めた。試験は12月から2月及び7月から9月の空調設備の利用が多くなる時期を選んで行った。消費電力を合算して月ごとの消費電力を平均した。この平均値を基に網状体を付けなかったときを基準として消費電力の低減率を求めた。結果を表1に記載する。 The air inlet and the outdoor unit of the indoor unit of the air conditioner in which the nets according to Examples 1 to 4 and the nets according to Comparative Examples 1 to 3 manufactured as described above are installed in a room as shown in FIG. The power reduction effect was investigated by installing and fixing each at the air intake. Based on the power consumption when no mesh body was arranged at all, the percentage of power consumption reduced in each example and comparative example was determined. The test was conducted by selecting the period when the use of the air-conditioning equipment increased from December to February and from July to September. The power consumption was added up and averaged for each month. Based on this average value, the reduction rate of power consumption was determined with reference to the time when no mesh was attached. The results are listed in Table 1.

表1の実施例1及び比較例1の対比、実施例2と比較例2の対比、並びに実施例3と比較例3の対比から明らかなように、目開き量が同程度の場合には、約20〜35%程度の電力の低減効果が向上していることがわかる。 As is clear from the comparison between Example 1 and Comparative Example 1 in Table 1, the comparison between Example 2 and Comparative Example 2, and the comparison between Example 3 and Comparative Example 3, It can be seen that the power reduction effect of about 20 to 35% is improved.

〔実施例5ないし7及び比較例4〕
セラミクスの含量と電力の低減効果について検討した。網状体1cm当たりのセラミクスの含量が表2に記載の値となるように網状体にセラミクス塗料を塗布した点以外は実施例3と同様にして、実施例5ないし7の網状体を作製した。網状体1cm当たりのセラミクスの含量が16μgとなるように網状体にセラミクス塗料を芯材に練り込んだ点、足部を設けなかった点以外は実施例3と同様にして比較例4に係る網状体を作製した。実施例5ないし7及び比較例4について、上記と同様の方法で電力の低減効果を確かめた。結果を表2に示す。
[Examples 5 to 7 and Comparative Example 4]
The content of ceramics and the power reduction effect were investigated. The nets of Examples 5 to 7 were prepared in the same manner as in Example 3 except that the ceramic paint was applied to the net so that the content of ceramic per cm 2 of the net was the value shown in Table 2. . According to Comparative Example 4 in the same manner as in Example 3, except that the ceramic material was kneaded into the core material so that the content of ceramic per cm 2 of the mesh body was 16 μg, and no foot was provided. A mesh was produced. For Examples 5 to 7 and Comparative Example 4, the power reduction effect was confirmed by the same method as described above. The results are shown in Table 2.

Figure 2017044453
Figure 2017044453

表2の実施例6と比較例4の対比から明らかなように、芯材にセラミクス塗料を練り込んだ場合は芯材表面にセラミクス塗料を塗布した場合に比べて電力の低減効果が小さいことが確認された。実施例6の場合は芯材の表面にセラミクスが層として局在する。比較例4では芯材にセラミクスが分散した状態で存在する。実施例6では芯材表面に密にセラミクスが局在するため電力の低減効果が向上したものと考えられる。換言すると電力の低減に主に寄与するのは主に表層のセラミクスであって、深層のセラミクスは寄与の度合いが小さいと考えられる。表2の実施例5ないし7の比較から明らかなようにセラミクスの含量を増やすと、電力の低減効果は向上するものの実施例7では電力の低減効果の上昇の伸び幅が小さくなる傾向がみられる。これはセラミクス層を厚くしても深層のセラミクスは電力の低減にそれほど寄与しないためであると考えられる。 As is clear from the comparison between Example 6 and Comparative Example 4 in Table 2, when the ceramic paint is kneaded into the core material, the power reduction effect is smaller than when the ceramic paint is applied to the core material surface. confirmed. In the case of Example 6, ceramics are localized as a layer on the surface of the core material. In Comparative Example 4, the ceramic material is dispersed in the core material. In Example 6, the ceramics are densely localized on the surface of the core material, which is considered to improve the power reduction effect. In other words, it is considered that the surface layer ceramics mainly contributes to the reduction of electric power, and the deep layer ceramics has a small contribution degree. As is clear from the comparison of Examples 5 to 7 in Table 2, when the ceramic content is increased, the power reduction effect is improved, but in Example 7, there is a tendency for the increase in the power reduction effect to become smaller. . This is considered to be because even if the ceramic layer is thickened, the deep ceramic layer does not contribute much to the power reduction.

上記の実施例は電力の低減効果を確かめた。ガスエンジンでコンプレッサーを駆動する空気調和機(ガスエンジンヒートポンプエアコン)において、実施例2の網状体を図7の試験室に設置したガスエンジンヒートポンプ式の空気調和機の室内機の吸気口及び室外機の吸気口にそれぞれ固定して、燃料ガスの使用量の低減効果を調べた。網状体を全く配置しなかったときの燃料ガスの消費量を基準として、網状体を設置した場合は燃料ガスの使用量67%低減することが確認された。 The above embodiment confirmed the power reduction effect. In an air conditioner (gas engine heat pump air conditioner) in which a compressor is driven by a gas engine, an intake port and an outdoor unit of an indoor unit of a gas engine heat pump type air conditioner in which the mesh body of Example 2 is installed in the test chamber of FIG. The effect of reducing the amount of fuel gas used was investigated by fixing each to the intake port. Based on the consumption of fuel gas when no mesh was arranged, it was confirmed that when the mesh was installed, the fuel gas consumption was reduced by 67%.

21 交換器
1 網状体
2 網状体
3 網状体
14a 足部
14b 足部
14c 足部
16a 芯材
16b 芯材
16c 芯材
17a セラミクス層
17b セラミクス層
17c セラミクス層
11a 第1線条
11c 第1線条
12a 第2線条
12c 第2線条
21 Exchanger 1 Reticulated body 2 Reticulated body 3 Reticulated body 14a Foot 14b Foot 14c Foot 16a Core 16b Core 16c Core 17a Ceramics layer 17b Ceramics layer 17c Ceramics layer 11a First filament 11c First filament 12a Second line 12c Second line

Claims (7)

熱交換器の空気の移動経路に配置される網状体であって、
網状体の一方の面及び他方の面のうちいずれか一方又は両方に複数の突条からなる足部を備えており、
網状体及び足部は少なくともその表面にセラミクス層を備えてなる足付網状体。
A reticulated body arranged in the air movement path of the heat exchanger,
It has a foot portion composed of a plurality of protrusions on one or both of one surface and the other surface of the net-like body,
The net-like body and the foot portion are provided with a ceramic layer on at least the surface thereof.
網状体は複数の線条が交差する形状であり、
線条は、合成樹脂材料から構成される芯材と、芯材の表面側に配されるセラミクス層とを有するものである請求項1に記載の足付網状体。
The net is a shape where a plurality of filaments intersect,
The leg network according to claim 1, wherein the filament has a core composed of a synthetic resin material and a ceramic layer disposed on the surface side of the core.
網状体はセラミクスを網状体1cmあたり0.5μg以上含有してなる請求項2に記載の足付網状体。 The net according to claim 2, wherein the net contains 0.5 μg or more of ceramic per cm 2 of the net. 芯材は、軟質合成樹脂材料から構成される請求項2又は3に記載の足付網状体。 The legged net-like body according to claim 2 or 3, wherein the core material is made of a soft synthetic resin material. 線条は空気が移動する方向に沿って配される複数の第1線条と、第1の方向に交差する方向に配される複数の第2線条とが交差する形状であり、
足部は、第1線条及び第2線条のいずれか一方の延在方向に沿って連続するものである請求項1ないし4のいずれかに記載の足付網状体。
The filament is a shape in which a plurality of first filaments arranged along the direction in which the air moves and a plurality of second filaments arranged in a direction intersecting the first direction intersect.
The foot net according to any one of claims 1 to 4, wherein the foot portion is continuous along the extending direction of one of the first filament and the second filament.
網状体は目開きが30%〜80%である請求項1ないし5のいずれかに記載の足付網状体。 The mesh with a foot according to any one of claims 1 to 5, wherein the mesh has an opening of 30% to 80%. 足部の突出高さは0.8〜3.0mmである請求項1ないし6のいずれかに記載の足付網状体。 The foot net-like body according to any one of claims 1 to 6, wherein the projecting height of the foot is 0.8 to 3.0 mm.
JP2015169189A 2015-08-28 2015-08-28 Reticulated body with legs Active JP6765792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015169189A JP6765792B2 (en) 2015-08-28 2015-08-28 Reticulated body with legs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015169189A JP6765792B2 (en) 2015-08-28 2015-08-28 Reticulated body with legs

Publications (2)

Publication Number Publication Date
JP2017044453A true JP2017044453A (en) 2017-03-02
JP6765792B2 JP6765792B2 (en) 2020-10-07

Family

ID=58209519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015169189A Active JP6765792B2 (en) 2015-08-28 2015-08-28 Reticulated body with legs

Country Status (1)

Country Link
JP (1) JP6765792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986186A (en) * 2019-10-22 2020-04-10 青岛海尔空调器有限总公司 Air conditioner filters and air conditioners

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100124U (en) * 1989-01-26 1990-08-09
JPH09136973A (en) * 1995-11-16 1997-05-27 Yoshiyuki Tokuda Antifungal film material
JPH1147547A (en) * 1997-08-05 1999-02-23 Hitachi Ltd Air conditioner
JP2014224621A (en) * 2013-05-15 2014-12-04 有限会社B.E. Air conditioning net and heat exchanger using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100124U (en) * 1989-01-26 1990-08-09
JPH09136973A (en) * 1995-11-16 1997-05-27 Yoshiyuki Tokuda Antifungal film material
JPH1147547A (en) * 1997-08-05 1999-02-23 Hitachi Ltd Air conditioner
JP2014224621A (en) * 2013-05-15 2014-12-04 有限会社B.E. Air conditioning net and heat exchanger using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986186A (en) * 2019-10-22 2020-04-10 青岛海尔空调器有限总公司 Air conditioner filters and air conditioners

Also Published As

Publication number Publication date
JP6765792B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
US20160030949A1 (en) Systems and Methods for Cleaning Air
CN207975817U (en) A kind of outdoor machine of air-conditioner air outlet grate and application have the air conditioner of the air outlet grate
JP2017044453A (en) Net-like body with leg
JP2014224621A (en) Air conditioning net and heat exchanger using the same
CN105588232B (en) A kind of air conditioning exhausting structure
JP6486409B2 (en) Operation method of air conditioner and reticulated resin molding
CN105588233B (en) A kind of air-conditioner outdoor unit air exhausting structure and air-conditioner outdoor unit
CN101619885B (en) Air outlet mesh of outdoor unit of air conditioner
CN105588231B (en) A kind of air-conditioner outdoor unit air exhausting structure
DE202013011623U1 (en) Close-to-air conditioning
CN204880566U (en) Modularization combination formula air purification temperature regulation apparatus
CN209026991U (en) Antibacterial humidifier and cooling fan
CN105864891A (en) Wall-mounted type air conditioner
Yang et al. The impact of a personalized ventilation system on indoor air quality at different levels of room air temperature
CN102818312A (en) Warm wind dehumidifier
CN206222654U (en) Bottom shell and air conditioner with same
Kotani et al. Task Ambient Air Conditioning System with Natural Ventilation for High Rise Office Building (Part 2: Measurement ofNatural Ventilation Rate and CFD Analysis using Measured Data)
Kamal Assessment of passive downdraft evaporative cooling technique for environmental sustainability in buildings
US20130227974A1 (en) Method and device for cooling pool water efficiently and effectively
CN204786868U (en) Mobile air -conditioner
RU2554025C1 (en) Process air-conditioning system for data-processing centre
CN205403083U (en) Air conditioner shell with a plurality of air outlets
CN203808452U (en) Top ventilation structure of energy-saving building
Liang et al. Experimental investigation into thermal comfort and energy utilization efficiency of stratum ventilation under heating mode
WO2018105130A1 (en) Energy-saving member and energy-saving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6765792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250