JP2017036703A - Wind power and sunlight integrated power generation solar - Google Patents
Wind power and sunlight integrated power generation solar Download PDFInfo
- Publication number
- JP2017036703A JP2017036703A JP2015158269A JP2015158269A JP2017036703A JP 2017036703 A JP2017036703 A JP 2017036703A JP 2015158269 A JP2015158269 A JP 2015158269A JP 2015158269 A JP2015158269 A JP 2015158269A JP 2017036703 A JP2017036703 A JP 2017036703A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- wind
- sunlight
- solar
- wind power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 49
- 230000000694 effects Effects 0.000 abstract description 7
- 230000005611 electricity Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000271566 Aves Species 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000001932 seasonal Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Abstract
Description
本発明は風力発電と太陽光発電の再生可能エネルギーに関するものである。 The present invention relates to renewable energy for wind power generation and solar power generation.
風力発電と太陽光発電の異なる二つの機能を組み合わせて、一つで機能(ハイブリッド)する形状にした風力太陽光両用発電・風車である。(ウインド・ソーラー・風車)
ウインド・ソーラー・パネルの表面には薄膜型や結晶型などの太陽電池を貼り付け太陽光発電をする風車である。
It is a wind / solar power generation / windmill that combines two different functions of wind power generation and solar power generation and functions as a single unit (hybrid). (Wind, solar, windmill)
It is a windmill that generates solar power by attaching thin-film or crystal solar cells to the surface of the wind solar panel.
従来の風力発電は風力でのみ、太陽光発電は太陽光でのみ、それぞれ単独で作用するものが主流であったがアイディアとして先行技術文献の様な風力と太陽光の複合発電機が見受けられるけれど、この構造においては現在の風車に太陽光パネルを取り付けただけのものであり充分太陽光を取り込むことができないものである。
風車の形式には、水平軸(揚力形)と垂直軸(効力形)の2種類に大別され、それぞれ長所と短所があり水平軸と垂直軸の長所を組み合わせた形式の風車は無かった。
Conventional wind power generation is only wind power, and solar power generation is only solar power, but it has been the mainstream, but the idea is that there is a combined wind power and solar power generator as in the prior art document. In this structure, a solar panel is simply attached to the current windmill, and sufficient solar light cannot be taken in.
There are two types of wind turbines, a horizontal axis (lift type) and a vertical axis (effective type). There are advantages and disadvantages, and there is no wind turbine that combines the advantages of the horizontal axis and the vertical axis.
太陽光発電は天候の影響に大きく左右され、悪天候のときはほとんど発電しないし、
夜間は全く発電出来ない。
また風力発電は好天のときには無風状態のことが多く発電しない、しかし夜半は風が吹く事が多く、太陽に関係なく夜間でも発電でき、風力と太陽光の組み合わせで比較的安定した発電効果が期待できる。
そこで風力発電と太陽光発電の二つの機能を一つの設備で両用に機能させることが出来たら天候に関係なく、昼夜兼行で一石二鳥、設備費用の軽減、コスト削減につながり発電効率を増大する事が出来る。
Solar power generation is greatly affected by the influence of the weather.
No power can be generated at night.
In addition, wind power generation often does not generate wind when it is in good weather, but wind often blows during the night and night, and it can be generated at night regardless of the sun, and the combination of wind power and sunlight has a relatively stable power generation effect. I can expect.
Therefore, if the two functions of wind power generation and solar power generation can be made to function for both purposes with one facility, regardless of the weather, two birds with one stone can be used both day and night, reducing facility costs and reducing costs, increasing power generation efficiency. I can do it.
従来の風力発電あるいは太陽光追尾型発電の支柱、又は架台の上部の発電装置の部
に本発明の風力および太陽光両用発電機の風車を設置する。
風力太陽光両用発電風車の構成は、円形ループ状のパネル上部に太陽電池を貼り付け太陽光発電する。
複数枚の垂直板(以下は垂直翼と云う)の表裏両面には薄膜型のソラーフィルムを貼り合わせ、両面積で2倍の太陽光発電を得ることが出来る構造である。
風力および太陽光両用発電機の風車は、風を受け止める大きな翼面積パネルで揚力を高め、垂直翼で風車軸に与える起動トルクを大きくし回転速度を上げて、より効率良く風力パワーを捉えて発電出力を大きくする構成である。
The wind turbine of the wind power and solar power generator of the present invention is installed on a conventional wind power generation or solar tracking power generation support or on the power generation device at the top of the gantry.
The configuration of the wind and solar power generation wind turbine is to generate solar power by attaching a solar cell to the upper part of a circular loop panel.
A thin-film solar film is bonded to both front and back surfaces of a plurality of vertical plates (hereinafter referred to as vertical blades), so that solar power generation can be doubled in both areas.
Wind turbines for wind and solar power generators use a large wing area panel that catches the wind to increase lift, increase the starting torque applied to the wind turbine shaft with vertical wings, increase the rotation speed, and capture wind power more efficiently to generate power This configuration increases the output.
太陽光追尾型のシステムにおいては多額の設備費用を要するわりにさほどの発電効率が期待できない、太陽追尾型では固定型に比べて当然より多くの太陽光を取り込めます、しかし陽射しを強く受ければパネルの表面温度が上がります、ところが太陽電池は表面温度が上がると発電効率が下がる性質があります。
本発明の風力太陽光両用発電のソーラーパネル部分は受風効果を大きくするよう扇風機の羽根状にカーブを付けコアンダ効果(流体が物体の表面を流れるとき、物体の表面形状へ貼りつくように沿って流れる現象のこと)によって僅かな風でパネルが回転します。
回転すると太陽電池の表面温度が下がり発電効率が上がる効果があります。
冬季には太陽光は弱く太陽光発電能力も下がりますが、冬場は季節風が強い日が多く風力発電が効率良く機能する効果があります。
夏と冬とで日照条件と風況条件の有利・不利が入れ替わりますので、一基で風力発電と太陽光発電が機能し一挙両得で比較的安定した電力供給効果があります。
The solar tracking system requires a large amount of equipment cost, but not so much power generation efficiency can be expected.The solar tracking system naturally captures more sunlight than the fixed type, but if it receives strong sunlight, the panel The surface temperature increases, but solar cells have the property that the power generation efficiency decreases as the surface temperature increases.
The solar panel portion of the wind and solar power generation of the present invention has a fan-shaped fan-shaped curve to increase the wind receiving effect and the Coanda effect (when fluid flows on the surface of an object, it adheres to the surface shape of the object) The panel rotates with a slight wind.
When rotating, the surface temperature of the solar cell decreases and the power generation efficiency increases.
In winter, sunlight is weak and the capacity of solar power generation is reduced, but in winter there are many seasonal winds, and wind power generation functions efficiently.
Advantages and disadvantages of sunshine conditions and wind conditions change in summer and winter, so wind power generation and solar power generation function in one unit and have a relatively stable power supply effect.
以下、発明を実施するための形態について説明する。
既存の風力発電と太陽光発電の異なる二つの機能を一つの設備に組み合わせて、風力発電と太陽光発電で昼夜兼行、好天と悪天候に関係なく、一基で両用に機能する形態にして効率よくエネルギーの安定供給を確保しようとする形状の風車である。
風力太陽光両用発電の風車は、ループ状の大きな翼面積のパネルに太陽電池を貼り付
け、太陽光で発電する。
太陽電池を貼り付けたパネルに、360°どの方向からの風も受ける垂直翼を垂直軸に直接取り付けないで一定の間隔で設置しコアンダ効果が相乗的に連鎖作用し回転数を上げより効率良く風力パワーを捉えることが出来る構造で、他に類例のない形状、構造の風車である。図1、図2参照
本発明の風力および太陽光両用発電機の風車は揚力を引き出す受風翼と、起動トルクの大きい垂直翼の組み合わせで最適な回転速度を上げて発電効率を高める工夫をした構造である。
風力および太陽光両用発電機の風車は小型の構造物の場合は支柱の上部に設置する。また比較的大型の形状、構造の場合は台座の上部にベアリングを組み込んだターンテーブル上に風力および太陽光両用発電機の風車を設置した構造にする。図4参照
Hereinafter, modes for carrying out the invention will be described.
Combine the two different functions of existing wind power generation and solar power generation into one facility, and combine wind power generation and solar power generation both day and night, regardless of good weather and bad weather, so that it can function as a single unit for both types of efficiency It is a windmill with a shape that often tries to ensure a stable supply of energy.
Wind turbines for wind and solar power generation use a solar panel attached to a loop-shaped panel with a large wing area, and generate electricity using sunlight.
Install vertical wings that receive wind from any direction on the panel to which the solar cells are attached, at regular intervals without being directly attached to the vertical axis, and the Coanda effect is synergistically chained to increase the number of revolutions and increase efficiency. It has a structure that can capture wind power and has a unique shape and structure. See FIG. 1 and FIG. 2. The wind turbine of the wind power and solar power generator of the present invention has been devised to increase the power generation efficiency by increasing the optimum rotational speed by combining the wind receiving blades that draw lift and the vertical blades with large starting torque. Structure.
Wind turbines for wind and solar power generators are installed at the top of the support in the case of small structures. In the case of a relatively large shape and structure, a wind turbine for wind and solar power generators is installed on a turntable that incorporates a bearing at the top of the pedestal. See Figure 4
第1図に示す様にループ状の大きな翼面積のパネル1に太陽電池を貼り付け、太陽光で発電するパネルに360°どの方向からの風も受ける垂直翼2を取り付け、垂直翼2は風車が回転するための起動トルク大きくする役割をするものである。
第2図はループ形状のパネルを上から見た平面図で従来のプロペラにあたる部分であるがより多くの太陽光を受け取るために円形状の平面にした。
垂直翼2は回転を得るための板であり、回転トルクを大きくするための役割をするものである。
垂直翼は垂直軸に直接取り付けないで一定の間隔で設置し複数枚の垂直翼にはコアンダ効果を効率良く上げるカーブを付け、コアンダ効果が相乗的に連鎖作用し微風でも自己起動し、回転力を上げる構造である。
また、それぞれの垂直翼には表と裏の両面にフィルムソーラーを貼り合わせ、同一面積で2倍の太陽光発電出力を得る事が出来る。
第3図は垂直軸3に回転を与えるための垂直翼2と揚力を得るためのパネル1を側面から見た図である。
風力太陽光一体型発電の風車は発電装置に連結されており回転軸で風力発電するものである。
尚、受風翼1は円形に構成するとともに垂直翼2構成したが、この構成に限定されるものではなく受風翼1を多角形あるいは垂直翼2を複数枚に構成しても良いものである。
As shown in FIG. 1, a solar cell is attached to a panel 1 having a large wing area in a loop shape, and a vertical wing 2 that receives wind from any direction of 360 ° is attached to a panel that generates electricity by sunlight. It serves to increase the starting torque for rotating.
FIG. 2 is a plan view of a loop-shaped panel as viewed from above, which is a portion corresponding to a conventional propeller, but has a circular plane in order to receive more sunlight.
The vertical blade 2 is a plate for obtaining rotation, and serves to increase the rotational torque.
The vertical wings are not directly attached to the vertical shaft, but are installed at regular intervals, and a plurality of vertical wings are provided with a curve that efficiently increases the Coanda effect. It is a structure that raises.
In addition, film solar can be attached to both the front and back sides of each vertical wing, and a double solar power output can be obtained in the same area.
FIG. 3 is a side view of the vertical blade 2 for applying rotation to the vertical shaft 3 and the panel 1 for obtaining lift.
Wind turbines integrated with wind and solar power are connected to a power generator and generate wind power on a rotating shaft.
In addition, although the wind-receiving wing | blade 1 was comprised circularly and comprised the vertical wing | blade 2, it is not limited to this structure, The wind-receiving wing | blade 1 may comprise a polygon or the vertical wing | blade 2 in multiple sheets. is there.
現在の風力発電、太陽光追尾型の支柱を利用して適用できる。 It can be applied using current wind power generation and solar tracking type support.
1 受風翼
2 垂直翼
3 垂直軸
4 発電機
5 支柱
6 台座(発電室)
7 ベアリングを組み込んだターンテーブル
8 太陽
9 風
DESCRIPTION OF SYMBOLS 1 Wind-receiving blade 2 Vertical blade 3 Vertical axis 4 Generator 5 Prop 6 Base (Power generation room)
7 Turntable with built-in bearings 8 Sun 9 Wind
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158269A JP2017036703A (en) | 2015-08-10 | 2015-08-10 | Wind power and sunlight integrated power generation solar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015158269A JP2017036703A (en) | 2015-08-10 | 2015-08-10 | Wind power and sunlight integrated power generation solar |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017036703A true JP2017036703A (en) | 2017-02-16 |
Family
ID=58048418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015158269A Pending JP2017036703A (en) | 2015-08-10 | 2015-08-10 | Wind power and sunlight integrated power generation solar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017036703A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258979A (en) * | 2018-02-08 | 2018-07-06 | 刘新虎 | A kind of highway center isolated area solar energy, wind power generation unit |
KR101898180B1 (en) * | 2017-07-14 | 2018-09-12 | 정태일 | Wind Power Module with Solar Cell |
KR101941909B1 (en) * | 2017-12-18 | 2019-01-24 | 정태일 | Wind power and photovoltaic power generation module using solar cell with concentrator as blade |
CN114421589A (en) * | 2022-03-28 | 2022-04-29 | 四川创铭攸科技有限公司 | Movable self-circulation storage integrated energy source guarantee system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06167269A (en) * | 1992-12-01 | 1994-06-14 | C R C Sogo Kenkyusho:Kk | Windmill equipped with solar battery |
JPH084647A (en) * | 1994-06-15 | 1996-01-09 | Ryoda Sato | Wind power generation device |
JP2002317749A (en) * | 2001-04-20 | 2002-10-31 | Yasuhisa Choshoin | Savonius type wind power generator |
JP2006214302A (en) * | 2005-02-02 | 2006-08-17 | Nova Kenkyusho:Kk | Wind turbine device |
DE102007049590A1 (en) * | 2007-10-15 | 2009-04-16 | Emmanuel Ouranos | Three or four-laminated vertical wind turbine e.g. Savonius turbine, for producing current to be supplied to e.g. private house in city, has blades terminated on inner-circle of larger radius, where larger openings are formed for wind flow |
KR20090051669A (en) * | 2007-11-19 | 2009-05-22 | 쯔네오 노구찌 | Wind-collecting type windmill for wind power generation |
DE102008060019A1 (en) * | 2007-11-27 | 2009-05-28 | Yigang Wang | Vertical axle wind energy converter, has rotor e.g. Savonius rotor, arranged at carrying construction, and inflow device arranged on carrying construction, where inflow device partially surrounds blade |
JP2010532838A (en) * | 2007-07-09 | 2010-10-14 | ニカ ホリア | Boundary layer wind turbine with tangential rotor blades |
US20110033288A1 (en) * | 2009-08-05 | 2011-02-10 | Pezaris Constantine D | Omnidirectional vertical-axis wind turbine |
-
2015
- 2015-08-10 JP JP2015158269A patent/JP2017036703A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06167269A (en) * | 1992-12-01 | 1994-06-14 | C R C Sogo Kenkyusho:Kk | Windmill equipped with solar battery |
JPH084647A (en) * | 1994-06-15 | 1996-01-09 | Ryoda Sato | Wind power generation device |
JP2002317749A (en) * | 2001-04-20 | 2002-10-31 | Yasuhisa Choshoin | Savonius type wind power generator |
JP2006214302A (en) * | 2005-02-02 | 2006-08-17 | Nova Kenkyusho:Kk | Wind turbine device |
JP2010532838A (en) * | 2007-07-09 | 2010-10-14 | ニカ ホリア | Boundary layer wind turbine with tangential rotor blades |
DE102007049590A1 (en) * | 2007-10-15 | 2009-04-16 | Emmanuel Ouranos | Three or four-laminated vertical wind turbine e.g. Savonius turbine, for producing current to be supplied to e.g. private house in city, has blades terminated on inner-circle of larger radius, where larger openings are formed for wind flow |
KR20090051669A (en) * | 2007-11-19 | 2009-05-22 | 쯔네오 노구찌 | Wind-collecting type windmill for wind power generation |
DE102008060019A1 (en) * | 2007-11-27 | 2009-05-28 | Yigang Wang | Vertical axle wind energy converter, has rotor e.g. Savonius rotor, arranged at carrying construction, and inflow device arranged on carrying construction, where inflow device partially surrounds blade |
US20110033288A1 (en) * | 2009-08-05 | 2011-02-10 | Pezaris Constantine D | Omnidirectional vertical-axis wind turbine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101898180B1 (en) * | 2017-07-14 | 2018-09-12 | 정태일 | Wind Power Module with Solar Cell |
KR101941909B1 (en) * | 2017-12-18 | 2019-01-24 | 정태일 | Wind power and photovoltaic power generation module using solar cell with concentrator as blade |
CN108258979A (en) * | 2018-02-08 | 2018-07-06 | 刘新虎 | A kind of highway center isolated area solar energy, wind power generation unit |
CN114421589A (en) * | 2022-03-28 | 2022-04-29 | 四川创铭攸科技有限公司 | Movable self-circulation storage integrated energy source guarantee system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017036703A (en) | Wind power and sunlight integrated power generation solar | |
KR101608266B1 (en) | Angle adjustable sunlight tracker | |
CN109209758B (en) | Wind-solar integrated power generation device and use method thereof | |
CN104675631A (en) | Novel rotating plate hesitance type efficient power generation assembly (commonly used for wind power and hydraulic power) | |
US20110182733A1 (en) | Square Rigged Sail Wind Turbine | |
CN104389740A (en) | Horizontal intelligent multi-blade wind motor | |
JP2014105701A (en) | Solar power generation device with wind power generation function | |
AU2015263682B2 (en) | Vertical axis wind machine having controllable output power | |
BR102017005506A2 (en) | HYBRID DEVICE FOR GENERATING ELECTRIC POWER CLEAN | |
KR20120109889A (en) | Building photovoltaics and wind turbine system | |
JP2016130492A (en) | Windmill of wind power and sunlight power generator | |
CN206517336U (en) | A kind of wind-light storage generating tree system | |
JP6653685B2 (en) | Private power generation telecom tower system | |
CN102269127B (en) | Double-sided multiaxial efficient environmentally-friendly high-power wind generating set | |
KR20110048480A (en) | Power generator of hybrid type | |
KR101309542B1 (en) | Solar and windpower generation system | |
RU106725U1 (en) | Solar power station | |
GB2581622A (en) | Vertical axis wind turbine | |
BR202015015126U2 (en) | APPLIED DISTRIBUTION IN WIND TURBINE WITH AERODYNAMIC FLASES | |
CN203930511U (en) | Dip-adjustable type solar energy equipment | |
KR101387351B1 (en) | Vertical-axis wind turbine | |
JPWO2017170663A1 (en) | Savonius wind power generator and control method thereof | |
AU2013100613A4 (en) | Solar-Wind Hybrid Eneregy harvesting System | |
CN203563148U (en) | Intelligent wind-solar complementary monitor | |
CN205644287U (en) | Photovoltaic device and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180703 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190219 |