JP2017036380A - Zeolite-nano carbon composite luminous body and manufacturing method therefor - Google Patents

Zeolite-nano carbon composite luminous body and manufacturing method therefor Download PDF

Info

Publication number
JP2017036380A
JP2017036380A JP2015157630A JP2015157630A JP2017036380A JP 2017036380 A JP2017036380 A JP 2017036380A JP 2015157630 A JP2015157630 A JP 2015157630A JP 2015157630 A JP2015157630 A JP 2015157630A JP 2017036380 A JP2017036380 A JP 2017036380A
Authority
JP
Japan
Prior art keywords
zeolite
nanocarbon
composite
nano carbon
luminous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015157630A
Other languages
Japanese (ja)
Other versions
JP6608216B2 (en
Inventor
康之 山根
Yasuyuki Yamane
康之 山根
田中 秀樹
Hideki Tanaka
秀樹 田中
稔 宮原
Minoru Miyahara
稔 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Kyoto University NUC
Original Assignee
Osaka Gas Chemicals Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd, Kyoto University NUC filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2015157630A priority Critical patent/JP6608216B2/en
Publication of JP2017036380A publication Critical patent/JP2017036380A/en
Application granted granted Critical
Publication of JP6608216B2 publication Critical patent/JP6608216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel zeolite-nano carbon luminous body with easy manufacturing operation having excellent luminous property and a manufacturing method therefor.SOLUTION: There is provided a zeolite-nano carbon luminous body containing a zeolite skeleton and nano carbon with carbon content of 10 wt.% or less based on whole zeolite-nano carbon luminous body, where the nano carbon contains an oxygen atom. There is provided a manufacturing method of the zeolite-nano carbon luminous body with a simple manufacturing method by chemical vapor phase depositing an organic article to zeolite.SELECTED DRAWING: Figure 4

Description

本発明は、ゼオライト−ナノカーボン複合発光体及びその製造方法に関する。   The present invention relates to a zeolite-nanocarbon composite phosphor and a method for producing the same.

カーボンナノチューブ、コロネン程度のサイズのグラフェン等のナノカーボンは、紫外光を照射することで蛍光を発することが知られており、近年、ナノカーボンを利用した発光体に関する研究が盛んに行われている。しかし、網面サイズが過度に成長したものや網面同士が凝集したものでは、十分な蛍光を得ることができない。ナノカーボンは、サイズの制御が困難であり、また、極めて凝集しやすいため、十分な蛍光を発するナノカーボンを得ることは極めて難しい。   Nanocarbons such as carbon nanotubes and coronene-sized graphene are known to emit fluorescence when irradiated with ultraviolet light. In recent years, research on phosphors using nanocarbon has been actively conducted. . However, sufficient fluorescence cannot be obtained with an excessively grown mesh surface size or with an aggregated mesh surface. Nanocarbons are difficult to control in size and are extremely apt to aggregate, so it is extremely difficult to obtain nanocarbons that emit sufficient fluorescence.

これに対して、活性炭を過酸化水素等の薬品により酸化してナノカーボンを得る方法、及び得られたナノカーボンをポリビニルアルコール(PVA)又は樹脂等に分散して凝集を防ぐ方法が提案されている。これらの方法では、薬品による処理を必要とするため、製造における操作が煩雑となることを避けることができない。   On the other hand, a method for obtaining activated carbon by oxidizing it with a chemical such as hydrogen peroxide and a method for preventing aggregation by dispersing the obtained nanocarbon in polyvinyl alcohol (PVA) or a resin have been proposed. Yes. Since these methods require treatment with chemicals, it is unavoidable that manufacturing operations are complicated.

また、メソポーラスシリカ−炭素複合体を同様に酸化処理して、シリカ壁面にナノカーボンを固定し、分散する方法も提案されている(特許文献1)。この方法でも、製造において多くの工程が必要である。加えて、この方法により得られた発光体は発光スペクトル幅が広くなるため、発光スペクトル幅を狭くすることにより単色光を得ることは困難である。   In addition, a method has also been proposed in which mesoporous silica-carbon composite is similarly oxidized and nanocarbon is fixed and dispersed on the silica wall (Patent Document 1). Even this method requires many steps in the production. In addition, since the luminous body obtained by this method has a wide emission spectrum width, it is difficult to obtain monochromatic light by narrowing the emission spectrum width.

特許公報第5557090号明細書Japanese Patent Publication No. 5557090

本発明は、新規なゼオライト−ナノカーボン発光複合体及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a novel zeolite-nanocarbon light emitting composite and a method for producing the same.

上記目的を達成するため、本発明者らは、鋭意検討した結果、ゼオライトに有機物を化学気相蒸着させる方法により、ゼオライト−ナノカーボン複合発光体が簡便に得られることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have intensively studied and found that a zeolite-nanocarbon composite phosphor can be easily obtained by a method of chemical vapor deposition of an organic substance on zeolite, thereby completing the present invention. It came to do.

即ち、本発明は、以下の態様を包含する。   That is, this invention includes the following aspects.

項1. ゼオライト骨格及びナノカーボンを含むゼオライト−ナノカーボン複合発光体。   Item 1. A zeolite-nanocarbon composite phosphor containing a zeolite skeleton and nanocarbon.

項2. 前記ゼオライト−ナノカーボン複合発光体全体に対する炭素含有量が10重量%以下である、前記項1に記載のゼオライト−ナノカーボン複合発光体。   Item 2. Item 2. The zeolite-nanocarbon composite phosphor according to Item 1, wherein the carbon content with respect to the entire zeolite-nanocarbon composite phosphor is 10% by weight or less.

項3. 前記ナノカーボンが酸素原子を含むナノカーボンである、前記項1又は2に記載のゼオライト−ナノカーボン複合発光体。   Item 3. Item 3. The zeolite-nanocarbon composite phosphor according to Item 1 or 2, wherein the nanocarbon is a nanocarbon containing an oxygen atom.

項4. ゼオライトに有機物を化学気相蒸着する工程を含む、前記項1〜3のいずれかに記載のゼオライト−ナノカーボン複合発光体の製造方法。   Item 4. Item 4. The method for producing a zeolite-nanocarbon composite phosphor according to any one of Items 1 to 3, further comprising a step of chemical vapor deposition of an organic substance on the zeolite.

本発明のゼオライト−ナノカーボン複合発光体は、優れた発光特性を有するため、種々の発光材料として有用である。   Since the zeolite-nanocarbon composite luminous body of the present invention has excellent luminous characteristics, it is useful as various luminous materials.

図1は化学気相蒸着に用いた装置の概略図である。FIG. 1 is a schematic view of an apparatus used for chemical vapor deposition. 図2は試験例1における写真を示す図である。FIG. 2 is a view showing a photograph in Test Example 1. 図3は試験例2における蛍光スペクトルを示す図である。FIG. 3 is a diagram showing a fluorescence spectrum in Test Example 2. 図4は試験例2における差スペクトルを示す図である。FIG. 4 is a diagram showing a difference spectrum in Test Example 2. 図5は試験例3における3Dスペクトルを示す図である。FIG. 5 is a diagram showing a 3D spectrum in Test Example 3. 図6は試験例4で用いた熱重量測定の昇温プログラムを示す図である。FIG. 6 is a diagram showing a temperature raising program for thermogravimetry used in Test Example 4. 図7は試験例4の加熱減量曲線を示す図(生データ)である。FIG. 7 is a diagram (raw data) showing a heating loss curve of Test Example 4. 図8は図7を30分間窒素雰囲気で300℃に保持した時点の重量で補正した加熱減量曲線を示す図である。FIG. 8 is a graph showing a heating loss curve corrected by the weight at the time when FIG. 7 is held at 300 ° C. for 30 minutes in a nitrogen atmosphere.

1.ゼオライト−ナノカーボン複合発光体
本発明のゼオライト−ナノカーボン複合発光体(以下、単に「複合発光体」ということもある)は、ゼオライト骨格及びナノカーボンを含む。ゼオライト−ナノカーボン複合発光体全体に対する炭素含有量が10重量%以下であることが好ましい。また、好ましくは、本発明の複合発光体はゼオライト骨格及びナノカーボンからなり、ゼオライト−ナノカーボン複合発光体全体に対する炭素含有量が5重量%以下である。本発明のゼオライト−ナノカーボン複合発光体は、ゼオライト骨格が有する細孔内部にナノカーボンが分散された構造を有しているため、ナノカーボンの凝集によってバンドギャップが狭まることを防ぎ、優れた発光特性を発揮することができると考えられる。
1. Zeolite-nanocarbon composite phosphor The zeolite-nanocarbon composite phosphor of the present invention (hereinafter sometimes simply referred to as “composite phosphor”) includes a zeolite skeleton and nanocarbon. The carbon content with respect to the entire zeolite-nanocarbon composite phosphor is preferably 10% by weight or less. Preferably, the composite phosphor of the present invention comprises a zeolite skeleton and nanocarbon, and the carbon content with respect to the entire zeolite-nanocarbon composite phosphor is 5% by weight or less. Since the zeolite-nanocarbon composite phosphor of the present invention has a structure in which nanocarbon is dispersed inside the pores of the zeolite skeleton, the band gap is prevented from narrowing due to aggregation of nanocarbon, and excellent light emission. It is considered that the characteristics can be exhibited.

本発明のゼオライト−ナノカーボン複合発光体は、製造が簡便な点で、化学気相蒸着によりゼオライト骨格にナノカーボンを分散させることで得られた複合発光体であることが好ましい。   The zeolite-nanocarbon composite luminous body of the present invention is preferably a composite luminous body obtained by dispersing nanocarbon in the zeolite skeleton by chemical vapor deposition in terms of easy production.

本発明において、ナノカーボンとは、1辺又は2辺が数ナノメートル程度の大きさであるグラフェン様炭素のことである。当該ナノカーボンは、必ずしも六員環構造のみからなる必要はなく、五員環、七員環構造等を含んでいてもよい。また、構造も平面に限らない。本発明のナノカーボンとして、具体的には、ピレン、コロネン、コラニュレン程度のグラフェン様分子等を挙げることができる。   In the present invention, nanocarbon is graphene-like carbon having a size of about several nanometers on one or two sides. The nanocarbon does not necessarily have only a six-membered ring structure, and may contain a five-membered ring, a seven-membered ring structure, or the like. Further, the structure is not limited to a plane. Specific examples of the nanocarbon of the present invention include graphene-like molecules such as pyrene, coronene, and corannulene.

本発明のナノカーボンは、酸素、窒素等の元素を含むことができる。これらの元素を導入することにより、発光強度が上昇することが期待される。また、ナノカーボンに酸素、窒素等の元素を含ませることで、酸素、窒素等の元素を含まないナノカーボンと比べて、複合発光体が発する光の色調を変化させることができる。   The nanocarbon of the present invention can contain elements such as oxygen and nitrogen. By introducing these elements, the emission intensity is expected to increase. In addition, by including an element such as oxygen or nitrogen in the nanocarbon, the color tone of light emitted from the composite light emitter can be changed as compared with nanocarbon not including an element such as oxygen or nitrogen.

本発明のゼオライト−ナノカーボン複合発光体全体に対する炭素含有量は、10重量%以下であることが好ましく、5重量%以下であることがより好ましく、3重量%以下であることが特に好ましい。また、例えば、炭素含有量は2重量%以下又は1重量%以下とすることもできる。炭素含有量を少なく抑えることにより、網面サイズの大きいナノカーボンの割合を減少させ、かつ複合発光体中でナノカーボン同士が凝集することを防ぐことができ、より優れた発光特性を発揮することができると考えられる。炭素含有量の下限は、ナノカーボンが含まれ、十分な発光が得られる限り、特に限定されず、例えば、ゼオライト−ナノカーボン複合発光体全体に対して0.01重量%以上である。複合発光体における炭素含有量は、熱重量測定により、空気雰囲気下において加熱することにより測定した重量減少量から求めることができる。具体的には、下記実施例における条件で測定した重量減少量より求められる。   The carbon content with respect to the entire zeolite-nanocarbon composite phosphor of the present invention is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 3% by weight or less. For example, the carbon content can be 2 wt% or less or 1 wt% or less. By suppressing the carbon content to a low level, the ratio of nanocarbons with a large network surface size can be reduced, and nanocarbons can be prevented from agglomerating in the composite light emitter, thereby exhibiting better light emission characteristics. It is thought that you can. The lower limit of the carbon content is not particularly limited as long as nanocarbon is contained and sufficient light emission is obtained. For example, the lower limit of the carbon content is 0.01% by weight or more based on the entire zeolite-nanocarbon composite phosphor. The carbon content in the composite phosphor can be determined from the weight loss measured by heating in an air atmosphere by thermogravimetry. Specifically, it is determined from the weight loss measured under the conditions in the following examples.

本発明で用いるゼオライトは、細孔内にナノカーボンを形成することができれば、特に限定されない。化学気相蒸着法によりナノカーボンを形成する場合、炭素が蒸着された箇所で新たな炭素源が細孔内に侵入できれば、ナノカーボンをゼオライト粒子内部に効率的に導入することができる。そのため、細孔入口が酸素12員環以上で構成されるゼオライト(具体的には、Y型ゼオライト、X型ゼオライト、A型ゼオライト、β型ゼオライト、L型ゼオライト、モルデナイト、EMT等)を使用することが好ましい。   The zeolite used in the present invention is not particularly limited as long as nanocarbon can be formed in the pores. When nanocarbon is formed by chemical vapor deposition, nanocarbon can be efficiently introduced into the zeolite particles if a new carbon source can enter the pores at the location where the carbon is deposited. Therefore, zeolite having pore inlets composed of 12 or more oxygen rings (specifically, Y zeolite, X zeolite, A zeolite, β zeolite, L zeolite, mordenite, EMT, etc.) is used. It is preferable.

ゼオライトの結晶構造中におけるSi/Al比は、ゼオライトの固体酸としての強酸性に影響する。化学気相蒸着法では、強酸性が強い程、炭素源の堆積分解が促進されると考えられる。ゼオライトの内部まで均一に分散してナノカーボンを堆積させる点で、ゼオライトのSi/Al比は20以下が好ましい。   The Si / Al ratio in the crystal structure of the zeolite affects the strong acidity of the zeolite as a solid acid. In chemical vapor deposition, it is believed that the stronger the acidity, the more accelerated the carbon source deposition decomposition. The Si / Al ratio of the zeolite is preferably 20 or less from the viewpoint of depositing nanocarbon by uniformly dispersing the inside of the zeolite.

また、ゼオライトのAlと結合する交換カチオンにより触媒活性が依存することが知られている。ゼオライトの内部まで均一に分散してナノカーボンを堆積させる点で、ゼオライトの交換カチオンとしては、ナトリウムイオン(Na)が好ましい。 It is also known that the catalytic activity depends on the exchange cation bonded to Al of the zeolite. As an exchange cation of zeolite, sodium ion (Na + ) is preferable in that the nanocarbon is deposited uniformly dispersed inside the zeolite.

2.ゼオライト−ナノカーボン複合発光体の製造
本発明のゼオライト−ナノカーボン複合発光体は、ゼオライトに化学気相蒸着法により、ナノカーボンを堆積させることで製造することができる。化学気相蒸着法を用いることにより、簡便な手法で複合発光体を製造することができ、また、ナノカーボンの導入量(複合発光体の炭素含有量)の調整も比較的容易である。
2. Production of Zeolite-Nanocarbon Composite Luminescent Body The zeolite-nanocarbon composite luminous body of the present invention can be produced by depositing nanocarbon on zeolite by chemical vapor deposition. By using the chemical vapor deposition method, a composite light emitter can be produced by a simple technique, and the amount of nanocarbon introduced (the carbon content of the composite light emitter) can be adjusted relatively easily.

化学気相蒸着に用いる炭素源としては、ゼオライトの細孔径よりも小さく、分解後にsp炭素として堆積する化合物であれば、特に限定されない。具体的には、炭素源として、アルカン、アルケン、アルキン、分岐のある炭化水素、芳香族等を用いることができる。 The carbon source used for chemical vapor deposition is not particularly limited as long as it is a compound that is smaller than the pore diameter of zeolite and is deposited as sp 2 carbon after decomposition. Specifically, alkane, alkene, alkyne, branched hydrocarbon, aromatic or the like can be used as the carbon source.

化学気相蒸着における反応温度、時間及び炭素源の濃度は、適宜設定することができる。ゼオライトの内部まで均一に分散してナノカーボンを堆積させる点で、反応速度を適度に押さえることが好ましい。そのため、反応温度及び炭素源の濃度は高すぎないことが好ましい。具体的には、反応温度は1000℃以下、炭素源の濃度はベンゼンを使用する場合で25vol%以下であることが好ましく、炭素源とする分子中の炭素数や反応性にも依存する。   The reaction temperature, time, and carbon source concentration in chemical vapor deposition can be set as appropriate. It is preferable to moderate the reaction rate from the viewpoint of depositing nanocarbon by uniformly dispersing to the inside of the zeolite. Therefore, it is preferable that the reaction temperature and the concentration of the carbon source are not too high. Specifically, the reaction temperature is preferably 1000 ° C. or less, and the concentration of the carbon source is preferably 25 vol% or less when benzene is used, and also depends on the number of carbons in the molecule used as the carbon source and the reactivity.

化学気相蒸着に用いる不活性ガスは、ゼオライト及び炭素源と反応しないものであれば、特に限定されない。具体的には、窒素、アルゴン、ヘリウム等を用いることができる。   The inert gas used for chemical vapor deposition is not particularly limited as long as it does not react with the zeolite and the carbon source. Specifically, nitrogen, argon, helium, or the like can be used.

本発明の複合発光体は、化学気相蒸着によりナノカーボンを形成した後、酸化処理を行い、ナノカーボンに酸素原子等を導入することで、複合発光体が発する光の色調を変更する(特に蛍光の色を白色へと変更する)ことができる。酸化処理の方法としては、上記化学気相蒸着により得られた複合発光体を空気条件下、150〜1000℃、好ましくは200〜800℃、さらに好ましくは250〜600℃に加熱する方法を挙げることができる。加熱時間は例えば300℃で処理する場合、30分〜3日間である。   The composite light emitter of the present invention changes the color tone of light emitted from the composite light emitter by forming the nanocarbon by chemical vapor deposition and then performing an oxidation treatment and introducing oxygen atoms or the like into the nanocarbon (particularly The fluorescent color can be changed to white). Examples of the oxidation treatment method include a method in which the composite luminescent material obtained by chemical vapor deposition is heated to 150 to 1000 ° C., preferably 200 to 800 ° C., more preferably 250 to 600 ° C. under air conditions. Can do. The heating time is, for example, 30 minutes to 3 days when processing at 300 ° C.

3.ゼオライト−ナノカーボン複合発光体の発光
本発明の複合発光体は、励起光として紫外光及び可視光を照射することにより、蛍光を発する。紫外光としては、例えば、波長200〜400 nmの光を挙げることができる。
3. Light emission of zeolite-nanocarbon composite luminescent material The composite luminescent material of the present invention emits fluorescence when irradiated with ultraviolet light and visible light as excitation light. Examples of ultraviolet light include light having a wavelength of 200 to 400 nm.

本発明の複合発光体が発する蛍光の色はナノカーボンのサイズに依存すると考えられ、小さいナノカーボンの割合が高いと短い波長の光(例えば、紫等)、比較的大きめのナノカーボンの割合が高いと長い波長の光(例えば、赤等)になると推測される。一方で、ナノカーボンの大きさにばらつきを持たせることにより、得られる蛍光もスペクトル幅が広くなり、白色に近い色になると推測される。また、上述の通り、複合発光体を空気酸化することにより、ナノカーボンに酸素原子等を導入することで、容易に白色蛍光を発する発光体を製造することが可能である。   The fluorescent color emitted by the composite phosphor of the present invention is considered to depend on the size of nanocarbon. When the proportion of small nanocarbon is high, the light of short wavelength (for example, purple), the proportion of relatively large nanocarbon is If it is high, it is estimated that light of a long wavelength (for example, red or the like) is obtained. On the other hand, it is presumed that by giving variation in the size of the nanocarbon, the obtained fluorescence also has a broad spectrum width and becomes a color close to white. Further, as described above, it is possible to easily produce a phosphor that emits white fluorescence by introducing oxygen atoms or the like into nanocarbon by subjecting the composite phosphor to air oxidation.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

製造例1
複合発光体の製造
鋳型とするゼオライトとして、交換カチオンがNaイオンである、Y型ゼオライト(東ソー株式会社製; HSZ-320NAA; Si/Al=5.5)を用いた(以下、単にゼオライトと記す)。下記表1に記載の条件により、ゼオライト 1gに対して、ベンゼン(和光純薬株式会社製; 特級)を炭素源として、化学気相蒸着処理を行った。不活性ガスには、窒素を用い、流量は200mL/minとした。化学気相蒸着に用いた装置の概略を図1に示す。
Production Example 1
As a zeolite used as a production template for the composite phosphor , Y-type zeolite (Tosoh Corporation; HSZ-320NAA; Si / Al = 5.5) whose exchange cation is Na + ion was used (hereinafter simply referred to as zeolite). (Note). Under the conditions described in Table 1 below, chemical vapor deposition treatment was performed on 1 g of zeolite using benzene (manufactured by Wako Pure Chemical Industries, Ltd .; special grade) as a carbon source. Nitrogen was used as the inert gas, and the flow rate was 200 mL / min. An outline of an apparatus used for chemical vapor deposition is shown in FIG.

試験例1
目視による蛍光の評価
まず、製造例1で得られた複合体に紫外光に蛍光灯の光を当て、蛍光灯下での試料の色を確認した。同じく、紫外光(波長:365nm)下での発光の有無及びその色を確認した。結果を表2に示す。
Test example 1
Visual Evaluation of Fluorescence First, the composite obtained in Production Example 1 was irradiated with ultraviolet light to ultraviolet light, and the color of the sample under the fluorescent light was confirmed. Similarly, the presence or absence of light emission under ultraviolet light (wavelength: 365 nm) and its color were confirmed. The results are shown in Table 2.

また、それぞれ熱重量測定用のアルミパンに充填した状態で、処理前のゼオライト、実施例2の複合体、実施例3の複合体、及び液体ベンゼンを加え濡らした処理前のゼオライトについて、蛍光灯下及び紫外光下での発光を確認した。結果を図2に示す。図2より、ゼオライトのみ及びゼオライトと液体ベンゼンでは可視光領域の発光は殆どないことが分かった。   In addition, the zeolite before treatment, the composite of Example 2, the composite of Example 3, and the zeolite before treatment wetted with liquid benzene in a state filled in an aluminum pan for thermogravimetry, The light emission under and under ultraviolet light was confirmed. The results are shown in FIG. From FIG. 2, it was found that there was almost no light emission in the visible light region with zeolite alone or with zeolite and liquid benzene.

試験例2
蛍光分光光度計を用いたフォトルミネッセンス評価
得られた試料のうち、目視で最も発光強度が強かった実施例2の複合体と化学気相蒸着処理前のゼオライトの発光を比較するため、分光蛍光光度計(株式会社JASCO製; FP−8500)を用いて、発光スペクトル(励起光 340nm)を測定した。得られた結果を図3に示す。試料として用いた実施例2の複合体及びゼオライトは粉体であるため、励起光が散乱されることより、2つの試料間で発光強度の単純な比較はできない。そこで、ゼオライトにおいて極大値を示した420nm付近の発光強度が共にゼオライト由来であり、同程度の発光強度であると仮定し、両者のスペクトルを420nm付近で規格化し、求めた差スペクトルを図4に示す。得られた差スペクトルは550nm付近に極大値を持ち、化学気相蒸着処理前のゼオライトとはピークが明らかに異なることから、細孔内で生成されたナノカーボンに由来する発光と考えられる。
Test example 2
Photoluminescence evaluation using a fluorescence spectrophotometer Among the samples obtained, spectrofluorimetry was used to compare the emission of the composite of Example 2 with the highest visual emission intensity and the zeolite before chemical vapor deposition. The emission spectrum (excitation light 340 nm) was measured using a meter (manufactured by JASCO; FP-8500). The obtained results are shown in FIG. Since the composite and zeolite of Example 2 used as samples are powders, the excitation light is scattered, so that the emission intensity cannot be simply compared between the two samples. Therefore, it is assumed that the emission intensity around 420 nm, which shows the maximum value in zeolite, is derived from zeolite, and the emission intensity is comparable, both spectra are normalized around 420 nm, and the obtained difference spectrum is shown in FIG. Show. The obtained difference spectrum has a maximum value in the vicinity of 550 nm, and the peak is clearly different from that of the zeolite before the chemical vapor deposition treatment. Therefore, it is considered that the emission is derived from nanocarbon generated in the pores.

試験例3
3Dスペクトルの測定
実施例2の複合体において、励起光の波長を変化させ、3Dスペクトルを得た。結果を図5に示す。3Dスペクトルは、Ex=340nm、Em=550nmを中心とする同心円状の等高線を示した。このことから、発光強度の極大値が励起波長に依存しないことが分かり、得られた発光が蛍光に起因することを示していると考えられる。
Test example 3
Measurement of 3D spectrum In the composite of Example 2, the wavelength of excitation light was changed to obtain a 3D spectrum. The results are shown in FIG. The 3D spectrum showed concentric contour lines centered on Ex = 340 nm and Em = 550 nm. From this, it is understood that the maximum value of the emission intensity does not depend on the excitation wavelength, and it is considered that the obtained emission is attributed to fluorescence.

試験例4
炭素含有量の測定
処理前のゼオライト、比較例1の複合体及び実施例2の複合体のそれぞれについて、炭素含有量を測定した。炭素含有量の測定には、熱重量測定を用い、重量減少量から求めた。なお、ゼオライトおよびナノカーボン-ゼオライト複合発光体は、大気中の水分を容易に吸着するため、正確な炭素量を見積もるためには吸着している水分を予め脱着させる必要がある。そこで、本測定では、室温から300℃まで窒素雰囲気で昇温し、さらに30分間窒素雰囲気で保持した後、雰囲気を空気に切替えることとした。具体的な熱重量測定の条件及び炭素含有量の算出式は、
装置:株式会社リガク社製 熱分析装置 ThermoplusEVO II
昇温プログラム:図6に記載のプログラム
炭素含有量(R[重量%]):
Test example 4
Carbon content was measured for each of the zeolite before the measurement treatment, the composite of Comparative Example 1 and the composite of Example 2. For the measurement of the carbon content, thermogravimetry was used to determine the weight loss. Since zeolite and nanocarbon-zeolite composite phosphor easily adsorb moisture in the atmosphere, it is necessary to desorb the adsorbed moisture in advance in order to estimate an accurate amount of carbon. Therefore, in this measurement, the temperature was raised from room temperature to 300 ° C. in a nitrogen atmosphere, and after maintaining for 30 minutes in the nitrogen atmosphere, the atmosphere was switched to air. Specific thermogravimetric conditions and carbon content calculation formulas are:
Apparatus: Rigaku Corporation thermal analyzer ThermoplusEVO II
Temperature rising program: Program described in FIG. 6 Carbon content (R c [wt%]):

(式中、C800は30分間800℃に保持した後の試料重量、C300は窒素雰囲気中で30分間300℃保持時点の試料重量、Z800は30分間800℃に保持した後のゼオライト重量、Z300は窒素雰囲気中で30分間300℃保持時点のゼオライト重量を示す。)
を用いた。
(In the formula, C 800 is a sample weight after being held at 800 ° C. for 30 minutes, C 300 is a sample weight at the time of holding at 300 ° C. for 30 minutes in a nitrogen atmosphere, and Z 800 is a zeolite weight after being held at 800 ° C. for 30 minutes Z 300 represents the weight of the zeolite when kept at 300 ° C. for 30 minutes in a nitrogen atmosphere.)
Was used.

結果を表3並びに図7及び8に示す。   The results are shown in Table 3 and FIGS.

本発明の複合発光体は、紫外線を照射することで蛍光を発するため、照明装置、太陽電池の補助剤(紫外可視光変換)、洗剤用蛍光剤等の用途への応用が期待される。   Since the composite luminescent material of the present invention emits fluorescence when irradiated with ultraviolet rays, it is expected to be applied to uses such as lighting devices, solar cell adjuvants (ultraviolet-visible light conversion), and fluorescent agents for detergents.

Claims (4)

ゼオライト骨格及びナノカーボンを含むゼオライト−ナノカーボン複合発光体。   A zeolite-nanocarbon composite phosphor containing a zeolite skeleton and nanocarbon. 前記ゼオライト−ナノカーボン複合発光体全体に対する炭素含有量が10重量%以下である、請求項1に記載のゼオライト−ナノカーボン複合発光体。 2. The zeolite-nanocarbon composite phosphor according to claim 1, wherein a carbon content with respect to the entire zeolite-nanocarbon composite phosphor is 10 wt% or less. 前記ナノカーボンが酸素原子を含むナノカーボンである、請求項1又は2に記載のゼオライト−ナノカーボン複合発光体。   The zeolite-nanocarbon composite phosphor according to claim 1 or 2, wherein the nanocarbon is a nanocarbon containing an oxygen atom. ゼオライトに有機物を化学気相蒸着する工程を含む、請求項1〜3のいずれかに記載のゼオライト−ナノカーボン複合発光体の製造方法。   The method for producing a zeolite-nanocarbon composite phosphor according to any one of claims 1 to 3, further comprising a step of chemical vapor deposition of an organic substance on the zeolite.
JP2015157630A 2015-08-07 2015-08-07 Zeolite-nanocarbon composite phosphor and method for producing the same Active JP6608216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157630A JP6608216B2 (en) 2015-08-07 2015-08-07 Zeolite-nanocarbon composite phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157630A JP6608216B2 (en) 2015-08-07 2015-08-07 Zeolite-nanocarbon composite phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017036380A true JP2017036380A (en) 2017-02-16
JP6608216B2 JP6608216B2 (en) 2019-11-20

Family

ID=58046940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157630A Active JP6608216B2 (en) 2015-08-07 2015-08-07 Zeolite-nanocarbon composite phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP6608216B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231099A (en) * 2002-02-08 2003-08-19 Sony Corp Zeolite-organic composite material and molecular sieve derived carbon nanostructure and manufacturing method for carbon nanostructure
JP2006291015A (en) * 2005-04-08 2006-10-26 Osaka Univ Color luminescent nano-sized composite
JP2007326732A (en) * 2006-06-07 2007-12-20 Sumitomo Metal Mining Co Ltd Carbon nanostructure and method for producing the same
WO2009107678A1 (en) * 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP2015036389A (en) * 2013-08-12 2015-02-23 株式会社Kri Production method of graphene quantum dot emitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231099A (en) * 2002-02-08 2003-08-19 Sony Corp Zeolite-organic composite material and molecular sieve derived carbon nanostructure and manufacturing method for carbon nanostructure
JP2006291015A (en) * 2005-04-08 2006-10-26 Osaka Univ Color luminescent nano-sized composite
JP2007326732A (en) * 2006-06-07 2007-12-20 Sumitomo Metal Mining Co Ltd Carbon nanostructure and method for producing the same
WO2009107678A1 (en) * 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP2015036389A (en) * 2013-08-12 2015-02-23 株式会社Kri Production method of graphene quantum dot emitter

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GHOSH,S. ET AL.: "Oxygen Doping Modifies Near-Infrared Band Gaps in Fluorescent Single-Walled Carbon Nanotubes", SCIENCE, vol. (2010), Vol.330(6011), JPN6019008791, pages 1656 - 1659, ISSN: 0003995149 *
GUO, J. ET AL.: "Efficient Visible Photoluminescence from Carbon Nanotubes in Zeolite Templates", PHYSICAL REVIEW LETTERS, vol. (2004), Vol.93, No.1, JPN6019008786, pages 017402 - 1, ISSN: 0003995146 *
MIYAUCHI, Y. ET AL.: "Brightening of excitons in carbon nanotubes on dimensionality modification", NATURE PHOTONICS, vol. (2013), Vol.7, JPN6019008792, pages 715 - 719, ISSN: 0003995150 *
NAGASAWA, N. ET AL.: "Optical Nano-Tomography on Photosensitive Single-Wall Carbon Nanotube Arrays in Zeolite Crystals", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. (2004), Vol.43, No.2, JPN6019008784, pages 868 - 871, ISSN: 0003995145 *
NAGASAWA, N. ET AL.: "Visible emission of single-wall carbon nanotubes formed in micro-channels of zeolite crystals.", JOURNAL OF LUMINESCENCE, vol. (2002), Vol.97, No.3/4, JPN6019008788, pages 161 - 167, ISSN: 0003995147 *
NUEANGNORAJ,K. ET AL.: "Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y", CARBON, vol. (2013), Vol.62, JPN6019008782, pages 455 - 464, ISSN: 0003995148 *

Also Published As

Publication number Publication date
JP6608216B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
Xu et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes
Liu et al. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid‐state quantum yield and stability
Pu et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis
Xu et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield
Xu et al. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe 3+
Xu et al. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots
Lv et al. Photoluminescence study of interstitial oxygen defects in ZnO nanostructures
Felbier et al. Highly luminescent ZnO quantum dots made in a nonthermal plasma
Wang et al. Fe 3 O 4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst
Song et al. Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity
Xia et al. Solvothermal synthesis and enhanced visible-light photocatalytic decontamination of bisphenol A (BPA) by g-C3N4/BiOBr heterojunctions
JP6427387B2 (en) Quantum dot compound photocatalyst
Şinoforoğlu et al. Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye
Dong et al. Synthesis of white-light-emitting graphene quantum dots via a one-step reduction and their interfacial characteristics-dependent luminescence properties
Rameshbabu et al. Fabrication of Cu 2 MoS 4 hollow nanotubes with rGO sheets for enhanced visible light photocatalytic performance
JP2018131621A (en) Nanocarbon-containing inorganic porous material emitter
Yang et al. Synthesis and strong red photoluminescence of europium oxide nanotubes and nanowires using carbon nanotubes as templates
Nguyen et al. Heterojunction of graphene and titanium dioxide nanotube composites for enhancing photocatalytic activity
Cui et al. Construction of ternary Ag/AgBr@ UIO-66 (NH 2) heterojunctions with enhanced photocatalytic performance for the degradation of methyl orange
Singh et al. Radiolytic synthesis and spectroscopic investigations of Cadmium Selenide quantum dots grown in cationic surfactant based quaternary water-in-oil microemulsions
Deng et al. Enhanced selective photooxidation of toluene to benzaldehyde over Co3O4‐modified BiOBr/AgBr S‐scheme heterojunction
Qian et al. Facile synthesis of halogenated multi-walled carbon nanotubes and their unusual photoluminescence
JP6270183B2 (en) Organic / inorganic layered perovskite compound and method for producing organic / inorganic layered perovskite compound
Zhang et al. Internal electric field and adsorption effect synergistically boost carbon dioxide conversion on cadmium sulfide@ covalent triazine frameworks core–shell photocatalyst
JP6608216B2 (en) Zeolite-nanocarbon composite phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250