JP2017035649A - Freezing separation device and freezing separation method - Google Patents

Freezing separation device and freezing separation method Download PDF

Info

Publication number
JP2017035649A
JP2017035649A JP2015156801A JP2015156801A JP2017035649A JP 2017035649 A JP2017035649 A JP 2017035649A JP 2015156801 A JP2015156801 A JP 2015156801A JP 2015156801 A JP2015156801 A JP 2015156801A JP 2017035649 A JP2017035649 A JP 2017035649A
Authority
JP
Japan
Prior art keywords
solution
contact member
solvent
freeze
freeze separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015156801A
Other languages
Japanese (ja)
Other versions
JP2017035649A5 (en
JP6176798B2 (en
Inventor
木村 元彦
Motohiko Kimura
元彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2015156801A priority Critical patent/JP6176798B2/en
Publication of JP2017035649A publication Critical patent/JP2017035649A/en
Publication of JP2017035649A5 publication Critical patent/JP2017035649A5/en
Application granted granted Critical
Publication of JP6176798B2 publication Critical patent/JP6176798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a freezing separation device and a freezing separation method capable of improving concentration efficiency (or making a solvent to be separated highly purified).SOLUTION: A freezing separation device 1A freezing and separating at least a part of a solvent from a solution B includes: a contact member 12 contacting with the solution B; a vibrating part 13 applying vibration to the contact member 12; and a cooling part 14 freezing the solvent positioning in the vicinity of a boundary between the contact member 12 and the solution B by cooling the contact member 12. In the freezing separation device 1A, the solution B is concentrated or the purity of the solvent is increased by separating at least a part of the solvent from the solution B.SELECTED DRAWING: Figure 1

Description

本発明は、凍結分離装置および凍結分離方法に関するものである。   The present invention relates to a freeze separation apparatus and a freeze separation method.

特許文献1には、凍結濃縮分離装置に関する技術が開示されている。この文献に記載された装置では、まず、溶剤を吸収した水が製氷機において凍結され、凝固点の違いから溶剤は凍結せず、水は凍結して、氷粒と濃縮水とに分離される。次に、氷粒及び濃縮水を保冷タンクに集積し、超音波を照射する。これにより、氷粒に取り込まれた気泡が取り除かれる。また、非特許文献1には、溶液に超音波を照射しながら、凍結濃縮分離を行う方法が開示されている。   Patent Document 1 discloses a technique related to a freeze concentration separation apparatus. In the apparatus described in this document, first, water that has absorbed the solvent is frozen in an ice making machine, the solvent is not frozen due to the difference in freezing point, and the water is frozen and separated into ice particles and concentrated water. Next, ice particles and concentrated water are accumulated in a cold storage tank and irradiated with ultrasonic waves. Thereby, the air bubbles taken into the ice particles are removed. Non-Patent Document 1 discloses a method of performing freeze concentration separation while irradiating a solution with ultrasonic waves.

特開2003−145137号公報JP 2003-145137 A

川崎健二、「超音波を用いた凍結濃縮分離法について」、愛媛大学工学部、第79回応用化学科セミナーKenji Kawasaki, “Freeze Concentration Separation Method Using Ultrasonics”, Faculty of Engineering, Ehime University, 79th Seminar on Applied Chemistry

産業界において、インスタントコーヒ一、各種ジュース、ビール、ワイン、乳製品といった液状食品を濃縮するために凍結濃縮技術が多く用いられている。凍結濃縮技術では、溶液を冷却して溶質濃度の低い凍結部分(例えば氷)を形成することにより、未凍結溶液中の溶質濃度を高めることができる。例えば、低温の部材を溶液に接触させることにより、該部材の表面近傍において溶媒を凍結させることができる。また、このような凍結濃縮技術は、高純度の溶媒を溶液から分離する際にも好適に用いられる。   In the industry, freeze concentration techniques are often used to concentrate liquid foods such as instant coffee, various juices, beer, wine, and dairy products. In the freeze concentration technique, the solute concentration in the unfrozen solution can be increased by cooling the solution to form a frozen portion (eg, ice) having a low solute concentration. For example, by bringing a low-temperature member into contact with the solution, the solvent can be frozen in the vicinity of the surface of the member. Such a freeze concentration technique is also preferably used when a high-purity solvent is separated from a solution.

従来の凍結濃縮技術では、凍結部分近傍の溶液中の溶質濃度が上昇することを防いで凍結部分の溶媒純度を高めるために、例えば溶液の撹枠や循環などが行われる。しかしながら、溶液の撹枠や循環を行っても、凍結部分の表面(凍結面)に位置する溶質は、溶液の粘性に因って殆ど移動しない。このことは、凍結部分の高純度化を妨げ、濃縮効率の低下(若しくは分離される溶媒の低純度化)の要因となる。   In the conventional freeze concentration technique, for example, a stirring frame or circulation of the solution is performed in order to prevent the solute concentration in the solution in the vicinity of the frozen portion from increasing and to increase the solvent purity of the frozen portion. However, even when the solution is stirred or circulated, the solute located on the surface (frozen surface) of the frozen portion hardly moves due to the viscosity of the solution. This hinders high purity of the frozen portion and causes reduction in concentration efficiency (or low purity of the separated solvent).

なお、非特許文献1に開示されているように超音波を溶液に照射する方式も存在するが、この方式は、時間と共に移動する凍結面に対して超音波を適切に照射するための振動子の位置調整が極めて難しく、産業界ではほとんど応用されていない。   As disclosed in Non-Patent Document 1, there is a method for irradiating a solution with ultrasonic waves, but this method is a vibrator for appropriately irradiating ultrasonic waves on a frozen surface that moves with time. It is extremely difficult to adjust the position, and is hardly applied in industry.

本発明は、このような問題点に鑑みてなされたものであり、濃縮効率の向上(若しくは分離される溶媒の高純度化)が可能な凍結分離装置および凍結分離方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a freeze separation apparatus and a freeze separation method capable of improving the concentration efficiency (or increasing the purity of the solvent to be separated). To do.

上述した課題を解決するために、本発明による凍結分離装置は、溶液中から少なくとも一部の溶媒を凍結させて分離する装置であって、溶液に接する接触部材と、接触部材に振動を与える加振部と、接触部材を冷却することにより、溶媒を部分的に凍結させる冷却部とを備えることを特徴とする。   In order to solve the above-described problems, a freeze separation apparatus according to the present invention is an apparatus that freezes and separates at least a part of a solvent from a solution, and includes a contact member that contacts the solution, and a vibration member that applies vibration to the contact member. It is characterized by comprising a vibrating part and a cooling part for partially freezing the solvent by cooling the contact member.

また、本発明による凍結分離方法は、溶液中から少なくとも一部の溶媒を凍結させて分離する方法であって、溶液に接触部材を接触させた状態で、接触部材に振動を与えつつ、接触部材を冷却することにより溶媒を部分的に凍結させることを特徴とする。   Further, the freeze separation method according to the present invention is a method of freezing and separating at least a part of a solvent from a solution, and in a state in which the contact member is in contact with the solution, the contact member is vibrated while being vibrated. The solvent is partially frozen by cooling.

上記の凍結分離装置および凍結分離方法によれば、接触部材との界面付近に生じる溶液の凍結部分の表面(凍結面)が、振動しながら非凍結部分と接する。これにより、凍結面近傍に存在する非凍結部分中の溶質が、凍結面から離れ易くなる。従って、撹拌や循環のみによる従来の方式と比較して、凍結面における溶質濃度を効果的に低下させながら凍結を進めることができるので、濃縮効率の向上(若しくは分離される溶媒の高純度化)が可能となる。   According to the above-described freeze separation apparatus and freeze separation method, the surface (frozen surface) of the frozen portion of the solution generated near the interface with the contact member is in contact with the non-frozen portion while vibrating. Thereby, the solute in the non-frozen portion existing in the vicinity of the frozen surface is easily separated from the frozen surface. Therefore, compared to conventional methods using only agitation and circulation, freezing can be carried out while effectively reducing the solute concentration on the freezing surface, thus improving the concentration efficiency (or increasing the purity of the separated solvent). Is possible.

また、上記の凍結分離装置は、接触部材が溶液の液面から溶液中に浸漬されることを特徴としてもよい。これにより、簡便な凍結分離装置を提供することができる。   Further, the freeze separation apparatus may be characterized in that the contact member is immersed in the solution from the liquid surface of the solution. Thereby, a simple freeze separation apparatus can be provided.

また、上記の凍結分離装置は、接触部材が管状を呈しており、冷却部が該管内に冷えた液体又は気体を送ることを特徴としてもよい。これにより、接触部材を簡易な構成によって冷却することができる。   In the freeze separation device, the contact member may have a tubular shape, and the cooling unit may send a cooled liquid or gas into the tube. Thereby, a contact member can be cooled by simple structure.

また、上記の凍結分離装置は、接触部材が、溶液を収容する容器の一部を構成していることを特徴としてもよい。   In addition, the above-described freeze separation apparatus may be characterized in that the contact member constitutes a part of a container that stores the solution.

また、上記の凍結分離方法は、溶液中から少なくとも一部の溶媒を分離することにより溶液を濃縮することを特徴としてもよい。これにより、濃縮効率が良い(すなわち分配係数が高い)凍結濃縮方法を提供することができる。或いは、上記の凍結分離方法は、溶液中から少なくとも一部の溶媒を分離することにより溶媒の純度を高めることを特徴としてもよい。これにより、溶液中から溶媒を高純度で抽出可能な方法を提供することができる。   The freeze separation method may be characterized in that the solution is concentrated by separating at least a part of the solvent from the solution. Thereby, it is possible to provide a freeze concentration method with high concentration efficiency (that is, a high distribution coefficient). Alternatively, the freeze separation method described above may be characterized in that the purity of the solvent is increased by separating at least a part of the solvent from the solution. Thereby, the method which can extract a solvent with high purity from the solution can be provided.

本発明によれば、濃縮効率の向上(若しくは分離される溶媒の高純度化)が可能な凍結分離装置および凍結分離方法を提供できる。   According to the present invention, it is possible to provide a freeze separation apparatus and a freeze separation method capable of improving the concentration efficiency (or increasing the purity of the solvent to be separated).

図1は、本発明の第1実施形態に係る凍結分離装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a freeze separation device according to a first embodiment of the present invention. 図2は、第1実施形態の凍結分離装置を用いた凍結分離方法を示すフローチャートである。FIG. 2 is a flowchart showing a freeze separation method using the freeze separation apparatus of the first embodiment. 図3は、従来の凍結分離方法を示す図である。FIG. 3 is a diagram showing a conventional freeze separation method. 図4は、本発明の第2実施形態に係る凍結分離装置の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the freeze separation device according to the second embodiment of the present invention. 図5は、本発明の第3実施形態に係る凍結分離装置の構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of the freeze separation apparatus according to the third embodiment of the present invention. 図6は、本発明の第4実施形態に係る凍結分離装置の構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of the freeze separation apparatus according to the fourth embodiment of the present invention. 図7は、本発明の効果を確認するための一実施例の結果を示すグラフである。FIG. 7 is a graph showing the results of an example for confirming the effects of the present invention.

以下、添付図面を参照しながら本発明による凍結分離装置および凍結分離方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Embodiments of a freeze separation apparatus and a freeze separation method according to the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係る凍結分離装置1Aの構成を示す断面図である。この凍結分離装置1Aは、溶液Bの中から少なくとも一部の溶媒を凍結させて分離する装置である。凍結分離装置1Aは、溶液Bから溶媒を分離することにより溶液Bを濃縮する装置として、或いは、溶液Bから溶媒を分離することにより溶媒の純度を高める装置として、用いられる。この凍結分離装置1Aを濃縮装置として用いる場合、例えば食品分野におけるインスタントコーヒー、各種ジュース、ビール、ワイン、乳製品などの濃縮に好適に用いられる。或いは、生物学、医療・医学分野における分析の際の試料の濃縮にも好適に用いられる。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a freeze separation apparatus 1A according to the first embodiment of the present invention. The freeze separation device 1A is a device that freezes and separates at least a part of the solvent from the solution B. The freeze separation apparatus 1A is used as an apparatus for concentrating the solution B by separating the solvent from the solution B, or as an apparatus for increasing the purity of the solvent by separating the solvent from the solution B. When this freeze separator 1A is used as a concentrator, it is suitably used for concentrating instant coffee, various juices, beer, wine, dairy products and the like in the food field. Or it is used suitably also for the concentration of the sample in the case of analysis in biology, medical treatment / medical field.

図1に示されるように、本実施形態の凍結分離装置1Aは、溶液Bを収容する容器11と、溶液Bに接触する接触部材12と、接触部材12に微小な機械的振動を与える加振部13と、接触部材12を冷却する冷却部14とを備える。溶液Bは、例えば目的物質(溶質)の水溶液である。容器11は、凍結分離装置1Aが食品の製造に用いられる場合には、工場設備の一部として例えば直径数メートル〜数センチメートル程度の大きさを有し、凍結分離装置1Aが試料の分析に用いられる場合には、研究室内の装置として例えば直径数センチメートル〜数ミリメートル程度の大きさを有する。   As shown in FIG. 1, the freeze separation device 1 </ b> A of the present embodiment includes a container 11 that stores a solution B, a contact member 12 that contacts the solution B, and an excitation that applies minute mechanical vibrations to the contact member 12. And a cooling unit 14 that cools the contact member 12. The solution B is, for example, an aqueous solution of a target substance (solute). When the freeze separator 1A is used for food production, the container 11 has a size of, for example, several meters to several centimeters as a part of factory equipment, and the freeze separator 1A is used for analyzing samples. When used, the laboratory apparatus has a diameter of, for example, several centimeters to several millimeters.

接触部材12は外管内に内管が収容された2層の管状を呈しており、内管と外管は接触部材12の端部で互いに連通している。接触部材12は、溶液Bの液面B1から溶液B中に浸漬される。このとき、接触部材12の長手方向は、溶液Bの深さ方向と一致する。   The contact member 12 has a two-layered tube shape in which the inner tube is accommodated in the outer tube, and the inner tube and the outer tube communicate with each other at the end of the contact member 12. The contact member 12 is immersed in the solution B from the liquid level B1 of the solution B. At this time, the longitudinal direction of the contact member 12 coincides with the depth direction of the solution B.

加振部13は接触部材12の溶液Bから露出した部分に取り付けられている。加振部13は、例えばソレノイドコイルや電気モータなどの電磁力によって接触部材12に振動を与えてもよく、凍結分離装置1Aの外部から与えられる圧縮空気を用いた振動装置によって接触部材12に振動を与えてもよく、或いは、ピエゾ素子や超音波発振子などの電子素子を用いて接触部材12に振動を与えてもよい。接触部材12の好適な振動周波数は例えば20Hz〜100kHzであり、より好ましくは例えば100Hzである。また、接触部材12の好適な振幅は例えば0.1mm〜30mmであり、より好ましくは例えば1mmである。接触部材12の振動方向は、溶液Bとの接触面に対して垂直或いは水平など、様々な方向に設定され得る。   The vibration unit 13 is attached to a portion of the contact member 12 exposed from the solution B. The vibration unit 13 may vibrate the contact member 12 by electromagnetic force such as a solenoid coil or an electric motor, and vibrates the contact member 12 by a vibration device using compressed air given from the outside of the freeze separation device 1A. Alternatively, the contact member 12 may be vibrated using an electronic element such as a piezoelectric element or an ultrasonic oscillator. A suitable vibration frequency of the contact member 12 is, for example, 20 Hz to 100 kHz, and more preferably, for example, 100 Hz. Moreover, the suitable amplitude of the contact member 12 is 0.1 mm-30 mm, for example, More preferably, it is 1 mm, for example. The vibration direction of the contact member 12 can be set in various directions such as vertical or horizontal with respect to the contact surface with the solution B.

冷却部14は、冷えた液体又は気体(図中の矢印F)を接触部材12の内管(または外管)に送り込むことにより、接触部材12を冷却する。この液体又は気体Fは、接触部材12の外管(または内管)から接触部材12の外部へ排出される。接触部材12に送り込まれる液体又は気体Fとしては、例えばフロンガスやアルコールといった種々の液体又は気体を使用できる。フロンガスの場合、接触部材12は金属製であることが望ましい。また、アルコールの場合、接触部材12は例えばゴムなどの樹脂製であってもよい。この冷却部14による接触部材12の冷却によって、接触部材12と溶液Bとの境界近傍に位置する溶媒が凍結し、凍結部分B2が形成される。   The cooling unit 14 cools the contact member 12 by sending a cooled liquid or gas (arrow F in the figure) to the inner tube (or outer tube) of the contact member 12. The liquid or gas F is discharged from the outer tube (or inner tube) of the contact member 12 to the outside of the contact member 12. As the liquid or gas F fed into the contact member 12, various liquids or gases such as chlorofluorocarbon and alcohol can be used. In the case of Freon gas, the contact member 12 is preferably made of metal. In the case of alcohol, the contact member 12 may be made of a resin such as rubber. By the cooling of the contact member 12 by the cooling unit 14, the solvent located in the vicinity of the boundary between the contact member 12 and the solution B is frozen, and a frozen portion B2 is formed.

図2は、本実施形態の凍結分離装置1Aを用いた凍結分離方法を示すフローチャートである。図2に示されるように、この凍結分離方法では、まず接触部材12を溶液Bに浸漬させて、溶液Bに接触部材12の表面を接触させる(工程S11)。次に、その接触状態を保ちながら、加振部13によって接触部材12に振動を与え始める(工程S12)。そして、冷却部14によって接触部材12の冷却を開始する(工程S13)。これにより、接触部材12の表面に溶媒の凍結部分B2が形成される。その後、凍結部分B2を接触部材12とともに溶液Bから取り出す(工程S14)。   FIG. 2 is a flowchart showing a freeze separation method using the freeze separation apparatus 1A of the present embodiment. As shown in FIG. 2, in this freeze separation method, the contact member 12 is first immersed in the solution B, and the surface of the contact member 12 is brought into contact with the solution B (step S11). Next, while maintaining the contact state, the vibration member 13 starts to apply vibration to the contact member 12 (step S12). And cooling of the contact member 12 is started by the cooling unit 14 (step S13). Thereby, the frozen part B2 of the solvent is formed on the surface of the contact member 12. Thereafter, the frozen portion B2 is taken out from the solution B together with the contact member 12 (step S14).

以上に説明した、本実施形態による凍結分離装置1Aおよび凍結分離方法によって得られる効果について、従来の方法と比較しながら説明する。図3は、従来の凍結分離方法を示す図である。従来の方法では、まず、溶質B3を含む溶液Bを容器101内に収容し(図3(a))、撹拌機102によって溶液Bを撹拌しながら容器101を冷却する。これにより、容器101に接触する部分から溶液Bが徐々に凍結し、凍結部分B2が形成される(図3(b))。このとき、凍結部分B2における溶質B3の濃度が非凍結部分の溶質B3の濃度よりも低くなるので、非凍結部分の溶質B3の濃度は次第に高まる。最終的に、非凍結部分を取り出すことにより、溶液Bを濃縮することができる(図3(c))。   The effects obtained by the freeze separation apparatus 1A and the freeze separation method according to the present embodiment described above will be described in comparison with conventional methods. FIG. 3 is a diagram showing a conventional freeze separation method. In the conventional method, first, the solution B containing the solute B3 is accommodated in the container 101 (FIG. 3A), and the container 101 is cooled while stirring the solution B by the stirrer 102. As a result, the solution B is gradually frozen from the portion in contact with the container 101, and a frozen portion B2 is formed (FIG. 3B). At this time, since the concentration of the solute B3 in the frozen portion B2 becomes lower than the concentration of the solute B3 in the non-frozen portion, the concentration of the solute B3 in the non-frozen portion gradually increases. Finally, the solution B can be concentrated by removing the non-frozen portion (FIG. 3C).

しかしながら、このような従来の方法では、凍結部分B2の表面(凍結面)に位置する溶質B3が、溶液Bの粘性に因って殆ど移動しない。このことは、凍結部分B2における溶質B3の濃度上昇を招き、濃縮効率の低下の要因となる。   However, in such a conventional method, the solute B3 located on the surface (frozen surface) of the frozen portion B2 hardly moves due to the viscosity of the solution B. This leads to an increase in the concentration of the solute B3 in the frozen portion B2, which causes a reduction in concentration efficiency.

これに対し、本実施形態の凍結分離装置1Aおよび凍結分離方法によれば、接触部材12との界面付近に生じる凍結部分B2の表面(凍結面)が、振動しながら溶液Bの非凍結部分と接する。これにより、凍結面近傍に存在する非凍結部分中の溶質が、凍結面から離れ易くなる。従って、撹拌や循環のみによる従来の方式と比較して、凍結面における溶質濃度を効果的に低下させながら凍結を進めることができるので、濃縮効率の向上(若しくは分離される溶媒の高純度化)が可能となる。また、加振部13としてピエゾ素子や超音波発振子などの電子素子を使用することができるので、モータ等により動作する撹拌機102を使用する従来技術と比較して消費電力を低減できる。また、非特許文献1に記載された装置と異なり、分離動作中における超音波振動子等の位置調整を必要としないので、簡易な操作でもって安定した凍結分離が可能となる。   On the other hand, according to the freeze separation device 1A and the freeze separation method of the present embodiment, the surface (frozen surface) of the frozen portion B2 generated near the interface with the contact member 12 vibrates with the non-frozen portion of the solution B while vibrating. Touch. Thereby, the solute in the non-frozen portion existing in the vicinity of the frozen surface is easily separated from the frozen surface. Therefore, compared to conventional methods using only agitation and circulation, freezing can be carried out while effectively reducing the solute concentration on the freezing surface, thus improving the concentration efficiency (or increasing the purity of the separated solvent). Is possible. Further, since an electronic element such as a piezo element or an ultrasonic oscillator can be used as the vibration unit 13, the power consumption can be reduced as compared with the conventional technique using the stirrer 102 operated by a motor or the like. In addition, unlike the apparatus described in Non-Patent Document 1, it is not necessary to adjust the position of the ultrasonic vibrator or the like during the separation operation, so that stable freeze separation can be performed with a simple operation.

また、本実施形態の凍結分離方法は、溶液Bから少なくとも一部の溶媒を分離することにより、溶液Bを濃縮することを特徴としてもよい。これにより、濃縮効率が良い(すなわち分配係数が高い)凍結濃縮方法を提供することができる。或いは、本実施形態の凍結分離方法は、溶液Bから少なくとも一部の溶媒を分離することにより、溶媒の純度を高めることを特徴としてもよい。これにより、溶液Bから溶媒を高純度で抽出可能な方法を提供することができる。   Further, the freeze separation method of the present embodiment may be characterized in that the solution B is concentrated by separating at least a part of the solvent from the solution B. Thereby, it is possible to provide a freeze concentration method with high concentration efficiency (that is, a high distribution coefficient). Alternatively, the freeze separation method of the present embodiment may be characterized in that the purity of the solvent is increased by separating at least a part of the solvent from the solution B. Thereby, the method which can extract a solvent with high purity from the solution B can be provided.

また、本実施形態のように、接触部材12は、溶液Bの液面B1から溶液B中に浸漬されてもよい。これにより、例えば生物学、医療・医学分野における分析などの際に、簡便に用いることが可能な凍結分離装置1Aを提供することができる。また、本実施形態のように、接触部材12が管状を呈しており、冷却部14が該管内に冷えた液体又は気体を送ってもよい。これにより、接触部材12を簡易な構成によって冷却することができる。   Further, as in the present embodiment, the contact member 12 may be immersed in the solution B from the liquid level B1 of the solution B. Thereby, it is possible to provide a freeze separation apparatus 1A that can be easily used, for example, in the case of analysis in the fields of biology, medicine, and medicine. Moreover, like this embodiment, the contact member 12 is exhibiting the tubular shape, and the cooling part 14 may send the cooled liquid or gas in this pipe | tube. Thereby, the contact member 12 can be cooled with a simple configuration.

(第2実施形態)
図4は、本発明の第2実施形態に係る凍結分離装置1Bの構成を示す断面図である。この凍結分離装置1Bもまた、凍結分離装置1Aと同様に、溶液Bの中から少なくとも一部の溶媒を凍結させて分離する。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing a configuration of a freeze separation device 1B according to the second embodiment of the present invention. Similarly to the freeze separation device 1A, this freeze separation device 1B also freezes and separates at least a part of the solvent from the solution B.

図4に示されるように、本実施形態の凍結分離装置1Bは、溶液Bを収容する容器21と、溶液Bに接触する板状の接触部材22と、接触部材22に振動を与える加振部23と、接触部材22を冷却する冷却部24とを備える。第1実施形態と異なり、本実施形態では接触部材22が円筒状の容器21の底を塞いでおり、容器21と共に溶液Bを収容する容器の一部を構成している。   As shown in FIG. 4, the freeze separation device 1 </ b> B of the present embodiment includes a container 21 that stores the solution B, a plate-like contact member 22 that contacts the solution B, and a vibration unit that applies vibration to the contact member 22. 23 and a cooling unit 24 for cooling the contact member 22. Unlike the first embodiment, in this embodiment, the contact member 22 closes the bottom of the cylindrical container 21, and constitutes a part of the container for storing the solution B together with the container 21.

また、本実施形態の加振部23は、第1実施形態の加振部13と同様の構成を有しても良い。図3には、加振部23の一例として、ソレノイドコイル23b及び可動鉄芯23cが示されている。ソレノイドコイル23bの両端に交流電源23aから駆動電圧が印加されると、ソレノイドコイル23bに電磁力が生じ、可動鉄芯23cを振動させる。可動鉄芯23cの一端は冷却部24を介して接触部材22に固定されており、可動鉄芯23cの振動が接触部材22に伝達される。   Further, the vibration unit 23 of the present embodiment may have the same configuration as the vibration unit 13 of the first embodiment. FIG. 3 shows a solenoid coil 23b and a movable iron core 23c as an example of the vibration unit 23. When a drive voltage is applied from both ends of the solenoid coil 23b from the AC power source 23a, an electromagnetic force is generated in the solenoid coil 23b to vibrate the movable iron core 23c. One end of the movable iron core 23 c is fixed to the contact member 22 via the cooling unit 24, and the vibration of the movable iron core 23 c is transmitted to the contact member 22.

冷却部24としては、板状の接触部材22を冷却するために、例えばペルチェ素子といった熱電素子が用いられる。冷却部24は、接触部材22の裏面(すなわち溶液Bとの接触面とは反対側の面)と接触しており、与えられた電圧に応じて接触部材22から熱を奪う。これにより、接触部材22との接触面近傍に位置する溶媒が凍結し、凍結部分B2が形成される。   As the cooling unit 24, for example, a thermoelectric element such as a Peltier element is used to cool the plate-like contact member 22. The cooling unit 24 is in contact with the back surface of the contact member 22 (that is, the surface opposite to the contact surface with the solution B), and removes heat from the contact member 22 according to the applied voltage. Thereby, the solvent located in the contact surface vicinity with the contact member 22 freezes, and frozen part B2 is formed.

本実施形態の凍結分離装置1Bによれば、第1実施形態の凍結分離装置1Aと同様の効果を奏することができる。すなわち、接触部材22との界面付近に生じる凍結部分B2の表面(凍結面)が、振動しながら溶液Bの非凍結部分と接する。これにより、非凍結部分中の溶質が凍結面から離れ易くなるので、凍結面における溶質濃度が低下し、濃縮効率の向上(若しくは分離される溶媒の高純度化)が可能となる。   According to the freeze separation device 1B of the present embodiment, the same effects as the freeze separation device 1A of the first embodiment can be obtained. That is, the surface (frozen surface) of the frozen portion B2 generated near the interface with the contact member 22 contacts the non-frozen portion of the solution B while vibrating. Thereby, since the solute in the non-frozen portion is easily separated from the freezing surface, the concentration of the solute on the freezing surface is reduced, and the concentration efficiency can be improved (or the purity of the separated solvent can be increased).

(第3実施形態)
図5は、本発明の第3実施形態に係る凍結分離装置1Cの構成を示す断面図である。この凍結分離装置1Cもまた、凍結分離装置1Aと同様に、溶液Bの中から少なくとも一部の溶媒を凍結させて分離する。図5に示されるように、本実施形態の凍結分離装置1Cは、第1実施形態の接触部材12に代えて、接触部材32を備える。本実施形態の接触部材32は、一本の管状部材がU字状に屈曲された構成を有する。冷却部14は、冷えた液体又は気体Fをその管状部材の一端に送り込む。液体又は気体Fは、管状部材の他端から排出される。なお、接触部材32を除く他の構成については、第1実施形態と同様なので詳細な説明を省略する。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a configuration of a freeze separation device 1C according to the third embodiment of the present invention. Similarly to the freeze separation device 1A, this freeze separation device 1C also freezes and separates at least a part of the solvent from the solution B. As shown in FIG. 5, the freeze separation device 1 </ b> C of the present embodiment includes a contact member 32 instead of the contact member 12 of the first embodiment. The contact member 32 of this embodiment has a configuration in which one tubular member is bent in a U shape. The cooling unit 14 sends the cooled liquid or gas F to one end of the tubular member. The liquid or gas F is discharged from the other end of the tubular member. Since the other configuration excluding the contact member 32 is the same as that of the first embodiment, detailed description thereof is omitted.

接触部材の構成は第1実施形態に限られず、例えば本実施形態の接触部材32のように、種々の形態を取りうる。接触部材がどのような形態を有していても、加振部により振動が与えられ、また冷却部により冷却されることによって、第1実施形態の効果を好適に奏することができる。   The configuration of the contact member is not limited to the first embodiment, and can take various forms such as the contact member 32 of the present embodiment. Whatever form the contact member has, the effects of the first embodiment can be suitably achieved by applying vibrations by the excitation unit and cooling by the cooling unit.

(第4実施形態)
図6は、本発明の第4実施形態に係る凍結分離装置1Dの構成を示す断面図である。この凍結分離装置1Dもまた、凍結分離装置1Aと同様に、溶液Bの中から少なくとも一部の溶媒を凍結させて分離する。図6に示されるように、本実施形態の凍結分離装置1Dは、第1実施形態の接触部材12に代えて、接触部材42を備える。この接触部材42と、第1実施形態の接触部材12との相違点は、溶液Bと接触する表面の形状である。すなわち、第1実施形態の接触部材12の表面が平坦であったのに対し、本実施形態の接触部材42の表面42aには、凹凸が繰り返し形成されている。これにより、凍結部分B2の表面(凍結面)もまた凹凸状となるので、接触部材42の振動の際、凍結面近傍の溶質が凍結面から更に離れ易くなる。従って、第1実施形態の効果が更に顕著となる。
(Fourth embodiment)
FIG. 6 is a cross-sectional view showing a configuration of a freeze separation apparatus 1D according to the fourth embodiment of the present invention. Similarly to the freeze separation device 1A, this freeze separation device 1D also freezes and separates at least a part of the solvent from the solution B. As shown in FIG. 6, the freeze separation device 1 </ b> D of this embodiment includes a contact member 42 instead of the contact member 12 of the first embodiment. The difference between the contact member 42 and the contact member 12 of the first embodiment is the shape of the surface in contact with the solution B. That is, while the surface of the contact member 12 of the first embodiment is flat, unevenness is repeatedly formed on the surface 42a of the contact member 42 of the present embodiment. Thereby, since the surface (frozen surface) of the frozen portion B2 is also uneven, the solute in the vicinity of the frozen surface is more easily separated from the frozen surface when the contact member 42 vibrates. Therefore, the effect of the first embodiment becomes more remarkable.

(実施例)
図7は、本発明の効果を確認するための一実施例の結果を示すグラフである。この実施例では、食紅(赤色102号)を溶解させた水溶液を溶液Bとした。そして、金属製の板状の接触部材に冷却部としてのペルチェ素子を貼り付け、加振部としてのソレノイドコイルに接触部材を固定した装置を用いて、溶液Bの凍結濃縮を行った。図7の横軸は分配係数、すなわち凍結部分B2の溶質濃度を非凍結部分の溶質濃度で除した値を示す。図7の縦軸はペルチェ素子への印加電圧を示す。図中のプロットP1は、ソレノイドコイルにより接触部材に周波数100Hz、振幅1mmの正弦波振動を与えた場合の結果を示す。プロットP2は、接触部材に振動を与えなかった場合の結果を示す。
(Example)
FIG. 7 is a graph showing the results of an example for confirming the effects of the present invention. In this example, an aqueous solution in which red food (red No. 102) was dissolved was designated as solution B. Then, the solution B was freeze-concentrated using a device in which a Peltier element as a cooling unit was attached to a metal plate-like contact member, and the contact member was fixed to a solenoid coil as a vibration unit. The horizontal axis of FIG. 7 shows a partition coefficient, that is, a value obtained by dividing the solute concentration in the frozen portion B2 by the solute concentration in the non-frozen portion. The vertical axis in FIG. 7 indicates the voltage applied to the Peltier element. Plot P1 in the figure shows the result when a sinusoidal vibration having a frequency of 100 Hz and an amplitude of 1 mm is applied to the contact member by the solenoid coil. Plot P2 shows the result when no vibration is applied to the contact member.

図7のプロットP2に示されるように、接触部材に振動を印加せずに凍結分離を実施したときの分配係数は約0.7であった。これに対し、接触部材に振動を印加しながら凍結分離を実施したときの分配係数は約0.2であった。この結果から、接触部材を振動させることによって凍結部分B2の溶質濃度を大幅に低減できたことがわかる。   As shown in plot P2 of FIG. 7, the distribution coefficient was about 0.7 when freeze separation was performed without applying vibration to the contact member. On the other hand, the distribution coefficient when freeze separation was performed while applying vibration to the contact member was about 0.2. From this result, it can be seen that the solute concentration in the frozen portion B2 could be greatly reduced by vibrating the contact member.

本発明による凍結分離装置および凍結分離方法は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した各実施形態の各要素を、必要な目的及び効果に応じて互いに組み合わせてもよい。接触部材は、溶液に接する部材であればよく、様々な形状及び構造を有することができる。加振部は、接触部材に振動を与えうるものであれば、上述した例に限られない。冷却部は、接触部材を冷却しうるものであれば、上述した例に限られない。   The freeze separation apparatus and freeze separation method according to the present invention are not limited to the above-described embodiments, and various other modifications are possible. For example, you may combine each element of each embodiment mentioned above according to a required objective and effect. The contact member only needs to be a member in contact with the solution, and can have various shapes and structures. The vibration unit is not limited to the above-described example as long as it can apply vibration to the contact member. The cooling unit is not limited to the above-described example as long as it can cool the contact member.

1A〜1D…凍結分離装置、11,21…容器、12,22,32,42…接触部材、13,23…加振部、14,24…冷却部、B…溶液、B1…液面、B2…凍結部分、F…液体又は気体。   DESCRIPTION OF SYMBOLS 1A-1D ... Freezing separation apparatus, 11, 21 ... Container, 12, 22, 32, 42 ... Contact member, 13, 23 ... Excitation part, 14, 24 ... Cooling part, B ... Solution, B1 ... Liquid surface, B2 ... Frozen part, F ... Liquid or gas.

Claims (7)

溶液中から少なくとも一部の溶媒を凍結させて分離する装置であって、
前記溶液に接する接触部材と、
前記接触部材に振動を与える加振部と、
前記接触部材を冷却することにより、前記溶媒を部分的に凍結させる冷却部と、
を備えることを特徴とする、凍結分離装置。
An apparatus for freezing and separating at least a part of a solvent from a solution,
A contact member in contact with the solution;
An excitation unit for applying vibration to the contact member;
A cooling unit for partially freezing the solvent by cooling the contact member;
A freeze separation apparatus comprising:
前記接触部材が前記溶液の液面から前記溶液中に浸漬されることを特徴とする、請求項1に記載の凍結分離装置。   The freeze separation apparatus according to claim 1, wherein the contact member is immersed in the solution from a liquid level of the solution. 前記接触部材が管状を呈しており、前記冷却部が該管内に冷えた液体又は気体を送ることを特徴とする、請求項1または2に記載の凍結分離装置。   The freeze separation device according to claim 1 or 2, wherein the contact member has a tubular shape, and the cooling unit sends a cooled liquid or gas into the tube. 前記接触部材が、前記溶液を収容する容器の一部を構成していることを特徴とする、請求項1に記載の凍結分離装置。   The freeze separation apparatus according to claim 1, wherein the contact member constitutes a part of a container for storing the solution. 溶液中から少なくとも一部の溶媒を凍結させて分離する方法であって、
前記溶液に接触部材を接触させた状態で、前記接触部材に振動を与えつつ、前記接触部材を冷却することにより前記溶媒を部分的に凍結させることを特徴とする、凍結分離方法。
A method of freezing and separating at least a part of a solvent from a solution,
A freeze separation method, wherein the solvent is partially frozen by cooling the contact member while applying vibration to the contact member while the contact member is in contact with the solution.
前記溶液中から前記少なくとも一部の溶媒を分離することにより前記溶液を濃縮することを特徴とする、請求項5に記載の凍結分離方法。   The freeze separation method according to claim 5, wherein the solution is concentrated by separating the at least part of the solvent from the solution. 前記溶液中から前記少なくとも一部の溶媒を分離することにより前記溶媒の純度を高めることを特徴とする、請求項5に記載の凍結分離方法。   The freeze separation method according to claim 5, wherein the purity of the solvent is increased by separating the at least part of the solvent from the solution.
JP2015156801A 2015-08-07 2015-08-07 Freeze separation device, parts for freeze separation device, and freeze separation method Expired - Fee Related JP6176798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156801A JP6176798B2 (en) 2015-08-07 2015-08-07 Freeze separation device, parts for freeze separation device, and freeze separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156801A JP6176798B2 (en) 2015-08-07 2015-08-07 Freeze separation device, parts for freeze separation device, and freeze separation method

Publications (3)

Publication Number Publication Date
JP2017035649A true JP2017035649A (en) 2017-02-16
JP2017035649A5 JP2017035649A5 (en) 2017-03-23
JP6176798B2 JP6176798B2 (en) 2017-08-09

Family

ID=58047046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156801A Expired - Fee Related JP6176798B2 (en) 2015-08-07 2015-08-07 Freeze separation device, parts for freeze separation device, and freeze separation method

Country Status (1)

Country Link
JP (1) JP6176798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112140B1 (en) * 2021-12-21 2022-08-03 株式会社 マイネ Imaging support method, imaging support program, imaging support system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013183B (en) * 2019-12-27 2023-07-28 昆明弘承食品科技有限公司 Solution freezing and concentrating device and efficient concentration process thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT321244B (en) * 1971-10-13 1975-03-25 Ver Oesterreichischer Papier Z Method and device for thickening solutions
JPS5083346U (en) * 1973-12-05 1975-07-17
US4178776A (en) * 1976-06-04 1979-12-18 Linde Aktiengesellschaft Intermittent vibration in fractional crystallization
JPS563766B2 (en) * 1976-07-22 1981-01-27
JPS61127693A (en) * 1984-11-28 1986-06-14 Daido Eng Kk Crystal preparing device
JPH06509498A (en) * 1991-05-03 1994-10-27 アクトン、エリザベス Method and apparatus for solidification control in liquids
JPH0978152A (en) * 1995-09-20 1997-03-25 Furukawa Electric Co Ltd:The Refining method of aluminum scrap
JPH10263306A (en) * 1997-03-28 1998-10-06 Konica Corp Crystallizer
JP2003145137A (en) * 2001-11-09 2003-05-20 Fuji Photo Film Co Ltd Freeze concentration separation method and freeze concentration separation apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT321244B (en) * 1971-10-13 1975-03-25 Ver Oesterreichischer Papier Z Method and device for thickening solutions
JPS5083346U (en) * 1973-12-05 1975-07-17
US4178776A (en) * 1976-06-04 1979-12-18 Linde Aktiengesellschaft Intermittent vibration in fractional crystallization
JPS563766B2 (en) * 1976-07-22 1981-01-27
JPS61127693A (en) * 1984-11-28 1986-06-14 Daido Eng Kk Crystal preparing device
JPH06509498A (en) * 1991-05-03 1994-10-27 アクトン、エリザベス Method and apparatus for solidification control in liquids
JPH0978152A (en) * 1995-09-20 1997-03-25 Furukawa Electric Co Ltd:The Refining method of aluminum scrap
JPH10263306A (en) * 1997-03-28 1998-10-06 Konica Corp Crystallizer
JP2003145137A (en) * 2001-11-09 2003-05-20 Fuji Photo Film Co Ltd Freeze concentration separation method and freeze concentration separation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112140B1 (en) * 2021-12-21 2022-08-03 株式会社 マイネ Imaging support method, imaging support program, imaging support system

Also Published As

Publication number Publication date
JP6176798B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
Yao et al. Power ultrasound and its applications: A state-of-the-art review
Rogers et al. Selective particle trapping using an oscillating microbubble
Zheng et al. Innovative applications of power ultrasound during food freezing processes—a review
Barnkob et al. Measuring the local pressure amplitude in microchannel acoustophoresis
JP6176798B2 (en) Freeze separation device, parts for freeze separation device, and freeze separation method
JP2671135B2 (en) Ultrasonic disruption device for cells
Yu et al. The effect of ultrasonic waves on the nucleation of pure water and degassed water
JP2005246376A (en) Transmission of ultrasonic energy into pressurized fluid
Zijlstra et al. Enhancing acoustic cavitation using artificial crevice bubbles
US8252239B2 (en) Liquid-liquid extraction system
EP1809121B1 (en) Method and apparatus for partially freezing an aqueous mixture
JP6805134B2 (en) Phase Modulation Standing Wave Mixer and Method
Zheng et al. Ultrasonic assistance of food freezing
US8169122B1 (en) Ultra sonic release of DNA or RNA
Harada et al. Emulsion generating microchannel device oscillated by 2.25 MHz ultrasonic vibrator
Gerlt et al. Acoustofluidic medium exchange for preparation of electrocompetent bacteria using channel wall trapping
Kiani et al. Ultrasonic assistance for food freezing
US8231707B2 (en) Gas separation using ultrasound and light absorption
Açıkgöz et al. Assessment of silicon, glass, FR4, PDMS and PMMA as a chip material for acoustic particle/cell manipulation in microfluidics
Tanaka et al. Behavior of ultrasonically levitated object above reflector hole
Lipkens et al. Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves
Garcia-Lopez et al. Enhanced acoustic separation of oil-water emulsion in resonant cavities
JP2017035649A5 (en) Freeze separation device, parts for freeze separation device, and freeze separation method
CN107831056A (en) The residual extraction element of agriculture for handling vegetables
RU2531039C1 (en) Method and apparatus for determining density and surface tension of multicomponent molten metal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6176798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees