JP2017024077A - 水冷壁パネルの肉盛溶接方法 - Google Patents

水冷壁パネルの肉盛溶接方法 Download PDF

Info

Publication number
JP2017024077A
JP2017024077A JP2016114135A JP2016114135A JP2017024077A JP 2017024077 A JP2017024077 A JP 2017024077A JP 2016114135 A JP2016114135 A JP 2016114135A JP 2016114135 A JP2016114135 A JP 2016114135A JP 2017024077 A JP2017024077 A JP 2017024077A
Authority
JP
Japan
Prior art keywords
welding
water
wall panel
cooled
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016114135A
Other languages
English (en)
Inventor
慎之介 山田
Shinnosuke Yamada
慎之介 山田
中村 裕紀
Hironori Nakamura
裕紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Publication of JP2017024077A publication Critical patent/JP2017024077A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

【課題】水冷壁パネルに肉盛溶接を行うに際し、熱疲労による亀裂の発生を抑制した肉盛溶接層を形成することができる肉盛溶接方法を提供する。【解決手段】複数の水冷管11と、複数の水冷管11の間に設けられた板状の連結部12と、水冷管11と連結部12を接合する隅肉溶接部と、を有する水冷壁パネル10の表面に、水冷壁パネル10を起立させた状態で肉盛溶接を行うに際し、プラズマ粉末溶接法にて、プラズマアークaの上方から粉末状の溶接材料mを供給しながら、立向下進溶接によって、連結部12および隅肉溶接部、水冷管11の連結部12に近い部位、水冷管11の連結部12から離れた部位の順に肉盛溶接を行い、余盛部と溶込み部を合わせた肉盛溶接層の厚さを0.5〜2mmの範囲とする。【選択図】図1

Description

本発明は、水冷壁パネルの肉盛溶接方法に関し、さらに詳しくは、水冷壁パネルの表面に立向下進溶接によって肉盛溶接を行う方法に関する。
ごみ焼却炉や火力発電プラント、製紙業界に導入されている黒液回収ボイラ等における火炉に設けられる鋼材製の水冷壁パネルは、ごみや燃料、黒液に由来する腐食性ガスに接触した状態で高温に晒されるため、水冷壁パネルを構成する鋼材が腐食を受けやすい。例えば、ごみ焼却炉においては焼却されるプラスチック等の塩素分に由来して、火力発電プラントにおいては燃料中の硫黄分に由来して、黒液回収ボイラにおいては黒液燃焼時に生じる硫化水素ガスや二酸化硫黄等に由来して、炉内で高温腐食が進行しやすい。そこで、水冷壁パネルに耐腐食性を付与するために、水冷壁パネルを構成する鋼材の表面を覆って、耐食性合金を肉盛溶接する場合がある。
このように、水冷壁パネルの表面に肉盛溶接を行った場合に、形成した肉盛溶接層が厚いと、大きな熱負荷が肉盛溶接層に加えられた際、例えば、1000℃以上のような高温環境に晒され、かつ激しい温度変化を受けた際に、肉盛溶接層の表面に熱疲労によって亀裂が発生する可能性がある。水冷壁パネルを構成する水冷管に水を流して水冷を行ったとしても、厚い肉盛溶接層の表面においては十分な冷却効果が得られず、このような亀裂の発生が起こる可能性がある。特に、MIG溶接等のアーク溶接によって肉盛溶接を行う場合には、肉盛溶接層が厚くなりがちであり、例えば、水冷壁パネルに形成した肉盛溶接層の厚さが、3〜5mmに達してしまう場合がある。すると、肉盛溶接層の表面に亀裂が発生しやすくなる。
水冷壁パネルの表面に肉盛溶接を行う場合には、起立させた状態の水冷壁パネルに対して肉盛溶接を行うのが一般的であり、この場合に薄い肉盛溶接層を形成することができる方法として、プラズマ粉末溶接法(PTA法)による立向下進溶接が考えられる。例えば、発明者らによる特許文献1に、PTA法による立向下進溶接法が開示されており、垂直姿勢とした金属母材の表面に対し、軸方向が該表面に直交する水平姿勢でトーチを配置し、トーチの先端に位置するチップの中心部からプラズマアークを放射し、かつ該プラズマアークの先端部付近の上側に金属粉末をチップの先端面の上部に開口する放出孔から供給することが記載されている。
特開2014−172057号公報
上記特許文献1に記載されたPTA法による立向下進溶接を、水冷壁パネルにおける肉盛溶接に適用すれば、薄い肉盛溶接層を形成し、肉盛溶接層において十分な冷却効率を実現することで、熱疲労に起因した亀裂の発生を抑制できる可能性がある。しかし、特許文献1においては、水冷管と連結部からなる水冷壁パネルに対して肉盛溶接を行うのに適した具体的な条件に言及していない。
本発明が解決しようとする課題は、水冷壁パネルに肉盛溶接を行うに際し、熱疲労による亀裂の発生を抑制した肉盛溶接層を形成することができる肉盛溶接方法を提供することにある。
上記課題を解決するため、本発明に係る水冷壁パネルの肉盛溶接方法は、複数の水冷管と、前記複数の水冷管の間に設けられた板状の連結部と、前記水冷管と前記連結部を接合する隅肉溶接部と、を有する水冷壁パネルの表面に、前記水冷壁パネルを起立させた状態で肉盛溶接を行うに際し、プラズマ粉末溶接法にて、プラズマアークの上方から粉末状の溶接材料を供給しながら、立向下進溶接によって、前記連結部および前記隅肉溶接部、前記水冷管の前記連結部に近い部位、前記水冷管の前記連結部から離れた部位の順に肉盛溶接を行い、余盛部と溶込み部を合わせた肉盛溶接層の厚さを0.5〜2mmの範囲とすることを要旨とする。
ここで、溶接速度を、100〜300mm/minの範囲とすることが好ましい。
また、前記粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、頻度が最も高くなっているメインピークの頂部よりも粒径が小さい領域に、ショルダーが存在するものを用いることが好ましい。
あるいは、前記粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、中央値の左右に対称な単一ピークよりなるものを用いてもよい。
また、前記肉盛溶接に用いる溶接トーチを、前記連結部の表面に平行な面内でウィービングさせるとともに、前記連結部の表面に沿った面から前記溶接トーチまでの距離である面直距離を、前記水冷壁パネルの部位に応じて変化させながら、前記肉盛溶接を行うことが好ましい。
この場合に、前記隅肉溶接部に前記肉盛溶接を行う際に、前記連結部上の位置において、前記水冷管上の位置におけるよりも前記面直距離を大きくするとともに、前記連結部から遠ざかるほど該面直距離を大きくするとよい。
前記連結部に前記肉盛溶接を行う際に、前記隅肉溶接部に近い位置ほど前記面直距離を大きくする傾斜部を設けるとよい。
前記水冷管に前記肉盛溶接を行う際に、前記連結部から相対的に遠い位置において、前記連結部に相対的に近い位置におけるよりも、前記面直距離が大きくなるように、折れ線状または曲線状の軌跡に沿って前記面直距離を変化させるとよい。
本発明にかかる水冷壁パネルの肉盛溶接方法においては、プラズマ粉末溶接法(PTA法)による立向下進溶接を用いることで、薄い肉盛溶接層を高速で形成することができる。特に、プラズマアークの上方から粉末状の溶接材料を供給することで、重力を利用して、溶接材料をプラズマアーク中に効率的に投入することができるので、薄く健全な肉盛溶接層を、高い均一性をもって形成しやすい。また、水冷壁パネルの各部に、上記所定の順序で肉盛溶接を行うことで、水冷壁パネル全体の表面に、薄く、均一性の高い肉盛溶接を形成することができる。そして、肉盛溶接層の厚さを、0.5〜2mmの範囲に制御することで、水冷管に冷却水を流せば、高温環境下でも、肉盛溶接層の表面まで、効果的に冷却されやすくなる。これにより、熱疲労による肉盛溶接層での亀裂の発生を抑制することができる。
ここで、溶接速度を、100〜300mm/minの範囲とする場合には、上記のように薄い肉盛溶接層を効率的に形成することができる。
また、粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、頻度が最も高くなっているメインピークの頂部よりも粒径が小さい領域に、ショルダーが存在するものを用いる場合には、プラズマアーク中に供給される溶接材料の流動性が高くなる。それにより、薄く、欠陥の少ない肉盛溶接層を効果的に形成することができる。
あるいは、粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、中央値の左右に対称な単一ピークよりなるものを用いる場合にも、ある程度、プラズマアーク中に供給される溶接材料の流動性が高くなり、薄く、欠陥の少ない肉盛溶接層を形成することが可能である。
また、肉盛溶接に用いる溶接トーチを、連結部の表面に平行な面内でウィービングさせるとともに、連結部の表面に沿った面から溶接トーチまでの距離である面直距離を、水冷壁パネルの部位に応じて変化させながら、肉盛溶接を行う場合には、母材となる水冷壁パネルの表面が複雑な形状を有していても、各部位において、溶接条件の変化を小さく抑えて、肉盛溶接を行うことができる。これによって、肉盛溶接層の内部あるいは外観における欠陥の発生を抑制することができる。
この場合に、隅肉溶接部、連結部、水冷管の各部位に肉盛溶接を行う際に、上記で具体的に挙げたような軌跡によって面直距離の調整を行えば、各部位における特徴的な水冷壁パネルの表面形状の影響を緩和して、効果的に、部位ごとの溶接条件の変化を小さく抑え、肉盛溶接層における欠陥の発生を抑制することができる。
本発明の一実施形態にかかる水冷壁パネルの肉盛溶接方法を示す斜視図である。 上記肉盛溶接方法を実施した水冷壁パネルを示す断面図である。 上記肉盛溶接方法に用いる溶接トーチの先端部の概略を示す図であり、(a)が断面図、(b)が正面図である。 溶接トーチのウィービングを説明する図である。 連結部における面直距離調整を説明する図であり、(a)は傾斜部を設ける場合、(b)は傾斜部を設けない場合を示している。 隅肉溶接部における面直距離調整を説明する図であり、(a)は平行部を設ける場合、(b)は平行部を設けない場合を示している。 水冷管の側部における面直距離調整を説明する図であり、(a)は折れ線形の軌跡を用いる場合、(b)は円弧形の軌跡を用いる場合、(c)は直線状の軌跡を用いる場合を示している。 水冷管の頂部における面直距離調整を説明する図であり、(a)は折れ線形の軌跡を用いる場合、(b)は円弧形の軌跡を用いる場合、(c)は直線状の軌跡を用いる場合を示している。 ショルダーを有する溶接材料の粒度分布の例を示す図である。 試験を行った3種類の粒度分布であり、実線は粒度分布1(ショルダー型)、破線は粒度分布2(シングルピーク型)、点線は粒度分布3(ダブルピーク型)を示している。
以下に、本発明の一実施形態にかかる水冷壁パネルの肉盛溶接方法の詳細について説明する。本実施形態にかかる水冷壁パネルの肉盛溶接方法は、水冷壁パネルの表面に、以下に説明する所定の方法で肉盛溶接を行うものである。なお、本明細書において、「略鉛直」および「略水平」、「略垂直」等の語は、それぞれ鉛直方向および水平方向、垂直方向等の方向に対して、±10°程度の範囲を指すものとする。
<水冷壁パネルの概要>
最初に、本発明の実施形態において肉盛溶接を行う対象である水冷壁パネル10の構成について、図1,2を参照しながら、簡単に説明する。
水冷壁パネル10は、ごみ焼却炉や火力発電プラント、製紙用黒液回収ボイラ等における火炉の中に設けられるものである。複数のパイプ状の水冷管11と、連結部(フィン)12とを有している。水冷管11と連結部12の間は、隅肉溶接部13によって接合されており、各水冷管11が連結部12を介して相互に連結された状態となっている。水冷壁パネル10の水冷管11は、例えばJIS STB340やSTBA22、またはそれらに相当する鋼材から形成されることが多い。また、連結部12は、JIS SS400やSCMV2、またはそれらに相当する鋼材から形成されることが多い。水冷壁パネル10は、水冷管11の軸および連結部12の面が、略鉛直になるように、火炉内に設けられる。
そして、水冷壁パネル10においては、水冷管11と連結部12がなす面の一方側、つまり火炉の内側に向く面に、肉盛溶接層14が形成される。肉盛溶接層14は、火炉の内側に向く水冷壁パネル10の面において、水冷管11、連結部12、隅肉溶接部13の表面の略全域を被覆するように形成される。肉盛溶接層14は、火炉の運転によって水冷壁パネル10が高温で腐食性ガスに晒された際に、水冷管11や連結部12の腐食を抑制する目的で設けられるものである。
<溶接トーチの概要>
本肉盛溶接方法においては、プラズマ粉末溶接法(PTA法)による立向下進溶接により、肉盛溶接を行うが、その際に、特許文献1に開示されているのと同様の溶接トーチを好適に用いることができる。ここで、簡単に、その構成について説明する。
図3(a)に示すように、溶接トーチ20は、先端部中央にタングステン電極21を有する。電極は中央孔25を介して母材s(水冷壁パネル10の水冷管11、連結部12、隅肉溶接部13、または既に形成されている肉盛溶接層14)と対向され、タングステン電極21と母材sの間に高周波プラズマアークaを発生させることができる。タングステン電極21を水平にした際に上方となる部位には、先端側に向かって上方から下方に傾斜した粉末流路22が形成されている。粉末流路22は、溶接トーチ20の先端面26において開口しており、開口部が放出孔23となっている。図3(b)に示すように放出孔23は、中央孔25が設けられた位置に当たる仮想的な中央線Cを挟んで左右対称に1対で設けられている。1対の放出孔23はそれぞれ、中心線Cから45°以内の位置に設けられる。さらに、タングステン電極21の軸に対して粉末流路22よりも外側には、シールドガスを供給するシールドガス送給路24が設けられている。
このような溶接トーチ20を用いてPTA法によって肉盛溶接を行うに際し、タングステン電極21と母材sの間にプラズマアークaを発生させ、母材sの表面に溶融池pを形成した状態で、粉末流路22から、粉末状の溶接材料mを、アルゴン等のキャリアガスとともに送給する。溶接材料mが、放出孔23を通って、プラズマアークaの先端部に形成された溶融池pの中に、上方から供給される。このように、溶接材料mを供給する放出孔23をタングステン電極21よりも上方に設けた溶接トーチ20を用いることで、簡便な構成で、プラズマアークaに対して上方から溶接材料mを供給することができる。1対の放出孔23を中心線Cに対して対称に設けることで、溶接材料mの供給の効率が特に高くなる。
<肉盛溶接方法>
上記で説明したような水冷壁パネル10に対して、肉盛溶接層14を形成するに際し、上記のような溶接トーチ20を利用し、PTA法による肉盛溶接を行う。この際、水冷壁パネル10を、水冷管11の軸および連結部12の面が略鉛直になるように起立させた状態で、立向下進溶接を行う。立向下進溶接においては、溶接トーチ20を略水平に構えて水冷壁パネル10の溶接を行う面に対して略垂直に向け、略鉛直方向下方に向かって動かして、溶接を行う。この際、図4に軌跡wを示すように、水冷壁パネル10を構成する連結部12の表面に平行な面内における溶接トーチ20の運動として、肉盛溶接方向dに交差する方向に往復運動させるウィービングを適宜行ってもよい。具体的には、中央部w1を中心として両側の止端部w2,w3の間で、溶接トーチ20を周波数fで往復させながら、肉盛溶接方向dに移動させるとよい。さらに、ウィービングを行いながら、連結部12の表面に交差する面内における溶接トーチ20の運動として、面直距離調整を行ってもよい。ここで、面直距離調整とは、連結部12の表面に沿った面から溶接トーチ20までの距離として定義される面直距離Lnを、水冷壁パネル10上の位置に応じて変化させる運動を指すものである(図5〜8参照)。面直距離調整の詳細については、後に説明する。
溶接材料mを構成する金属材料の種類は、特に限定されるものではないが、SUS308、SUS309L、Alloy625、Alloy622、Alloy690、C276等、耐食性の高い金属種を好適に例示することができる。肉盛溶接時の母材sの溶込みを考慮して、肉盛溶接後にこれら金属種に相当する組成を有するように、肉盛溶接前の溶接材料mの組成を調整しておいてもよい。各金属材料は、粉末状とされて、溶接材料mとして用いられる。なお、溶接材料mの粉末においては、好ましい粒度分布が存在するが、それについては後に説明する。
本肉盛溶接方法においては、図3に示すように、特許文献1に記載されているのと同様、粉末状の溶接材料mをプラズマアークaの上下両方向や左右方向から供給するのではなく、プラズマアークaの先端部付近の溶融池pに向かって、プラズマアークaの上方から、溶接材料mを供給する。ここで、プラズマアークaの上方からとは、プラズマアークaに対して、水平よりも上側から、下側に向かって、ということである。このような溶接材料の供給方法を立向下進溶接と合わせて用いると、重力の効果で、プラズマアークaへの溶接材料mの供給が、効率的に、高い均一性をもって行われる。また、高い溶着効率を達成することができる。
水冷壁パネル10は、上記のように、水冷管11と連結部12、隅肉溶接部13よりなるが、これら各部位の表面に、図2に示すような順序で肉盛溶接を行う。基本的な順序としては、(1)連結部14d、(2)隅肉溶接部14c、(3)水冷管11の連結部12に近い部位(側部)14b、(4)水冷管11の連結部12から離れた部位(頂部)14aの順に肉盛溶接層14を形成するとよい。このような順序で肉盛溶接を行うことで、隣接する水冷管11に挟まれた狭い空間に位置する連結部12や、比較的複雑な形状の表面を露出している隅肉溶接部13の表面にも、厚さの均一性が高く、薄い肉盛溶接層14を、隙間なく形成しやすい。フィンが比較的長い場合、つまり隣接する水冷管11の距離が比較的離れている場合、例えば20mm以上である場合には、上記(1)と(2)の順序を逆にし、最初に隅肉溶接部14c、次に連結部14dの順に肉盛溶接層14を形成してもよい。つまり、(1)連結部14dおよび(2)隅肉溶接部14c、(3)水冷管11の側部14b、(4)水冷管11の頂部14a、の順に肉盛溶接を行えばよく、(1)と(2)の順序は、連結部12の長さ等に応じて適宜選択すればよい。そして、選択した順序に従って、水冷管11と連結部12の組ごとに、6〜10のパス(肉盛溶接操作の回数)に分けて、水冷壁パネル10全体に肉盛溶接層14を形成すればよい。なお、(1)連結部12の肉盛溶接層14dを形成する際に、図6〜8に示すように、水冷壁パネル10の連結部12の表面のみならず、隅肉溶接部13の表面の一部にまで跨るように、肉盛溶接層14dを形成してもよい。
以上のように、本肉盛溶接方法においては、PTA法を用いて肉盛溶接を行うことで、MIG溶接等、他の溶接法と比較して、薄い肉盛溶接層14を形成することができる。また、上記のように、プラズマアークaの上方から粉末状の溶接材料mを供給する方式を採用することで、水冷壁パネル10を起立させて立向下進溶接を行う際に、溶接材料mの供給を効率的に行うことができ、その結果、高速で、健全な肉盛溶接層14を形成することができる。また、水冷壁パネル10の各部に対して、上記(1)〜(4)の順序で肉盛溶接を行うことで、薄く、かつ厚さの均一性が高く、また隙間のない良質な肉盛溶接層14を水冷壁パネル10全体に形成しやすい。例えば、水冷壁パネル10全体において、肉盛溶接層14の余盛部(母材sの表面から突出した部位)と溶込み部(母材sと合金化した部位)を合わせた厚さを、0.5〜2mmとすることができる。
水冷壁パネル10の表面の肉盛溶接層14を薄く形成すること、特に、余盛部と溶込み部を合わせて0.5〜2mmの範囲とすることで、水冷管11に冷却水を流した際に、肉盛溶接層14が表面まで効果的に冷却を受けやすくなる。水冷壁パネル10は、火炉に設けられるものであり、火炉の運転に伴い、肉盛溶接層14も、1000℃以上や1500℃以上の高温環境に晒され、しかも、そのような高温を含む激しい温度変化を受ける。このような熱負荷が激しい状況において、もし肉盛溶接層14が厚いと、水冷管11に冷却水を流したとしても、肉盛溶接層14の表面が十分に冷却されず、熱疲労によって肉盛溶接層14に亀裂が発生する可能性がある。すると、水冷壁パネル10への耐食性の付与という肉盛溶接層14の機能が損なわれてしまう。しかし、上記のように、肉盛溶接層14を薄くすることで、表面部まで効果的に冷却することができ、熱負荷による亀裂の発生を抑制できる。その結果、肉盛溶接層14の高温強度を確保することができる。なお、0.5mmよりも肉盛溶接層14を薄くすると、十分な耐食性が得られにくくなる。MIG溶接法を用いる場合には、肉盛溶接層14の厚さが、3〜5mmにも達してしまいやすい。
上記のように、PTA法による立向下進溶接を用いれば、高速で薄い肉盛溶接層14を形成することが可能である。例えば、溶接速度を100〜300mm/minの範囲とすることができ、この範囲の溶接速度を採用することで、十分に高い溶接速度を確保しながら、欠陥の少ない良好な肉盛溶接層14を形成することができる。この範囲よりも速度が遅くなると、溶融池pが垂れやすくなり、肉盛溶接層14が適切に形成されにくくなる。一方、上記範囲よりも速度が速くなると、溶融池pに対する溶接材料mの供給量が少なくなり、肉盛溶接層14の止端部に欠陥が生じやすくなる。
このように、本方法において、PTA法による立向下進溶接を用い、かつプラズマアークaの上方から溶接材料mを供給するようにすることで、MIG溶接を用いる場合に比較して、薄い肉盛溶接層14を、高速で形成することができる。さらに、本方法においては、粉末状の溶接材料mが効率的に溶融池pに供給されることにより、溶着効率も高くなり、例えば、75〜90%とすることができる。MIG溶接の場合は、溶着効率は、典型的には50〜70%程度に留まる。
その他、本方法において、肉盛溶接を行う際の好適な条件として、以下のような範囲を挙げることができる。
・電流:100〜300A
・周波数:1〜2.5Hz
・ウィービング幅:10〜20mm
・粉末供給量:5〜50g/min
<面直距離調整>
上記のように、立向下進溶接によって肉盛溶接を行うに際し、溶接トーチ20のウィービングを行いながら、水冷壁パネル10上の位置に応じて溶接トーチ20の面直距離Lnを変化させる面直距離調整を行うことができる。連結部12の表面に垂直な方向に水冷壁パネル10から遠ざけるように溶接トーチ20を動かすことで、面直距離Lnが大きくなり、逆に、連結部12の表面に垂直な方向に水冷壁パネル10に近づけるように溶接トーチ20を動かすことで、面直距離Lnが小さくなる。
面直距離調整を行うことで、水冷壁パネル10上のそれぞれの部位の形状に応じて、溶接トーチ20の先端26と溶接対象部位(母材s)の間を結ぶ距離Lgをなるべく変化させないようにすることが好ましい。肉盛溶接を行う際に、図3に示すように、粉末状の溶接材料mがプラズマアークaの先端部付近の溶融池pに供給されるように、溶接トーチ20の状態が調整されており、この溶融池pの位置を母材sの表面の位置に合わせることで、母材sと肉盛溶接層14の間の融合を促進することができる。すると、溶着効率が高くなり、融合不良による肉盛溶接層14と母材sの間の界面における内部欠陥や、肉盛溶接層14の表面における外観欠陥の発生が抑制される。
もし、面直距離調整を行わずに、水冷壁パネル10上の位置によらず、溶接トーチ20の面直距離Lnを一定にするとすれば、位置によって、溶接トーチ20と母材sの間の距離Lgが変化し、溶接材料mが供給される溶融池pが適切に母材sの表面に配置されない場合が生じるので、内部欠陥や外観欠陥が形成されやすくなる。一方、水冷壁パネル10上の位置に応じて、常に溶融池pが母材sの表面あるいはその近傍に形成されるように溶接トーチ20を動かし、面直距離調整を行うことで、各位置において、溶接条件の変化が小さく抑えられ、内部欠陥や外観欠陥の発生を抑制することができる。なお、内部欠陥の程度は、肉盛溶接層14が形成された部位を母材sごと切断し、光学顕微鏡で切断面を観察することで評価することができる。外観欠陥の程度は、外観の目視または顕微鏡観察によって評価することができる。面直距離調整を行う際に、溶接トーチ20の位置座標を変更し、面直距離Lnを変化させるだけでもよいが、位置ごとの溶接条件の変化をさらに小さく抑えるために、位置座標に加えて、溶接トーチ20の配置角度も調整し、溶接を行っている位置の母材sの表面に対して、正対あるいはそれに近い溶接トーチ20の角度を維持することが好ましい。
ここで、(1)連結部14d、(2)隅肉溶接部14c、(3)水冷管側部14b、(4)水冷管頂部14aのそれぞれの肉盛溶接層14を形成する場合について、面直距離調整の具体例を示す。図5〜8では、各部位における面直距離調整において溶接トーチ20を動かす軌跡を、実線で表示している。
(1)連結部
連結部12上の肉盛溶接層14dを形成する際には、図5(a)に示すように、連結部12の中央部から隅肉溶接部13に近づくほど、面直距離Lnを大きくした傾斜部p1を、溶接トーチ20の軌跡に設けることが好ましい。図5(a)では、直線状の傾斜部p1が、連結部12が露出している部位だけでなく、隅肉溶接部13が設けられた部位にまで延長して設けられている。
このように、傾斜部p1を設けて連結部12における肉盛溶接を行うことで、隅肉溶接部13が連結部12と水冷管11の境界部に形成する凸構造の影響によって引き起こされる溶接条件の変化を緩和することができる。もし、図5(b)のように、連結部12の面に平行に、面直距離Lnを一定に保ったまま肉盛溶接を行うとすれば、隅肉溶接部13が形成された連結部12の端部において、母材sと溶接トーチ20の間の距離Lgが近くなってしまい、肉盛溶接層14dに欠陥を生じる原因となる。例えば、図5(b)のように傾斜部p1を設けずに肉盛溶接を行った場合には、連結部12の肉盛溶接層14dにおいて、欠陥が発生する個体の割合が30%程度に達するのに対し、(a)のように傾斜部p1を設けることで、90%程度の個体において、欠陥の発生を回避することができる。
なお、図5(a)に示した形態では、連結部12の中央を境に2つの傾斜部p1,p1を設定し、V字形に隅肉溶接を行っているが、隣接する水冷管11,11の間隔が広い場合等には、2つの傾斜部p1,p1の間に、面直距離Lnを一定とし、溶接トーチ20を連結部12の面に平行に動かす平行部を設けてもよい。また、上記のように、(1)連結部12の肉盛溶接層14dと(2)隅肉溶接部13の肉盛溶接層14cを形成する順序はいずれが先でもよいが、(1)連結部12の肉盛溶接層14dを後から形成する場合にも、上記と同様に、傾斜部p1を設けて、連結部12の肉盛溶接を行えばよい。
(2)隅肉溶接部
隅肉溶接部13上に肉盛溶接層14cを形成する際には、図6(a)に示すように、溶接トーチ20の軌跡において、連結部12上に隅肉溶接部13が形成された位置に平行部p2を設けるとともに、水冷管11上に隅肉溶接部13が形成された位置に傾斜部p3を設け、両者が結合されたV字形の軌跡で面直距離調整を行うことが好ましい。面直距離Lnは、平行部p2よりも傾斜部p3において大きくなっている。そして、傾斜部p3は、連結部12から遠ざかるほど、面直距離Lnが大きくなる傾斜を有している。図6(a)に示した形態では、平行部p2は、隅肉溶接部13が形成された部位だけでなく、連結部12上に肉盛溶接層14dが形成された部位にまで延長して設けられている。傾斜部p3も、隅肉溶接部13が形成された部位だけでなく、水冷管11が露出している部位にまで延長して設けられている。
上記のように、平行部p2と傾斜部p3を設けて隅肉溶接部13における肉盛溶接を行うことで、曲面状の水冷管11と平面状の連結部12が接合された形状の影響、またそのような形状が反映された隅肉溶接部13の形状の影響による溶接条件の変化を緩和することができる。もし、図6(b)のように、面直距離Lnを単一の傾斜した直線状の軌跡に沿って変化させるとすれば、連結部12上の位置において、母材sと溶接トーチ20の間の距離Lgが近くなってしまい、形成される肉盛溶接層14cに欠陥を生じる原因となる。例えば、図6(b)のように、平行部p2を設けずに肉盛溶接を行った場合には、隅肉溶接部13の肉盛溶接層14cにおいて、欠陥が発生する個体の割合が50%程度に達するのに対し、(a)のように平行部p2と傾斜部p3を設けることで、95%以上の個体において、欠陥の発生を回避することができる。上記のように、(1)連結部12の肉盛溶接層14dと(2)隅肉溶接部13の肉盛溶接層14cを形成する順序は、いずれが先でもよいが、(2)隅肉溶接部13の肉盛溶接層14cを先に形成する場合にも、上記と同様に、平行部p2と傾斜部p3を設けて、隅肉溶接部13の肉盛溶接を行えばよい。
(3)水冷管の側部
水冷管11の側部の肉盛溶接層14bを形成する際には、図7(a),(b)に示すように、連結部12から相対的に遠い位置において、連結部12に相対的に近い位置におけるよりも面直距離Lnを大きくすることが好ましい。面直距離Lnを変化させる軌跡を、図7(a)では折れ線状(逆V字形)にしており、図7(b)では曲線状(円弧形)にしている。折れ線状と曲線状のいずれを採用するかは、水冷管11の太さや面直距離調整の簡素性等を考慮して適宜選択すればよい。また、折れ線状の軌跡としては、2つの直線部よりなる逆V字形に限られず、3つ以上の直線部を連結した軌跡を設定してもよい。
このように、折れ線状または曲線状の軌跡による面直距離調整を伴って肉盛溶接を行うことで、水冷管11の曲面形状の影響、また既に隅肉溶接部13に形成された肉盛溶接層14cの形状の影響等による溶接条件の変化を緩和することができる。もし、図7(c)のように、面直距離Lnを単一の傾斜した直線に沿って変化させるとすれば、水冷管11の曲面形状の影響に加え、既に隅肉溶接部13上に肉盛溶接層14cが形成されていることの影響等により、一部の位置において、母材sと溶接トーチ20の間の距離Lgが近くなってしまい、肉盛溶接層14bに欠陥を生じる原因となる。
(4)水冷管の頂部
水冷管11の頂部の肉盛溶接層14aを形成する際には、図8(a),(b)に示すように、側部の肉盛溶接層14bの場合と同様、連結部12から相対的に遠い位置において、連結部12に相対的に近い位置におけるよりも面直距離Lnを大きくすることが好ましい。面直距離Lnを変化させる軌跡を、図8(a)では、水冷管11の中央の位置を頂点とした折れ線状(逆V字形)に設定しており、図8(b)では、水冷管11の中央の位置を中心とした曲線状(円弧形)にしている。折れ線状と曲線状のいずれを採用するかは、水冷管11の太さや面直距離調整の簡素性等を考慮して適宜選択すればよい。また、折れ線状の軌跡としては、2つの直線部よりなる逆V字形に限られず、3つ以上の直線部を連結した軌跡を設定してもよい。
このように、折れ線状または曲線状の軌跡による面直距離調整を伴って肉盛溶接を行うことで、水冷管11の曲面形状の影響、また既に側部に形成された肉盛溶接層14bの影響等による溶接条件の変化を緩和することができる。もし、図8(c)のように、面直距離Lnを連結部12の面に平行な単一の直線に沿って変化させるとすれば、水冷管11の曲面形状の影響に加え、既に側部に肉盛溶接層14bが形成されていることの影響等により、一部の位置において、母材sと溶接トーチ20の間の距離Lgが近くなってしまい、肉盛溶接層14aに欠陥を生じる原因となる。
以上のような面直距離調整によって得られる欠陥抑制の効果は、(1)連結部12の肉盛溶接層14dおよび(2)隅肉溶接部13の肉盛溶接層14cにおいて、(3),(4)水冷管11上の肉盛溶接層14a,14bよりも大きく得られる。特に(2)隅肉溶接部13の肉盛溶接層14cにおいて、その効果が大きくなる。また、水冷管11においては、(3)側部の肉盛溶接層14bにおいて、(4)頂部の肉盛溶接層14aよりも比較的効果が大きい。これらの傾向は、肉盛溶接を行う母材sの形状が複雑で、母材sと溶接トーチ20の間の距離Lgが変化しやすい領域ほど、面直距離調整によって溶接条件の変化を緩和させる効果が大きく得られることの結果である。
<溶接材料の粒度分布>
通常のPTA法において用いられる溶接材料は、粉末の粒径を横軸に、それぞれの粒径における頻度(割合)を縦軸にとった粒度分布(頻度分布)が、例えば正規分布に近似される中央値の左右に対称なピーク形状を有する。本実施形態にかかる肉盛溶接方法においても、そのような対称な単一ピークよりなる粒度分布(シングルピーク型分布)を有した溶接材料mを用いてもよい。しかし、図9に示すように、メインピークMの頂部Mtよりも粒径が小さい領域にショルダーSを有する、ショルダー型分布を持った溶接材料mを用いることで、プラズマアークa中への溶接材料mの供給の効率を一層高めることができる。
ショルダーとは、ショルダーピーク、肩構造等とも称され、メインピークの頂部の左右いずれか(ここでは左の小径側)に形成された、メインピークよりも頻度が低いなだらかなピーク構造のことである。ここで、ショルダーSの領域よりも粒径が大きい領域において、メインピークMの頂部Mtを中心として、粒径に関して左右対称な関数で粒度分布を近似(カーブフィット)して得られる近似曲線をショルダーSの領域にまで外挿して得られる外挿近似曲線Fを想定する。図9の例では、外挿近似曲線Fは、正規分布曲線である。そして、ショルダーSの領域の中で、外挿近似曲線Fを基準とした頻度値が最も大きくなっている点が、ショルダーSの頂部Stとなる。また、ショルダーSとメインピークMの間の極小点、つまり粒径に対して頻度が減少から増加に転じる箇所が、谷Vとなる。
粒度分布においてメインピークMを近似する近似曲線としては、頂点を中心に左右対称な上凸関数の形状を有するシングルピーク型の関数を適宜使用すればよい。そのような関数として、Gauss(ガウス)関数(正規分布)、Lorentz(ローレンツ)関数、Voigt(フォークト、ボイト)関数、pseudo−Voigt関数、Pearson(ピアソン) VII関数等を例示することができる。
粒度分布は、レーザー回折・散乱式、動的光散乱式(DLS)、画像解析式、コールター式等の手法によって計測することができる。実測された粒度分布は、図9にモデルとして示す例のような滑らかな曲線になるとは限らないが、測定に伴うノイズや誤差を、スペクトルの平滑化処理等によって除いた状態で、粒度分布の形状に関する判定を行えばよい。また、上記各手法で同一の試験体の粒度分布を計測した場合に、詳細な分布形状が手法によって異なる可能性はあるが、本実施形態にかかる溶接材料mにおいて、メインピークMの頂部Mtよりも粒径が小さい領域に、ショルダーSを有する特徴的な形状は、手法によらず観測される。よって、いずれの手法を用いて粒度分布を評価してもよい。
粒度分布を測定する際に、ショルダーSの有無を含めた粒度分布の形状を正確に評価する観点から、測定を行う粒径値の間隔(δ)を十分小さくすることが好ましい。例えば、各測定点における粒径値(d)に対する測定間隔(δ)の割合(δ/d)を、10%以下とするとよい。あるいは、測定間隔(δ)を、メインピークMが存在する領域で、20μm以下とするとともに、ショルダーSが存在する領域で、10μm以下、さらに好ましくは5μm以下とする形態を例示することができる。
ショルダー型分布において観測されるショルダーSの形状としては、以下の2通りがありうる。
(1)メインピークMとの間に谷Vを有さない、なだらかショルダーS
(2)メインピークMとの間に谷Vを有する、明確なショルダーS
上記(1),(2)いずれの場合にも、ショルダー型分布は、左右対称な関数で近似されるメインピークMの小径側の裾に、ショルダーSとして粒径の分布が存在するという点において、左右対称な単一のピークに近似されるシングルピーク型分布と区別される。さらに、ショルダー型分布は、メインピークMからショルダーSが独立していないのという点において、メインピークMの他にメインピークMから独立したサブピークを有するダブルピーク型分布とも区別されるものである(図10参照)。上記(2)のパターンのショルダー型分布とダブルピーク型分布の区別の基準として、例えば、以下の2つの条件をともに満たすときに、ダブルピーク型分布ではなく、ショルダー型分布とみなすことができる。
(i)外挿近似曲線Fを基準としたショルダーSの頂部Stの高さhsがメインピークMの高さhmの70%以下、好ましくは50%以下である。
(ii)ショルダーSの頂部Stを基準とした谷Vの底部の深さdが、外挿近似曲線Fを基準としたショルダーSの頂部Stの高さhsに対して、30%以下である(d/hs≦30%)。好ましくはさらに、5%以上である(5%≦d/hs≦30%)。
以下の実施例においても示すように、ショルダー型の粒度分布を有する溶接材料mは、ショルダーSの存在により、シングルピーク型やダブルピーク型の粒度分布を有する溶接材料mと比較して、高い流動性を示す。その結果、PTA法による肉盛溶接において、溶接トーチ20の先端面26に設けられたの放出孔23から停滞することなく溶接材料mが流出しやすくなり、溶接欠陥の発生が抑制される。そして、プラズマアークa中に高い均一性をもって溶接材料mが供給されることで、溶接材料mをプラズマアークaの上方から供給することによる供給効率向上の効果が一層高められ、薄く均一性の高い肉盛溶接層14の形成が補助される。ショルダー型分布において粉末の流動性が向上される機構としては、ショルダー型分布のメインピークMを構成し、大多数を占める比較的大径の粒子の間隙に、ショルダーSを構成する少数の小径の粒子が入り込み、大径の粒子に対して一種の潤滑剤のように作用することで、大径の粒子の間のせん断を促進するものと推定される。
ただし、シングルピーク型の粒度分布を有する溶接材料mを用いる場合にも、ショルダー型には及ばないものの、ダブルピーク型の場合よりは顕著に高い流動性が得られる。よって、シングルピーク型の粒度分布は、ショルダー型に次いで好適なものと言える。
とりわけ良好な流動性を与えるショルダー型の粒度分布として、粒度分布に占めるショルダーSの粒径および量比の観点から、ショルダーSの頂部Stの粒径がメインピークMの頂部Mtの粒径の30〜70%の範囲内、好ましくは50%程度であり、外挿近似曲線Fを基準としたショルダーSの頂部Stの高さhsがメインピークMの高さhmの5〜20%の範囲内、好ましくは10%程度である場合を挙げることができる。あるいは、累積頻度分布で、ショルダーSの頂部Stに対応する粒径における累積頻度の値が、10〜20%の範囲内、好ましくは15%程度である場合を挙げることができる。具体的な例として、メインピークMの頂部Mtが150μm近傍に存在し、累積頻度分布が10〜90%の領域(10%径D10から90%径D90の領域)が60〜250μmの範囲に収まっている場合において、ショルダーSの頂部Stが45〜105μmの範囲内、好ましくは75μm近傍に位置し、累積粒度分布において、その頂部Stに対応する累積頻度の値が、10〜20%の範囲内、好ましくは15%程度である分布を挙げることができる。D10からD90の領域が60〜250μmの範囲に収まっている溶接材料mは、PTA法で一般的に採用されるものである。なお、粒度分布において、平均粒径(D50径)は、例えば、100〜200μmの範囲にあるとよい。
以下、実施例を用いて本発明をより具体的に説明する。
(溶接材料の供給方法の検討)
ここでは、溶接材料をプラズマアークの先端部に供給する方法が、肉盛溶接に与える影響を確認した。つまり、溶接トーチの先端部に、粉末状の溶接材料を供給するための放出孔を、(i)タングステン電極に対して上方に2か所設けた場合(図3(b)に対応)と、(ii)タングステン電極の上下左右に各1つずつ、合計4個設けた場合(図略)について、それぞれ同じ条件で、PTA法を用いた立向下進溶接によって肉盛溶接を行い、溶着効率(溶着歩留り)を比較した。(i)の場合には、プラズマアークに対して上方から溶接材料が供給され、(ii)の場合には、プラズマアークの上下左右方向からほぼ均等に溶接材料が供給される。
ここで、溶接材料としては、Alloy625よりなる粉末を用い、母材としては、SS400よりなる板材を用いた。そして、速度250mm/min、電流150A、粉末供給量7g/minの条件で、立向下進溶接を行い、長さ250mmの直線状の肉盛溶接層を形成した。そして、得られた肉盛溶接層の形状と用いた溶接材料の量に基づいて、溶着効率を見積もった。
結果として、(i)電極に対して上方に放出孔を有する溶接トーチを用いた場合には、溶着効率が93%となった。一方、(ii)電極に対して上下左右に放出孔を有する溶接トーチを用いた場合には、溶着効率が79%となった。このように、プラズマアークの上方から溶接材料を供給しながら、PTA法による立向下進溶接を行うことで、下側を含む各方向から溶接材料を供給する場合と比較して、高い溶着効率が達成されることが示された。
(溶接材料の粒度分布の検討)
次に、粉末状の溶接材料の粒度分布が肉盛溶接に与える影響を検討した。
インコネル625の球状粉末よりなる溶接材料を用いて粒度分布1〜3を有する溶接材料を調製した。具体的には、中央値の粒径が異なる正規分布に近似される粒度分布を有する粉末材料を、適宜、複数種混合することで、ショルダー型、シングルピーク型、ダブルピーク型の粒度分布を示す溶接材料をそれぞれ調製した。調製においては、レーザー回折・散乱方式粒度分布測定によって粒度分布を確認しながら、所望の型の粒度分布が得られるように、また、各粒度分布の累積中位径D50が約123〜125μmの範囲に収まるように、各溶接材料における混合比を定めた。なお、レーザー回折・散乱方式粒度分布測定装置としては、日機装株式会社製「マイクロトラック MT3300EX II」を使用した。得られた粒度分布を図10に示す。(a)粒度分布1は、ショルダー型、(b)粒度分布2はシングルピーク型、(c)粒度分布3はダブルピーク型の分布となっている。
そして、粒度分布1〜3にかかる溶接材料について、それぞれ、溶接トーチの先端の放出孔を模した、底部がテーパ状に形成され、その先端にφ1.1mmの円形のオリフィスを有する容器を用いて、流出速度を評価した。すなわち、それぞれの溶接材料を50g秤量して、容器に充填し、先端のオリフィスから溶接材料全体が流出するまでに要する時間を計測した。
さらに、各溶接材料を用いて、図3のような溶接トーチで、PTA法による立向下進溶接にて、SS400よりなる板材の表面に肉盛溶接を行った。肉盛溶接層は、400mmの長さにわたり、10mmの幅で、直線状に形成した。溶接時の電流は180A、溶接速度は300mm/min、粉末供給量は12g/minとした。得られた肉盛溶接層を目視観察し、穴状の溶接欠陥を検出した。そして、幅方向全域にわたって溶接欠陥が検出されない部位を健全部とし、肉盛溶接層全体の長さのうち、健全部が占める長さの割合を、健全部割合として算出した。
下の表1に、オリフィス流出時間と肉盛溶接層の健全部割合の評価結果を示す。
Figure 2017024077
表1によると、粒度分布1のショルダー型の場合において、粒度分布2,3のシングルピーク型およびダブルピーク型の場合と比較して、オリフィス流出時間が短くなっている。これは、溶接材料の流動性が高いことにより、流出速度が速くなっていることを示している。そして、それに対応して、肉盛溶接層における健全部の割合が顕著に大きくなっている。このことより、ショルダー型の粒度分布を用いることで、高い効率で肉盛溶接を行えることが示された。ショルダー型の次に優れているのは、シングルピーク型である。
以上、本発明の実施形態および実施例について説明した。本発明は、これらの実施形態および実施例に特に限定されることなく、種々の改変を行うことが可能である。
10 水冷壁パネル
11 水冷管
12 連結部
13 隅肉溶接部
14 肉盛溶接層
20 溶接トーチ
21 タングステン電極
22 粉末流路
23 放出孔
a プラズマアーク
m 溶接材料
p 溶融池
F 外挿近似曲線
M メインピーク
Mt メインピークの頂部
S ショルダー
St ショルダーの頂部
V 谷

Claims (8)

  1. 複数の水冷管と、前記複数の水冷管の間に設けられた板状の連結部と、前記水冷管と前記連結部を接合する隅肉溶接部と、を有する水冷壁パネルの表面に、前記水冷壁パネルを起立させた状態で肉盛溶接を行うに際し、
    プラズマ粉末溶接法にて、プラズマアークの上方から粉末状の溶接材料を供給しながら、立向下進溶接によって、
    前記連結部および前記隅肉溶接部、前記水冷管の前記連結部に近い部位、前記水冷管の前記連結部から離れた部位の順に肉盛溶接を行い、
    余盛部と溶込み部を合わせた肉盛溶接層の厚さを0.5〜2mmの範囲とすることを特徴とする水冷壁パネルの肉盛溶接方法。
  2. 溶接速度を、100〜300mm/minの範囲とすることを特徴とする請求項1に記載の水冷壁パネルの肉盛溶接方法。
  3. 前記粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、頻度が最も高くなっているメインピークの頂部よりも粒径が小さい領域に、ショルダーが存在するものを用いることを特徴とする請求項1または2に記載の水冷壁パネルの溶接方法。
  4. 前記粉末状の溶接材料として、粒径に対して頻度をプロットした粒度分布において、中央値の左右に対称な単一ピークよりなるものを用いることを特徴とする請求項1または2に記載の水冷壁パネルの溶接方法。
  5. 前記肉盛溶接に用いる溶接トーチを、前記連結部の表面に平行な面内でウィービングさせるとともに、前記連結部の表面に沿った面から前記溶接トーチまでの距離である面直距離を、前記水冷壁パネルの部位に応じて変化させながら、前記肉盛溶接を行うことを特徴とする請求項1から4のいずれか1項に記載の水冷壁パネルの溶接方法。
  6. 前記隅肉溶接部に前記肉盛溶接を行う際に、前記連結部上の位置において、前記水冷管上の位置におけるよりも前記面直距離を大きくするとともに、前記連結部から遠ざかるほど該面直距離を大きくすることを特徴とする請求項5に記載の水冷壁パネルの溶接方法。
  7. 前記連結部に前記肉盛溶接を行う際に、前記隅肉溶接部に近い位置ほど前記面直距離を大きくする傾斜部を設けることを特徴とする請求項5または6に記載の水冷壁パネルの溶接方法。
  8. 前記水冷管に前記肉盛溶接を行う際に、前記連結部から相対的に遠い位置において、前記連結部に相対的に近い位置におけるよりも、前記面直距離が大きくなるように、折れ線状または曲線状の軌跡に沿って前記面直距離を変化させることを特徴とする請求項5から7のいずれか1項に記載の水冷壁パネルの溶接方法。
JP2016114135A 2015-07-24 2016-06-08 水冷壁パネルの肉盛溶接方法 Pending JP2017024077A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146644 2015-07-24
JP2015146644 2015-07-24

Publications (1)

Publication Number Publication Date
JP2017024077A true JP2017024077A (ja) 2017-02-02

Family

ID=57945376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016114135A Pending JP2017024077A (ja) 2015-07-24 2016-06-08 水冷壁パネルの肉盛溶接方法

Country Status (1)

Country Link
JP (1) JP2017024077A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684943A (zh) * 2019-10-10 2020-01-14 江苏科环新材料有限公司 一种膜式壁表面制备防磨蚀涂层的微熔焊设备
CN113432145A (zh) * 2021-06-21 2021-09-24 东方电气集团东方锅炉股份有限公司 一种设有锅炉垂直膜式水冷壁的冷灰斗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199172A (ja) * 1983-04-26 1984-11-12 Mitsubishi Heavy Ind Ltd 肉盛溶接方法
JPH026098A (ja) * 1988-03-31 1990-01-10 Kubota Ltd 粉体プラズマ肉盛合金材及び粉体プラズマ肉盛方法
JP2000084665A (ja) * 1998-09-09 2000-03-28 Nkk Corp 立向下進肉盛溶接方法
JP2014172057A (ja) * 2013-03-07 2014-09-22 Daido Steel Co Ltd 粉末肉盛溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199172A (ja) * 1983-04-26 1984-11-12 Mitsubishi Heavy Ind Ltd 肉盛溶接方法
JPH026098A (ja) * 1988-03-31 1990-01-10 Kubota Ltd 粉体プラズマ肉盛合金材及び粉体プラズマ肉盛方法
JP2000084665A (ja) * 1998-09-09 2000-03-28 Nkk Corp 立向下進肉盛溶接方法
JP2014172057A (ja) * 2013-03-07 2014-09-22 Daido Steel Co Ltd 粉末肉盛溶接方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684943A (zh) * 2019-10-10 2020-01-14 江苏科环新材料有限公司 一种膜式壁表面制备防磨蚀涂层的微熔焊设备
CN110684943B (zh) * 2019-10-10 2024-02-09 江苏科环新材料有限公司 一种膜式壁表面制备防磨蚀涂层的微熔焊设备
CN113432145A (zh) * 2021-06-21 2021-09-24 东方电气集团东方锅炉股份有限公司 一种设有锅炉垂直膜式水冷壁的冷灰斗

Similar Documents

Publication Publication Date Title
Atabaki et al. Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel
Han et al. Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint
Wang et al. A pathway to mitigate macrosegregation of laser-arc hybrid Al-Si welds through beam oscillation
EP2546020B1 (en) Laser/arc hybrid welding method and method for producing welded member using same
JP5861785B2 (ja) 狭開先ガスシールドアーク溶接方法
JP7287916B2 (ja) 積層造形物の製造方法、及び積層造形物
JP6137053B2 (ja) 狭開先ガスシールドアーク溶接方法
Errico et al. On the feasibility of AISI 304 stainless steel laser welding with metal powder
JP2012192436A (ja) レーザクラッディング方法
JP2017024077A (ja) 水冷壁パネルの肉盛溶接方法
JP5954433B2 (ja) 狭開先ガスシールドアーク溶接継手
Meng et al. Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding
Suder et al. Penetration and mixing of filler wire in hybrid laser welding
Yang et al. Decreasing the surface roughness of aluminum alloy welds fabricated by a dual beam laser
Yang et al. Thermodynamically revealing the effect mechanism of Cu on the interfacial metallurgical reaction for Al/steel welding-brazing joint
JP5402824B2 (ja) 溶接性に優れた多電極サブマージアーク溶接方法
Cai et al. Investigation on clockwise circular oscillating laser welding for the 5A06-H112 aluminum alloy: Energy distribution, seam appearance, microstructure, and mechanical properties
Khan et al. Improving the corrosion resistance of Inconel 52M laser-cladded steel
Jia et al. Comprehensive analysis of spatter loss in wet FCAW considering interactions of bubbles, droplets and arc–Part 1: Measurement and improvement
Su et al. Effect of laser-arc synergy on melting energy in laser-CMT hybrid welding of aluminum alloy
Li et al. Numerical analysis of the dynamic behavior of arc by rotating laser-GMAW hybrid welding of T-joints
Meng et al. Numerical study of additional element transport in wire feed laser beam welding
Kumar et al. Experimental investigation on high-temperature tensile behavior of cold metal transfer pulse multi-control welding of Inconel 617 alloy
Liu et al. Microstructure characteristics and mechanical properties of laser–TIG hybrid welding joint of TA15 titanium alloy
JP2014172057A (ja) 粉末肉盛溶接方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201006