JP2017022975A - Operation control device and operation control method of wind power generation plant, and wind power generation system - Google Patents

Operation control device and operation control method of wind power generation plant, and wind power generation system Download PDF

Info

Publication number
JP2017022975A
JP2017022975A JP2016120446A JP2016120446A JP2017022975A JP 2017022975 A JP2017022975 A JP 2017022975A JP 2016120446 A JP2016120446 A JP 2016120446A JP 2016120446 A JP2016120446 A JP 2016120446A JP 2017022975 A JP2017022975 A JP 2017022975A
Authority
JP
Japan
Prior art keywords
output
energy storage
storage device
wind power
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120446A
Other languages
Japanese (ja)
Other versions
JP6198894B2 (en
Inventor
ジンジン ザン
jing jing Zhang
ジンジン ザン
ジン ザン
Jing Zhang
ジン ザン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JP2017022975A publication Critical patent/JP2017022975A/en
Application granted granted Critical
Publication of JP6198894B2 publication Critical patent/JP6198894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

PROBLEM TO BE SOLVED: To provide an operation control device of a wind power generation plant based on an energy accumulation device, configured to accurately control output of wind-storage energy synthetic output so as to reduce a risk that the wind-storage energy synthetic output may exceed a rated range, an operation control method of the wind power generation plant, and a wind power generation system equipped with the operation control device of the wind power generation plant.SOLUTION: An operation control device 50 of a wind power generation plant 10 comprises: initial value setting means that sets, on the basis of an estimated output and an estimated allowable error of wind power generation, a maximum output and a minimum output to be obtained when wind-storage energy synthetic output of a wind power generation system 1 satisfies the estimated allowable error; and control means 52 of an energy accumulation device that predicts surplus capacities at the next time point of an energy accumulation device 30, on the basis of target output of wind-storage energy synthetic output and actual output of wind power generation from the wind power generation plant, adjusts a current target output of the wind-storage energy synthetic output, on the basis of surplus capacities at the next time point, and controls charge/discharge output of the energy accumulation device.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギー蓄積装置に基づく風力発電所の運転制御装置、運転制御方法及び風力発電システムに関する。   The present invention relates to a wind power plant operation control device, an operation control method, and a wind power generation system based on an energy storage device.

近年、日々厳しくなる環境エネルギー問題で、再生可能なエネルギーの適用が、注目されている。風力資源は、最も経済的な再生可能なエネルギーの一つとして、化石エネルギーの代替となっている。風力発電技術の急激な発展に伴い、風力発電装置の送配電網に占める割合が高まっているが、風エネルギー資源は、ランダム、間歇性の特徴があるので、大規模に風力発電装置を投入すると、送配電網全体の安定運転に対して多くの不確定な要因が導入されることが避けられなく、送配電網の計画及びスケジューリングにとっては難易度が大きく増加する。   In recent years, the application of renewable energy has attracted attention due to environmental energy problems that are becoming more severe every day. Wind resources have replaced fossil energy as one of the most economical renewable energy. With the rapid development of wind power generation technology, the proportion of wind power generation equipment in the power transmission and distribution network is increasing, but wind energy resources are random and intermittent, so if wind power generation equipment is introduced on a large scale However, it is inevitable that many uncertain factors are introduced for stable operation of the entire power transmission and distribution network, and the difficulty of planning and scheduling of the power transmission and distribution network is greatly increased.

また、風力資源が豊富であるが、電気負荷があまり高くない地域において、発電所がある地域でこの風エネルギーをタイムリーに消費することができない。また、相関スケジューリング機関も非常に正確な予測データがないことで、速やかで合理的に風力発電を割り振ることができないので、多くの風力発電所からの電力供給が制限され、風力廃棄が増えることになる。   Moreover, in a region where the wind resource is abundant but the electric load is not so high, this wind energy cannot be consumed in a timely manner in the region where the power plant is located. In addition, the correlation scheduling agency does not have very accurate forecast data, so wind power generation cannot be allocated promptly and rationally, which limits the power supply from many wind power plants and increases wind power disposal. Become.

学者たちが既に風力発電出力に対する予測に関して多くの研究開発を行ったが、依然として、正確な予測結果を取りにくい。中国では、実際的な風力発電の毎年の平均発電の量は、予測値より20%〜30%ほど低く、極めて少数の発電所が40%に到達した。そこで、風力発電の信頼性レベル及び経済性レベルをともに理想的な範囲内に到達させるために、一般的に、風力発電システムに対して、予備電力容量としてエネルギー蓄積装置を配置し、風力発電出力予測の誤差が大きいまたは電力供給の制限が発生した場合に、エネルギーを出力または蓄積するように、エネルギー蓄積装置に対して充放電制御を行うことで、風力発電出力予測の誤差に起因する電力供給の制限による経済的な損失を減らし、風力発電の利用率を向上させ、そのスケジューリング性を向上し、風力発電の送配電網への投入による衝撃を低減することができる。   Scholars have already done a lot of research and development on forecasting wind power output, but it is still difficult to get accurate forecast results. In China, the actual average annual wind power generation is 20-30% lower than expected, with a very small number of power plants reaching 40%. Therefore, in order to reach both the reliability level and the economic level of wind power generation within the ideal range, an energy storage device is generally arranged as a reserve power capacity for the wind power generation system, and the wind power output Power supply caused by errors in wind power generation output prediction by performing charge / discharge control on the energy storage device so that energy is output or stored when the prediction error is large or power supply limitation occurs It is possible to reduce the economic loss due to the restriction of the power generation, improve the utilization rate of wind power generation, improve the scheduling property, and reduce the impact due to the introduction of the wind power generation into the transmission and distribution network.

特許文献1(CN20570505A)には、風力発電の部分的なピークを削って谷を填補するエネルギー蓄積装置制御方法が開示されている。具体的には、特許文献1の発明において、電池によるエネルギー蓄積装置を基に、風力発電出力の極短期予測の方法を結合し、風力発電出力に対して部分的にピークを削って谷を填補することにより、風力発電所からの出力とエネルギー蓄積装置からの出力との合成出力(以下、風蓄合成出力と言う)を、4時間毎に風力発電出力の極短期予測で得られたデータの重み平均値を中心とする、一定の帯域範囲内に保持させることにより、風力発電の実出力と予測出力とのばらつきを低減し、風力発電の送配電網への投入による電力システムへのピーク調整及び周波数調整の負担を低減する。   Patent Document 1 (CN205570505A) discloses an energy storage device control method in which a partial peak of wind power generation is cut to compensate for a valley. Specifically, in the invention of Patent Document 1, based on an energy storage device using a battery, a method for extremely short-term prediction of wind power generation output is combined, and a peak is partially cut off to compensate for the valley. As a result, the combined output of the output from the wind power plant and the output from the energy storage device (hereinafter referred to as the wind storage combined output) is obtained from the data obtained by the extremely short-term prediction of the wind power output every 4 hours. Maintaining the weighted average value within a certain bandwidth range reduces the variation between the actual output of wind power generation and the predicted output, and adjusts the peak to the power system by introducing the wind power generation into the power distribution network And reduce the burden of frequency adjustment.

しかし、以上の特許文献1の方法においては、風力発電出力予測の誤差を低減するように極短期予測によりエネルギー蓄積装置を制御することだけを考えたが、風蓄合成出力の最大化という課題を考えなかった。そこで、資源が無駄になる問題があり、更に風力発電所の経済利益に影響する。同時に、風蓄合成出力が定格範囲を超えるリスクも考えなかった。   However, in the method of Patent Document 1 described above, only the energy storage device is controlled by extremely short-term prediction so as to reduce the error in wind power generation output prediction, but the problem of maximizing the wind storage combined output is considered. I did not think. Therefore, there is a problem that resources are wasted, which further affects the economic profit of the wind power plant. At the same time, we did not consider the risk that the wind power combined output would exceed the rated range.

特許文献2(CN104283225A)には、風蓄合成出力を最大化させることができるだけでなく、電力供給の制限による風力廃棄による損失を低減することもできる風力発電所の運転制御装置が開示されている。当該装置は、風力発電履歴データとエネルギー蓄積装置のエネルギー蓄積情報とを利用して、安全余裕として、エネルギー蓄積装置が風力発電の予測誤差を補償する時に必要なエネルギー蓄積容量を計算し、エネルギー蓄積装置の現在容量と安全余裕との差を、規定周期内の風力発電システムの出力の一部分として、風力発電の計画を調整し、風力発電に対してリアルタイム制御を行っている。   Patent Document 2 (CN104283225A) discloses a wind power plant operation control apparatus that not only maximizes the wind storage combined output, but can also reduce losses due to wind power disposal due to power supply limitations. . The device uses the wind power generation history data and the energy storage information of the energy storage device to calculate the energy storage capacity necessary for the energy storage device to compensate for wind power prediction errors as a safety margin, and to store the energy Using the difference between the current capacity of the device and the safety margin as part of the output of the wind power generation system within the specified period, the wind power generation plan is adjusted and real-time control is performed on the wind power generation.

また、以上の特許文献2の方法においては、風蓄合成出力の最大化、及び風力発電所の定格範囲を超えるリスクを考えたが、電池の剰余容量と安全余裕とを比較するだけで電池の充放電出力を決定するので、その結果を予測誤差許可の範囲内に制御することができるが、依然として精度が高くない。   Moreover, in the method of the above-mentioned patent document 2, although the risk which exceeds the rated range of a wind power generation synthetic | combination maximization and a wind power plant was considered, only the comparison of a battery's surplus capacity and a safety | security margin is sufficient. Since the charge / discharge output is determined, the result can be controlled within the range of the prediction error permission, but the accuracy is still not high.

本発明の目的は、風蓄合成出力と予測出力とのばらつきが低減するように、エネルギー蓄積装置を備える風力発電システムの風蓄合成出力の出力を正確的に制御することができる風力発電所の運転制御装置、運転制御方法及び風力発電システムを提供することである。   An object of the present invention is to provide a wind power plant capable of accurately controlling the output of a wind storage combined output of a wind power generation system including an energy storage device so that variation between the wind storage combined output and the predicted output is reduced. An operation control device, an operation control method, and a wind power generation system are provided.

本発明の風力発電所の運転制御装置は、エネルギー蓄積装置を設けた風力発電システムに適用される風力発電所の運転制御装置であって、風力発電の予測出力及び許可予測誤差に基づいて、前記風力発電システムからの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する初期値設定手段と、前記風蓄合成出力の目標出力及び風力発電所からの実際の風力発電出力に基づいて、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測されたエネルギー蓄積装置の次の時点の剰余容量に基づいて、現在時点の風蓄合成出力の目標出力を調整し、エネルギー蓄積装置の充放電出力を制御するエネルギー蓄積装置の制御手段と、を備える。   The wind power plant operation control device of the present invention is a wind power plant operation control device applied to a wind power generation system provided with an energy storage device, and is based on the predicted output of wind power generation and a permission prediction error. Initial value setting means for setting the maximum output and the minimum output when the wind storage combined output from the wind power generation system satisfies the permission prediction error, the target output of the wind storage combined output and the actual wind power from the wind power plant Based on the power generation output, the surplus capacity at the next time point of the energy storage device is predicted, and based on the predicted surplus capacity at the next time point of the energy storage device, the target output of the wind storage combined output at the current time point is adjusted. And an energy storage device control means for controlling the charge / discharge output of the energy storage device.

また、本発明の風力発電所の運転制御方法は、エネルギー蓄積装置を設けた風力発電システムに適用される風力発電所の運転制御方法であって、風力発電の予測出力及び許可予測誤差に基づいて、前記風力発電システムからの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する初期値設定ステップと、前記風蓄合成出力の目標出力及び風力発電所からの実際の風力発電の出力に基づいて、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測されたエネルギー蓄積装置の次の時点の剰余容量に基づいて、現在時点の風蓄合成出力の目標出力を調整し、エネルギー蓄積装置の充放電出力を制御するエネルギー蓄積装置の制御ステップと、を含む。   The wind power plant operation control method of the present invention is a wind power plant operation control method applied to a wind power generation system provided with an energy storage device, and is based on wind power prediction output and permission prediction error. An initial value setting step for setting a maximum output and a minimum output when the wind storage combined output from the wind power generation system satisfies the permission prediction error, a target output of the wind storage combined output and an actual from the wind power plant The surplus capacity of the energy storage device at the next time point is predicted based on the output of the wind power generation at the current time, and the target output of the current wind energy storage output based on the surplus capacity at the next time point of the predicted energy storage device And controlling the energy storage device to control the charge / discharge output of the energy storage device.

更に、本発明の風力発電システムは、風力発電装置と、天気条件及び統計規律に基づいて風力発電の予測モデルを確立し、風力発電の予測出力を出力する風力発電出力予測装置と、前記風力発電の予測出力と前記風力発電システムの合成出力の出力との誤差を補償するように、充放電を行うエネルギー蓄積装置と、前記風力発電所の運転システムの各種データを記憶し管理するデータベースと、上記の風力発電所の運転制御装置と、を備える。   Further, the wind power generation system of the present invention establishes a wind power generation prediction model based on a wind power generation device, weather conditions and statistical disciplines, and outputs a wind power generation prediction output, and the wind power generation An energy storage device that performs charging / discharging so as to compensate for an error between the predicted output of the wind power generation system and the output of the combined output of the wind power generation system, a database that stores and manages various data of the operating system of the wind power plant, and A wind power plant operation control device.

本発明の実施例によれば、継続的に風蓄合成出力の目標出力を調整し、かつ、新たにエネルギー蓄積装置の充放電出力を計算し、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測精度の要求を満足すると共に、エネルギー蓄積装置の次の時点の安全余裕を保証することを前提として、最終的に、エネルギー蓄積装置の充放電出力を確定する。そこで、精確的に風力発電システムの風蓄合成出力の出力を制御することができ、風蓄合成出力の出力と予測出力との間のばらつきを低減することができる。   According to the embodiment of the present invention, the target output of the wind energy storage combined output is continuously adjusted, the charge / discharge output of the energy storage device is newly calculated, and the surplus capacity at the next time point of the energy storage device is predicted. The charging / discharging output of the energy storage device is finally determined on the assumption that the demand for prediction accuracy is satisfied and the safety margin at the next time point of the energy storage device is guaranteed. Therefore, the output of the wind storage combined output of the wind power generation system can be accurately controlled, and the variation between the output of the wind storage combined output and the predicted output can be reduced.

本発明に係る一つの実施例の風力発電システムの全体を示すブロック図である。1 is a block diagram illustrating an entire wind power generation system according to one embodiment of the present invention. 本発明に係る一つの実施例の風力発電所の運転制御装置を示すブロック図である。It is a block diagram which shows the operation control apparatus of the wind power plant of one Example which concerns on this invention. 本発明に係る一つの実施例の風力発電所の運転制御処理を示す模式図である。It is a schematic diagram which shows the operation control process of the wind power plant of one Example which concerns on this invention. 本発明に係る一つの実施例の風力発電所の運転制御処理を示すフローチャートである。It is a flowchart which shows the operation control process of the wind power plant of one Example which concerns on this invention. 本発明に係る一つの実施例のエネルギー蓄積装置の充放電出力に対する修正処理を示すフローチャートである。It is a flowchart which shows the correction process with respect to the charge / discharge output of the energy storage device of one Example which concerns on this invention.

以下、図面を参照して、本発明の好ましい実施形態の詳細を説明する。
(第1実施形態)
図1は、本発明に係る一つの実施例の風力発電システムの全体を示すブロック図である。
The preferred embodiments of the present invention will be described below in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a block diagram showing an entire wind power generation system according to one embodiment of the present invention.

図1に示すように、エネルギー蓄積装置を備える風力発電システム1は、例えば、風力発電所10と、風力発電出力予測システム20と、電池によるエネルギー蓄積装置30と、データベース40と、風力発電所の運転制御装置50とを含む。   As shown in FIG. 1, a wind power generation system 1 including an energy storage device includes, for example, a wind power plant 10, a wind power generation output prediction system 20, a battery energy storage device 30, a database 40, and a wind power plant. And an operation control device 50.

ただし、風力発電所10は、風力を利用して電力を発生する発電所であり、風力発電出力を出力する。風力発電所において、例えば、風力発電の出力データをサンプリングするために、図示しないデータサンプリング機構を取り付けることができる。   However, the wind power plant 10 is a power plant that generates power using wind power, and outputs wind power generation output. In a wind power plant, for example, in order to sample output data of wind power generation, a data sampling mechanism (not shown) can be attached.

風力発電出力予測システム20は、風力発電出力を予測する機能を持ち、例えば、天気条件および/または統計規律等のパラメターに基づいて、事前に一定の運転時間内の風力発電所の発電出力を分析し予測して、風力発電の予測モデルを確立し、風力発電出力の予測データを提供することができる。   The wind power generation output prediction system 20 has a function of predicting wind power generation output, and analyzes, for example, the power generation output of a wind power plant within a certain operating time in advance based on parameters such as weather conditions and / or statistical discipline. And forecasting to establish a wind power prediction model and provide wind power output prediction data.

電池によるエネルギー蓄積装置30は、風力発電システム1における予備電力を提供するシステムであり、風力発電の予測誤差を補償するためのものである。ここで、図示しないが、電池によるエネルギー蓄積装置30は、蓄電池と、電池管理システム(BMS)と、電力変換システム(PCS)と、中央制御システム(図示しない)とを含む。電池管理システムBMSは、電池組の荷電状態(State of Charge、即ちSOC)をサンプリングすることができる。また、電池組の荷電状態も電池の剰余容量と呼ばれることがある。電力変換システムPCSは、制御信号に基づいて蓄電池に対する充放電の管理を実現することができる。   The battery energy storage device 30 is a system that provides reserve power in the wind power generation system 1 and compensates for wind power generation prediction errors. Here, although not shown, the battery energy storage device 30 includes a storage battery, a battery management system (BMS), a power conversion system (PCS), and a central control system (not shown). The battery management system BMS can sample the state of charge (SOC) of the battery set. In addition, the charge state of the battery set may also be referred to as the remaining capacity of the battery. The power conversion system PCS can realize charge / discharge management for the storage battery based on the control signal.

データベース40は、データを記憶し管理するモジュールであり、例えば、メモリを含むことができ、各モジュール間のデータ共用及び呼び出しを容易に行うように、風力発電システム中の各々の部分がサンプリングされたデータ及び必要なデータを記憶し管理するためのものである。   The database 40 is a module that stores and manages data, and can include, for example, a memory, and each part in the wind power system is sampled to facilitate data sharing and recall between the modules. It is for storing and managing data and necessary data.

ただし、データベース40に記憶されているデータ類別は、例えば、少なくとも以下のデータ中のいくつかを含むことができる。   However, the data classification stored in the database 40 can include at least some of the following data, for example.

サンプリングデータ:風力発電の予測出力Ppre (k)、風力発電の出力P (k)、電池の剰余容量SOC(k)
ただし、風力発電の予測出力Ppre (k)は、風力発電出力予測システム20が、例えば、天気条件および/または統計規律等のパラメターに基づいて、事前に一定運転時間内の風力発電所の発電出力を分析し予測して、風力発電の予測モデルを確立することで提供された風力発電出力の予測データである。風力発電の出力P (k)は、風力発電所10が風力を利用して出力する風力発電出力である。
Sampling data: Wind power generation predicted output P pre (k) , wind power generation output P W (k) , battery surplus capacity SOC (k) .
However, the predicted output P pre (k) of the wind power generation is generated by the wind power generation output prediction system 20 based on parameters such as weather conditions and / or statistical disciplines, for example. Wind power generation output prediction data provided by analyzing and predicting output and establishing a wind power generation prediction model. The output P W (k) of the wind power generation is a wind power generation output that the wind power plant 10 outputs using wind power.

初期データ:時間分解能Δt、出力調整のステップ長Δp、電池の安全容量Qrel、余裕係数a%、風力発電所の出力予測許可誤差b%、電池によるエネルギー蓄積装置の公称容量Q、剰余容量SOC、剰余容量最大値SOCmax及び剰余容量最小値SOCmin、最大放電出力Pdis max及び最小放電出力Pdis min、最大充電出力Pch max及び最小充放電出力Pch minInitial data: time resolution Δt, output adjustment step length Δp, battery safety capacity Q rel , margin coefficient a%, wind power plant output prediction permission error b%, battery energy storage device nominal capacity Q r , surplus capacity The SOC, the surplus capacity maximum value SOC max and the surplus capacity minimum value SOC min , the maximum discharge output P dis max and the minimum discharge output P dis min , the maximum charge output P ch max and the minimum charge / discharge output P ch min .

ただし、電池の剰余容量最大値SOCmaxは、電池の過充電を防止するために設けた閾値、剰余容量最小値SOCminは、電池の過放電を防止するために設けた閾値であり、電池の剰余容量が最大値SOCmaxを超えた場合、或いは電池の剰余容量が最小値SOCminよりも低くなった場合には、電池へ不可逆的な損傷を与え、電池の使用寿命に影響するだけでなく、安全上のリスクが発生する恐れもある。 However, the battery surplus capacity maximum value SOC max is a threshold value provided to prevent overcharging of the battery, and the surplus capacity minimum value SOC min is a threshold value provided to prevent battery over-discharge. If the surplus capacity exceeds the maximum value SOC max , or if the surplus capacity of the battery is lower than the minimum value SOC min , not only will the battery be irreversibly damaged, affecting the service life of the battery. There is also a risk of safety risks.

計算データ:風蓄合成出力の目標出力Paim (k)、電池の安全余裕SOC、電池の充放電出力P (k)Calculation data: Kaze蓄combined output of the target output P aim (k), the safety margin SOC O battery, battery charging and discharging the output P b (k).

ただし、風蓄合成出力の目標出力Paim (k)は、エネルギー蓄積装置を備える風力発電システムが実際に出力しようとする出力であり、風力発電所10の風力発電の出力P (k)及びエネルギー蓄積装置が提供する充放電出力に基づいて得られたものである。また、電池の安全余裕SOCは、風力発電の予測誤差を補償できる電池の剰余容量の安全余裕であり、正規分布法の計算法によって得てもよく、経験値を用いてもよく、且つ、実際必要に応じて余裕係数a%を調整することもできる。 However, the target output P aim (k) of the wind storage combined output is an output that the wind power generation system including the energy storage device actually outputs, and the wind power output P W (k) of the wind power plant 10 and It was obtained based on the charge / discharge output provided by the energy storage device. The safety margin SOC O batteries are safe margin of surplus capacity of the battery can be compensated prediction errors of wind power may be obtained by calculation method of the normal distribution method, it may be used experience, and, In practice, the margin coefficient a% can be adjusted as necessary.

風力発電所の運転制御装置50は、風力発電所の運転期間において、風力発電所の実際の発電出力と予測出力との間のばらつきを補償するように、風力発電所発電の予測データに基づいてエネルギー蓄積装置の充放電を制御するためのものである。風力発電所の運転制御装置50において、風力発電の予測出力と、風力発電の実際出力の出力と、電池の剰余容量とに基づいて電池の充放電出力を計算し、風蓄合成出力の出力と風力発電の予測出力との誤差を減らし、同時に、電池の十分な剰余容量を保証して、後期の風力発電の出力が定格範囲を超えるリスクを減らすことができる。   The operation control device 50 of the wind power plant is based on the prediction data of the wind power plant power generation so as to compensate for the variation between the actual power generation output of the wind power plant and the predicted power output during the operation period of the wind power plant. This is for controlling charging / discharging of the energy storage device. The wind power plant operation control device 50 calculates the charge / discharge output of the battery based on the predicted output of the wind power generation, the output of the actual output of the wind power generation, and the surplus capacity of the battery. The error from the predicted output of wind power generation can be reduced, and at the same time, sufficient surplus capacity of the battery can be guaranteed to reduce the risk that the output of the later wind power generation will exceed the rated range.

また、一つの実施形態において、風力発電所の運転制御装置50は、例えば、初期値設定手段51及びエネルギー蓄積装置の制御手段52とを含む。初期値設定手段51は、例えば、風力発電の予測出力及び許可予測誤差に基づいて、風力発電システムの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する。エネルギー蓄積装置の制御手段52は、例えば、前記風蓄合成出力の目標出力及び風力発電所の実際の風力発電の出力に基づいて、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測されたエネルギー蓄積装置の次の時点の剰余容量に基づき、現在時点の風蓄合成出力の目標出力を調整し、エネルギー蓄積装置の充放電出力を制御する。   Moreover, in one embodiment, the operation control apparatus 50 of a wind power plant contains the initial value setting means 51 and the control means 52 of an energy storage device, for example. The initial value setting means 51 sets the maximum output and the minimum output when the wind energy storage combined output of the wind power generation system satisfies the permission prediction error based on, for example, the predicted output of wind power generation and the permission prediction error. The control means 52 of the energy storage device predicts the surplus capacity at the next time point of the energy storage device based on, for example, the target output of the wind storage combined output and the actual wind power output of the wind power plant. Based on the surplus capacity at the next time point of the energy storage device, the target output of the wind storage combined output at the current time point is adjusted to control the charge / discharge output of the energy storage device.

図2に示すように、一つの実施形態により、エネルギー蓄積装置の制御手段52は、例えば、充放電出力計算手段521と、剰余容量予測手段522と、風蓄合成出力の目標出力調整手段523とを含むことができる。ただし、充放電出力計算手段521は、電池の充放電出力を計算する。剰余容量予測手段522は、充放電出力計算手段521が計算した充放電出力に基づいて、電池の次の時点の剰余容量を予測する。風エネ蓄エネ出力の目標出力調整手段523は、剰余容量予測手段が予測した電池の次の時点の剰余容量に基づいて、風蓄合成出力の目標出力を調整する。また、エネルギー蓄積装置の制御手段52は、例えば、更に、必要に応じで前記充放電出力計算手段が計算した充放電出力を修正する充放電出力修正手段524を含むことができる。   As shown in FIG. 2, according to one embodiment, the control means 52 of the energy storage device includes, for example, a charge / discharge output calculation means 521, a surplus capacity prediction means 522, a target output adjustment means 523 for wind storage combined output, Can be included. However, the charge / discharge output calculation means 521 calculates the charge / discharge output of the battery. The surplus capacity predicting means 522 predicts the surplus capacity at the next time point of the battery based on the charge / discharge output calculated by the charge / discharge output calculating means 521. The wind energy storage energy output target output adjustment means 523 adjusts the target output of the wind energy storage output based on the surplus capacity at the next time point of the battery predicted by the surplus capacity prediction means. Further, the control means 52 of the energy storage device can further include, for example, a charge / discharge output correcting means 524 that corrects the charge / discharge output calculated by the charge / discharge output calculating means as required.

全体的に、本発明の一つの実施形態の風力発電所の運転制御装置は、電池の次の時点の剰余容量を予測し、予測された電池の次の時点の剰余容量に基づいて、継続的に風蓄合成出力の目標出力を調整し、調整後の風蓄合成出力の目標出力に基づいて、規定の条件を満足するまでに新たに電池の充放電出力を計算し制御する。   Overall, the wind power plant operation control device of one embodiment of the present invention predicts the surplus capacity of the next time of the battery and continuously based on the predicted surplus capacity of the next time of the battery. Then, the target output of the wind storage combined output is adjusted, and based on the adjusted target output of the wind storage combined output, the charge / discharge output of the battery is newly calculated and controlled until the prescribed condition is satisfied.

当該の実施形態において、予測された電池の次の時点の剰余容量に基づいて、予測誤差許可の範囲内において継続的に風蓄合成出力の目標出力を調整することで、後期に予測誤差精度の要求を満足できないリスクと、風蓄合成出力が定格範囲を超えるリスクとを低減することができ、資源が無駄になることを避けるように、相関スケジューリング機関が発電の計画を策定するために、正確な参照データを継続的に提供することができる。   In this embodiment, the target output of the wind storage combined output is continuously adjusted within the prediction error permission range based on the predicted surplus capacity at the next time point of the battery, so that the prediction error accuracy can be improved later. To ensure that the correlated scheduling agency develops a plan for power generation so that the risk of not meeting the requirements and the risk that the wind power combined output exceeds the rated range can be reduced and resources are not wasted. Continuous reference data can be provided continuously.

以下、図面を参照して、風力発電所の運転制御処理の過程の詳細を説明する。図3のA〜図3のEは、風力発電所の運転制御処理を示す模式図である。   Hereinafter, the details of the operation control process of the wind power plant will be described with reference to the drawings. FIG. 3A to FIG. 3E are schematic views showing the operation control processing of the wind power plant.

図3のAに示すように、図中の上下の二つの実線は、風力発電所の予測出力Ppre及び風力発電所の実際の出力P (k)をそれぞれ示し、点線は、風力発電所の出力予測許可誤差b%を満足する時の風蓄合成出力の最大出力値Pmax及び最小出力値Pminを示す。まず、風蓄合成出力の目標出力を予測出力(Paim (k)=Ppre (k))と等しくする。そして、風力発電所の予測出力Ppre (k)と風力発電所の実際の出力P (k)に基づいて、電池から提供する必要がある充放電出力(P (k)=Paim (k)−P (k))を計算する。そして、例えば、現在時点の電池の剰余容量と、電池の充放電出力と、時間分解能Δtと、電池公称容量Qとに基づいて、次の時点の電池の剰余容量(SOCest (k+1)=SOC(k)−P (k)×Δt/Q)を推定する。 As shown in FIG. 3A, the upper and lower solid lines in the figure indicate the predicted output P pre of the wind power plant and the actual output P W (k) of the wind power plant, respectively, and the dotted line indicates the wind power plant. The maximum output value P max and the minimum output value P min of the wind storage combined output when the output prediction permission error b% is satisfied are shown. First, the target output of the wind storage combined output is made equal to the predicted output (P aim (k) = P pre (k) ). Then, based on the predicted output P pre (k) of the wind power plant and the actual output P W (k) of the wind power plant, the charge / discharge output (P b (k) = P aim ( k) -P W (k) ) is calculated. Then, for example, based on the surplus capacity of the battery at the current time point, the charge / discharge output of the battery, the time resolution Δt, and the nominal battery capacity Q r , the surplus capacity of the battery at the next time point (SOC est (k + 1) = SOC (k) −P b (k) × Δt / Q r ) is estimated.

図3のBに示すように、推定された電池の次の時点の剰余容量が安全余裕以上で剰余容量最大値以下(SOC≦SOCest (k+1)≦SOCmax)であれば、風蓄合成出力の目標出力を調整しないで、風蓄合成出力の目標出力が実際の風蓄合成出力の出力である。このような場合に、風蓄合成出力の出力を風力発電の予測出力と等しくする(即ち予測誤差がゼロになる)ことも実現することができ、後期に風蓄合成出力の出力が定格範囲を超えるリスク、及び電池の剰余容量が風力発電の予測誤差を補償することができないリスクも低減することができる。 As shown in FIG. 3B, if the surplus capacity at the next time point of the estimated battery is greater than the safety margin and less than the surplus capacity maximum value (SOC 0 ≦ SOC est (k + 1) ≦ SOC max ), wind storage synthesis Without adjusting the target output of the output, the target output of the wind storage composite output is the output of the actual wind storage composite output. In such a case, it is also possible to make the output of the wind storage combined output equal to the predicted output of the wind power generation (that is, the prediction error becomes zero). The risk of exceeding and the risk that the surplus capacity of the battery cannot compensate for the prediction error of wind power generation can also be reduced.

図3のCに示すように、推定された電池の次の時点の剰余容量が電池の剰余容量最大値(SOCest (k+1)>SOCmax)よりも高ければ、Paim (k)>Pmax (k)またはSOCest (k+1)<SOCmaxとなるまでに、毎回、風蓄合成出力の目標出力を所定の出力調整のステップ長ΔPだけ増やし、電池の充放電出力を計算し、次の時点の電池の剰余容量を推定することを、継続的に繰り返して調整する。 As shown in FIG. 3C, if the estimated surplus capacity of the next time of the battery is higher than the surplus capacity maximum value of the battery (SOC est (k + 1) > SOC max ), P aim (k) > P max Each time (k) or SOC est (k + 1) <SOC max , the target output of the wind storage combined output is increased by a predetermined output adjustment step length ΔP, and the charge / discharge output of the battery is calculated. It is continuously and repeatedly adjusted that the remaining capacity of the battery is estimated.

図3のDに示すように、推定された電池の次の時点の剰余容量がSOCmin≦SOCest (k+1)<SOCの関係を満足すれば、Paim (k)<Pmin (k)またはSOCest (k+1)>SOCとなるまでに、毎回、風力発電出力の目標値を、所定の出力調整のステップ長ΔPだけ減らし、電池の充放電出力を計算し、次の時点の電池の剰余容量を推定すること、を継続的に繰り返して調整する。 As shown in D of FIG. 3, if the estimated remaining capacity of the battery at the next time satisfies the relationship SOC min ≦ SOC est (k + 1) <SOC 0 , P aim (k) <P min (k) Alternatively, every time until SOC est (k + 1) > SOC 0 , the target value of the wind power generation output is reduced by a predetermined output adjustment step length ΔP, and the charge / discharge output of the battery is calculated. It is continuously and repeatedly adjusted to estimate the surplus capacity.

図3のEに示すように、推定された電池の次の時点の剰余容量がSOCest (k+1)<SOCminの関係を満足すれば、電池の充放電出力は、P (k)=(SOC(k)−SOCmin)×Q/Δtと計算される。 As shown in E of FIG. 3, if the estimated surplus capacity of the next time of the battery satisfies the relationship SOC est (k + 1) <SOC min , the charge / discharge output of the battery is P b (k) = ( SOC (k) −SOC min ) × Q r / Δt.

以下、図4を参照して、本発明の風力発電所の運転制御処理のフローを説明する。   Hereinafter, with reference to FIG. 4, the flow of the operation control process of the wind power plant of this invention is demonstrated.

風力発電所の運転の時、ステップS201において、前記エネルギー蓄積装置の安全余裕(SOC=a%×Qrel/Q)として、前記エネルギー蓄積装置が風力発電の予測誤差を補償するために必要な剰余容量を取る。予測出力及び出力予測許可誤差に基づいて、風蓄合成出力の最大値Pmax (k)=(1+b%)Ppre (k)及び最小値Paim (k)=(1−b%)Ppre (k)を計算し、Paim (k)=Ppre (k)としてステップS202へ進む。 During operation of the wind power plant, in step S201, the energy storage device is required to compensate for a prediction error of wind power generation as a safety margin (SOC 0 = a% × Q rel / Q r ) of the energy storage device. Take up extra surplus capacity. Based on the predicted output and the output prediction permission error, the maximum value P max (k) = (1 + b%) P pre (k) and the minimum value P aim (k) = (1−b%) P pre of the wind storage combined output. (K) is calculated, and P aim (k) = P pre (k) is set, and the process proceeds to step S202.

ステップS202において、風力発電所の予測出力Ppre (k)と風力発電所の実際の出力P (k)に基づいて、電池によって提供する必要な充放電出力P (k)=Paim (k)−P (k)を計算する。そして、現在時点の電池の剰余容量と、電池の充放電出力と、時間分解能Δtと、電池公称容量Qとに基づいて、次の時点の電池の剰余容量SOCest (k+1)=SOC(k)‐P (k)×Δt/Qを推定し、ステップS203へ進む。 In step S202, based on the predicted output P pre (k) of the wind power plant and the actual output P W (k) of the wind power plant, the necessary charge / discharge output P b (k) = P aim ( k) -P W (k) is calculated. Then, based on the surplus capacity of the battery at the present time, the charge / discharge output of the battery, the time resolution Δt, and the nominal capacity of the battery Q r , the surplus capacity of the battery at the next time SOC est (k + 1) = SOC (k ) −P b (k) × Δt / Q r is estimated, and the process proceeds to step S203.

ステップS203において、推定された次の時点の電池の剰余容量SOCest (k+1)とSOC、SOCmaxとの関係を判断し、SOC≦SOCest (k+1)≦SOCmaxを満足すれば(ステップS203:Y)、処理Aへ進み、そうでなければ、ステップS204へ進む。 In step S203, a relationship between the estimated battery surplus capacity SOC est (k + 1) at the next time point and SOC 0 , SOC max is determined, and if SOC 0 ≦ SOC est (k + 1) ≦ SOC max is satisfied (step S203 ). S203: Y), go to process A, otherwise go to step S204.

ステップS204において、更に、推定された次の時点の電池の剰余容量SOCest (k+1)とSOCmaxとの関係を判断し、SOCest (k+1)>SOCmaxであれば(ステップS204:Y)、ステップS205において、Paim (k)=Ppre (k)+ΔPとする。そして、ステップS206へ進む。SOCest (k+1)>SOCmaxという関係を満たさなければ(ステップS204:N)、ステップS208において、Paim (k)=Ppre (k)−ΔPとし、ステップS209へ進む。 In step S204, the relationship between the estimated battery surplus capacity SOC est (k + 1) and SOC max at the next time point is determined, and if SOC est (k + 1) > SOC max (step S204: Y), In step S205, P aim (k) = P pre (k) + ΔP. Then, the process proceeds to step S206. If the relationship SOC est (k + 1) > SOC max is not satisfied (step S204: N), P aim (k) = P pre (k) −ΔP is set in step S208, and the process proceeds to step S209.

ステップS206において、Paim (k)とPmax (k)の関係を判断し、Paim (k)>Pmax (k)であれば、ステップS207でP (k)=Pmax (k)−P (k)とし、そうでなければ、ステップS202へ進む。ステップS207の後に、フローは処理Aへ進む。 In step S206, the relationship between P aim (k) and P max (k) is determined. If P aim (k) > P max (k) , then P b (k) = P max (k) in step S207. -P W (k) , otherwise, go to step S202. After step S207, the flow proceeds to process A.

また、ステップS209において、Paim (k)とPmin (k)の関係を判断し、Paim (k)<Pmin (k)であれば、ステップS210へ進み、そうでなければ、ステップS202へ進む。 In step S209, the relationship between P aim (k) and P min (k) is determined. If P aim (k) <P min (k) , the process proceeds to step S210; otherwise, step S202 is performed. Proceed to

そして、ステップS210において、SOCest (k+1)とSOCminの関係を判断する。SOCest (k+1)<SOCminであれば、ステップS211へ進み、電池の充放電出力をP (k)=(SOC(k)−SOCmin)×Q/Δtとし、処理Aへ進む。ステップS210でSOCest (k+1)<SOCminという関係を満たさないと判断すれば、ステップS212へ進み、P (k)=Paim (k)−P (k)とし、処理Aへ進む。 In step S210, the relationship between SOC est (k + 1) and SOC min is determined. If SOC est (k + 1) <SOC min , the process proceeds to step S211, and the charge / discharge output of the battery is set to P b (k) = (SOC (k) −SOC min ) × Q r / Δt, and the process proceeds to process A. If it is determined in step S210 that the relationship SOC est (k + 1) <SOC min is not satisfied, the process proceeds to step S212, P b (k) = P aim (k) −P W (k) , and the process proceeds to process A.

以下、図4のフローチャートを参照して、本発明の特徴的な技術效果を説明する。   The characteristic technical effects of the present invention will be described below with reference to the flowchart of FIG.

ステップS204において、推定された電池の次の時点の剰余容量がSOCest (k+1)>SOCmaxの関係を満足すると判定された時、電池が風蓄合成出力に対してより多くの電気のエネルギーを提供できるという意味である。従って、本実施形態において、ステップS205において、予測許可誤差b%を保証する範囲内に、風蓄合成出力の目標出力を所定のステップ長ずつ増加することによって、風蓄合成出力を最大化することができ、風力資源及びエネルギー蓄積装置を効果的に利用できる。 In step S204, when it is determined that the estimated surplus capacity of the next time of the battery satisfies the relationship SOC est (k + 1) > SOC max , the battery has more electric energy with respect to the wind energy storage output. It means that it can be provided. Therefore, in the present embodiment, in step S205, the wind storage combined output is maximized by increasing the target output of the wind storage combined output by a predetermined step length within a range in which the prediction permission error b% is guaranteed. Wind power resources and energy storage devices can be used effectively.

一方、推定された電池の次の時点の剰余容量がSOCest (k+1)>SOCmaxの関係を満足する時、次の時点に電池がある不安定な状態に進むという意味であり、本発明において、ステップS205で風蓄合成出力の目標出力を徐々に増やさせ、即ち電池にできるだけ多い電気のエネルギーを出力させることで、次の時点に、電池を信頼の状態または信頼の状態に近い状態とさせることができ、これにより、後期、風蓄合成出力が定格範囲を超えるリスクを大幅に低減することができる。 On the other hand, when the estimated surplus capacity of the next time of the battery satisfies the relationship SOC est (k + 1) > SOC max , it means that the battery proceeds to an unstable state at the next time. In step S205, the target output of the wind energy storage combined output is gradually increased, that is, by causing the battery to output as much electrical energy as possible, so that the battery is brought into a state of trust or a state of trust at the next time point. As a result, the risk that the wind power storage combined output exceeds the rated range in the latter period can be greatly reduced.

また、ステップS204において、SOCest (k+1)>SOCmaxという関係を満たさなければ、即ち推定された電池の次の時点の剰余容量がSOCest (k+1)<SOC(SOCmin≦SOCest (k+1)<SOCまたはSOCest (k+1)<SOCminという2つの状況を含む)という関係を満足する場合に、現在の風蓄合成出力の目標出力を実際の風蓄合成出力の出力とすれば、次の時点に電池の安全余裕を保証することができず、ひいては電池そのものの信頼性を破壊することもある意味である。当該状況を避けるために、本発明において、次の時点に電池の剰余容量を安全余裕を満足させるまたはできるだけ安全余裕に近接させるように、予測許可誤差b%を保証する範囲内において、風蓄合成出力の目標出力を所定のステップ長ずつ減らして、できるだけ多い電気のエネルギーを電池に蓄積する。そこで、本発明によれば、予測精度が許可誤差範囲内にあることを保証すると同時に、最大限に次の時点の電池の安全余裕をも考慮したことで、後期に風蓄合成出力が定格範囲を超えるリスクを大幅に低減することができる。 In step S204, if the relationship SOC est (k + 1) > SOC max is not satisfied, that is, the estimated surplus capacity at the next time point of the battery is SOC est (k + 1) <SOC 0 (SOC min ≦ SOC est (k + 1). ) <SOC 0 or SOC est (k + 1) <including two conditions of SOC min ) If the target output of the current wind storage composite output is the output of the actual wind storage composite output, This means that the safety margin of the battery cannot be guaranteed at the next time point, and eventually the reliability of the battery itself may be destroyed. In order to avoid such a situation, in the present invention, the wind storage synthesis is performed within the range in which the prediction permission error b% is guaranteed so that the remaining capacity of the battery satisfies the safety margin or is brought as close to the safety margin as possible at the next time point. The target output of the output is reduced by a predetermined step length, and as much electric energy as possible is stored in the battery. Therefore, according to the present invention, it is ensured that the prediction accuracy is within the allowable error range, and at the same time, the safety margin of the battery at the next time point is considered to the maximum, so that the wind storage combined output is in the rated range in the latter period. The risk of exceeding can be greatly reduced.

更に、本発明において、毎回、風力発電出力の目標値を所定の出力調整のステップ長Δpだけ低減することで、ステップS209でPaim (k)<Pmin (k)の条件を満足させる場合には、更なる電池の次の時点の剰余容量がSOCest (k+1)<SOCminの関係を満足すると判定されば、次の時点に依然として電池の安全余裕を保証できず、しかも電池の信頼性に影響することもある意味である。このような場合に、本発明において、電池の安全余裕を考えなくて、単に電池の充放電出力をP (k)=(SOC(k)−SOCmin)×Q/Δtと計算し、即ち、電池の剰余容量最小値SOCmin以上の容量をすべて風蓄合成出力に用いることで、電池そのものの信頼性を保証すると同時に、最大限的に実際の風蓄合成出力の出力を増加する。一方、電池の次の時点の剰余容量がSOCest (k+1)<SOCminの条件を満たさない場合には、予測誤差許可の範囲を満足するように、電池の充放電出力をP (k)=Pmin (k)−P (k)とする。 Furthermore, in the present invention, when the target value of the wind power generation output is reduced by the predetermined output adjustment step length Δp each time, the condition of P aim (k) <P min (k) is satisfied in step S209. If it is determined that the surplus capacity at the next time of the further battery satisfies the relationship SOC est (k + 1) <SOC min , the safety margin of the battery cannot be guaranteed at the next time, and the battery reliability is improved. It also means that it can affect. In such a case, in the present invention, without considering the safety margin of the battery, simply calculate the charge / discharge output of the battery as P b (k) = (SOC (k) −SOC min ) × Q r / Δt, In other words, by using all the capacity of the battery surplus capacity minimum SOC min or more for the wind storage combined output, the reliability of the battery itself is ensured and at the same time the output of the actual wind storage combined output is maximized. On the other hand, when the surplus capacity at the next time point of the battery does not satisfy the condition SOC est (k + 1) <SOC min , the charge / discharge output of the battery is set to P b (k) so as to satisfy the prediction error permission range. = P min (k) −P W (k) .

以下、処理Aの詳細を説明する。   Hereinafter, details of the process A will be described.

処理Aは、電池の充放電出力P (k)が決定された後、蓄電池の剰余容量及び充放電出力がそれぞれの範囲を超えないことを保証するために行う修正処理である。処理Aの初めは、ステップS213に対応する。 Process A is a correction process performed to ensure that the surplus capacity and charge / discharge output of the storage battery do not exceed the respective ranges after the battery charge / discharge output P b (k) is determined. The beginning of process A corresponds to step S213.

ステップS213において、P (k)と0との関係を判断し、P (k)>0であれば、ステップS214へ進み、そうでなければ、ステップS215へ進む。 In step S213, the relationship between P b (k) and 0 is determined. If P b (k) > 0, the process proceeds to step S214, and if not, the process proceeds to step S215.

ステップS214において、|P (k)|と|Pdis min|の関係を判断し、|P (k)|<|Pdis min|であれば、電池によるエネルギー蓄積装置の放電が停止し、そうでなければ、ステップS216へ進む。 In step S214, the relationship between | P b (k) | and | P dis min | is determined. If | P b (k) | <| P dis min |, the discharge of the energy storage device by the battery is stopped. Otherwise, the process proceeds to step S216.

ステップS216において、|P (k)|と|Pdis max|の関係を判断し、|P (k)|>|Pdis max|であれば、|P (k)|=|Pdis max|とし、そうでなければ、ステップS218へ進む。
ステップS218において、SOCとSOCminとの関係を判断し、SOC>SOCminであれば、電池によるエネルギー蓄積装置の放電|P (k)|を制御し、そうでなければ、電池によるエネルギー蓄積装置の放電が停止する。
In step S216, the relationship between | P b (k) | and | P dis max | is determined. If | P b (k) |> | P dis max |, then | P b (k) | = | P dis max || If not, the process proceeds to step S218.
In step S218, the relationship between the SOC and the SOC min is determined. If SOC> SOC min , the discharge | P b (k) | of the energy storage device using the battery is controlled. Otherwise, the energy storage using the battery is performed. The device stops discharging.

ステップS215において、|P (k)|と|Pch min|の関係を判断し、|P (k)|<|Pch min|であれば、電池によるエネルギー蓄積装置の放電が停止し、そうでなければ、ステップS217へ進む。ただし、|Pch min|は電池の最小放電出力を示す。 In step S215, the relationship between | P b (k) | and | P ch min | is determined. If | P b (k) | <| P ch min |, the battery discharges the energy storage device. Otherwise, the process proceeds to step S217. However, | P ch min | represents the minimum discharge output of the battery.

ステップS217において、|P (k)|と|Pch max|の関係を判断し、|P (k)|>|Pch max|であれば、|P (k)|=|Pch max|とし、そうでなければ、ステップS219へ進む。ただし、|Pch max|は電池の最大放電出力を示す。 In step S217, the relationship between | P b (k) | and | P ch max | is determined. If | P b (k) |> | P ch max |, then | P b (k) | = | P ch max |, otherwise, go to step S219. However, | P ch max | represents the maximum discharge output of the battery.

ステップS219において、SOCとSOCmaxとの関係を判断し、SOC<SOCmaxであれば、電池によるエネルギー蓄積装置の充電|P (k)|を制御し、そうでなければ、電池によるエネルギー蓄積装置の充電が停止する。 In step S219, the relationship between SOC and SOC max is determined. If SOC <SOC max , the charging of the energy storage device by battery | P b (k) | is controlled. Otherwise, the energy storage by battery is stored. The device stops charging.

処理Aによって、電池そのものの最大の充放電出力、最小の充放電出力及び剰余容量に基づいて、電池の充放電出力を修正することで、電池の剰余容量及び充放電出力がそれぞれの定格範囲を超えないことを保証できる。   By processing A, by correcting the charge / discharge output of the battery based on the maximum charge / discharge output, minimum charge / discharge output and surplus capacity of the battery itself, the surplus capacity and charge / discharge output of the battery have their respective rated ranges. It can be guaranteed that it will not exceed.

以上、本発明の風力発電所の運転制御装置及び風力発電所の運転制御方法を説明したが、当業者にとっては、本発明の複数の側面をシステム、方法またはコンピュータプラグラム製品と具体化できると理解すべきである。そこで、本発明の複数の側面は、完全的なハードウエア、完全的なソフトウエア(ファームウェア、常駐ソフトウエア、マイクロコード等を含む)、または本明細書において“手段”または“システム”と呼ばれるソフトウエアとハードウエアとの組合とすることができる。また、本発明の複数の側面は、1つまたは複数のコンピュータ読み取可能な媒体中のコンピュータプラグラム製品という形態を採用でき、当該コンピュータ読み取可能な媒体にはコンピュータが使用可能なプラグラムコードを含む。例えば、風力発電所の運転制御装置におけるエネルギー蓄積装置の制御手段は、該当の機能を有するハードウエア回路によって実現してもよく、コンピュータが該当の機能を記載したプラグラムを実行することで実現しても良い。また、該当のプラグラムは、予めコンピュータ読み取可能な記憶媒体(ROMまたは記憶部)にインストールして提供してもよく、LANまたはインターネット等のネットワークによって伝送またはダンロードしても良い。   Although the wind power plant operation control apparatus and wind power plant operation control method of the present invention have been described above, it will be understood by those skilled in the art that a plurality of aspects of the present invention can be embodied as a system, method, or computer program product. Should. Thus, aspects of the present invention include complete hardware, complete software (including firmware, resident software, microcode, etc.), or software referred to herein as “means” or “system”. It can be a combination of hardware and hardware. Also, aspects of the present invention can take the form of a computer program product in one or more computer readable media, including computer readable program code. For example, the control means of the energy storage device in the operation control device of the wind power plant may be realized by a hardware circuit having a corresponding function, and realized by a computer executing a program describing the corresponding function. Also good. Further, the corresponding program may be provided by being installed in a computer-readable storage medium (ROM or storage unit) in advance, or may be transmitted or downloaded via a network such as a LAN or the Internet.

本発明の実施形態を説明したが、実施形態が例示に過ぎなく、発明の範囲を限定すると意図しない。当業者にとっては、実施形態が他の各種方式で実施でき、発明の要旨の範囲内、それぞれの省略、置換、変更を行うことができると理解できる。当該の実施形態及びその変形は、発明の範囲及び要旨内に含まれると共に、特許請求の範囲に記載の発明及びその均等の範囲に含まれている。   Although the embodiments of the present invention have been described, the embodiments are merely examples and are not intended to limit the scope of the invention. For those skilled in the art, it can be understood that the embodiments can be implemented in various other ways, and can be omitted, replaced, and changed within the scope of the invention. The embodiments and the modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (21)

エネルギー蓄積装置を設けた風力発電システムに適用される風力発電所の運転制御装置であって、
風力発電の予測出力及び許可予測誤差に基づいて、前記風力発電システムからの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する初期値設定手段と、
前記風力発電システムからの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する初期値設定手段と、
前記風蓄合成出力の目標出力及び風力発電所からの実際の風力発電の出力に基づいて、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測されたエネルギー蓄積装置の次の時点の剰余容量に基づいて、現在時点の風蓄合成出力の目標出力を調整し、エネルギー蓄積装置の充放電出力を制御するエネルギー蓄積装置の制御手段と、
を含むことを特徴とする風力発電所の運転制御装置。
A wind power plant operation control device applied to a wind power generation system provided with an energy storage device,
Initial value setting means for setting a maximum output and a minimum output when the wind energy storage combined output from the wind power generation system satisfies the permission prediction error based on the predicted output of wind power generation and the permission prediction error;
An initial value setting means for setting a maximum output and a minimum output when the wind storage combined output from the wind power generation system satisfies the permission prediction error;
Based on the target output of the wind storage combined output and the actual wind power output from the wind power plant, the surplus capacity at the next time point of the energy storage device is predicted, and the surplus at the next time point of the predicted energy storage device Based on the capacity, the energy storage device control means for adjusting the target output of the current wind power combined output and controlling the charge / discharge output of the energy storage device;
A wind power plant operation control device comprising:
前記エネルギー蓄積装置の制御手段は、
時点毎に必要な前記エネルギー蓄積装置の充放電出力を計算する充放電出力計算手段と、
前記充放電出力計算手段により計算された充放電出力に基づいて、前記エネルギー蓄積装置の次の時点の剰余容量を予測する剰余容量予測手段と、
前記剰余容量予測手段により予測された前記エネルギー蓄積装置の次の時点の剰余容量に基づいて、前記風蓄合成出力の目標出力を調整する風蓄合成出力の目標出力調整手段と、
を備えることを特徴とする請求項1に記載の風力発電所の運転制御装置。
The control means of the energy storage device is:
Charge / discharge output calculating means for calculating the charge / discharge output of the energy storage device required for each time point;
Based on the charge / discharge output calculated by the charge / discharge output calculating means, a surplus capacity predicting means for predicting a surplus capacity at the next time point of the energy storage device;
Wind power combined output target output adjusting means for adjusting the target output of the wind storage combined output based on the surplus capacity at the next time point of the energy storage device predicted by the surplus capacity predicting means;
The wind power plant operation control device according to claim 1, comprising:
前記初期値設定手段は、
前記エネルギー蓄積装置の安全余裕として、前記エネルギー蓄積装置が風力発電の予測誤差を補償ために必要な剰余容量も取得する
ことを特徴とする請求項2に記載の風力発電所の運転制御装置。
The initial value setting means includes
The operation control device for a wind power plant according to claim 2, wherein the energy storage device also acquires a surplus capacity necessary for compensating for a prediction error of wind power generation as a safety margin of the energy storage device.
前記エネルギー蓄積装置の制御手段において、
前記剰余容量予測手段により予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記安全余裕以上であり前記エネルギー蓄積装置の最大の剰余容量以下である時、前記風蓄合成出力の目標出力調整手段が前記風蓄合成出力の目標出力を調整しない
ことを特徴とする請求項3に記載の風力発電所の運転制御装置。
In the control means of the energy storage device,
When the surplus capacity at the next time point of the energy storage device predicted by the surplus capacity prediction means is equal to or greater than the safety margin and equal to or less than the maximum surplus capacity of the energy storage device, target output adjustment of the wind energy storage output 4. The operation control apparatus for a wind power plant according to claim 3, wherein the means does not adjust a target output of the wind storage combined output.
前記エネルギー蓄積装置の制御手段において、
前記剰余容量予測手段により予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の最大の剰余容量よりも高い時、
前記風蓄合成出力の目標出力が前記最大出力を超える、または、前記剰余容量予測手段により新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の安全余裕よりも低くなるまでに、
前記風蓄合成出力の目標出力調整手段は、毎回、前記風蓄合成出力の目標出力を規定の大小だけ増やし、前記充放電出力計算手段により新たに前記充放電出力を計算し、前記剰余容量予測手段により新たに前記エネルギー蓄積装置の次の時点の剰余容量を予測する
ことを特徴とする請求項3に記載の風力発電所の運転制御装置。
In the control means of the energy storage device,
When the surplus capacity at the next time of the energy storage device predicted by the surplus capacity prediction means is higher than the maximum surplus capacity of the energy storage device,
The target output of the wind storage combined output exceeds the maximum output, or the surplus capacity at the next time of the energy storage device newly predicted by the surplus capacity prediction means is lower than the safety margin of the energy storage device By the way
The target output adjusting means for the wind storage combined output increases the target output of the wind storage combined output by a specified magnitude every time, calculates the charge / discharge output newly by the charge / discharge output calculating means, and predicts the surplus capacity. The operation control device for a wind power plant according to claim 3, wherein a surplus capacity at the next time point of the energy storage device is newly predicted by means.
前記エネルギー蓄積装置の制御手段において、
前記剰余容量予測手段により予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の最小の剰余容量以上であり前記安全余裕よりも低い時、
前記風蓄合成出力の目標出力が前記最小出力よりも低くなる、または、前記剰余容量予測手段により新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の安全余裕よりも高くなるまでに、
前記風蓄合成出力の目標出力調整手段は、毎回、前記風蓄合成出力の目標出力を規定の大小だけ減らし、前記充放電出力計算手段により新たに前記充放電出力を計算し、前記剰余容量予測手段により新たに前記エネルギー蓄積装置の次の時点の剰余容量を予測する
ことを特徴とする請求項3に記載の風力発電所の運転制御装置。
In the control means of the energy storage device,
When the surplus capacity at the next time point of the energy storage device predicted by the surplus capacity prediction means is equal to or greater than the minimum surplus capacity of the energy storage device and lower than the safety margin,
The target output of the wind energy storage combined output is lower than the minimum output, or the surplus capacity at the next time of the energy storage device newly predicted by the surplus capacity prediction means is greater than the safety margin of the energy storage device Until it gets higher
The target output adjustment means for the wind storage combined output reduces the target output of the wind storage combined output by a specified magnitude every time, calculates the charge / discharge output newly by the charge / discharge output calculation means, and predicts the surplus capacity. The operation control device for a wind power plant according to claim 3, wherein a surplus capacity at the next time point of the energy storage device is newly predicted by means.
前記風蓄合成出力の目標出力調整手段が、前記風蓄合成出力の目標出力を、毎回、規定の大小だけ減らして前記風蓄合成出力の目標出力が前記最小出力よりも低くなった場合に、前記剰余容量予測手段により新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記最小の剰余容量よりも低いと、前記充放電出力計算手段は、前記エネルギー蓄積装置の現在時点の剰余容量と前記最小の剰余容量との差値に基づいて、前記エネルギー蓄積装置の充放電出力を計算する
ことを特徴とする請求項6に記載の風力発電所の運転制御装置。
When the target output adjusting means of the wind storage composite output decreases the target output of the wind storage composite output by a specified magnitude each time, and the target output of the wind storage composite output becomes lower than the minimum output, When the surplus capacity at the next time point of the energy storage device newly predicted by the surplus capacity prediction unit is lower than the minimum surplus capacity, the charge / discharge output calculation unit calculates the surplus at the current time point of the energy storage device. The operation control device for a wind power plant according to claim 6, wherein a charge / discharge output of the energy storage device is calculated based on a difference value between a capacity and the minimum surplus capacity.
前記エネルギー蓄積装置の制御手段は、
前記充放電出力計算手段により計算された充放電出力を修正する充放電出力修正手段を更に備える
ことを特徴とする請求項2に記載の風力発電所の運転制御装置。
The control means of the energy storage device is:
The wind power plant operation control device according to claim 2, further comprising charge / discharge output correction means for correcting the charge / discharge output calculated by the charge / discharge output calculation means.
前記充放電出力計算手段により計算された前記エネルギー蓄積装置の充放電出力の絶対値が前記エネルギー蓄積装置の最小充放電出力の絶対値よりも小さい場合に、前記充放電出力修正手段は充放電出力をゼロに修正し、
前記充放電出力計算手段により計算された前記エネルギー蓄積装置の充放電出力の絶対値が前記エネルギー蓄積装置の最大充放電出力の絶対値よりも高い場合に、前記充放電出力修正手段は、前記エネルギー蓄積装置の充放電出力を前記エネルギー蓄積装置の最大充放電出力に修正し、
現在時点の前記エネルギー蓄積装置の剰余容量が前記エネルギー蓄積装置の最小の剰余容量以下である場合に、前記充放電出力修正手段は放電出力をゼロに修正し、
現在時点の前記エネルギー蓄積装置の剰余容量が前記エネルギー蓄積装置の最大の剰余容量以上である場合に、前記充放電出力修正手段は、充電出力をゼロに修正する
ことを特徴とする請求項8に記載の風力発電所の運転制御装置。
When the absolute value of the charge / discharge output of the energy storage device calculated by the charge / discharge output calculation means is smaller than the absolute value of the minimum charge / discharge output of the energy storage device, the charge / discharge output correction means is the charge / discharge output. To zero,
When the absolute value of the charge / discharge output of the energy storage device calculated by the charge / discharge output calculation means is higher than the absolute value of the maximum charge / discharge output of the energy storage device, the charge / discharge output correction means Correct the charge / discharge output of the storage device to the maximum charge / discharge output of the energy storage device,
When the surplus capacity of the energy storage device at the present time is less than or equal to the minimum surplus capacity of the energy storage device, the charge / discharge output correcting means corrects the discharge output to zero,
9. The charge / discharge output correcting means corrects the charge output to zero when a surplus capacity of the energy storage device at a current time is equal to or greater than a maximum surplus capacity of the energy storage device. The wind power plant operation control device described.
前記エネルギー蓄積装置は、電池によるエネルギー蓄積装置であることを特徴とする請求項1乃至請求項9中のいずれか一つに記載の風力発電所の運転制御装置。 The wind energy plant operation control device according to any one of claims 1 to 9, wherein the energy storage device is an energy storage device using a battery. エネルギー蓄積装置を設けた風力発電システムに適用される風力発電所の運転制御方法であって、
風力発電の予測出力及び許可予測誤差に基づいて、前記風力発電システムからの風蓄合成出力が前記許可予測誤差を満足する時の最大出力及び最小出力を設定する初期値設定ステップと、
前記風蓄合成出力の目標出力及び風力発電所からの実際の風力発電の出力に基づいて、エネルギー蓄積装置の次の時点の剰余容量を予測し、予測されたエネルギー蓄積装置の次の時点の剰余容量に基づいて、現在時点の風蓄合成出力の目標出力を調整し、エネルギー蓄積装置の充放電出力を制御するエネルギー蓄積装置の制御ステップと、
を含むことを特徴とする風力発電所の運転制御方法。
A wind power plant operation control method applied to a wind power generation system provided with an energy storage device,
An initial value setting step for setting a maximum output and a minimum output when the wind storage combined output from the wind power generation system satisfies the permission prediction error based on the predicted output of wind power generation and the permission prediction error;
Based on the target output of the wind storage combined output and the actual wind power output from the wind power plant, the surplus capacity at the next time point of the energy storage device is predicted, and the surplus at the next time point of the predicted energy storage device Based on the capacity, adjust the target output of the wind energy storage combined output at the current time, control the charge and discharge output of the energy storage device, the control step of the energy storage device,
A method for controlling the operation of a wind power plant.
前記エネルギー蓄積装置の制御ステップは、
時点毎に必要な前記エネルギー蓄積装置の充放電出力を計算する充放電出力計算ステップと、
前記充放電出力計算ステップにおいて計算された充放電出力に基づいて、前記エネルギー蓄積装置の次の時点の剰余容量を予測する剰余容量予測ステップと、
前記剰余容量予測ステップにおいて予測された予測された前記エネルギー蓄積装置の次の時点の剰余容量に基づいて、前記風蓄合成出力の目標出力を調整する風蓄合成出力の目標出力調整ステップと、
を含むことを特徴とする請求項11に記載の風力発電所の運転制御方法。
The control step of the energy storage device includes:
Charge / discharge output calculation step for calculating the charge / discharge output of the energy storage device required for each time point; and
Based on the charge / discharge output calculated in the charge / discharge output calculation step, a surplus capacity prediction step for predicting a surplus capacity at the next time point of the energy storage device;
A target output adjustment step of a wind storage combined output that adjusts a target output of the wind storage combined output based on the predicted remaining capacity of the energy storage device predicted in the residual capacity prediction step;
The wind power plant operation control method according to claim 11, comprising:
前記初期値設定ステップにおいて、
前記エネルギー蓄積装置の安全余裕として、前記エネルギー蓄積装置が風力発電の予測誤差を補償ために必要な剰余容量も取得する
ことを特徴とする請求項12に記載の風力発電所の運転制御方法。
In the initial value setting step,
The operation control method for a wind power plant according to claim 12, wherein the energy storage device also acquires a surplus capacity necessary for the wind energy generation prediction error to be compensated as a safety margin of the energy storage device.
前記エネルギー蓄積装置の制御ステップにおいて、
前記剰余容量予測ステップにおいて予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記安全余裕以上であり前記エネルギー蓄積装置の最大の剰余容量以下である時、前記風蓄合成出力の目標出力調整ステップにおいて前記風蓄合成出力の目標出力を調整しない
ことを特徴とする請求項13に記載の風力発電所の運転制御方法。
In the control step of the energy storage device,
When the surplus capacity at the next time of the energy storage device predicted in the surplus capacity prediction step is equal to or greater than the safety margin and equal to or less than the maximum surplus capacity of the energy storage device, target output adjustment of the wind energy storage output The wind power plant operation control method according to claim 13, wherein the target output of the wind energy storage combined output is not adjusted in the step.
前記エネルギー蓄積装置の制御ステップにおいて、
前記剰余容量予測ステップにおいて予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の最大の剰余容量よりも高い時、
前記風蓄合成出力の目標出力が前記最大出力を超える、または、前記剰余容量予測ステップにおいて新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の安全余裕よりも低くなるまでに、
前記風蓄合成出力の目標出力調整ステップにおいて、毎回、前記風蓄合成出力の目標出力を規定の大小だけ増やし、前記充放電出力計算ステップにおいて新たに前記充放電出力を計算し、前記剰余容量予測ステップにおいて新たに前記エネルギー蓄積装置の次の時点の剰余容量を予測する
ことを特徴とする請求項13に記載の風力発電所の運転制御方法。
In the control step of the energy storage device,
When the surplus capacity at the next time of the energy storage device predicted in the surplus capacity prediction step is higher than the maximum surplus capacity of the energy storage device,
The target output of the wind storage combined output exceeds the maximum output, or the surplus capacity at the next time of the energy storage device newly predicted in the surplus capacity prediction step is lower than the safety margin of the energy storage device By the way
In the target output adjustment step of the wind storage combined output, the target output of the wind storage combined output is increased by a specified magnitude every time, the charge / discharge output is newly calculated in the charge / discharge output calculation step, and the surplus capacity prediction The operation control method for a wind power plant according to claim 13, wherein a surplus capacity at the next time point of the energy storage device is newly predicted in the step.
前記エネルギー蓄積装置の制御ステップにおいて、
前記剰余容量予測ステップにおいて予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の最小の剰余容量以上であり前記安全余裕よりも低い時、
前記風蓄合成出力の目標出力が前記最小出力よりも低くなる、または、前記剰余容量予測ステップにおいて新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記エネルギー蓄積装置の安全余裕よりも高くなるまでに、
前記風蓄合成出力の目標出力調整ステップにおいて、毎回、前記風蓄合成出力の目標出力を規定の大小だけ減らし、前記充放電出力計算ステップにおいて新たに前記充放電出力を計算し、前記剰余容量予測ステップにおいて新たに前記エネルギー蓄積装置の次の時点の剰余容量を予測する
ことを特徴とする請求項13に記載の風力発電所の運転制御方法。
In the control step of the energy storage device,
When the surplus capacity at the next time of the energy storage device predicted in the surplus capacity prediction step is equal to or greater than the minimum surplus capacity of the energy storage device and lower than the safety margin,
The target output of the wind energy storage combined output is lower than the minimum output, or the surplus capacity at the next time of the energy storage device newly predicted in the surplus capacity prediction step is greater than the safety margin of the energy storage device Until it gets higher
In the target output adjustment step of the wind storage combined output, each time the target output of the wind storage combined output is reduced by a specified magnitude, the charge / discharge output is newly calculated in the charge / discharge output calculation step, and the surplus capacity prediction The operation control method for a wind power plant according to claim 13, wherein a surplus capacity at the next time point of the energy storage device is newly predicted in the step.
前記風蓄合成出力の目標出力調整ステップにおいて、
前記風蓄合成出力の目標出力を、毎回、規定の大小だけ減らして前記風蓄合成出力の目標出力が前記最小出力よりも低くなった場合に、前記剰余容量予測ステップにおいて新たに予測された前記エネルギー蓄積装置の次の時点の剰余容量が前記最小の剰余容量よりも低いと、前記充放電出力計算ステップにおいて、前記エネルギー蓄積装置の現在時点の剰余容量と前記最小の剰余容量との差値に基づいて、前記エネルギー蓄積装置の充放電出力を計算する
ことを特徴とする請求項16に記載の風力発電所の運転制御方法。
In the target output adjustment step of the wind storage composite output,
When the target output of the wind storage combined output is reduced by a specified magnitude each time and the target output of the wind storage combined output becomes lower than the minimum output, the newly estimated in the remaining capacity prediction step When the surplus capacity at the next time point of the energy storage device is lower than the minimum surplus capacity, in the charge / discharge output calculation step, the difference value between the surplus capacity at the current time point of the energy storage device and the minimum surplus capacity is set. The operation control method for a wind power plant according to claim 16, wherein a charge / discharge output of the energy storage device is calculated based on the calculation result.
前記エネルギー蓄積装置の制御ステップは、
前記充放電出力計算ステップにおいて計算された充放電出力を修正する充放電出力修正ステップを更に含む
ことを特徴とする請求項12に記載の風力発電所の運転制御方法。
The control step of the energy storage device includes:
The wind power plant operation control method according to claim 12, further comprising a charge / discharge output correction step of correcting the charge / discharge output calculated in the charge / discharge output calculation step.
前記充放電出力計算ステップにおいて計算された前記エネルギー蓄積装置の充放電出力の絶対値が前記エネルギー蓄積装置の最小充放電出力の絶対値よりも低い場合に、前記充放電出力修正ステップにおいて充放電出力をゼロに修正し、
前記充放電出力計算ステップにおいて計算された前記エネルギー蓄積装置の充放電出力の絶対値が前記エネルギー蓄積装置の最大充放電出力の絶対値よりも高い場合に、前記充放電出力修正ステップにおいて前記エネルギー蓄積装置の充放電出力を前記エネルギー蓄積装置の最大充放電出力に修正し、
現在時点の前記エネルギー蓄積装置の剰余容量が前記エネルギー蓄積装置の最小の剰余容量以下である場合に、前記充放電出力修正ステップにおいて放電出力をゼロに修正し、現在時点の前記エネルギー蓄積装置の剰余容量が前記エネルギー蓄積装置の最大の剰余容量以上である場合に、前記充放電出力修正ステップにおいて充電出力をゼロに修正する
ことを特徴とする請求項18に記載の風力発電所の運転制御方法。
When the absolute value of the charge / discharge output of the energy storage device calculated in the charge / discharge output calculation step is lower than the absolute value of the minimum charge / discharge output of the energy storage device, the charge / discharge output in the charge / discharge output correction step To zero,
When the absolute value of the charge / discharge output of the energy storage device calculated in the charge / discharge output calculation step is higher than the absolute value of the maximum charge / discharge output of the energy storage device, the energy storage in the charge / discharge output correction step. Correct the charge / discharge output of the device to the maximum charge / discharge output of the energy storage device,
When the surplus capacity of the energy storage device at the current time is less than or equal to the minimum surplus capacity of the energy storage device, the charge output is corrected to zero in the charge / discharge output correction step, and the surplus of the energy storage device at the current time 19. The operation control method for a wind power plant according to claim 18, wherein when the capacity is equal to or greater than the maximum surplus capacity of the energy storage device, the charge output is corrected to zero in the charge / discharge output correction step.
前記エネルギー蓄積装置は、電池によるエネルギー蓄積装置である
ことを特徴とする請求項11から請求項19のいずれか1項に記載の風力発電所の運転制御方法。
20. The operation control method for a wind power plant according to claim 11, wherein the energy storage device is an energy storage device using a battery.
風力発電装置と、
天気条件及び統計規律に基づいて、風力発電の予測モデルを確立し、風力発電の予測出力を出力する風力発電出力予測装置と、
前記風力発電の予測出力と前記風力発電システムの合成出力の出力との誤差を補償するように、充放電を行うエネルギー蓄積装置と、
前記風力発電所の運転システムの各種データを記憶し管理するデータベースと、
請求項1から請求項10のいずれか1項に記載の風力発電所の運転制御装置と、
を備えることを特徴とする風力発電システム。
A wind power generator,
A wind power generation output prediction device that establishes a wind power generation prediction model based on weather conditions and statistical disciplines, and outputs a wind power generation prediction output;
An energy storage device that performs charging and discharging so as to compensate for an error between the predicted output of the wind power generation and the output of the combined output of the wind power generation system;
A database for storing and managing various data of the operating system of the wind power plant;
A wind power plant operation control device according to any one of claims 1 to 10,
A wind power generation system comprising:
JP2016120446A 2015-06-19 2016-06-17 Wind power plant operation control device, operation control method, and wind power generation system Active JP6198894B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510345058.4A CN106329553A (en) 2015-06-19 2015-06-19 Wind power plant operation control device and method and wind power plant system
CN201510345058.4 2015-06-19

Publications (2)

Publication Number Publication Date
JP2017022975A true JP2017022975A (en) 2017-01-26
JP6198894B2 JP6198894B2 (en) 2017-09-20

Family

ID=57727968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120446A Active JP6198894B2 (en) 2015-06-19 2016-06-17 Wind power plant operation control device, operation control method, and wind power generation system

Country Status (2)

Country Link
JP (1) JP6198894B2 (en)
CN (1) CN106329553A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212554A (en) * 2019-06-17 2019-09-06 三峡大学 A kind of wind-powered electricity generation frequency modulation control method improving peak load regulation network characteristic
CN110912205A (en) * 2019-11-26 2020-03-24 三峡大学 Dynamic scheduling optimization method for wind power system operation standby based on scene set
CN112491044A (en) * 2020-11-23 2021-03-12 合肥阳光新能源科技有限公司 Power prediction deviation compensation method and device and controller
CN113964882A (en) * 2021-09-29 2022-01-21 中国长江三峡集团有限公司 Control method and device for wind storage cooperative participation in frequency modulation
CN114156950A (en) * 2022-02-09 2022-03-08 广东电力交易中心有限责任公司 Power system power supply capacity distribution method and device
WO2023036344A1 (en) * 2021-09-13 2023-03-16 中国电力科学研究院有限公司 Coordinated control method, system, and device for primary frequency modulation of wind storage system, and storage medium
CN116632880A (en) * 2023-07-25 2023-08-22 深圳量云能源网络科技有限公司 Multifunctional coordination control method and device for wind farm energy storage system and terminal equipment
CN117117993A (en) * 2023-08-25 2023-11-24 国家电网有限公司西南分部 Advanced control method based on ultra-short-term power generation and load prediction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706931A (en) * 2017-10-18 2018-02-16 上海正泰电源系统有限公司 Business electrical requirement intelligent management system and method
CN110969294B (en) * 2019-11-25 2023-09-19 阳光新能源开发股份有限公司 Virtual power plant sectional output plan determination and energy storage system configuration method and device
CN112865193B (en) * 2021-01-07 2023-03-31 云南电力技术有限责任公司 Economic dispatching system and method for power system
CN114069666B (en) * 2021-11-10 2022-06-24 中节能风力发电股份有限公司 Control method and system for energy storage power instruction in wind storage system
CN114791993B (en) * 2022-05-16 2022-11-11 江苏大学 Power battery pack SOH prediction method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186682A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Method of controlling discharge of battery
JP2001327080A (en) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The Power storage device and control method of distributed power supply system equipped therewith
JP2010270758A (en) * 2007-09-27 2010-12-02 Hitachi Engineering & Services Co Ltd Control method of regenerable energy using power generation system
JP2011130584A (en) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd Power generation plan making method and power generation plan making system
US20110222320A1 (en) * 2010-12-21 2011-09-15 General Electric Company Power conversion control with energy storage
JP2012120419A (en) * 2010-11-10 2012-06-21 Mitsubishi Heavy Ind Ltd Operation controller for storage battery, method for controlling operation of storage battery, and program thereof
JP2012205437A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge/discharge determination device and charge/discharge determination program
JP2012235631A (en) * 2011-05-02 2012-11-29 Seiko Instruments Inc Secondary battery charge device, secondary battery charge system, and secondary battery charge method
JP2014036538A (en) * 2012-08-10 2014-02-24 Hitachi Power Solutions Co Ltd Wind power generation system, wind power generation control device and wind power generation control method
JP2015080359A (en) * 2013-10-18 2015-04-23 株式会社日立パワーソリューションズ Wind farm control method and control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
CN202231444U (en) * 2011-05-13 2012-05-23 河海大学 Wide area dynamic wind power grid connected adjusting system based on superconductive energy storage apparatus
CN102368617B (en) * 2011-10-12 2014-02-19 河海大学 Storage battery control method smoothing power fluctuation based on wind power prediction and system thereof
CN102522776B (en) * 2011-12-23 2014-01-29 中国电力科学研究院 Method for improving wind power tracking capability on planned output by energy storage system
CN104283225A (en) * 2013-07-08 2015-01-14 株式会社日立制作所 Wind farm operation control device and method
CN104065093B (en) * 2014-07-03 2016-12-07 东华大学 A kind of wind based on low-pass filtering storage predictive coordinated control method
CN104701873B (en) * 2015-03-27 2018-12-11 国家电网公司 A kind of battery energy storage system optimal control method contributed for tracking wind-powered electricity generation plan

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186682A (en) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Method of controlling discharge of battery
JP2001327080A (en) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The Power storage device and control method of distributed power supply system equipped therewith
JP2010270758A (en) * 2007-09-27 2010-12-02 Hitachi Engineering & Services Co Ltd Control method of regenerable energy using power generation system
JP2011130584A (en) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd Power generation plan making method and power generation plan making system
JP2012120419A (en) * 2010-11-10 2012-06-21 Mitsubishi Heavy Ind Ltd Operation controller for storage battery, method for controlling operation of storage battery, and program thereof
US20110222320A1 (en) * 2010-12-21 2011-09-15 General Electric Company Power conversion control with energy storage
JP2012205437A (en) * 2011-03-28 2012-10-22 Toshiba Corp Charge/discharge determination device and charge/discharge determination program
JP2012235631A (en) * 2011-05-02 2012-11-29 Seiko Instruments Inc Secondary battery charge device, secondary battery charge system, and secondary battery charge method
JP2014036538A (en) * 2012-08-10 2014-02-24 Hitachi Power Solutions Co Ltd Wind power generation system, wind power generation control device and wind power generation control method
JP2015080359A (en) * 2013-10-18 2015-04-23 株式会社日立パワーソリューションズ Wind farm control method and control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212554A (en) * 2019-06-17 2019-09-06 三峡大学 A kind of wind-powered electricity generation frequency modulation control method improving peak load regulation network characteristic
CN110212554B (en) * 2019-06-17 2023-12-05 大唐向阳风电有限公司 Wind power frequency modulation control method for improving peak shaving characteristic of power grid
CN110912205A (en) * 2019-11-26 2020-03-24 三峡大学 Dynamic scheduling optimization method for wind power system operation standby based on scene set
CN110912205B (en) * 2019-11-26 2023-05-02 三峡大学 Wind power system operation standby dynamic scheduling optimization method based on scene set
CN112491044A (en) * 2020-11-23 2021-03-12 合肥阳光新能源科技有限公司 Power prediction deviation compensation method and device and controller
CN112491044B (en) * 2020-11-23 2022-11-18 阳光新能源开发股份有限公司 Power prediction deviation compensation method and device and controller
WO2023036344A1 (en) * 2021-09-13 2023-03-16 中国电力科学研究院有限公司 Coordinated control method, system, and device for primary frequency modulation of wind storage system, and storage medium
CN113964882A (en) * 2021-09-29 2022-01-21 中国长江三峡集团有限公司 Control method and device for wind storage cooperative participation in frequency modulation
CN114156950A (en) * 2022-02-09 2022-03-08 广东电力交易中心有限责任公司 Power system power supply capacity distribution method and device
CN114156950B (en) * 2022-02-09 2022-06-07 广东电力交易中心有限责任公司 Power system power supply capacity distribution method and device
CN116632880A (en) * 2023-07-25 2023-08-22 深圳量云能源网络科技有限公司 Multifunctional coordination control method and device for wind farm energy storage system and terminal equipment
CN117117993A (en) * 2023-08-25 2023-11-24 国家电网有限公司西南分部 Advanced control method based on ultra-short-term power generation and load prediction

Also Published As

Publication number Publication date
JP6198894B2 (en) 2017-09-20
CN106329553A (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6198894B2 (en) Wind power plant operation control device, operation control method, and wind power generation system
EP2696463B1 (en) Wind power generation system, wind power generation control device and wind power generation control method
KR102563891B1 (en) Operating System and Method for Optimal Operation of a Renewable Energy based Islanded Micro-grid
US8901876B2 (en) Charge/discharge determining apparatus and computer-readable medium
Miranda et al. A holistic approach to the integration of battery energy storage systems in island electric grids with high wind penetration
US10355487B2 (en) Photovoltaic system
US20140217989A1 (en) Battery control system, battery controller, battery control method, and recording medium
US10468888B2 (en) Control system for solar power plant
JP6623514B2 (en) Supply and demand control device, supply and demand control method, and power supply system
Kwon et al. Coordinated energy management in resilient microgrids for wireless communication networks
KR101899123B1 (en) Unification management system of energy storage system
US11404871B1 (en) Methods and systems for automatic generation control of renewable energy resources
US20160359342A1 (en) Energy management system
JP6705319B2 (en) Integrated control device, integrated control system, integrated control method, and integrated control program
KR102268723B1 (en) System and method for controlling charging rate
JPWO2014167830A1 (en) Power control system
WO2019193837A1 (en) Power generating system and its control method
Khan et al. Techno-economic analysis and predictive operation of a power-to-hydrogen for renewable microgrids
JP6584657B2 (en) Current / voltage controller
US20230352937A1 (en) Power regulation method and power regulation device
CN114747111A (en) Active power control in renewable power stations for grid stability
Kazari et al. Predictive Utilization of Energy Storage for Wind Power Fluctuation Mitigation
US20220329069A1 (en) Method for operating an electrical storage station
CN110034570B (en) Control method and device of energy storage equipment and photovoltaic power station
KR101936293B1 (en) An energy storage system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150