JP2017020956A - 自動分析装置、自動分析方法及びプログラム - Google Patents
自動分析装置、自動分析方法及びプログラム Download PDFInfo
- Publication number
- JP2017020956A JP2017020956A JP2015140147A JP2015140147A JP2017020956A JP 2017020956 A JP2017020956 A JP 2017020956A JP 2015140147 A JP2015140147 A JP 2015140147A JP 2015140147 A JP2015140147 A JP 2015140147A JP 2017020956 A JP2017020956 A JP 2017020956A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- absorbance
- dilution
- specimen
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 26
- 239000012895 dilution Substances 0.000 claims abstract description 171
- 238000010790 dilution Methods 0.000 claims abstract description 171
- 238000002835 absorbance Methods 0.000 claims abstract description 118
- 238000005259 measurement Methods 0.000 claims abstract description 94
- 238000011088 calibration curve Methods 0.000 claims description 92
- 238000004364 calculation method Methods 0.000 claims description 49
- 238000007865 diluting Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 70
- 238000007689 inspection Methods 0.000 abstract description 8
- 239000000243 solution Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 126
- 239000003153 chemical reaction reagent Substances 0.000 description 73
- 238000004140 cleaning Methods 0.000 description 27
- 239000012898 sample dilution Substances 0.000 description 21
- 239000003085 diluting agent Substances 0.000 description 20
- 238000013102 re-test Methods 0.000 description 19
- 238000003756 stirring Methods 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 10
- 238000005070 sampling Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000003599 detergent Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012886 linear function Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 210000002700 urine Anatomy 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000013101 initial test Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000012470 diluted sample Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
【課題】吸光度の高値が原因で検量線による濃度変換が行われなかった場合、再検時に確実に検量線による濃度変換を行う。【解決手段】自動分析装置の一態様は、検体の吸光度が検量線41の測定可能範囲を超えている場合に、検量線41を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線42を計算する。次に、該仮想線42を用いて吸光度を予測濃度に変換し、該予測濃度を利用して検体の希釈倍率を求め、その希釈倍率で検体を希釈する。そして、希釈倍率で希釈された検体の吸光度を測定し、上記検量線41を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に希釈倍率を掛けて真の濃度を得る。【選択図】図5
Description
本発明は、検体に含まれる成分を分析する自動分析装置、自動分析方法及びプログラムに関する。
血液や尿等の検体(以下、「一般検体」ともいう。)に含まれる各種成分を分析する生化学分析装置が知られている。自動分析装置の一つである生化学分析装置は、分析装置本体である測定機構(分析部)と、分析部を制御する計算機(操作部)とを備える。
生化学分析装置では、検体中の特定の成分の量を検出し、分析するために、分析部において検体に試薬を混ぜて反応させる。そして、試薬に反応した検体に光を照射して、吸光度を算出する。操作部は、吸光度に基づいて検体中の特定の成分(測定項目)の濃度を算出する。生化学分析装置は、濃度の算出に先立ち、予め特定の成分の濃度がわかっている標準検体を測定し、吸光度と濃度の関係を表す検量線を作成する。
一般検体の測定時、操作部の濃度演算モジュールは、分析部による測定で得られた検体の吸光度を、事前のキャリブレーション測定(校正作業)で得た検量線を用いて、濃度に変換する。検量線は、吸光度と濃度が比例関係にあれば直線となるが、測定項目によっては図1に示すグラフのように曲線となる。
図1は、一般的な検量線の例を示すグラフである。図1の縦軸は検体の測定項目の吸光度(ABS-RB)、横軸は濃度を表す。
図1の検量線は、多点検量線と呼ばれており、キャリブレーション測定時、項目ごとに試薬を加えた水と複数本の標準検体を測定して得られる。図1の検量線は、溶解物を含まない水(試薬ブランク)及び既知の濃度の標準検体(キャリブレータ)を例えば5検体測定し、得られた各吸光度と濃度の交点(測定点)を最小二乗法によりN次曲線又は対数曲線等に近似することで得られる。
図1の検量線は、多点検量線と呼ばれており、キャリブレーション測定時、項目ごとに試薬を加えた水と複数本の標準検体を測定して得られる。図1の検量線は、溶解物を含まない水(試薬ブランク)及び既知の濃度の標準検体(キャリブレータ)を例えば5検体測定し、得られた各吸光度と濃度の交点(測定点)を最小二乗法によりN次曲線又は対数曲線等に近似することで得られる。
多点検量線の場合、最大濃度のキャリブレータの吸光度を上限として、吸光度を濃度に変換できる。例えば、図1の検量線の吸光度の上限は、最大濃度のキャリブレータの吸光度とほぼ同じ1.20である。この検量線は、濃度が大きくなるにつれて吸光度が上限に達してそれ以上に大きくならない。
仮に、一般検体の初回検査(初検)において、測定項目の吸光度が1.30だった場合、この測定項目について図1の検量線を使用して測定結果の濃度は出力されず、濃度変換エラーとなる。初検で濃度変換エラーとなった測定項目については、オペレータの指示又は操作部の濃度演算モジュールの判断により自動で、再度検査(再検)が行われる。以下では、検量線において濃度変換が可能な吸光度及び濃度の範囲を「測定可能範囲」という。
再検では、操作部が一般検体の希釈倍率を分析部に指示し、分析部は指示された希釈倍率でこれから再検する一般検体を希釈する。なお、再検時の希釈倍率は、測定項目ごとに予め再検条件パラメータの一つとして、生化学分析装置の納入時等に設定される固定の値である。
一般検体が希釈された結果、希釈後の一般検体の吸光度が検量線の吸光度の上限以下(測定可能範囲)であれば、希釈された一般検体の濃度が得られる。操作部の濃度演算モジュールは、最後に、希釈された一般検体の濃度に希釈倍率を掛け、希釈前のオリジナルの一般検体の濃度を得る。
しかし、再検条件パラメータに基づいて一般検体を希釈しても、再検の吸光度が検量線の吸光度の上限を上回る場合、オペレータは生化学分析装置にセットする一般検体をさらに手で希釈し、不図示の依頼項目受付画面に希釈係数を入力する。
検体が再検で希釈され、さらにオペレータの手により希釈されたことにより、検体の濃度が得られた場合は、操作部の濃度演算モジュールは、希釈された検体の濃度に再検時の希釈倍率(固定値)及び依頼項目受付画面の希釈倍率をかけて、オリジナルの検体の濃度を得る。
非直線の検量線を使用して検体の濃度を求める場合、測定できる濃度範囲が標準試料(標準検体)の濃度範囲に限られる問題を解決するための技術が、特許文献1に開示されている。特許文献1には、標準試料の測定後、装置が最適な近似式を選択して、検量線を作成し、かつ、低濃度域、または、高濃度域の標準試料の希釈倍率を可変して吸光度を測定し、検量線を延長することにより、検体の測定可能範囲を拡大し、かつ、測定精度を向上することが記載されている。
測定項目ごとの再検条件パラメータは、通常、施設に生化学分析装置を設置後、最初に設定され、その後変更されることのない固定の値である。よって再検時の検体の希釈倍率も固定である。
これは、初検においてある測定項目の吸光度が検量線の測定可能範囲の上限を上回った場合、如何なる吸光度であった場合でも、再検では固定の希釈倍率で一般検体が希釈されることを意味する。この場合、再検時の希釈された検体の吸光度が確実に検量線の測定可能範囲に収まる保障はない。
このため、吸光度が測定可能範囲を外れる高値の測定項目は、初検後に再検又は自動再検を行い、その後にオペレータの手による希釈を行って再々検を行う必要があり、測定結果を得るまでに時間と手間がかかっていた。
特許文献1に記載の技術は、装置の分析精度を左右する標準試料を希釈するために、分析精度の信頼性が低下する恐れがあった。
本発明は、上記の状況を考慮してなされたものであり、吸光度の高値が原因で検量線による濃度変換が行われなかった場合、再検時に確実に検量線による濃度変換を行うことを目的とする。
本発明の一態様に係る自動分析装置は、検体の吸光度を測定する光度計と、検量線を用いて検体の吸光度を濃度に変換する処理を行う濃度演算部と、検体の吸光度が検量線の測定可能範囲を超えている場合に、検量線を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線を計算し、該仮想線を用いて吸光度を予測濃度に変換し、該予測濃度を利用して検体の希釈倍率を求める希釈倍率演算部と、検体をその希釈倍率で希釈する希釈部と、を備える。
そして、光度計は、上記希釈倍率で希釈された検体の吸光度を測定し、濃度演算部は、検量線を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に希釈倍率を掛けて検体の真の濃度を算出する。
そして、光度計は、上記希釈倍率で希釈された検体の吸光度を測定し、濃度演算部は、検量線を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に希釈倍率を掛けて検体の真の濃度を算出する。
また、本発明の一態様に係る自動分析方法及びプログラムは、検体の吸光度を測定する処理と、検量線を用いて検体の吸光度を濃度に変換する処理を行う処理と、検体の吸光度が検量線の測定可能範囲を超えている場合に、検量線を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線を計算し、該仮想線を用いて吸光度を予測濃度に変換し、該予測濃度を利用して検体の希釈倍率を求める処理と、検体をその希釈倍率で希釈する処理と、を含む。さらに、希釈倍率で希釈された検体の吸光度を測定する処理と、検量線を用いて測定された吸光度を濃度に変換し、該濃度に希釈倍率を掛けて検体の真の濃度を算出する処理と、を含む。
本発明の少なくとも一つの実施形態によれば、検量線で測定可能な吸光度の上限を超える濃度の検体を、精度の良い再検条件で測定することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、本発明を実施するための形態の例について、添付図面を参照しながら説明する。なお、各図において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。
<1.一実施形態>
[自動分析装置の構成]
図2に示す装置は、本発明の自動分析装置の一例として適用する生化学分析装置である。この生化学分析装置1は、血液や尿等の生体試料に含まれる特定の成分の量を自動的に測定する。
[自動分析装置の構成]
図2に示す装置は、本発明の自動分析装置の一例として適用する生化学分析装置である。この生化学分析装置1は、血液や尿等の生体試料に含まれる特定の成分の量を自動的に測定する。
図2に示す生化学分析装置1は、測定機構1Aと、計算機30とを備える。測定機構1Aは、サンプルターンテーブル2と、希釈ターンテーブル3と、第1試薬ターンテーブル4と、第2試薬ターンテーブル5と、反応ターンテーブル6と、を備えている。また、測定機構1Aは、サンプル希釈ピペット7と、サンプリングピペット8と、希釈撹拌装置9と、希釈洗浄装置11と、第1試薬ピペット12と、第2試薬ピペット13と、第1反応撹拌装置14と、第2反応撹拌装置15と、多波長光度計16と、恒温槽17と、反応容器洗浄装置18とを備えている。
サンプルターンテーブル2は、軸方向の一端が開口した略円筒状をなす容器状に形成されている。このサンプルターンテーブル2には、複数の検体容器21と、複数の希釈液容器22が収容されている。サンプルターンテーブル2の内側には、キャリブレータ2a(標準検体)やコントローラ2b(管理検体)が設置される。また、サンプルターンテーブル2の内側の部分(内側の2列)は、主にキャリブレータ2aやコントローラ2bを一定温度以下に保持する目的で保冷されている。検体容器21には、血液や尿等からなる検体(サンプル)が収容される。希釈液容器22には、通常の希釈液である生理食塩水以外の特別な希釈液が収容される。因みに、サンプルターンテーブル2を駆動するときは、内側と外側を同時に駆動することになる。
複数の検体容器21は、サンプルターンテーブル2の周方向に所定の間隔を開けて並べて配置されている。また、サンプルターンテーブル2の周方向に並べられた検体容器21の列は、サンプルターンテーブル2の半径方向に所定の間隔を開けて2列セットされている。
複数の希釈液容器22は、複数の検体容器21の列よりもサンプルターンテーブル2の半径方向の内側に配置されている。複数の希釈液容器22は、複数の検体容器21と同様に、サンプルターンテーブル2の周方向に所定の間隔を開けて並べて配置されている。そして、サンプルターンテーブル2の周方向に並べられた希釈液容器22の列は、サンプルターンテーブル2の半径方向に所定の間隔を開けて2列セットされている。
なお、複数の検体容器21及び複数の希釈液容器22の配列は、2列に限定されるものではなく、1列でもよく、あるいはサンプルターンテーブル2の半径方向に3列以上配置してもよい。
サンプルターンテーブル2は、不図示の駆動機構によって周方向に沿って回転可能に支持されている。そして、サンプルターンテーブル2は、不図示の駆動機構により、周方向に所定の角度範囲ごとに、所定の速度で回転する。また、サンプルターンテーブル2の周囲には、希釈ターンテーブル3が配置されている。
希釈ターンテーブル3、第1試薬ターンテーブル4、第2試薬ターンテーブル5及び反応ターンテーブル6は、サンプルターンテーブル2と同様に、軸方向の一端が開口した略円筒状をなす容器状に形成されている。希釈ターンテーブル3及び反応ターンテーブル6は、不図示の駆動機構により、その周方向に所定の角度範囲ずつ、所定の速度で回転する。なお、反応ターンテーブル6は、例えば一回の移動で半周以上回転するように設定されている。
希釈ターンテーブル3には、複数の希釈容器23が希釈ターンテーブル3の周方向に並べて収容されている。希釈容器23には、サンプルターンテーブル2に配置された検体容器21から吸引され、希釈された検体(以下、「希釈検体」という)が収容される。
第1試薬ターンテーブル4には、複数の第1試薬容器24が第1試薬ターンテーブル4の周方向に並べて収容されている。また、第2試薬ターンテーブル5には、複数の第2試薬容器25が第2試薬ターンテーブル5の周方向に並べて収容されている。そして、第1試薬容器24には、濃縮された第1試薬が収容され、第2試薬容器25には、第2試薬が収容される。
さらに、第1試薬ターンテーブル4、第1試薬容器24、第2試薬ターンテーブル5及び第2試薬容器25は、不図示の保冷機構によって所定の温度に保たれている。そのため、第1試薬容器24に収容された第1試薬と、第2試薬容器25に収容された第2試薬は、所定の温度で保冷される。
反応ターンテーブル6は、希釈ターンテーブル3と、第1試薬ターンテーブル4及び第2試薬ターンテーブル5の間に配置されている。反応ターンテーブル6には、複数の反応容器26が反応ターンテーブル6の周方向に並べて収容されている。反応容器26には、希釈ターンテーブル3の希釈容器23からサンプリングした希釈検体と、第1試薬ターンテーブル4の第1試薬容器24からサンプリングした第1試薬と、第2試薬ターンテーブル5の第2試薬容器25からサンプリングした第2試薬が注入される。そして、この反応容器26内において、希釈検体と、第1試薬及び第2試薬が撹拌され、反応が行われる。
サンプル希釈ピペット7は、サンプルターンテーブル2と希釈ターンテーブル3の周囲に配置される。サンプル希釈ピペット7は、不図示の希釈ピペット駆動機構により、サンプルターンテーブル2及び希釈ターンテーブル3の軸方向(例えば、上下方向)に移動可能に支持されている。また、サンプル希釈ピペット7は、希釈ピペット駆動機構により、サンプルターンテーブル2及び希釈ターンテーブル3の開口と略平行をなす水平方向に沿って回動可能に支持されている。そして、サンプル希釈ピペット7は、水平方向に沿って回動することで、サンプルターンテーブル2と希釈ターンテーブル3の間を往復運動する。なお、サンプル希釈ピペット7がサンプルターンテーブル2と希釈ターンテーブル3の間を移動する際、サンプル希釈ピペット7は、不図示の洗浄装置を通過する。
ここで、サンプル希釈ピペット7の動作について説明する。
サンプル希釈ピペット7がサンプルターンテーブル2における開口の上方の所定位置に移動した際、サンプル希釈ピペット7は、サンプルターンテーブル2の軸方向に沿って下降し、その先端に設けたピペットを検体容器21内に挿入する。このとき、サンプル希釈ピペット7は、不図示のサンプル用ポンプが作動して検体容器21内に収容された検体を所定量吸引する。次に、サンプル希釈ピペット7は、サンプルターンテーブル2の軸方向に沿って上昇してピペットを検体容器21内から抜き出す。そして、サンプル希釈ピペット7は、水平方向に沿って回動し、希釈ターンテーブル3における開口の上方の所定位置に移動する。
サンプル希釈ピペット7がサンプルターンテーブル2における開口の上方の所定位置に移動した際、サンプル希釈ピペット7は、サンプルターンテーブル2の軸方向に沿って下降し、その先端に設けたピペットを検体容器21内に挿入する。このとき、サンプル希釈ピペット7は、不図示のサンプル用ポンプが作動して検体容器21内に収容された検体を所定量吸引する。次に、サンプル希釈ピペット7は、サンプルターンテーブル2の軸方向に沿って上昇してピペットを検体容器21内から抜き出す。そして、サンプル希釈ピペット7は、水平方向に沿って回動し、希釈ターンテーブル3における開口の上方の所定位置に移動する。
次に、サンプル希釈ピペット7は、希釈ターンテーブル3の軸方向に沿って下降して、ピペットを所定の希釈容器23内に挿入する。そして、サンプル希釈ピペット7は、吸引した検体と、サンプル希釈ピペット7自体から供給される所定量の希釈液(例えば、生理食塩水)を希釈容器23内に吐出する。その結果、希釈容器23内で、検体が所定倍数の濃度に希釈される。その後、サンプル希釈ピペット7は、洗浄装置によって洗浄される。
サンプリングピペット8は、希釈ターンテーブル3と反応ターンテーブル6の間に配置されている。サンプリングピペット8は、不図示のサンプリングピペット駆動機構により、サンプル希釈ピペット7と同様に、希釈ターンテーブル3の軸方向(上下方向)と水平方向に移動及び回動可能に支持されている。そして、サンプリングピペット8は、希釈ターンテーブル3と反応ターンテーブル6の間を往復運動する。
このサンプリングピペット8は、希釈ターンテーブル3の希釈容器23内にピペットを挿入して、所定量の希釈検体を吸引する。そして、サンプリングピペット8は、吸引した希釈検体を反応ターンテーブル6の反応容器26内に吐出する。
第1試薬ピペット12は、反応ターンテーブル6と第1試薬ターンテーブル4の間に配置され、第2試薬ピペット13は、反応ターンテーブル6と第2試薬ターンテーブル5の間に配置されている。第1試薬ピペット12は、不図示の第1試薬ピペット駆動機構により、反応ターンテーブル6の軸方向(上下方向)と水平方向に移動及び回動可能に支持されている。そして、第1試薬ピペット12は、第1試薬ターンテーブル4と反応ターンテーブル6の間を往復運動する。
第1試薬ピペット12は、第1試薬ターンテーブル4の第1試薬容器24内にピペットを挿入して、所定量の第1試薬を吸引する。そして、第1試薬ピペット12は、吸引した第1試薬を反応ターンテーブル6の反応容器26内に吐出する。
また、第2試薬ピペット13は、不図示の第2試薬ピペット駆動機構により、第1試薬ピペット12と同様に、反応ターンテーブル6の軸方向(上下方向)と水平方向に移動及び回動可能に支持されている。そして、第2試薬ピペット13は、第2試薬ターンテーブル5と反応ターンテーブル6の間を往復運動する。
第2試薬ピペット13は、第2試薬ターンテーブル5の第2試薬容器25内にピペットを挿入して、所定量の第2試薬を吸引する。そして、第2試薬ピペット13は、吸引した第2試薬を反応ターンテーブル6の反応容器26内に吐出する。
希釈撹拌装置9及び希釈洗浄装置11は、希釈ターンテーブル3の周囲に配置されている。希釈撹拌装置9は、不図示の撹拌子を希釈容器23内に挿入し、検体と希釈液を撹拌する。
希釈洗浄装置11は、サンプリングピペット8によって希釈検体が吸引された後の希釈容器23を洗浄する装置である。この希釈洗浄装置11は、複数の希釈容器洗浄ノズルを有している。複数の希釈容器洗浄ノズルは、不図示の廃液ポンプと、不図示の洗剤ポンプに接続されている。希釈洗浄装置11は、希釈容器洗浄ノズルを希釈容器23内に挿入し、廃液ポンプを駆動させて挿入した希釈容器洗浄ノズルによって希釈容器23内に残留する希釈検体を吸い込む。そして、希釈洗浄装置11は、吸い込んだ希釈検体を不図示の廃液タンクに排出する。
その後、希釈洗浄装置11は、洗剤ポンプから希釈容器洗浄ノズルに洗剤を供給し、希釈容器洗浄ノズルから希釈容器23内に洗剤を吐出する。この洗剤によって希釈容器23内を洗浄する。その後、希釈洗浄装置11は、洗剤を希釈容器洗浄ノズルによって吸引し、希釈容器23内を乾燥させる。
第1反応撹拌装置14、第2反応撹拌装置15及び反応容器洗浄装置18は、反応ターンテーブル6の周囲に配置されている。第1反応撹拌装置14は、不図示の撹拌子を反応容器26内に挿入し、希釈検体と第1試薬を撹拌する。これにより、希釈検体と第1試薬との反応が均一かつ迅速に行われる。なお、第1反応撹拌装置14の構成は、希釈撹拌装置9と同一であるため、ここではその説明は省略する。
第2反応撹拌装置15は、不図示の撹拌子を反応容器26内に挿入し、希釈検体と、第1試薬と、第2試薬とを撹拌する。これにより、希釈検体と、第1試薬と、第2試薬との反応が均一かつ迅速に行われる。なお、第2反応撹拌装置15の構成は、希釈撹拌装置9と同一であるため、ここではその説明は省略する。
反応容器洗浄装置18は、検査が終了した反応容器26内を洗浄する装置である。この反応容器洗浄装置18は、複数の反応容器洗浄ノズルを有している。複数の反応容器洗浄ノズルは、希釈容器洗浄ノズルと同様に、不図示の廃液ポンプと、不図示の洗剤ポンプに接続されている。なお、反応容器洗浄装置18における洗浄工程は、上述した希釈洗浄装置11と同様であるため、その説明は省略する。
また、多波長光度計16は、反応ターンテーブル6の周囲における反応ターンテーブル6の外壁と対向するように配置されている。多波長光度計16は、反応容器26内に注入され、第1薬液及び第2薬液と反応した希釈検体(標準検体を含む。)に対して光学的測定を行って、検体中の様々な成分の量を「吸光度」という数値データとした測定結果を出力し、希釈検体の反応状態を検出する。多波長光度計16には、計算機30が接続されている。
さらに、反応ターンテーブル6の周囲には、恒温槽17が配置されている。この恒温槽17は、反応ターンテーブル6に設けられた反応容器26の温度を常時一定に保持するように構成されている。
[計算機の構成例]
次に、計算機30の構成例を説明する。
図3は、計算機30の構成例を示すブロック図である。
計算機30は、バス36に接続された、制御部31と、記録部32と、出力部33と、入力部34と、インタフェース部35とを備える。
次に、計算機30の構成例を説明する。
図3は、計算機30の構成例を示すブロック図である。
計算機30は、バス36に接続された、制御部31と、記録部32と、出力部33と、入力部34と、インタフェース部35とを備える。
制御部31は、CPU(Central Processing Unit)等によって構成されており、生化学分析装置1内の各部の動作を制御する。制御部31は、測定機構1Aにより検体容器21に収容された検体の測定対象の成分(測定項目)を測定し、測定結果を計算機30に出力する。制御部31の内部構成については後に詳述する。
制御部31は、一般検体の初検時、多波長光度計16で測定された吸光度の高値が原因で検量線による濃度変換が行われなかった場合に、再検時に確実に検量線による濃度変換が行われるよう制御を行う。即ち制御部31は、検量線による濃度変換が行われなかった場合、濃度を仮想的に予測するための線(仮想線)を算出する。そして、その仮想線と初検時の吸光度とを元に、再検時における当該一般検体の希釈倍率を自動で算出する。そして、再検時、測定対象の一般検体は算出された希釈倍率で希釈され、希釈後の一般検体の吸光度が測定される。
記録部32は、例えば、HDD(Hard disk drive)や半導体メモリ等の大容量の記録装置によって構成されている。記録部32は、制御部31により計算された各検体の測定項目の濃度又は該濃度を元に算出される数値等を記録する。また、記録部32は、制御部31が実行するプログラム、パラメータ、異常(装置異常等)の判定結果、入力部34によってなされた入力操作等を記録する。
出力部33は、検体の測定結果や濃度変換エラー等のメッセージを表示する。この出力部33には、例えば、液晶ディスプレイ装置等が用いられる。
入力部34は、ユーザによって行われる生化学分析装置1に対する操作入力を受け付け、入力信号を制御部31に出力する。この入力部34には、例えば、マウス、キーボード、タッチパネル等が用いられる。
インタフェース部35は、多波長光度計16が測定した反応容器26の吸光度の測定結果が入力されると、制御部31に測定結果を渡す。なお、図3では、インタフェース部35に多波長光度計16だけを接続した例を示しているが、生化学分析装置1内の各部についても同様にインタフェース部35に接続され、計算機30による制御が行われる。
[制御部の内部構成例]
次に、計算機30の制御部31の内部構成を説明する。
図4は、計算機30の制御部31の内部構成例を示すブロック図である。
制御部31は、検量線演算部311、濃度演算部312、及び希釈倍率演算部313を備える。制御部31の各ブロックの機能は、CPUが記録部32に格納されたプログラムを実行することにより実現される。
次に、計算機30の制御部31の内部構成を説明する。
図4は、計算機30の制御部31の内部構成例を示すブロック図である。
制御部31は、検量線演算部311、濃度演算部312、及び希釈倍率演算部313を備える。制御部31の各ブロックの機能は、CPUが記録部32に格納されたプログラムを実行することにより実現される。
検量線演算部311は、濃度の異なる複数のキャリブレータ2aの濃度情報と実測した吸光度に基づいて検量線を計算する。即ち、測定機構1Aから出力される予め濃度が分かっている複数のキャリブレータ2aの測定値(吸光度)に基づいて、一般検体に含まれる測定対象の成分(測定項目)の濃度を計算するための検量線を作成する。検量線演算部311は、濃度と吸光度を対応づけてキャリブレータ2a毎(測定ポイント毎)に記録部32に記録し、これらの複数の測定ポイントを元に例えば最小二乗法によりN次曲線又は対数曲線等の検量線を作成する。
濃度演算部312は、測定機構1Aから出力される一般検体の測定値(吸光度)に基づいて、一般検体に含まれる測定対象の成分(測定項目)の濃度を計算する。即ち、濃度演算部312は、測定機構1Aの多波長光度計16から反応容器26に収容された一般検体の吸光度を取得し、検量線演算部311で演算された検量線を用いて該吸光度を濃度に変換する。そして、濃度演算部312は、計算した濃度を検体毎(測定ポイント毎)に記録部32に記録する。濃度演算部312は、吸光度が検量線の測定可能範囲内になく濃度変換を実施できなかった場合には、濃度変換エラーとして出力する。なお、濃度演算部312は、計算した濃度を一定の条件の下で補正する機能を備え、補正した濃度を記録部32に記録するようにしてもよい。
また、濃度演算部312は、測定された一般検体の吸光度が高値であるために上記検量線を用いて吸光度を濃度に変換できない、即ち吸光度が検量線の測定可能範囲を超えている場合には、その旨を希釈倍率演算部313に通知する。希釈倍率演算部313で計算された希釈倍率を元に上記一般検体の希釈が行われる。そして、濃度演算部312は、新たな希釈倍率で希釈された一般検体の測定結果に基づいて濃度を算出する。ここで、濃度演算部312は、再検時に、上記検量線を用いて希釈後の吸光度を濃度に変換し、該濃度に新たな希釈倍率を掛けて一般検体の真の濃度を算出する。一般検体の真の濃度とは、検体容器21に収容された希釈前の一般検体の測定項目の濃度である。
希釈倍率演算部313は、吸光度が検量線の測定可能範囲を超えている場合に、上記検量線演算部311で検量線を作成する際に用いられた濃度の異なる複数のキャリブレータ2aの測定結果(測定点)を元に、再検時の一般検体の希釈倍率を計算する。このとき、希釈倍率演算部313は、複数の測定点から2点以上の測定点(2つ以上の異なる濃度のキャリブレータ2aの測定点)を抽出して検量線の高濃度側に仮想線を計算する。そして、該仮想線を用いて初検時の測定可能範囲を超えた吸光度を濃度(予測濃度)に変換し、該予測濃度から一般検体の希釈倍率を求め、測定機構1Aへ出力する。この仮想線は、検体の濃度が大きくなるにつれて吸光度が大きくなる直線又は曲線が望ましい。以下に述べる例では、仮想線として、複数のキャリブレータ2aの吸光度と濃度の交点(測定点)を通る一次関数abs=f(conc)(図5参照)で表される直線を算出する。測定機構1Aは、この希釈倍率に基づいて一般検体を希釈し、希釈後の一般検体の測定を行い、得られた吸光度を計算機30へ出力する。この希釈倍率演算部313による希釈倍率の求め方の詳細は、後述する。
なお、上述した制御部31が備える検量線演算部311、濃度演算部312、及び希釈倍率演算部313の各ブロックは、専用のマイクロプロセッサ等で構成される濃度演算モジュールにより実現してもよい。あるいは、多波長光度計16が、制御部31の各ブロックを備えていてもよい。
[希釈倍率の求め方]
次に、測定した吸光度が検量線の測定可能範囲を超えている場合における希釈倍率の算出方法について説明する。
次に、測定した吸光度が検量線の測定可能範囲を超えている場合における希釈倍率の算出方法について説明する。
図5は、再検時における一般検体の希釈倍率の算出方法の説明するためのグラフである。図5の縦軸は検体の測定項目の吸光度(ABS-RB)、横軸は濃度を表す。図5に示す曲線状の検量線41(多点検量線)は、図1の検量線と同じである。
図5において、キャリブレーション測定で使用した最大濃度のキャリブレータ2aの吸光度を“first abs”、次に濃度の高いキャリブレータ2aの吸光度を“second abs”とし、その次に濃度の高いキャリブレータ2aの吸光度を“third abs”とする。また、吸光度が“first abs”のときの濃度を“first conc”とし、“second abs”のときの濃度を“second conc”とする。希釈倍率演算部313は、“first abs”と“second abs”の2点を通る直線42(仮想線の一例)を示す一次関数abs=f(conc)を、以下の式(1)により算出する。
abs=f(conc)
=(first abs - second abs)/(first conc - second conc) * conc + {first abs-((first abs-second abs)/(first conc - second conc)*first conc)} ・・・・・・(1)
=(first abs - second abs)/(first conc - second conc) * conc + {first abs-((first abs-second abs)/(first conc - second conc)*first conc)} ・・・・・・(1)
この一次関数abs=f(conc)で表される直線42は、いわば検量線41を高濃度側に延長した場合の予測検量線である。
元々吸光度と濃度の関係に直線性がない検量線41は、実際には、高濃度側に延長した検量線にも直線性はないはずである。ただし、検量線41で測定可能な吸光度の上限を超える吸光度からおおよその濃度を予測する上では、前述の予測検量線としての直線42は有効である。
希釈倍率演算部313は、5個のキャリブレータ2aの吸光度と濃度の交点(測定点)のうち、少なくとも1点は最大濃度のキャリブレータ2aから得られる測定点を使用する。さらに、希釈倍率演算部313は、最大濃度のキャリブレータ2aの測定点(first abs)と、その次に濃度の高いキャリブレータ2aの測定点(second abs)とを用いて、直線42を算出することが望ましい。このように、最大濃度のキャリブレータ2aの測定点と、次に濃度が高いキャリブレータ2aの測定点とを利用することで、予測検量線としての直線42の傾きを、検量線41を高濃度側に延長した検量線により近づけることができる。即ち、直線42の傾きの精度を上げることができる。なお、予測検量線としての直線を、上述のように2点の測定点ではなく、3点の測定点(例えばfirst abs、second abs、third abs)から作成してもよい。
続いて、初検で高値が原因で濃度変換を行えなかった吸光度を“high abs”(high abs>first abs)とした場合、希釈倍率演算部313は、前述の一次関数abs=f(conc)で表される直線42を使用して、吸光度“high abs”から予測濃度“high conc”を求める。
最後に、検体をN倍に希釈した場合に、検体の濃度が1/Nになる物理法則を利用して、初検の濃度を“high conc”と仮定し、同検体の再検の濃度が、およそ最大濃度のキャリブレータ2aの半分程度の濃度となるよう、再検時の希釈倍率“diluent factor”を、式(2)により算出する。
diluent factor = high conc / (first conc / 2.0) ・・・・・・(2)
再検時に、式(2)で算出された希釈倍率“diluent factor”で検体を希釈すれば、およそ再検時の測定項目の濃度は“fist conc”の半分程度の濃度となるはずである。測定対象の検体の濃度が“first conc”の半分程度の濃度となるよう希釈倍率“diluent factor”の値を決定することにより、希釈後の一般検体の吸光度に多少の誤差が発生しても、吸光度が検量線41の測定可能範囲内に収まる可能性が高くなる。言い換えれば、希釈倍率“diluent factor”の値を、希釈倍率“diluent factor”で希釈された一般検体の吸光度を換算して得られる濃度が、検量線41の濃度の測定可能範囲の中央付近となるような値に決定する。希釈倍率をこのような値とすることにより、再検時、希釈した一般検体の吸光度を、検量線を使用して確実に濃度変換することができる。
濃度演算部312は、再検時に希釈倍率“diluent factor”で希釈した一般検体の濃度に対し、“diluent factor”を掛けることで、測定対象の一般検体の測定項目の真の濃度を算出する。
なお、図5の例では、検体の再検の濃度が、およそ最大濃度のキャリブレータ2aの半分程度の濃度となるよう、式(2)により再検時の希釈倍率“diluent factor”を算出したが、この例に限られない。
本実施形態において、検体の再検の吸光度が検量線41の測定可能範囲内に収まるのであれば、検量線41の形状等に応じて、式(2)における係数を適宜設定することができる。例えば、吸光度が検量線41の測定可能範囲内であれば精度良く濃度変換することが可能であるが、最適な形態は検量線41の接線の傾きが45度付近において濃度変換を行うことである。したがって、図5の例では、検体の再検の濃度がおよそ1.0〜2.0となるよう、式(2)における係数を2.0よりも大きな値としてもよい。
[生化学分析装置の動作]
次に、生化学分析装置1の再検時の動作を、図6を参照して説明する。
図6は、生化学分析装置1の測定機構1Aと計算機30(濃度演算部312、希釈倍率演算部313)による濃度算出処理例を示すシーケンス図である。
次に、生化学分析装置1の再検時の動作を、図6を参照して説明する。
図6は、生化学分析装置1の測定機構1Aと計算機30(濃度演算部312、希釈倍率演算部313)による濃度算出処理例を示すシーケンス図である。
図6に示すように、測定機構1Aは、計算機30における制御部31の制御の下で、第1試薬又は第2試薬を選択し、測定対象の一般検体に対して測定項目を測定する(初検)(S1)。このとき多波長光度計16は、測定対象の一般検体に対して測定項目の吸光度を測定し、計算機30へ出力する。
計算機30の濃度演算部312は、多波長光度計16から入力された一般検体の吸光度から、検量線41を用いて濃度を算出する処理を行う(S2)。
次に、濃度演算部312は、検量線41を使用して吸光度から濃度への変換が行われたか否かを判定する(S3)。濃度変換が行われた場合には(S3のYES)、濃度演算部312は、算出された濃度を記録部32に記録するとともに出力部33へ出力し、処理を終了する。
濃度変換が行われなかった場合には(S3のNO)、濃度演算部312は、キャリブレーション測定で使用した複数のキャリブレータ2aの測定点から、検量線41の高濃度側において、式(1)の一次関数abs=f(conc)で示される直線42(図5参照)を算出する(S4)。
次に、希釈倍率演算部313は、直線42を使用して、初検の吸光度(high abs)から予測濃度(high conc)を算出する(S5)。そして、希釈倍率演算部313は、最大濃度のキャリブレータ2aの吸光度(first abs)に対応する濃度と、予測濃度(high conc)と、式(2)により再検時の希釈倍率(diluent factor)を算出する(S6)。そして、希釈倍率演算部313は、希釈倍率を測定機構1A及び濃度演算部312に出力し、再検に先立って希釈を指示する。
次に、計算機30は、測定機構1Aを制御し、初検で濃度変換できなかった一般検体の再検を行う。このとき測定機構1Aのサンプル希釈ピペット7は、検体容器21内に収容された一般検体を所定量吸引し、希釈倍率演算部313で算出された希釈倍率で希釈する(S7)。
次に、測定機構1Aは、測定対象の一般検体に対して測定項目を測定する(再検)(S8)。多波長光度計16は、測定対象の一般検体に対して測定項目の吸光度を測定し、計算機30へ出力する。
次に、濃度演算部312は、多波長光度計16から入力された一般検体の吸光度から、検量線41を用いて濃度を算出する処理を行う(S9)。
そして、濃度演算部312は、検量線41による濃度変換で得られた濃度に、上記希釈倍率を乗算し、測定対象の一般検体の真の濃度を算出する(S10)。濃度演算部312は、一般検体の真の濃度を記録部32に記録するとともに出力部33へ出力し、処理を終了する。
図7は、再検の希釈倍率の表示例を示す。
図7に示すウィンドウ表示されたリアルタイムモニタ画面50は、サンプルターンテーブル2に格納された一般検体についての情報を示す検体表示領域51と、測定対象の一般検体の測定結果を示す測定結果表示領域52を有する。
図7に示すウィンドウ表示されたリアルタイムモニタ画面50は、サンプルターンテーブル2に格納された一般検体についての情報を示す検体表示領域51と、測定対象の一般検体の測定結果を示す測定結果表示領域52を有する。
検体表示領域51は、サンプルターンテーブル2上での一般検体の位置(番号)を示す“格納番号フィールド”、その位置に格納された一般検体の検体番号を示す“検体番号フィールド”を有する。また測定結果表示領域52は、測定項目を示す“項目名フィールド53”、一般検体の濃度を示す“濃度フィールド54”、希釈倍率(diluent factor)を示す“Dil-Rateフィールド55”、“ABS-RBフィールド56”、及び“ABSフィールド57を有する。ここでABSは、一般検体を測定した際の吸光度である。また、ABS-RBは、一般検体を測定した際の吸光度から、試薬ブランク(水)を測定した際の吸光度を減算した値である。言い換えると、ABS-RBは、試薬が持つ吸光度を減算して得られた、一般検体自身の吸光度を表す。
図7の例では、“UN”、“CRE”、“AST”及び“ALT”の各項目を測定時の希釈倍率は3・0倍であるが、“CRP”を測定時の希釈倍率は15.5倍である。このように、出力部33に測定時の希釈倍率が表示されることにより、オペレータは再検時の希釈倍率の条件を確認することができる。例えばオペレータは、希釈倍率の大小を確認することで、一般検体の項目ごとの検量線41の測定可能範囲の適切度がわかる。
以上のように構成される本実施形態によれば、検量線で測定可能な吸光度の上限値を超える濃度の一般検体を、精度の良い再検条件(希釈倍率)で測定することができる。
また、従来オペレータが手で希釈していた一般検体も自動的に適切な希釈倍率で希釈されるため、再検により確実に濃度を検出(濃度変換)することができる。また、測定結果を得るまでの時間が大幅に短縮される。
また、オペレータの手による希釈の代わりに、測定機構1A(サンプル希釈ピペット7)で希釈することにより、より正確な希釈が行われ、測定データの精度が向上する。
さらに、測定項目ごとの再検条件の一つである希釈倍率の設定が不要となり、施設に自動分析装置を導入した際のセットアップの手間を削減できる。
また、本実施形態は、従来例のようにキャリブレータ2aを希釈することなく一般検体を希釈するため、キャリブレータ2aの消費量が少ない。一般にキャリブレータは高価であることから個数に限りがある。本実施形態に係る自動分析方法を採用することでキャリブレータの消費を抑え、コストを削減できる。なお、本実施形態に係る自動分析装置による自動分析方法は、記録部32に記録されたプログラムを改変するだけで容易に実現可能である。
<2.その他>
本実施形態において、再検前(例えば初検)の測定時に検体の希釈を実施してもよいし、実施しなくてもよい。その際の希釈倍率は、希釈倍率“diluent factor”に関係なく所定の希釈倍率である。
本実施形態において、再検前(例えば初検)の測定時に検体の希釈を実施してもよいし、実施しなくてもよい。その際の希釈倍率は、希釈倍率“diluent factor”に関係なく所定の希釈倍率である。
また、自動分析装置としては、生化学分析装置1の他に、再検時に検体を希釈する機能を有する分析装置、例えば免疫分析装置、尿分析装置等の様々な分析装置を用いることができる。
また、本明細書において、時系列的な処理を記述する処理ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)をも含むものである。
また、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された要旨を逸脱しない限りにおいて、その他種々の変形例、応用例を取り得ることは勿論である。
例えば、上述した実施形態例は本発明を分かりやすく説明するために装置及びシステムの構成を詳細且つ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることは可能であり、更にはある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、ある実施形態例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…生化学分析装置、1A…測定機構、7…サンプル希釈ピペット、16…多波長光度計、30…計算機、31…制御部、33…出力部、41…検量線、42…直線、312…濃度演算部、313…希釈倍率演算部
Claims (9)
- 検体の吸光度を測定する光度計と、
検量線を用いて前記検体の吸光度を濃度に変換する処理を行う濃度演算部と、
前記検体の吸光度が前記検量線の測定可能範囲を超えている場合に、前記検量線を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線を計算し、該仮想線を用いて前記吸光度を予測濃度に変換し、該予測濃度を利用して前記検体の希釈倍率を求める希釈倍率演算部と、
前記検体を前記希釈倍率で希釈する希釈部と、を備え、
前記光度計は、前記希釈倍率で希釈された前記検体の吸光度を測定し、前記濃度演算部は、前記検量線を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に前記希釈倍率を掛けて前記検体の真の濃度を算出する
自動分析装置。 - 前記希釈倍率演算部は、前記希釈倍率を、該希釈倍率で希釈された前記検体の吸光度が前記検量線の測定可能範囲内となる値に決定する
請求項1に記載の自動分析装置。 - 前記希釈倍率演算部は、前記希釈倍率を、該希釈倍率で希釈された前記検体の吸光度を換算して得られる濃度が前記検量線の測定可能範囲の中央付近となる値に決定する
請求項2に記載の自動分析装置。 - 前記仮想線は直線である
請求項1乃至3のいずれかに記載の自動分析装置。 - 前記2点以上の測定値のうち、すくなくとも1点の測定値は最大濃度の標準検体の測定値である
請求項1乃至4のいずれかに記載の自動分析装置。 - 前記仮想線は、前記最大濃度の標準検体の測定値と、その次に濃度の高い標準検体の測定値を用いて計算される
請求項5に記載の自動分析装置。 - 前記検体の濃度とともに前記希釈倍率を表示する表示部、を備える
請求項1乃至6のいずれかに記載の自動分析装置。 - 自動分析装置が備える光度計により、検体の吸光度を測定するステップと、
前記自動分析装置が備える濃度演算部により、検量線を用いて前記検体の吸光度を濃度に変換する処理を行うステップと、
前記自動分析装置が備える希釈倍率演算部により、前記検体の吸光度が前記検量線の測定可能範囲を超えている場合に、前記検量線を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線を計算し、該仮想線を用いて前記吸光度を予測濃度に変換し、該予測濃度を利用して前記検体の希釈倍率を求めるステップと、
前記自動分析装置が備える希釈部により、前記検体を前記希釈倍率で希釈するステップと、
前記希釈倍率で希釈された前記検体の吸光度を測定するステップと、
前記濃度演算部により、前記検量線を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に前記希釈倍率を掛けて前記検体の真の濃度を算出するステップと、を含む
自動分析方法。 - コンピュータに、
検体の吸光度を測定する処理と、
検量線を用いて前記検体の吸光度を濃度に変換する処理を行う処理と、
前記検体の吸光度が前記検量線の測定可能範囲を超えている場合に、前記検量線を作成する際に用いられた濃度の異なる複数の標準検体の測定値から2点以上の測定値を抽出して仮想線を計算し、該仮想線を用いて前記吸光度を予測濃度に変換し、該予測濃度を利用して前記検体の希釈倍率を求める処理と、
前記検体を前記希釈倍率で希釈する処理と、
前記希釈倍率で希釈された前記検体の吸光度を測定する処理と、
前記検量線を用いて希釈後に測定された吸光度を濃度に変換し、該濃度に前記希釈倍率を掛けて前記検体の真の濃度を算出する処理と、を実行させる
プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015140147A JP2017020956A (ja) | 2015-07-14 | 2015-07-14 | 自動分析装置、自動分析方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015140147A JP2017020956A (ja) | 2015-07-14 | 2015-07-14 | 自動分析装置、自動分析方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017020956A true JP2017020956A (ja) | 2017-01-26 |
Family
ID=57888048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015140147A Pending JP2017020956A (ja) | 2015-07-14 | 2015-07-14 | 自動分析装置、自動分析方法及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017020956A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3584581A1 (en) * | 2018-06-19 | 2019-12-25 | Jeol Ltd. | Automatic analyzer and automatic analysis method |
CN112179855A (zh) * | 2019-07-04 | 2021-01-05 | 恩德莱斯和豪瑟尔分析仪表两合公司 | 操作自动分析设备的方法及自动分析设备 |
-
2015
- 2015-07-14 JP JP2015140147A patent/JP2017020956A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3584581A1 (en) * | 2018-06-19 | 2019-12-25 | Jeol Ltd. | Automatic analyzer and automatic analysis method |
JP2019219228A (ja) * | 2018-06-19 | 2019-12-26 | 日本電子株式会社 | 自動分析装置、および自動分析方法 |
CN110618284A (zh) * | 2018-06-19 | 2019-12-27 | 日本电子株式会社 | 自动分析装置和自动分析方法 |
US11486886B2 (en) | 2018-06-19 | 2022-11-01 | Jeol Ltd. | Automatic analyzer and automatic analysis method |
CN110618284B (zh) * | 2018-06-19 | 2023-11-24 | 日本电子株式会社 | 自动分析装置和自动分析方法 |
CN112179855A (zh) * | 2019-07-04 | 2021-01-05 | 恩德莱斯和豪瑟尔分析仪表两合公司 | 操作自动分析设备的方法及自动分析设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5562421B2 (ja) | 自動分析装置、分析方法及び情報処理装置 | |
US10203277B2 (en) | Automatic analysis device and automatic analysis method | |
CN102428373B (zh) | 自动分析装置以及分析方法 | |
JP4654256B2 (ja) | 自動分析装置 | |
EP2799882A1 (en) | Automatic analysis device and detection method for measurement value abnormalities | |
JP6824006B2 (ja) | 自動分析装置及びプログラム | |
JP6472965B2 (ja) | 自動分析装置及び異常判定方法 | |
JP6419641B2 (ja) | 自動分析装置及び多重測定方法 | |
JP6242252B2 (ja) | 自動分析装置及び異常検出方法 | |
JP2017020956A (ja) | 自動分析装置、自動分析方法及びプログラム | |
JP2009281802A (ja) | 自動分析装置および検体検索システム | |
JP6039940B2 (ja) | 自動分析装置 | |
JP5860643B2 (ja) | 自動分析装置 | |
JP2020128906A (ja) | 分析方法、検量線の作成方法、および自動分析装置 | |
JP6219757B2 (ja) | 自動分析装置及び異常判定方法 | |
JP2008058065A (ja) | 自動分析装置および自動分析方法 | |
JP2016090239A (ja) | 自動分析装置および自動分析方法 | |
JP7299914B2 (ja) | 異常判定方法、および自動分析装置 | |
JP5839849B2 (ja) | 自動分析装置 | |
JP4825442B2 (ja) | 臨床検査用自動分析装置の精度管理方法、及び自動分析装置 | |
US11125765B2 (en) | Automatic analyzer | |
JP4843360B2 (ja) | 自動分析装置及びその検量線作成方法 | |
JP2016133475A (ja) | 自動分析装置及び自動分析方法 | |
JP6251068B2 (ja) | 自動分析装置及び自動分析システム | |
JP7237569B2 (ja) | 自動分析装置 |