JP2017010749A - Method and device for forming laminated sealing film - Google Patents

Method and device for forming laminated sealing film Download PDF

Info

Publication number
JP2017010749A
JP2017010749A JP2015124480A JP2015124480A JP2017010749A JP 2017010749 A JP2017010749 A JP 2017010749A JP 2015124480 A JP2015124480 A JP 2015124480A JP 2015124480 A JP2015124480 A JP 2015124480A JP 2017010749 A JP2017010749 A JP 2017010749A
Authority
JP
Japan
Prior art keywords
film
organic
forming
inorganic
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124480A
Other languages
Japanese (ja)
Other versions
JP6584162B2 (en
Inventor
里吉 務
Tsutomu Satoyoshi
務 里吉
昌平 仙波
Shohei Semba
昌平 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015124480A priority Critical patent/JP6584162B2/en
Priority to TW105118989A priority patent/TWI695652B/en
Priority to CN201610457681.3A priority patent/CN106257705B/en
Priority to KR1020160077818A priority patent/KR101870511B1/en
Publication of JP2017010749A publication Critical patent/JP2017010749A/en
Application granted granted Critical
Publication of JP6584162B2 publication Critical patent/JP6584162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Abstract

PROBLEM TO BE SOLVED: To form a laminated sealing film thin in film thickness and high in sealing performance while suppressing a decrease in productivity and the adhesion of foreign substances.SOLUTION: A laminated sealing film 203 has a structure where an inorganic film 201 and an organic film 202 are laminated over an organic EL element S in which a plurality of organic EL layers 102 serving as light emitting layers are formed over a substrate 101. In forming the laminated sealing film 203, a step of forming an inorganic film 201 by means of an atomic layer deposition method and a step of forming an organic film 202 by means of a vapor deposition polymerization method are alternately performed a plurality of times in one processing container 11.SELECTED DRAWING: Figure 3

Description

本発明は、有機EL素子に用いられる積層封止膜を形成する積層封止膜形成方法および形成装置に関する。   The present invention relates to a laminated sealing film forming method and a forming apparatus for forming a laminated sealing film used for an organic EL element.

有機EL素子を用いた有機EL表示装置は、低消費電力であり、自然発光型であり、有機発光材料に由来する多彩な色調の発光が得られるため、次世代の表示装置として注目されている。   An organic EL display device using an organic EL element is attracting attention as a next-generation display device because it has low power consumption, is a spontaneous light emitting type, and can emit light of various colors derived from organic light emitting materials. .

有機EL素子は、基板上にマトリックス状に設けられた複数の素子形成領域に、発光層である有機EL層と電極層等が積層された状態で形成される。   An organic EL element is formed in a state in which an organic EL layer, which is a light emitting layer, an electrode layer, and the like are stacked in a plurality of element formation regions provided in a matrix on a substrate.

このような有機EL素子を用いた有機EL表示装置としては、有機EL層として白色発光するものを用い、レッド(R)、グリーン(G)、ブルー(B)に対応するフィルター部を有するカラーフィルターを組み合わせたものが知られている。   As an organic EL display device using such an organic EL element, a color filter having a filter portion corresponding to red (R), green (G), and blue (B) using an organic EL layer that emits white light. A combination of these is known.

有機EL層を形成する有機化合物は、一般に、水分や酸素などにより劣化しやすいため、有機EL層界面への水分や酸素などの混入を防止することを目的として、有機EL素子に対応する領域に、有機EL層に影響を与えない程度の温度で封止膜を形成することが行われている。   The organic compound that forms the organic EL layer is generally easily deteriorated by moisture, oxygen, and the like. Therefore, for the purpose of preventing entry of moisture, oxygen, and the like into the interface of the organic EL layer, the organic compound is formed in a region corresponding to the organic EL element. The sealing film is formed at a temperature that does not affect the organic EL layer.

有機EL素子の封止膜としては、無機膜と有機膜とを積層した積層封止膜が提案されている(例えば特許文献1、2)。また、無機系の封止膜としてはAl等が知られており(例えば特許文献3,4)、有機系の封止膜としてはポリイミドやポリウレアが知られている(例えば特許文献4)。 As a sealing film of an organic EL element, a laminated sealing film in which an inorganic film and an organic film are stacked has been proposed (for example, Patent Documents 1 and 2). Further, Al 2 O 3 or the like is known as an inorganic sealing film (for example, Patent Documents 3 and 4), and polyimide or polyurea is known as an organic sealing film (for example, Patent Document 4). ).

特許文献1には、積層封止膜の例として、厚さが60nmの第1の無機膜(酸化アルミニウム膜)と、厚さ1.3μmの第1の有機膜とを形成した後、厚さが40nmの第2の無機膜、第1の有機膜と同様の条件の第2の有機膜、を形成し、さらに第2の無機膜および第1の有機膜と同様の条件で、第3の無機膜、第3の有機膜、第4の無機膜を形成したものが示されている。このように、従来は、一層あたりの膜厚を比較的厚いものとし、無機膜と有機膜との繰り返し回数を3〜4回程度として封止性を確保している。   In Patent Document 1, as an example of a laminated sealing film, after forming a first inorganic film (aluminum oxide film) having a thickness of 60 nm and a first organic film having a thickness of 1.3 μm, the thickness is increased. A second inorganic film having a thickness of 40 nm, a second organic film having the same conditions as the first organic film, and the third inorganic film having the same conditions as those of the second inorganic film and the first organic film. An inorganic film, a third organic film, and a fourth inorganic film are formed. Thus, conventionally, the film thickness per layer is relatively thick, and the number of repetitions of the inorganic film and the organic film is set to about 3 to 4 times to ensure sealing performance.

一方、非特許文献1には、無機膜と有機膜との積層封止膜において、積層数が多いほど、封止性能が高いことが報告されている。   On the other hand, Non-Patent Document 1 reports that in a laminated sealing film of an inorganic film and an organic film, the sealing performance is higher as the number of laminated layers is larger.

特許第5162179号公報Japanese Patent No. 5162179 特許第4987648号公報Japanese Patent No. 4987648 特開2013−235726号公報JP 2013-235726 A 特開2015−15499号公報JP2015-15499A

AppliedPhysics Letters 102, 161908(2013)AppliedPhysics Letters 102, 161908 (2013)

しかしながら、このように積層封止膜の個々の膜の膜厚を大きくして封止性能を確保しようとすると、繰り返し回数が少なくても積層封止膜全体の厚さが厚いものとなってしまう。積層封止膜が厚くなると光透過率が低下する。また、積層封止膜が厚くなることにより発光層である有機EL層とカラーフィルターとの間のギャップが広いものとなり、有機EL層から、カラーフィルターのレッド(R)、グリーン(G)、ブルー(B)に対応するフィルター部への光の取り出し角度が小さいものとなるとともに、隣接するフィルター部への光漏れを防止する観点から、フィルター部どうしを区画するブラックマトリックス(BM)の面積を大きくして遮光性を高める必要があり、相対的にフィルター部の面積が小さいものとなる。このため、光の取り出し効率が低下する。   However, if it is attempted to secure the sealing performance by increasing the film thickness of the individual films of the laminated sealing film as described above, the entire thickness of the laminated sealing film becomes thick even if the number of repetitions is small. . As the laminated sealing film becomes thicker, the light transmittance decreases. In addition, as the laminated sealing film becomes thicker, the gap between the organic EL layer, which is the light emitting layer, and the color filter becomes wider. From the organic EL layer, the red (R), green (G), and blue of the color filter The light extraction angle to the filter part corresponding to (B) becomes small, and from the viewpoint of preventing light leakage to the adjacent filter part, the area of the black matrix (BM) that partitions the filter parts is increased. Therefore, it is necessary to improve the light shielding property, and the area of the filter portion is relatively small. For this reason, the light extraction efficiency decreases.

近時、有機EL表示装置に要求される画像や映像の画質は益々高いものとなり、積層封止膜が厚くなることによる光透過率の低下や光取り出し効率の低下が画質に与える影響が無視し得ないものとなりつつある。   Recently, the image quality of images and videos required for organic EL display devices has become increasingly high, and the effects of reduced light transmittance and reduced light extraction efficiency due to the increase in the thickness of the laminated sealing film are ignored. It is becoming unobtainable.

一方、非特許文献1に記載されているように積層数を増やすことにより封止性能を高めることができるため、無機膜および有機膜の膜厚を薄くして積層数を増やすことにより積層封止膜全体を薄くしつつ封止性能を確保することが考えられる。しかし、特許文献1にも記載されているように、積層封止膜を製造する際には、無機膜と有機膜とを別個の装置で成膜することが技術常識であり、積層を繰り返すたびに装置間で基板を搬送する時間が必要であり、積層数を増やすほど生産性が低下する。また、搬送時、パーティクル等の異物が素子上に付着する確率が高くなり、異物により封止性能を低下させる欠陥が発生する確率も高くなる。   On the other hand, as described in Non-Patent Document 1, the sealing performance can be improved by increasing the number of stacked layers. Therefore, the thickness of the inorganic film and the organic film is decreased and the number of stacked layers is increased. It is conceivable to ensure sealing performance while making the entire film thin. However, as described in Patent Document 1, when manufacturing a laminated sealing film, it is common technical knowledge to form an inorganic film and an organic film with separate apparatuses, and every time the lamination is repeated. In addition, it takes time to transfer the substrate between apparatuses, and the productivity decreases as the number of layers increases. In addition, the probability of foreign matters such as particles adhering to the element during transport increases, and the probability of occurrence of a defect that degrades the sealing performance due to the foreign matter increases.

したがって、本発明は、膜厚が薄くかつ高封止性能を有する積層封止膜を、生産性の低下や異物付着を抑制しつつ形成することができる積層封止膜形成方法および形成装置を提供することを課題とする。   Therefore, the present invention provides a laminated sealing film forming method and a forming apparatus capable of forming a laminated sealing film having a thin film thickness and high sealing performance while suppressing a decrease in productivity and adhesion of foreign matter. The task is to do.

上記課題を解決するため、本発明の第1の観点は、基板上に発光層である有機EL層が複数形成された有機EL素子上に、無機膜と有機膜とが積層された構造の積層封止膜を形成する積層封止膜形成方法であって、原子層堆積法により無機膜を形成する工程と、蒸着重合法により有機膜を形成する工程とを、一つの処理容器内で交互に複数回繰り返すことを特徴とする積層封止膜形成方法を提供する。   In order to solve the above-described problems, a first aspect of the present invention is a stacked structure in which an inorganic film and an organic film are stacked on an organic EL element in which a plurality of organic EL layers that are light emitting layers are formed on a substrate. A laminated sealing film forming method for forming a sealing film, wherein a step of forming an inorganic film by an atomic layer deposition method and a step of forming an organic film by a vapor deposition polymerization method are alternately performed in one processing container. Provided is a method for forming a laminated sealing film, which is repeated a plurality of times.

また、本発明の第2の観点は、基板上に発光層である有機EL層が複数形成された有機EL素子上に、無機膜と有機膜とが積層された構造の積層封止膜を形成する積層封止膜形成装置であって、有機EL素子が収容される処理容器と、前記無機膜を原子層堆積法で形成するための第1無機膜原料ガスおよび第2無機膜原料ガスを前記処理容器内に供給する第1無機膜原料ガス供給ユニットおよび第2無機膜原料ガス供給ユニットと、前記有機膜を蒸着重合法で形成するための第1有機膜原料ガスおよび第2有機膜原料ガスを前記処理容器内に供給する第1有機膜原料ガス供給ユニットおよび第2有機膜原料ガス供給ユニットと、前記処理容器内を排気する排気ユニットと、前記第1無機膜原料ガスおよび前記第2無機膜原料ガスを交互に前記処理容器内に供給して原子層堆積法により前記無機膜を形成することと、前記第1有機膜原料ガスおよび前記第2有機膜原料ガスを同時に前記処理容器内に供給して蒸着重合法により前記有機膜を形成することとを交互に複数回繰り返すように制御する制御部とを有することを特徴とする積層封止膜形成装置を提供する。   The second aspect of the present invention is to form a laminated sealing film having a structure in which an inorganic film and an organic film are laminated on an organic EL element in which a plurality of organic EL layers as light emitting layers are formed on a substrate. A laminated sealing film forming apparatus that includes a processing container in which an organic EL element is accommodated, and a first inorganic film source gas and a second inorganic film source gas for forming the inorganic film by an atomic layer deposition method. First inorganic film source gas supply unit and second inorganic film source gas supply unit to be supplied into the processing vessel, and first organic film source gas and second organic film source gas for forming the organic film by vapor deposition polymerization A first organic film source gas supply unit and a second organic film source gas supply unit for supplying gas into the processing vessel, an exhaust unit for exhausting the inside of the processing vessel, the first inorganic film source gas and the second inorganic The film source gas is used alternately And supplying the first organic film raw material gas and the second organic film raw material gas into the processing container at the same time by vapor deposition polymerization. There is provided a laminated sealing film forming apparatus comprising: a control unit configured to control the organic film forming so as to be alternately repeated a plurality of times.

前記無機膜として酸化アルミニウムを好適に用いることができる。また、前記有機膜としてポリウレアまたはポリイミドを好適に用いることができる。   Aluminum oxide can be suitably used as the inorganic film. Also, polyurea or polyimide can be suitably used as the organic film.

前記無機膜の膜厚は50nm以下であり、前記有機膜の膜厚は500nm以下であることが好ましい。また、前記積層封止膜の膜厚は、1μm以下であることが好ましい。   The film thickness of the inorganic film is preferably 50 nm or less, and the film thickness of the organic film is preferably 500 nm or less. The thickness of the laminated sealing film is preferably 1 μm or less.

前記有機EL素子は、前記処理容器内で載置台に載置された状態で前記無機膜の形成および前記有機膜の形成が行われ、前記載置台の載置面は、蒸着重合により前記有機膜を成膜可能な第1の温度に温調され、前記処理容器の載置台以外の部分は、蒸着重合による前記有機膜の成膜が生じない第2の温度に温調されることが好ましい。   The organic EL element is formed with the inorganic film and the organic film in a state where the organic EL element is mounted on the mounting table in the processing container, and the mounting surface of the mounting table is formed by vapor deposition polymerization. It is preferable that the temperature is adjusted to a first temperature at which the film can be formed, and the portion other than the mounting table of the processing container is adjusted to a second temperature at which the organic film is not formed by vapor deposition polymerization.

本発明によれば、積層封止膜を形成するに際し、無機膜を原子層堆積法により成膜し、有機膜を蒸着重合法で成膜するので、これらを薄く形成することができ、これらの積層数を多くすることにより水分や酸素などの封止性を高くしても積層封止膜全体の膜厚を薄くすることができ、また、ALD法による無機膜は薄くて封止機能の高い膜であるので、これらを封止性能が確保できる積層数で積層しても積層封止膜全体の膜厚を薄くすることができる。また、無機膜と有機膜とを同一の処理容器内で成膜するので、生産性の低下や異物付着を抑制することができる。   According to the present invention, when the laminated sealing film is formed, the inorganic film is formed by the atomic layer deposition method, and the organic film is formed by the vapor deposition polymerization method. By increasing the number of layers, even if the sealing properties such as moisture and oxygen are increased, the entire thickness of the stacked sealing film can be reduced, and the inorganic film formed by the ALD method is thin and has a high sealing function. Since it is a film | membrane, even if these are laminated | stacked by the lamination number which can ensure sealing performance, the film thickness of the laminated sealing film whole can be made thin. Further, since the inorganic film and the organic film are formed in the same processing container, it is possible to suppress a decrease in productivity and adhesion of foreign substances.

積層封止膜を形成する積層封止膜形成装置を示す断面図である。It is sectional drawing which shows the laminated sealing film forming apparatus which forms a laminated sealing film. 基板上に有機EL層が複数形成された有機EL素子を示す断面図である。It is sectional drawing which shows the organic EL element with which multiple organic EL layers were formed on the board | substrate. 有機EL素子上に本発明の実施形態に係る製造方法で積層封止膜を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the laminated sealing film on the organic EL element with the manufacturing method which concerns on embodiment of this invention. 有機EL素子上に従来の製造方法で積層封止膜を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the laminated sealing film on the organic EL element with the conventional manufacturing method. 従来の製造方法で形成された厚い積層封止膜を用いた場合の有機EL層とカラーフィルターとの配置を説明するための断面図である。It is sectional drawing for demonstrating arrangement | positioning of an organic EL layer and a color filter at the time of using the thick laminated sealing film formed with the conventional manufacturing method. 本発明の実施形態の製造方法で形成された薄い積層封止膜を用いた場合の有機EL層とカラーフィルターとの配置を説明するための断面図である。It is sectional drawing for demonstrating arrangement | positioning of the organic EL layer and color filter at the time of using the thin laminated sealing film formed with the manufacturing method of embodiment of this invention.

以下、添付図面を参照して本発明の実施形態について説明する。
図1は、積層封止膜を形成する積層封止膜形成装置を示す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a laminated sealing film forming apparatus for forming a laminated sealing film.

積層封止膜形成装置100は、発光層である有機EL層を含む有機EL素子に無機膜と有機膜との積層封止膜を形成するものであり、無機膜を原子層堆積法(ALD法)により成膜し、有機膜を蒸着重合法により成膜するものである。   The laminated sealing film forming apparatus 100 forms a laminated sealing film of an inorganic film and an organic film on an organic EL element including an organic EL layer that is a light emitting layer. The inorganic film is formed by an atomic layer deposition method (ALD method). ), And an organic film is formed by vapor deposition polymerization.

この積層封止膜形成装置100は、有機EL素子Sに成膜処理を行う処理部1と、処理部1の処理空間に処理に必要なガスを供給するガス供給部2と、処理部1の処理空間を排気する排気ユニット3と、制御部4とを備えている。   The laminated sealing film forming apparatus 100 includes a processing unit 1 that performs a film forming process on the organic EL element S, a gas supply unit 2 that supplies a gas necessary for processing to a processing space of the processing unit 1, and a processing unit 1 An exhaust unit 3 for exhausting the processing space and a control unit 4 are provided.

処理部1は、成膜処理のための処理空間を画成する処理容器11と、処理容器11内に設けられた基板上に有機EL層および電極等が形成された有機EL素子Sを載置するための載置台12と、載置台12を第1の温度に温調する第1温調ユニット13と、処理容器11の載置台12以外の部分を第2の温度に温調する第2温調ユニット14とを有している。また、図示していないが、処理容器11の側壁には、有機EL素子Sを搬入および搬出するための搬入出口が設けられており、この搬入出口はゲートバルブで開閉可能となっている。   The processing unit 1 places a processing container 11 that defines a processing space for film formation processing, and an organic EL element S in which an organic EL layer, an electrode, and the like are formed on a substrate provided in the processing container 11. For mounting, a first temperature control unit 13 for adjusting the temperature of the mounting table 12 to the first temperature, and a second temperature for adjusting the temperature of the portion other than the mounting table 12 of the processing container 11 to the second temperature. Adjustment unit 14. Although not shown, a loading / unloading port for loading and unloading the organic EL element S is provided on the side wall of the processing container 11, and this loading / unloading port can be opened and closed by a gate valve.

第1温調ユニット13は、載置台12の内部に設けられた温調媒体流路(図示せず)に温調媒体を通流させることにより、載置台12の載置面の温度を第1の温度に温調する。第1の温度は、蒸着重合により有機膜を成膜可能な温度である。また、第2温調ユニット14は、処理容器11の壁部等の、被処理体である有機EL素子Sが載置されている載置台12以外の部分に設けられた温調媒体流路(図示せず)に温調媒体を通流させることにより、載置台12以外の部分の温度を第2の温度に温調する。第2の温度は、蒸着重合による有機膜の成膜が生じない温度である。   The first temperature control unit 13 causes the temperature of the mounting surface of the mounting table 12 to be the first by passing the temperature adjusting medium through a temperature control medium channel (not shown) provided in the mounting table 12. Adjust the temperature to. The first temperature is a temperature at which an organic film can be formed by vapor deposition polymerization. In addition, the second temperature control unit 14 is a temperature control medium flow path (such as a wall portion of the processing container 11) provided in a portion other than the mounting table 12 on which the organic EL element S that is an object to be processed is mounted. By passing the temperature control medium through (not shown), the temperature of the portion other than the mounting table 12 is adjusted to the second temperature. The second temperature is a temperature at which no organic film is formed by vapor deposition polymerization.

ガス供給部2は、ALD法により無機膜を成膜する際に用いる第1無機膜原料ガスおよび第2無機膜原料ガスをそれぞれ供給する第1無機膜原料ガス供給ユニット21および第2無機膜原料ガス供給ユニット22、ならびに蒸着重合法により有機膜を成膜する際に用いる第1有機膜原料ガスおよび第2有機膜原料ガスをそれぞれ供給する第1有機膜原料ガス供給ユニット23および第2有機膜原料ガス供給ユニット24を有する。また、第1無機膜原料ガス供給ユニット21、第2無機膜原料ガス供給ユニット22、第1有機膜原料ガス供給ユニット23、および第2有機膜原料ガス供給ユニット24には、それぞれ処理容器11に第1無機膜原料ガス、第2無機膜原料ガス、第1有機膜原料ガス、および第2有機膜原料ガスを供給する、第1ガス供給配管25、第2ガス供給配管26、第3ガス供給配管27、および第4ガス供給配管28が接続されている。また、第1ガス供給配管25、第2ガス供給配管26、第3ガス供給配管27、および第4ガス供給配管28には、それぞれ第1開閉バルブ29、第2開閉バルブ30、第3開閉バルブ31、および第4開閉バルブ32が設けられている。   The gas supply unit 2 includes a first inorganic film raw material gas supply unit 21 and a second inorganic film raw material that supply a first inorganic film raw material gas and a second inorganic film raw material gas used when forming an inorganic film by the ALD method, respectively. Gas supply unit 22, and first organic film source gas supply unit 23 and second organic film for supplying a first organic film source gas and a second organic film source gas used when forming an organic film by vapor deposition polymerization, respectively. A source gas supply unit 24 is provided. Further, the first inorganic film source gas supply unit 21, the second inorganic film source gas supply unit 22, the first organic film source gas supply unit 23, and the second organic film source gas supply unit 24 are respectively connected to the processing vessel 11. First gas supply pipe 25, second gas supply pipe 26, and third gas supply for supplying a first inorganic film source gas, a second inorganic film source gas, a first organic film source gas, and a second organic film source gas A pipe 27 and a fourth gas supply pipe 28 are connected. The first gas supply pipe 25, the second gas supply pipe 26, the third gas supply pipe 27, and the fourth gas supply pipe 28 include a first opening / closing valve 29, a second opening / closing valve 30, and a third opening / closing valve, respectively. 31 and a fourth on-off valve 32 are provided.

なお、図示しないが、その他に不活性ガス等からなるパージガスや希釈ガスを供給するガス供給ユニットおよびガス供給配管が設けられている。また、やはり図示していないが、第1ガス供給配管25、第2ガス供給配管26、第3ガス供給配管27、および第4ガス供給配管28には、流量制御器が設けられている。   Although not shown, a gas supply unit and a gas supply pipe for supplying a purge gas or a dilution gas made of an inert gas or the like are also provided. Although not shown, the first gas supply pipe 25, the second gas supply pipe 26, the third gas supply pipe 27, and the fourth gas supply pipe 28 are provided with flow rate controllers.

ALD法により形成される無機膜としては、水分や酸素を封止する機能を有し、絶縁性を有する材料が用いられ、酸化アルミニウム(Al)を好適に用いることができる。Al膜は封止性が高く、ALD成膜することで欠陥が非常に少なく、カバレッジが良好な膜となる。無機膜としてAl膜を成膜する際には、第1無機膜原料ガスとして、トリメチルアルミニウム(TMA)を好適に用いることができ、第2無機膜原料ガスとして、HOガスやOを好適に用いることができる。そして、開閉バルブ29および30を操作することにより、第1無機膜原料ガスおよび第2無機膜原料ガスを処理容器内のパージを挟んで交互に供給する。 As the inorganic film formed by the ALD method, an insulating material having a function of sealing moisture and oxygen is used, and aluminum oxide (Al 2 O 3 ) can be preferably used. The Al 2 O 3 film has a high sealing property, and by forming an ALD film, there are very few defects and the film has a good coverage. When the Al 2 O 3 film is formed as the inorganic film, trimethylaluminum (TMA) can be suitably used as the first inorganic film source gas, and H 2 O gas or the like can be used as the second inorganic film source gas. O 3 can be preferably used. Then, by operating the on-off valves 29 and 30, the first inorganic film source gas and the second inorganic film source gas are alternately supplied with the purge inside the processing container interposed.

蒸着重合法により形成される有機膜は、無機膜に生じた欠陥やクラックを分離し、さらに基板の曲げによって無機膜に生じるクラックの発生を抑制する機能を有する。有機膜としては、透明な樹脂材料が用いられ、ポリウレアやポリイミドを好適に用いることができる。これらの中ではポリウレアが特に好ましい。ポリウレア膜は、透明度が高く、カバレッジが非常に良好で薄膜化に有利である。有機膜としてポリウレア膜を成膜する際には、第1有機膜原料ガスおよび第2有機膜原料ガスとして、ジアミンモノマーおよびイソシアネートモノマーを用いることができ、これらがNガス、Heガス、Arガス等の不活性ガスからなるキャリアガスとともに処理容器11内に供給される。また、ポリイミド膜を成膜する際に用いる第1有機膜原料ガスおよび第2有機膜原料ガスとしては、ピロメリット酸二無水物および4,4'−オキシジアニリンを挙げることができる。有機膜を成膜する際には、開閉バルブ31および32を同時に開くことにより第1有機膜原料ガスおよび第2有機膜原料ガスが同時に処理容器11内に供給される。 The organic film formed by the vapor deposition polymerization method has a function of separating defects and cracks generated in the inorganic film and further suppressing the generation of cracks generated in the inorganic film due to bending of the substrate. As the organic film, a transparent resin material is used, and polyurea or polyimide can be suitably used. Of these, polyurea is particularly preferred. The polyurea film has high transparency, has very good coverage, and is advantageous for thinning. When the polyurea film is formed as the organic film, a diamine monomer and an isocyanate monomer can be used as the first organic film source gas and the second organic film source gas, and these include N 2 gas, He gas, Ar gas Is supplied into the processing vessel 11 together with a carrier gas made of an inert gas. Examples of the first organic film source gas and the second organic film source gas used when forming the polyimide film include pyromellitic dianhydride and 4,4′-oxydianiline. When the organic film is formed, the first organic film source gas and the second organic film source gas are simultaneously supplied into the processing container 11 by opening the opening and closing valves 31 and 32 at the same time.

排気ユニット3は、処理容器11の側壁のガス導入部分に対向する位置に接続された排気配管41と、排気配管41に設けられた圧力制御バルブ42と、排気配管41を介して処理容器11内を排気する真空ポンプ43と、排気配管41における真空ポンプ43の下流側に設けられた排ガス処理設備44とを有する。なお、排気配管41にも第2温調ユニット14から温調媒体が通流され、蒸着重合による有機膜の成膜が生じない第2の温度に温調されるようになっている。   The exhaust unit 3 includes an exhaust pipe 41 connected to a position facing the gas introduction portion on the side wall of the processing container 11, a pressure control valve 42 provided in the exhaust pipe 41, and the inside of the processing container 11 via the exhaust pipe 41. And an exhaust gas treatment facility 44 provided on the exhaust pipe 41 on the downstream side of the vacuum pump 43. The exhaust pipe 41 is also supplied with a temperature control medium from the second temperature control unit 14 so that the temperature is adjusted to a second temperature at which no organic film is formed by vapor deposition polymerization.

制御部4は、開閉バルブ29,30,31,32、真空ポンプ43、第1および第2温調ユニット13,14等、積層封止膜形成装置100の各構成部を制御するためのものであり、マイクロプロセッサ(コンピュータ)を有している。制御部4は、積層封止膜形成装置100で無機膜と有機膜とを交互に成膜して積層封止膜を形成する処理を実行するためのプログラムである処理レシピをその中の記憶媒体に格納しており、所定の処理レシピを呼び出して、積層封止膜形成装置100に積層封止膜を形成する処理を実行させる。   The control unit 4 is for controlling each component of the laminated sealing film forming apparatus 100, such as the open / close valves 29, 30, 31, 32, the vacuum pump 43, the first and second temperature control units 13, 14. Yes, it has a microprocessor (computer). The control unit 4 stores a processing recipe, which is a program for executing a process for forming a laminated sealing film by alternately forming an inorganic film and an organic film in the laminated sealing film forming apparatus 100. And calling a predetermined processing recipe to cause the laminated sealing film forming apparatus 100 to execute a process for forming the laminated sealing film.

次に、積層封止膜の形成方法について説明する。
最初に図2に示すように、基板101上に下部電極102、有機EL層103および上部電極104を形成した有機EL素子Sを準備する。なお、電子輸送層等の他の層が形成されていてもよい。
Next, a method for forming the laminated sealing film will be described.
First, as shown in FIG. 2, an organic EL element S in which a lower electrode 102, an organic EL layer 103, and an upper electrode 104 are formed on a substrate 101 is prepared. In addition, other layers, such as an electron carrying layer, may be formed.

基板101の材料は特に限定されないが、例えばガラス板、セラミックス板、プラスチックフィルム、金属板等を挙げることができる。基板101には額縁状をなすバンク105がマトリックス状に形成されており、バンク105内に下部電極102および有機EL層103が形成される。したがって、複数の有機EL層103が基板101上に島状に形成される。また、基板101には駆動回路(図示せず)が形成されている。   Although the material of the board | substrate 101 is not specifically limited, For example, a glass plate, a ceramic board, a plastic film, a metal plate etc. can be mentioned. A bank 105 having a frame shape is formed in a matrix on the substrate 101, and a lower electrode 102 and an organic EL layer 103 are formed in the bank 105. Therefore, the plurality of organic EL layers 103 are formed in an island shape on the substrate 101. In addition, a drive circuit (not shown) is formed on the substrate 101.

有機EL層は、電極から電子および正孔が注入されることが可能であり、注入された電荷が移動して正孔と電子が再結合して発光することが可能な有機発光物質からなる。有機発光物質としては、一般的に発光層に用いられる低分子または高分子の有機物質であればよく、特に限定されない。   The organic EL layer is made of an organic light-emitting substance capable of injecting electrons and holes from the electrode and capable of emitting light by moving the injected charges and recombining the holes and electrons. The organic light emitting material is not particularly limited as long as it is a low molecular or high molecular weight organic material generally used in a light emitting layer.

このようにして得られた有機EL素子Sに封止膜を形成するにあたっては、この有機EL素子Sを図1の形成装置100の処理容器11内に搬入し、載置台12上に載置する。このとき、第1温調ユニット13により、載置台12上面の温度を蒸着重合により有機膜を成膜可能な第1の温度、例えば100℃に温調し、第2温調ユニット14により処理容器11の壁部等の載置台12以外の部分の温度を蒸着重合による有機膜の成膜が生じない第2の温度、例えば150℃に温調している。そして、真空ポンプ43により排気しつつ圧力制御バルブ42により処理容器11内を所定の圧力に減圧し、最初にALD法による無機膜の成膜を行い、次いで蒸着重合による有機膜の成膜を行い、これらを複数回交互に繰り返して、図3に示すように、無機膜201と有機膜202とが複数回積層された積層封止膜203を製造する。積層数としては無機膜201が5層以上であることが好ましい。図3では、無機膜201が5層、有機膜202が4層の場合を示している。   In forming a sealing film on the organic EL element S thus obtained, the organic EL element S is carried into the processing container 11 of the forming apparatus 100 of FIG. 1 and placed on the mounting table 12. . At this time, the first temperature control unit 13 controls the temperature of the upper surface of the mounting table 12 to a first temperature at which an organic film can be formed by vapor deposition polymerization, for example, 100 ° C., and the second temperature control unit 14 controls the processing container. The temperature of the portion other than the mounting table 12 such as the wall portion 11 is adjusted to a second temperature at which no organic film is formed by vapor deposition polymerization, for example, 150 ° C. Then, while the vacuum pump 43 is evacuated, the pressure inside the processing vessel 11 is reduced to a predetermined pressure by the pressure control valve 42, first an inorganic film is formed by the ALD method, and then an organic film is formed by vapor deposition polymerization. These are alternately repeated a plurality of times to produce a laminated sealing film 203 in which an inorganic film 201 and an organic film 202 are laminated a plurality of times as shown in FIG. As the number of stacked layers, the inorganic film 201 is preferably 5 layers or more. FIG. 3 shows a case where the inorganic film 201 has five layers and the organic film 202 has four layers.

ALD法により無機膜201を成膜する際には、第1開閉バルブ29および第2開閉バルブ30の開閉動作の切り替えにより、第1無機膜原料ガス供給ユニット21から処理容器11への第1無機膜原料ガスの供給と、第2無機膜原料ガス供給ユニット22から処理容器11への第2無機膜原料ガスの供給とを、図示しないパージガス配管からのパージガスによる処理容器11のパージを挟んで交互に実施する。第1無機膜原料ガスは化合物ガス、第2無機膜原料ガスは還元ガスであり、最初に第1無機膜原料ガスを有機EL素子Sの表面に吸着させた後、第2無機膜原料ガスの供給により還元して極薄い単位膜を形成し、これを繰り返すことにより所定の膜厚を有する無機膜201が形成される。   When the inorganic film 201 is formed by the ALD method, the first inorganic gas from the first inorganic film source gas supply unit 21 to the processing container 11 is switched by switching the opening / closing operation of the first opening / closing valve 29 and the second opening / closing valve 30. The supply of the membrane raw material gas and the supply of the second inorganic membrane raw material gas from the second inorganic membrane raw material gas supply unit 22 to the processing vessel 11 are alternately arranged with the purge of the processing vessel 11 by the purge gas from the purge gas pipe not shown in the figure. To implement. The first inorganic film source gas is a compound gas, and the second inorganic film source gas is a reducing gas. After the first inorganic film source gas is first adsorbed on the surface of the organic EL element S, the second inorganic film source gas The inorganic film 201 having a predetermined film thickness is formed by reducing the supply to form a very thin unit film and repeating this.

無機膜201は、水分や酸素を封止する機能を有し、絶縁性を有する膜であり、ALD法で成膜することにより、欠陥が少なくカバレッジが良好な膜となり、薄くて封止機能の高い膜となる。このような無機膜201としては酸化アルミニウム(Al)を好適に用いることができる。Al膜は封止性が高く、ALD成膜することで欠陥が非常に少なく、カバレッジが良好な膜となる。 The inorganic film 201 is a film having a function of sealing moisture and oxygen and having an insulating property. When the inorganic film 201 is formed by the ALD method, the film has few defects and good coverage, and is thin and has a sealing function. High film. As such an inorganic film 201, aluminum oxide (Al 2 O 3 ) can be preferably used. The Al 2 O 3 film has a high sealing property, and by forming an ALD film, there are very few defects and the film has a good coverage.

無機膜としてAl膜を成膜する際には、第1無機膜原料ガスとして、トリメチルアルミニウム(TMA)を好適に用いることができ、第2無機膜原料ガスとして、HOガスやOを好適に用いることができる。 When the Al 2 O 3 film is formed as the inorganic film, trimethylaluminum (TMA) can be suitably used as the first inorganic film source gas, and H 2 O gas or the like can be used as the second inorganic film source gas. O 3 can be preferably used.

蒸着重合法で有機膜202の成膜の際には、第3開閉バルブ31および第4開閉バルブ32を開いて、第1有機膜原料ガス供給ユニット23および第2有機膜原料ガス供給ユニット24から処理容器11へ第1有機膜原料ガスおよび第2有機膜原料ガスを同時に供給する。第1有機膜原料ガスおよび第2有機膜原料ガスはモノマーであり、これらが有機EL素子Sに蒸着され、重合して有機膜202となる。   When the organic film 202 is formed by the vapor deposition polymerization method, the third opening / closing valve 31 and the fourth opening / closing valve 32 are opened, and the first organic film source gas supply unit 23 and the second organic film source gas supply unit 24 are opened. The first organic film source gas and the second organic film source gas are simultaneously supplied to the processing container 11. The first organic film source gas and the second organic film source gas are monomers, and these are deposited on the organic EL element S and polymerized into the organic film 202.

有機膜202は、無機膜に生じた欠陥やクラックを他の層から分離し、さらに基板の曲げによって無機膜に生じるクラックの発生を抑制する機能を有し、蒸着重合法を用いることによりカバレッジが良好で薄膜化が容易となる。有機膜202としては、透明な樹脂材料が用いられ、ポリウレアやポリイミドを好適に用いることができる。これらの中ではポリウレアが特に好ましい。ポリウレア膜は、透明度が高く、カバレッジが非常に良好で薄膜化に有利であり、積層封止膜203の有機膜202として適している。   The organic film 202 has a function of separating defects and cracks generated in the inorganic film from other layers and further suppressing the generation of cracks generated in the inorganic film due to bending of the substrate, and coverage is achieved by using the vapor deposition polymerization method. Good and easy to thin. As the organic film 202, a transparent resin material is used, and polyurea or polyimide can be suitably used. Of these, polyurea is particularly preferred. The polyurea film has high transparency, has very good coverage and is advantageous for thinning, and is suitable as the organic film 202 of the laminated sealing film 203.

有機膜としてポリウレア膜を成膜する際には、第1有機膜原料ガスおよび第2有機膜原料ガスとして、ジアミンモノマーおよびイソシアネートモノマーを用いることができる。これらをNガス、Heガス、Arガス等の不活性ガスからなるキャリアガスとともに処理容器11内に供給することにより、これらモノマーが重合してポリウレア膜となる。また、ポリイミド膜を成膜する際には、第1有機膜原料ガスおよび第2有機膜原料ガスとして、ピロメリット酸二無水物および4,4'−オキシジアニリンを用いることができる。これらを同様にキャリアガスとともに処理容器11内に供給することにより重合してポリイミド膜となる。 When forming a polyurea film as the organic film, a diamine monomer and an isocyanate monomer can be used as the first organic film source gas and the second organic film source gas. By supplying these into the processing vessel 11 together with a carrier gas made of an inert gas such as N 2 gas, He gas, Ar gas, etc., these monomers are polymerized to form a polyurea film. In forming the polyimide film, pyromellitic dianhydride and 4,4′-oxydianiline can be used as the first organic film source gas and the second organic film source gas. These are similarly polymerized by supplying them into the processing vessel 11 together with a carrier gas to form a polyimide film.

無機膜201の膜厚は50nm以下が好ましく、30nm以下がより好ましい。封止性能を確保する観点からは、10nm以上が好ましい。また、有機膜202の膜厚は500nm以下が好ましく、200nm以下がより好ましい。良好な成膜性を得る観点からは、50nm以上が好ましい。積層封止膜203の全体の膜厚は、1μm以下が好ましく、0.5μm以下がより好ましい。   The film thickness of the inorganic film 201 is preferably 50 nm or less, and more preferably 30 nm or less. From the viewpoint of ensuring sealing performance, 10 nm or more is preferable. The film thickness of the organic film 202 is preferably 500 nm or less, and more preferably 200 nm or less. From the viewpoint of obtaining good film formability, 50 nm or more is preferable. The total film thickness of the laminated sealing film 203 is preferably 1 μm or less, and more preferably 0.5 μm or less.

蒸着重合法で有機膜202を成膜する際には、第1温調ユニット13により、載置台12の載置面の温度を蒸着重合により有機膜を成膜可能な第1の温度に温調し、第2温調ユニット14により、載置台12以外の部分の温度を蒸着重合による有機膜の成膜が生じない第2の温度に温調する。蒸着重合反応は所定の温度以下で生じ、その温度よりも高くなると蒸着重合反応は生じなくなるので、このように温調することにより、有機膜202は被処理体である有機EL素子Sのみに成膜され、載置台12以外の部分にはほとんど成膜されないようにすることができる。有機膜は無機膜よりも厚く形成され、これが処理容器11の壁部等の載置台12以外の部分に付着すると、メンテナンス周期が短くなってしまうが、このように載置台12以外の部分の温度を蒸着重合による有機膜の成膜が生じない第2の温度に温調することにより、そのような不都合を生じ難くすることができる。また、このように載置台12以外の部分に有機膜が生じ難いので、ALD法による無機膜201の成膜の際に載置台12以外の部分の有機膜が悪影響を与えるおそれも少ない。   When forming the organic film 202 by the vapor deposition polymerization method, the first temperature control unit 13 controls the temperature of the mounting surface of the mounting table 12 to the first temperature at which the organic film can be formed by vapor deposition polymerization. Then, the temperature of the portion other than the mounting table 12 is controlled by the second temperature control unit 14 to a second temperature at which no organic film is formed by vapor deposition polymerization. The vapor deposition polymerization reaction occurs at a predetermined temperature or lower, and the vapor deposition polymerization reaction does not occur when the temperature is higher than that temperature. Therefore, by adjusting the temperature in this way, the organic film 202 is formed only on the organic EL element S that is the object to be processed. It is possible to prevent the film from being formed on portions other than the mounting table 12. The organic film is formed thicker than the inorganic film, and if it adheres to a portion other than the mounting table 12 such as a wall portion of the processing container 11, the maintenance cycle is shortened. By adjusting the temperature to the second temperature at which no organic film is formed by vapor deposition polymerization, such inconvenience can be made difficult to occur. In addition, since an organic film is unlikely to be generated in a portion other than the mounting table 12 in this way, there is little possibility that the organic film in the portion other than the mounting table 12 has an adverse effect when the inorganic film 201 is formed by the ALD method.

有機膜202としてポリウレア膜を適用する場合には、第1の温度が100℃以下、好ましくは50〜100℃であり、第2の温度が100℃より高い温度、好ましくは150〜180℃である。   When a polyurea film is applied as the organic film 202, the first temperature is 100 ° C. or lower, preferably 50 to 100 ° C., and the second temperature is higher than 100 ° C., preferably 150 to 180 ° C. .

ALD法によって無機膜201を成膜する際には、室温から数百℃の広い範囲で成膜可能であるが、処理効率を考慮すると有機膜202のときの温度設定を変えることなく成膜処理を行うことが好ましい。このとき、第2の温度に設定されている処理容器11の壁部等の載置台12以外の部分にも膜が形成されるが、無機膜201は有機膜202より薄いため、処理容器11の壁部等の載置台12以外の部分に形成される膜の膜厚は薄く、メンテナンス性に対して大きな影響は与えない。また、このように載置台12以外の部分に形成される膜が薄いため、有機膜202の成膜時に悪影響を与えるおそれも少ない。   When the inorganic film 201 is formed by the ALD method, the film can be formed in a wide range from room temperature to several hundred degrees Celsius. However, considering the processing efficiency, the film formation process is performed without changing the temperature setting for the organic film 202. It is preferable to carry out. At this time, a film is also formed on a portion other than the mounting table 12 such as a wall portion of the processing container 11 set to the second temperature. However, since the inorganic film 201 is thinner than the organic film 202, A film formed on a portion other than the mounting table 12 such as a wall portion is thin, and does not greatly affect the maintainability. In addition, since the film formed on the portion other than the mounting table 12 is thin as described above, there is little possibility that the organic film 202 is adversely affected.

従来は、このような積層封止膜において、一層あたりの膜厚を厚くすることで封止性能を高めることを指向いていた。例えば図4に示すように、CVD法やスパッタリング法により、膜厚が数十から数百nm程度の無機膜201′と数μm程度の有機膜202′を3層程度積層して全体の厚さが数μmの積層封止膜203′を形成していた。   Conventionally, in such a laminated sealing film, it has been directed to increase the sealing performance by increasing the film thickness per layer. For example, as shown in FIG. 4, the entire thickness is obtained by laminating about three layers of an inorganic film 201 ′ having a film thickness of about several tens to several hundreds of nm and an organic film 202 ′ having a thickness of about several μm by CVD or sputtering. Formed a laminated sealing film 203 ′ of several μm.

しかし、このように積層封止膜の膜厚が厚くなると光透過率が低下する。また、積層封止膜が厚くなると、図5に示すように、発光層である有機EL層103とカラーフィルター301との間のギャップが広いものとなり、有機EL層から、カラーフィルター301のレッド(R)、グリーン(G)、ブルー(B)に対応するフィルター部302への光の取り出し角度θが小さいものとなる。また、有機EL層103とカラーフィルター301との間のギャップが広いものとなることにより、隣接するフィルター部302への光漏れが生じやすくなるため、フィルター部302どうしを区画するブラックマトリックス(BM)303の面積を大きくして遮光性を高める必要があり、相対的にフィルター部の面積が小さいものとなる。このように光の取り出し角度θが小さいことおよびラックマトリックス(BM)303の面積が大きいことにより、光の取り出し効率が低下する。   However, when the thickness of the laminated sealing film is increased, the light transmittance is lowered. Further, when the laminated sealing film becomes thicker, as shown in FIG. 5, the gap between the organic EL layer 103 which is a light emitting layer and the color filter 301 becomes wide, and the red ( The light extraction angle θ to the filter portion 302 corresponding to R), green (G), and blue (B) is small. In addition, since the gap between the organic EL layer 103 and the color filter 301 becomes wide, light leakage to the adjacent filter portions 302 is likely to occur. Therefore, a black matrix (BM) that partitions the filter portions 302 from each other. It is necessary to increase the area of 303 to improve the light shielding property, and the area of the filter portion is relatively small. Thus, the light extraction efficiency decreases because the light extraction angle θ is small and the area of the rack matrix (BM) 303 is large.

以上のように、積層封止膜が厚くなることにより、光透過率の低下や光取り出し効率の低下が生じ、要求される画質が得難くなりつつある。   As described above, as the laminated sealing film becomes thicker, the light transmittance is lowered and the light extraction efficiency is lowered, so that it is difficult to obtain the required image quality.

これに対し、本実施形態では、ALD法により無機膜201を形成し、蒸着重合法で有機膜202を形成することにより、これらの膜厚を薄くする。ALD法による無機膜201、特にAl膜は、欠陥が少なくカバレッジが良好な膜となって薄くて封止機能の高い膜となり、蒸着重合法による有機膜202、特にポリウレア膜やポリイミド膜はカバレッジが良好で薄膜化が容易となる。したがって、これらを封止性能が確保できる積層数で積層しても、積層封止膜203の全体の膜厚を1μm以下程度と薄くすることができる。これにより、積層封止膜203の光透過率を高めることができる。また、図6に示すように、有機EL層103とカラーフィルター301との間のギャップが従来よりも狭くなるため、フィルター部302への光の取り出し角度θを従来よりも広げることができる。しかも、光漏れし難くなるため、ブラックマトリックス(BM)303の面積を従来よりも小さくすることができる。このため、光の取り出し効率が従来よりも向上する。さらに、ALD法はCVD法やスパッタ法に比べて成膜速度が遅いが、全体の膜厚を薄くすることができるので、全体の成膜時間を従来と同等以下とすることができる。 In contrast, in the present embodiment, the inorganic film 201 is formed by the ALD method, and the organic film 202 is formed by the vapor deposition polymerization method, thereby reducing the film thickness. The inorganic film 201 by the ALD method, particularly the Al 2 O 3 film, is a film having few defects and good coverage and becomes a thin film having a high sealing function, and the organic film 202 by the vapor deposition polymerization method, particularly a polyurea film or a polyimide film. Has good coverage and can be easily thinned. Therefore, even if these are stacked in the number of layers that can ensure sealing performance, the total thickness of the stacked sealing film 203 can be reduced to about 1 μm or less. Thereby, the light transmittance of the laminated sealing film 203 can be increased. Further, as shown in FIG. 6, since the gap between the organic EL layer 103 and the color filter 301 becomes narrower than before, the light extraction angle θ to the filter unit 302 can be made wider than before. Moreover, since it is difficult for light to leak, the area of the black matrix (BM) 303 can be made smaller than before. For this reason, the light extraction efficiency is improved as compared with the prior art. Furthermore, although the ALD method has a slower film formation speed than the CVD method or the sputtering method, the entire film thickness can be reduced, so that the entire film formation time can be made equal to or less than the conventional one.

また、従来、積層封止膜を製造する際には、無機膜と有機膜とは異質の膜であるため、別個の装置で成膜することが技術常識であった。このため、積層を繰り返すたびに装置間で基板を搬送する時間が必要であり、積層数を増やすほど生産性が低下する。また、搬送時、パーティクル等の異物が素子上に付着する確率が高くなり、異物により封止性能を低下させる欠陥が発生する確率も高くなる。   Conventionally, when manufacturing a laminated sealing film, since an inorganic film and an organic film are different films, it has been common knowledge to form a film with a separate apparatus. For this reason, every time the stacking is repeated, a time for transporting the substrate between the apparatuses is required, and the productivity decreases as the number of stacks increases. In addition, the probability of foreign matters such as particles adhering to the element during transport increases, and the probability of occurrence of a defect that degrades the sealing performance due to the foreign matter increases.

これに対し、本実施形態では、このような技術常識に反して、無機膜201と有機膜202とを一つの装置の処理容器内で成膜する。これにより、被処理体である有機EL素子Sを異なる装置間で搬送することなく、無機膜201と有機膜202とを繰り返し成膜して積層封止膜203を形成することができるので、積層数を増やしても生産性の低下が少なく、また、搬送時における異物の付着も防止することができる。   On the other hand, in this embodiment, contrary to such technical common sense, the inorganic film 201 and the organic film 202 are formed in a processing container of one apparatus. Thereby, the inorganic sealing film 201 and the organic film 202 can be repeatedly formed to form the stacked sealing film 203 without transporting the organic EL element S as the object to be processed between different apparatuses. Even if the number is increased, the productivity is hardly lowered, and adhesion of foreign matters at the time of conveyance can be prevented.

すなわち、本実施形態では、積層封止膜を形成するに際し、無機膜をALD法により成膜し、有機膜を蒸着重合法で成膜するので、これらを薄く形成することができ、また、ALD法による無機膜は薄くて封止機能の高い膜であるので、これらを封止性能が確保できる積層数で積層しても積層封止膜全体の膜厚を薄くすることができる。また、無機膜と有機膜とを同一の処理容器内で成膜するので、生産性の低下や異物付着を抑制することができる。   That is, in this embodiment, when forming the laminated sealing film, the inorganic film is formed by the ALD method, and the organic film is formed by the vapor deposition polymerization method. Since the inorganic film formed by the method is thin and has a high sealing function, even if these are stacked in the number of layers that can ensure sealing performance, the film thickness of the entire laminated sealing film can be reduced. Further, since the inorganic film and the organic film are formed in the same processing container, it is possible to suppress a decrease in productivity and adhesion of foreign substances.

なお、本発明は、上記実施の形態に限定されることなく種々変形可能である。例えば、上記実施形態では、ALD法による無機膜としてAl膜を用い、蒸着重合法による有機膜としてポリウレアまたはポリイミドを用いた例を示したが、これに限るものではない。また、上記実施形態では、枚葉式の装置により積層封止膜を形成した例について示したが、複数の有機EL素子に一括して積層封止膜を形成するバッチ式の装置を用いてもよい。 The present invention can be variously modified without being limited to the above embodiment. For example, in the above embodiment, an example in which an Al 2 O 3 film is used as the inorganic film by the ALD method and polyurea or polyimide is used as the organic film by the vapor deposition polymerization method has been described, but the present invention is not limited to this. Further, in the above-described embodiment, an example in which the laminated sealing film is formed by a single wafer type apparatus has been described. However, a batch type apparatus that collectively forms a laminated sealing film on a plurality of organic EL elements may be used. Good.

1;処理部
2;ガス供給部
3;排気ユニット
4;制御部
11;処理容器
12;載置台
13;第1温調ユニット
14;第2温調ユニット
21;第1無機膜原料ガス供給ユニット
22;第2無機膜原料ガス供給ユニット
23;第1有機膜原料ガス供給ユニット
24;第2有機膜原料ガス供給ユニット
29,30,31,32;開閉バルブ
25,26,27,28;ガス供給配管
41;排気配管
42;圧力制御バルブ
43;真空ポンプ
44;排ガス処理設備
100;積層封止膜形成装置
101;基板
102;下部電極
103;有機EL層
104;上部電極
201;無機膜
202;有機膜
203;積層封止膜
301;カラーフィルター
302;フィルター部
303;ブラックマトリックス
S;有機EL素子
DESCRIPTION OF SYMBOLS 1; Processing part 2; Gas supply part 3; Exhaust unit 4; Control part 11; Processing container 12; Mounting stage 13; First temperature control unit 14; Second temperature control unit 21; Second organic film source gas supply unit 23; first organic film source gas supply unit 24; second organic film source gas supply unit 29, 30, 31, 32; open / close valve 25, 26, 27, 28; gas supply pipe 41; Exhaust pipe 42; Pressure control valve 43; Vacuum pump 44; Exhaust gas treatment equipment 100; Laminated sealing film forming apparatus 101; Substrate 102; Lower electrode 103; Organic EL layer 104; Upper electrode 201; Inorganic film 202; 203; laminated sealing film 301; color filter 302; filter portion 303; black matrix S; organic EL element

Claims (10)

基板上に発光層である有機EL層が複数形成された有機EL素子上に、無機膜と有機膜とが積層された構造の積層封止膜を形成する積層封止膜形成方法であって、
原子層堆積法により無機膜を形成する工程と、
蒸着重合法により有機膜を形成する工程とを、
一つの処理容器内で交互に複数回繰り返すことを特徴とする積層封止膜形成方法。
A laminated sealing film forming method for forming a laminated sealing film having a structure in which an inorganic film and an organic film are laminated on an organic EL element in which a plurality of organic EL layers as light emitting layers are formed on a substrate,
Forming an inorganic film by atomic layer deposition;
Forming an organic film by vapor deposition polymerization;
A method for forming a laminated sealing film, which is alternately repeated a plurality of times in one processing container.
前記無機膜として酸化アルミニウムを用いることを特徴とする請求項1に記載の積層封止膜形成方法。   The method for forming a laminated sealing film according to claim 1, wherein aluminum oxide is used as the inorganic film. 前記有機膜としてポリウレアまたはポリイミドを用いることを特徴とする請求項1または請求項2に記載の積層封止膜形成方法。   The method for forming a laminated sealing film according to claim 1, wherein polyurea or polyimide is used as the organic film. 前記無機膜の膜厚は50nm以下であり、前記有機膜の膜厚は500nm以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の積層封止膜形成方法。   The thickness of the said inorganic film is 50 nm or less, and the film thickness of the said organic film is 500 nm or less, The laminated sealing film formation method of any one of Claims 1-3 characterized by the above-mentioned. 前記積層封止膜の膜厚は、1μm以下であることを特徴とする請求項1から請求項4のいずれか1項に記載の積層封止膜形成方法。   5. The method for forming a laminated sealing film according to claim 1, wherein a film thickness of the laminated sealing film is 1 μm or less. 前記有機EL素子は、前記処理容器内で載置台に載置された状態で前記無機膜の形成および前記有機膜の形成が行われ、前記載置台の載置面は、蒸着重合により前記有機膜を成膜可能な第1の温度に温調され、前記処理容器の載置台以外の部分は、蒸着重合による前記有機膜の成膜が生じない第2の温度に温調されることを特徴とする請求項1から請求項5のいずれか1項に記載の積層封止膜形成方法。   The organic EL element is formed with the inorganic film and the organic film in a state where the organic EL element is mounted on the mounting table in the processing container, and the mounting surface of the mounting table is formed by vapor deposition polymerization. The temperature is controlled to a first temperature at which the film can be formed, and the part other than the mounting table of the processing container is temperature controlled to a second temperature at which the organic film is not formed by vapor deposition polymerization. The laminated sealing film forming method according to any one of claims 1 to 5, wherein: 基板上に発光層である有機EL層が複数形成された有機EL素子上に、無機膜と有機膜とが積層された構造の積層封止膜を形成する積層封止膜形成装置であって、
有機EL素子が収容される処理容器と、
前記無機膜を原子層堆積法で形成するための第1無機膜原料ガスおよび第2無機膜原料ガスを前記処理容器内に供給する第1無機膜原料ガス供給ユニットおよび第2無機膜原料ガス供給ユニットと、
前記有機膜を蒸着重合法で形成するための第1有機膜原料ガスおよび第2有機膜原料ガスを前記処理容器内に供給する第1有機膜原料ガス供給ユニットおよび第2有機膜原料ガス供給ユニットと、
前記処理容器内を排気する排気ユニットと、
前記第1無機膜原料ガスおよび前記第2無機膜原料ガスを交互に前記処理容器内に供給して原子層堆積法により前記無機膜を形成することと、前記第1有機膜原料ガスおよび前記第2有機膜原料ガスを同時に前記処理容器内に供給して蒸着重合法により前記有機膜を形成することとを交互に複数回繰り返すように制御する制御部と
を有することを特徴とする積層封止膜形成装置。
A laminated sealing film forming apparatus for forming a laminated sealing film having a structure in which an inorganic film and an organic film are laminated on an organic EL element in which a plurality of organic EL layers as light emitting layers are formed on a substrate,
A processing container in which an organic EL element is accommodated;
A first inorganic film source gas supply unit and a second inorganic film source gas supply for supplying a first inorganic film source gas and a second inorganic film source gas for forming the inorganic film by an atomic layer deposition method into the processing vessel Unit,
A first organic film source gas supply unit and a second organic film source gas supply unit for supplying a first organic film source gas and a second organic film source gas for forming the organic film by vapor deposition polymerization into the processing vessel When,
An exhaust unit for exhausting the inside of the processing vessel;
Supplying the first inorganic film source gas and the second inorganic film source gas alternately into the processing vessel to form the inorganic film by an atomic layer deposition method; and the first organic film source gas and the first And a control unit that controls to alternately repeat a plurality of organic film source gases supplied into the processing vessel and forming the organic film by vapor deposition polymerization. Film forming device.
前記無機膜として酸化アルミニウムを用いることを特徴とする請求項7に記載の積層封止膜形成装置。   The laminated sealing film forming apparatus according to claim 7, wherein aluminum oxide is used as the inorganic film. 前記有機膜としてポリウレアまたはポリイミドを用いることを特徴とする請求項7または請求項8に記載の積層封止膜形成装置。   The laminated sealing film forming apparatus according to claim 7 or 8, wherein polyurea or polyimide is used as the organic film. 前記処理容器内で前記有機EL素子を載置する載置台と、
前記載置台の載置面の温度を、蒸着重合により前記有機膜を成膜可能な第1の温度に温調する第1温調ユニットと、
前記処理容器の前記載置台以外の部分の温度を、蒸着重合による前記有機膜の成膜が生じない第2の温度に温調する第2温調ユニットと
をさらに有することを特徴とする請求項7から請求項9のいずれか1項に記載の積層封止膜形成装置。
A mounting table for mounting the organic EL element in the processing container;
A first temperature control unit that adjusts the temperature of the mounting surface of the mounting table to a first temperature at which the organic film can be formed by vapor deposition polymerization;
The apparatus further comprises a second temperature adjustment unit that adjusts the temperature of the portion other than the mounting table of the processing container to a second temperature at which the organic film is not formed by vapor deposition polymerization. The laminated sealing film forming apparatus according to any one of claims 7 to 9.
JP2015124480A 2015-06-22 2015-06-22 Laminated sealing film forming method and forming apparatus Active JP6584162B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015124480A JP6584162B2 (en) 2015-06-22 2015-06-22 Laminated sealing film forming method and forming apparatus
TW105118989A TWI695652B (en) 2015-06-22 2016-06-16 Method and device for forming laminated seal stop film
CN201610457681.3A CN106257705B (en) 2015-06-22 2016-06-22 Lamination seals film forming method and forms device
KR1020160077818A KR101870511B1 (en) 2015-06-22 2016-06-22 Laminated sealing film forming method and forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124480A JP6584162B2 (en) 2015-06-22 2015-06-22 Laminated sealing film forming method and forming apparatus

Publications (2)

Publication Number Publication Date
JP2017010749A true JP2017010749A (en) 2017-01-12
JP6584162B2 JP6584162B2 (en) 2019-10-02

Family

ID=57713668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124480A Active JP6584162B2 (en) 2015-06-22 2015-06-22 Laminated sealing film forming method and forming apparatus

Country Status (4)

Country Link
JP (1) JP6584162B2 (en)
KR (1) KR101870511B1 (en)
CN (1) CN106257705B (en)
TW (1) TWI695652B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085476A (en) * 2018-01-10 2019-07-18 도쿄엘렉트론가부시키가이샤 Film forming method
WO2019167358A1 (en) * 2018-02-27 2019-09-06 株式会社ジャパンディスプレイ Display device
JP2019192790A (en) * 2018-04-25 2019-10-31 東京エレクトロン株式会社 Method of cleaning gas supply pipe and processing system
JP2019197669A (en) * 2018-05-10 2019-11-14 パイオニア株式会社 Light-emitting device and manufacturing method of light-emitting device
JP2020050915A (en) * 2018-09-27 2020-04-02 東京エレクトロン株式会社 Film deposition apparatus and temperature control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584751B (en) * 2020-05-26 2023-04-11 京东方科技集团股份有限公司 Packaging structure, packaging method, electroluminescent device and display device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445259A (en) * 1990-06-11 1992-02-14 Ulvac Japan Ltd Film forming device
JP2004183096A (en) * 2002-12-05 2004-07-02 Samsung Electronics Co Ltd Atomic layer deposition system capable of preventing formation of powder in exhaust route
JP2004281247A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Organic electroluminescent display panel and its manufacturing method
WO2006093016A1 (en) * 2005-02-28 2006-09-08 So-Ken Co., Ltd. Printed board and method for manufacturing same
JP2007134099A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Organic electroluminescence display panel
KR20100064870A (en) * 2008-12-05 2010-06-15 엘지디스플레이 주식회사 Organic electroluminescence display device and method for fabricating the same
JP2010532917A (en) * 2007-06-22 2010-10-14 ザ・リージエンツ・オブ・ザ・ユニバーシティ・オブ・コロラド Protective coatings for organic electronic devices manufactured using atomic layer deposition and molecular layer deposition methods
KR20110000818A (en) * 2009-06-29 2011-01-06 엘지디스플레이 주식회사 Organic light emitting display device and method for fabricating the same
JP2011124228A (en) * 2009-12-14 2011-06-23 Samsung Mobile Display Co Ltd Manufacturing method of organic light-emitting device, and organic light-emitting device
JP2013101969A (en) * 2008-12-30 2013-05-23 Samsung Display Co Ltd Method for encapsulating environmentally sensitive element
US20140299845A1 (en) * 2013-04-03 2014-10-09 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
JP2015513609A (en) * 2012-02-15 2015-05-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for depositing a sealing film
CN104638117A (en) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528825B2 (en) 1972-12-27 1977-03-11
JPS5162179A (en) 1974-11-28 1976-05-29 Nippon Kokan Kk SHITSUSHI KISHORIGONOHAIGASUNOSHOONHOHO
JP5213522B2 (en) * 2008-05-16 2013-06-19 三菱樹脂株式会社 Gas barrier laminated film for organic devices
JP5632274B2 (en) 2010-09-30 2014-11-26 ユー・ディー・シー アイルランド リミテッド Material for organic electroluminescent element, film containing the same, and organic electroluminescent element
KR20120065049A (en) * 2010-12-10 2012-06-20 삼성모바일디스플레이주식회사 Organic light emitting diode display apparatus and manufacturing method thereof
TWI429526B (en) * 2011-12-15 2014-03-11 Ind Tech Res Inst Low water-vapor permeable composite film and packaging structure
JP6040443B2 (en) 2012-05-09 2016-12-07 株式会社Joled Display panel manufacturing method and display panel
US9397318B2 (en) * 2012-09-04 2016-07-19 Applied Materials, Inc. Method for hybrid encapsulation of an organic light emitting diode
KR101389197B1 (en) * 2013-01-09 2014-06-05 성균관대학교산학협력단 A polymer/inorganic multi-layer thin film encapsulation for organic electronic devices
KR102181233B1 (en) * 2013-07-19 2020-11-23 삼성디스플레이 주식회사 Plasma enhanced chemical vapor deposition device and display appratus using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445259A (en) * 1990-06-11 1992-02-14 Ulvac Japan Ltd Film forming device
JP2004183096A (en) * 2002-12-05 2004-07-02 Samsung Electronics Co Ltd Atomic layer deposition system capable of preventing formation of powder in exhaust route
JP2004281247A (en) * 2003-03-17 2004-10-07 Pioneer Electronic Corp Organic electroluminescent display panel and its manufacturing method
WO2006093016A1 (en) * 2005-02-28 2006-09-08 So-Ken Co., Ltd. Printed board and method for manufacturing same
JP2007134099A (en) * 2005-11-09 2007-05-31 Ulvac Japan Ltd Organic electroluminescence display panel
JP2010532917A (en) * 2007-06-22 2010-10-14 ザ・リージエンツ・オブ・ザ・ユニバーシティ・オブ・コロラド Protective coatings for organic electronic devices manufactured using atomic layer deposition and molecular layer deposition methods
KR20100064870A (en) * 2008-12-05 2010-06-15 엘지디스플레이 주식회사 Organic electroluminescence display device and method for fabricating the same
JP2013101969A (en) * 2008-12-30 2013-05-23 Samsung Display Co Ltd Method for encapsulating environmentally sensitive element
KR20110000818A (en) * 2009-06-29 2011-01-06 엘지디스플레이 주식회사 Organic light emitting display device and method for fabricating the same
JP2011124228A (en) * 2009-12-14 2011-06-23 Samsung Mobile Display Co Ltd Manufacturing method of organic light-emitting device, and organic light-emitting device
JP2015513609A (en) * 2012-02-15 2015-05-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for depositing a sealing film
US20140299845A1 (en) * 2013-04-03 2014-10-09 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN104638117A (en) * 2013-11-12 2015-05-20 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085476A (en) * 2018-01-10 2019-07-18 도쿄엘렉트론가부시키가이샤 Film forming method
JP2019119918A (en) * 2018-01-10 2019-07-22 東京エレクトロン株式会社 Film deposition method
US11367610B2 (en) 2018-01-10 2022-06-21 Tokyo Electron Limited Film forming and process container cleaning method
JP7089881B2 (en) 2018-01-10 2022-06-23 東京エレクトロン株式会社 Film formation method
KR102623770B1 (en) 2018-01-10 2024-01-10 도쿄엘렉트론가부시키가이샤 Film forming method
WO2019167358A1 (en) * 2018-02-27 2019-09-06 株式会社ジャパンディスプレイ Display device
JP2019192790A (en) * 2018-04-25 2019-10-31 東京エレクトロン株式会社 Method of cleaning gas supply pipe and processing system
JP7058545B2 (en) 2018-04-25 2022-04-22 東京エレクトロン株式会社 Gas supply pipe cleaning method and processing system
JP2019197669A (en) * 2018-05-10 2019-11-14 パイオニア株式会社 Light-emitting device and manufacturing method of light-emitting device
JP7202786B2 (en) 2018-05-10 2023-01-12 パイオニア株式会社 Light-emitting device and method for manufacturing light-emitting device
JP2020050915A (en) * 2018-09-27 2020-04-02 東京エレクトロン株式会社 Film deposition apparatus and temperature control method
JP7008602B2 (en) 2018-09-27 2022-01-25 東京エレクトロン株式会社 Film forming equipment and temperature control method

Also Published As

Publication number Publication date
TWI695652B (en) 2020-06-01
CN106257705A (en) 2016-12-28
CN106257705B (en) 2019-06-11
KR101870511B1 (en) 2018-06-22
JP6584162B2 (en) 2019-10-02
TW201713163A (en) 2017-04-01
KR20160150606A (en) 2016-12-30

Similar Documents

Publication Publication Date Title
JP6584162B2 (en) Laminated sealing film forming method and forming apparatus
KR100991445B1 (en) Manufacturing method of a light emitting device
US8298340B2 (en) Organic thin film deposition device, organic EL element manufacturing device, and organic thin film deposition method
JP5173699B2 (en) Organic EL device manufacturing equipment
TW201421762A (en) Method for hybrid encapsulation of an organic light emitting diode
KR20140021566A (en) Gate valve unit,substrate processing device and substrate processing method thereof
KR20010062735A (en) Film formation apparatus and method for forming a film
US20110240223A1 (en) Substrate processing system
US10233528B2 (en) Mask for deposition system and method for using the mask
JP2020026575A (en) Film deposition device, film deposition system, and film deposition method
JP2012097330A (en) Thin-film formation system and organic el device manufacturing system
JP6605657B1 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
WO2008018498A1 (en) Film forming apparatus, film forming system and film forming method
KR102125122B1 (en) Substrate processing apparatus
CN110656310B (en) Film forming apparatus, apparatus for manufacturing organic device, and method for manufacturing organic device
WO2008018500A1 (en) Film forming device, film forming system, and film forming method
JP6027837B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TWI577826B (en) Vapor deposition apparatus and method, and method of manufacturing organic light emitting display apparatus
JP2010202912A (en) Atomic layer deposition device and method therefor
JP6075611B2 (en) Deposition equipment
KR101334704B1 (en) Organic deposition apparatus and organic deposition method
KR102051978B1 (en) Apparatus for processing substrate
KR101225213B1 (en) Oled encapsulation apparatus and method of the same
JP2022092404A (en) Film deposition apparatus, film deposition method and manufacturing method of electronic device
JP2013110114A (en) Apparatus for manufacturing organic el device and angle correction mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250