JP2016226097A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2016226097A
JP2016226097A JP2015108119A JP2015108119A JP2016226097A JP 2016226097 A JP2016226097 A JP 2016226097A JP 2015108119 A JP2015108119 A JP 2015108119A JP 2015108119 A JP2015108119 A JP 2015108119A JP 2016226097 A JP2016226097 A JP 2016226097A
Authority
JP
Japan
Prior art keywords
winding
stator
phase
magnetic flux
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015108119A
Other languages
Japanese (ja)
Other versions
JP6451992B2 (en
Inventor
桑原 優
Masaru Kuwabara
優 桑原
義信 鎌田
Yoshinobu Kamata
義信 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015108119A priority Critical patent/JP6451992B2/en
Publication of JP2016226097A publication Critical patent/JP2016226097A/en
Application granted granted Critical
Publication of JP6451992B2 publication Critical patent/JP6451992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress generation of core loss by supplying a current to multi-phase stator winding so that harmonic magnetic flux generated at a field magnetic pole core is canceled.SOLUTION: In a rotary electric machine 10, stator winding of one phase or more among multiple phases has a winding set including first winding (U-phase winding Ua, V-phase winding Va and W-phase winding Wa) where a current flows in a predetermined direction so as to cancel magnetic flux generated at a field magnetic pole core, and second winding (U-phase winding Ub, V-phase winding Vb and W-phase winding Wb) where a current flows in the opposite direction from the first winding. This constitution includes the first winding and second winding where flow directions of the currents are opposite to each other. Pieces of magnetic flux generated with the currents flowing to the first winding and second winding are opposite in direction, so magnetic flux (specially, harmonic magnetic flux) generated at the field magnetic pole core with a current flowing to the stator winding is canceled. Magnetic flux generated at the field magnetic pole core is therefore reduced (or eliminated), and then generation of iron loss can be suppressed.SELECTED DRAWING: Figure 3

Description

本発明は、固定子,回転子,界磁極コア,界磁巻線などを有する回転電機に関する。   The present invention relates to a rotating electrical machine having a stator, a rotor, a field pole core, a field winding, and the like.

従来では、電機子巻線鎖交磁束量を調整可能な回転電動機であって、ロータをコンパクトに構成することができ、さらに、ステータからロータに入り込む磁力線が電機子巻線の磁束から受ける影響の低減を図ることを目的とする回転電動機に関する技術の一例が開示されている(例えば特許文献1を参照)。この回転電動機は、界磁ヨークは、ステータコアおよびロータコアの端部から軸方向に離間した位置に配置され、天板部と、側壁部と、筒状の突部とを備える。突部は、第2ロータコアの軸方向端部に向けて突出するように形成される。巻線は、突部の外周面に巻き付けられる。   Conventionally, it is a rotary motor capable of adjusting the amount of interlinkage magnetic flux in the armature winding, and the rotor can be made compact. An example of a technique related to a rotary electric motor intended to reduce is disclosed (for example, see Patent Document 1). In this rotary electric motor, the field yoke is disposed at a position axially separated from the ends of the stator core and the rotor core, and includes a top plate portion, a side wall portion, and a cylindrical protrusion. The protrusion is formed to protrude toward the axial end of the second rotor core. The winding is wound around the outer peripheral surface of the protrusion.

特許第4623471号公報Japanese Patent No. 4623471

特許文献1に記載の回転電動機は、コイルエンドを起磁力とする磁気回路が形成される。当該磁気回路における磁束の流れ方は、例えばステータ→界磁ヨーク→ロータ→ステータである。電機子巻線に電流を印加するとコイルエンドにも起磁力が生じ磁界が発生するため、界磁ヨークに磁束が流れる。当該界磁ヨークに流れる磁束に高調波成分が含まれると、鉄損が発生してしまい問題となる。   In the rotary electric motor described in Patent Document 1, a magnetic circuit having a coil end as a magnetomotive force is formed. The magnetic flux flows in the magnetic circuit, for example, stator → field yoke → rotor → stator. When a current is applied to the armature winding, a magnetomotive force is generated at the coil end and a magnetic field is generated, so that a magnetic flux flows through the field yoke. If a harmonic component is included in the magnetic flux flowing through the field yoke, iron loss occurs and becomes a problem.

本発明はこのような点に鑑みてなしたものであり、界磁極コア(上記界磁ヨークに相当する)で生じる高調波磁束をキャンセルするように多相の固定子巻線(上記電機子巻線に相当する)に電流を流して、鉄損の発生を抑制できる回転電機を提供することを目的とする。   The present invention has been made in view of the above points, and is designed to cancel the multi-phase stator winding (the armature winding described above) so as to cancel the harmonic magnetic flux generated in the field pole core (corresponding to the field yoke). An object of the present invention is to provide a rotating electrical machine that can suppress the occurrence of iron loss by passing a current through a wire).

上記課題を解決するためになされた第1の発明は、固定子コア(14a)と、前記固定子コアに巻き付けられる多相の固定子巻線(14b)とを含む固定子(14)と、前記固定子コアとギャップ(G)を介して回転自在に設けられる回転子(13)と、軸方向に前記固定子コアを挟むように設けられる界磁極コア(11,15)と、前記界磁極コアに巻き付けられる界磁巻線(16,17)とを有し、前記固定子,前記回転子および前記界磁極コアに流れる磁束(ψa,ψb)によって磁気回路(MC1a,MC1b,MC2a,MC2b)が形成される回転電機(10)において、前記多相のうちで一相以上の前記固定子巻線は、前記界磁極コアで生じる前記磁束をキャンセルするように、所定方向に電流が流れる第1巻線(Ua,Va,Wa)と、前記第1巻線とは逆方向に電流が流れる第2巻線(Ub,Vb,Wb)とを含む巻線組を有することを特徴とする。   1st invention made | formed in order to solve the said subject, The stator (14) containing the stator core (14a) and the multiphase stator winding (14b) wound around the said stator core, A rotor (13) provided rotatably with the stator core and a gap (G), a field pole core (11, 15) provided so as to sandwich the stator core in the axial direction, and the field pole A magnetic circuit (MC1a, MC1b, MC2a, MC2b) having magnetic field windings (16, 17) wound around the core and magnetic flux (ψa, ψb) flowing through the stator, the rotor and the field pole core. In the rotating electrical machine (10) in which the first and second stator coils are formed, a current flows in a predetermined direction in the stator winding of one or more of the multiphases so as to cancel the magnetic flux generated in the field pole core. Winding (Ua, Va, Wa) and a winding set including a second winding (Ub, Vb, Wb) in which a current flows in a direction opposite to that of the first winding.

この構成によれば、多相のうちで一相以上の固定子巻線は、電流の流れる方向が互いに逆となる第1巻線と第2巻線とを含む巻線組を有する。特に、固定子コアから突出するコイルエンド部における第1巻線と第2巻線について電流の流れる方向が互いに逆となるようにするとよい。第1巻線と第2巻線とに流れる電流で発生する磁束が逆方向になるので、固定子巻線に流れる電流によって界磁極コアに生じる磁束がキャンセルされる。よって、界磁極コアに生じる磁束(特に高調波磁束)が小さくなる(あるいは無くなる)ので、鉄損の発生を抑制できる。   According to this configuration, the stator winding of one or more phases among the polyphases has a winding set including the first winding and the second winding in which the current flowing directions are opposite to each other. In particular, it is preferable that the directions of current flow are opposite to each other in the first winding and the second winding in the coil end portion protruding from the stator core. Since the magnetic flux generated by the current flowing in the first winding and the second winding is in the opposite direction, the magnetic flux generated in the field pole core is canceled by the current flowing in the stator winding. Therefore, since the magnetic flux (especially harmonic magnetic flux) generated in the field pole core is reduced (or eliminated), the generation of iron loss can be suppressed.

第2の発明は、前記巻線組を有する同相の固定子巻線は、周方向に隣り合うように前記固定子コアに巻き付けられることを特徴とする。   According to a second aspect of the present invention, the in-phase stator winding having the winding set is wound around the stator core so as to be adjacent in the circumferential direction.

この構成によれば、同相の固定子巻線に含まれる組巻線、すなわち第1巻線と第2巻線が周方向に隣り合うように固定子コアに巻き付けられる。第1巻線と第2巻線とに流れる電流で発生する磁束がキャンセルされるので、界磁極コアでの鉄損発生を抑制できる。また、この構成にすることで短節係数を高めることができる。例えば、周方向に離間して巻き付けられる第1巻線と第2巻線の構造例(例えば6スロット,4極)ではコイルピッチが電気角で120度になるのに対して、周方向に隣り合うように巻き付けられる第1巻線と第2巻線の構造例(例えば6スロット,5極)ではコイルピッチが電気角で150度になるため、短節係数が高くなる。さらに、固定子巻線を隣り合うように配置することで、第1巻線と第2巻線との間を接続する渡り線を短くできる。   According to this configuration, the set windings included in the stator windings in the same phase, that is, the first winding and the second winding are wound around the stator core so as to be adjacent in the circumferential direction. Since the magnetic flux generated by the current flowing through the first winding and the second winding is canceled, it is possible to suppress the occurrence of iron loss in the field pole core. In addition, the short coefficient can be increased with this configuration. For example, in the structural example (for example, 6 slots, 4 poles) of the first winding and the second winding that are wound apart in the circumferential direction, the coil pitch is 120 degrees in electrical angle, but adjacent in the circumferential direction. In the structural example (for example, 6 slots, 5 poles) of the first winding and the second winding wound so as to fit with each other, the coil pitch is 150 degrees in terms of electrical angle, and thus the short node coefficient is high. Furthermore, the connecting wire connecting between the first winding and the second winding can be shortened by arranging the stator windings adjacent to each other.

第3の発明は、前記巻線組を有する同相の固定子巻線は、周方向に離間して前記固定子コアに巻き付けられることを特徴とする。   A third aspect of the invention is characterized in that the same-phase stator windings having the winding set are wound around the stator core while being spaced apart in the circumferential direction.

この構成によれば、同相の固定子巻線に含まれる組巻線、すなわち第1巻線と第2巻線が周方向に離間して固定子コアに巻き付けられる。第1巻線と第2巻線は離間しているので、磁極歯(ティースとも呼ぶ)に鎖交する磁束により発生するラジアル力が分散するため、固定子の振動が減り、騒音の発生を抑制できる。   According to this configuration, the set windings included in the stator windings of the same phase, that is, the first winding and the second winding are wound around the stator core while being separated in the circumferential direction. Since the first and second windings are separated, the radial force generated by the magnetic flux linked to the magnetic pole teeth (also called teeth) is dispersed, reducing the vibration of the stator and suppressing the generation of noise. it can.

なお、「外側」は径方向における外径側や外周側を意味し、「内側」は径方向における内径側や内周側を意味する。「回転子(ロータ)」は、円形状(円環状や円筒状等を含む)に成形される。「回転電機」は、回転する部材(例えば軸やシャフト等)を有する機器であれば任意である。例えば、発電機,電動機,電動発電機等が該当する。発電機には電動発電機が発電機の場合を含み、電動機には電動発電機が電動機の場合を含む。「インナーロータ型」は回転子が固定子(ステータ)よりも内側に配置される構成である。「アウターロータ型」は回転子が固定子よりも外側に配置される構成である。「固定子巻線」は固定子巻線であり、一本状の巻線でもよく、複数の導体線やコイルを電気的に接続して一本状にしたものでもよい。固定子巻線の相数は、三相以上であれば問わない。「コア」は鉄心とも呼び、少なくとも磁束が流れる部位を磁性体で形成する。   “Outside” means the outer diameter side or outer periphery side in the radial direction, and “inner side” means the inner diameter side or inner periphery side in the radial direction. The “rotor (rotor)” is formed into a circular shape (including an annular shape and a cylindrical shape). The “rotary electric machine” is arbitrary as long as it is a device having a rotating member (for example, a shaft or a shaft). For example, a generator, a motor, a motor generator, and the like are applicable. The generator includes a case where the motor generator is a generator, and the motor includes a case where the motor generator is an electric motor. The “inner rotor type” is a configuration in which the rotor is disposed inside the stator (stator). The “outer rotor type” is a configuration in which the rotor is arranged outside the stator. The “stator winding” is a stator winding, and may be a single winding, or may be a single winding formed by electrically connecting a plurality of conductor wires or coils. The number of phases of the stator winding is not limited as long as it is three or more. The “core” is also called an iron core, and at least a portion where magnetic flux flows is formed of a magnetic material.

回転電機の構成例を模式的に示す斜視図である。It is a perspective view which shows the structural example of a rotary electric machine typically. 回転電機の第1構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 1st structural example of a rotary electric machine. 図2に示すIII−III線の断面図である。It is sectional drawing of the III-III line shown in FIG. 固定子巻線の第1巻き付け例を周方向に展開した断面図である。It is sectional drawing which developed the 1st example of winding of the stator coil | winding in the circumferential direction. 図3に示すV−V線の断面図である。It is sectional drawing of the VV line shown in FIG. 図3に示すVI−VI線の断面図である。It is sectional drawing of the VI-VI line shown in FIG. 電気角に対する磁束の変化例を示すタイムチャート図である。It is a time chart figure which shows the example of a change of the magnetic flux with respect to an electrical angle. 従来技術の電気角に対する磁束の変化例を示すタイムチャート図である。It is a time chart figure which shows the example of a change of the magnetic flux with respect to the electrical angle of a prior art. 界磁鎖交磁束と電機子起磁力との関係例を示すグラフ図である。It is a graph which shows the example of a relationship between a field linkage magnetic flux and an armature magnetomotive force. 鉄損と電機子起磁力との関係例を示すグラフ図である。It is a graph which shows the example of a relationship between an iron loss and an armature magnetomotive force. 回転電機の第2構成例を模式的に示す断面図である。It is sectional drawing which shows the 2nd structural example of a rotary electric machine typically. 固定子巻線の第2巻き付け例を周方向に展開した断面図である。It is sectional drawing which expand | deployed the 2nd example of winding of the stator coil | winding in the circumferential direction. 回転電機の第3構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 3rd structural example of a rotary electric machine. 回転電機の第4構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 4th structural example of a rotary electric machine. 回転電機の第5構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 5th structural example of a rotary electric machine. 回転電機の第6構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 6th structural example of a rotary electric machine.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。図示する要素以外の要素(例えばハウジングなど)については、各図で図示を省略し、明細書では説明を省略する。上下左右等の方向は、図面の記載を基準とする。英数字の連続符号は記号「〜」を用いて略記する。例えば、「回転電機10A〜10E」は「回転電機10A,10B,10C,10D,10E」を意味する。「固定する」という場合には、どのように固定するかは任意であり、固定方法を問わない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that unless otherwise specified, “connecting” means electrically connecting. Each figure shows elements necessary for explaining the present invention, and does not necessarily show all actual elements. Elements other than the illustrated elements (such as a housing) are not shown in each drawing, and description thereof is omitted in the specification. The directions such as up, down, left and right are based on the description in the drawings. Alphanumeric continuous codes are abbreviated using the symbol “˜”. For example, “rotating electrical machines 10A to 10E” means “rotating electrical machines 10A, 10B, 10C, 10D, and 10E”. In the case of “fixing”, the fixing method is arbitrary and the fixing method is not limited.

〔実施の形態1〕
実施の形態1は図1〜図10を参照しながら説明する。図1に分解斜視図で示す回転電機10は、インナーロータ型であって、界磁極コア11,15、回転軸12、回転子13、固定子14などを有する。これらの要素は、図示するように軸方向に配置される。界磁極コア11,15は、回転子13および固定子14を挟むように設けられる。
[Embodiment 1]
The first embodiment will be described with reference to FIGS. A rotating electrical machine 10 shown in an exploded perspective view in FIG. 1 is an inner rotor type and includes field pole cores 11 and 15, a rotating shaft 12, a rotor 13, a stator 14, and the like. These elements are arranged axially as shown. The field pole cores 11 and 15 are provided so as to sandwich the rotor 13 and the stator 14.

図2には、組み付け後の回転電機10Aを断面図で示す。回転電機10Aは、回転電機10の一例であり、回転子13と固定子14との間の磁束密度を界磁巻線16に流す界磁電流If(図2を参照)を制御することで可変できるように構成される。回転軸12(シャフト)は回転自在に設けられる。この回転軸12は、直接的または間接的に回転子13と固定される。よって、回転軸12と回転子13は一体的に回転する。   FIG. 2 is a sectional view of the rotary electric machine 10A after assembly. The rotating electrical machine 10 </ b> A is an example of the rotating electrical machine 10, and is variable by controlling the field current If (see FIG. 2) that flows the magnetic flux density between the rotor 13 and the stator 14 through the field winding 16. Configured to be able to. The rotating shaft 12 (shaft) is rotatably provided. The rotating shaft 12 is fixed to the rotor 13 directly or indirectly. Therefore, the rotating shaft 12 and the rotor 13 rotate integrally.

回転子13と固定子14や、界磁極コア11(特に被巻付部11a)と回転子13とは、いずれもギャップGを介して設けられる。ギャップGの距離(幅)は、回転子13と固定子14との間で磁束が流れ、界磁極コア11と回転子13との間で磁束が流れる限り、個別に任意の値を設定してよい。   The rotor 13 and the stator 14, and the field pole core 11 (particularly the wound portion 11 a) and the rotor 13 are all provided via the gap G. As long as the magnetic flux flows between the rotor 13 and the stator 14 and the magnetic flux flows between the field pole core 11 and the rotor 13, the distance (width) of the gap G is set to an arbitrary value individually. Good.

回転子13は、回転子コア13aや磁石13bなどを有する。回転子コア13aは、電磁鋼板を積層させる構成としてもよく、単体の磁性材で構成してもよい。磁石13bは、固定子14と対面する側の回転子コア13aの外側に設けられる。この磁石13bは、回転子コア13aの外側に露出してもよく、回転子コア13aに埋め込まれてもよい。磁石13bの数は任意に設定でき、本形態では「2」とする(図3を参照)。すなわち、N極やS極の磁極数が「4」であり、磁極対数が「2」である。なお、回転子13と界磁極コア11との間に軸受(ベアリング)を介在させてもよい(図示を省略)。   The rotor 13 includes a rotor core 13a and a magnet 13b. The rotor core 13a may be configured by laminating electromagnetic steel plates or may be configured by a single magnetic material. The magnet 13b is provided outside the rotor core 13a on the side facing the stator 14. The magnet 13b may be exposed to the outside of the rotor core 13a or may be embedded in the rotor core 13a. The number of magnets 13b can be set arbitrarily, and is “2” in this embodiment (see FIG. 3). That is, the number of magnetic poles of N pole and S pole is “4”, and the number of magnetic pole pairs is “2”. A bearing (bearing) may be interposed between the rotor 13 and the field pole core 11 (not shown).

固定子14は、固定子コア14aや固定子巻線14bなどを有する。固定子コア14aは、電磁鋼板を積層させる構成としてもよく、単体の磁性材で構成してもよい。固定子コア14aには、固定子巻線14bを巻き付けるため、磁極歯TE(ティース;図4を参照)や、隣り合う磁極歯の相互間に設けられる空間であるスロットSLなどが形成される。磁極歯TEとスロットSLの数はいずれも任意に設定してよい。通常は磁極歯TEとスロットSLが交互に配置されるので、磁極歯TEとスロットSLの数は等しい。本形態では、スロットSLの数「6」とする(図3を参照)。   The stator 14 includes a stator core 14a and a stator winding 14b. The stator core 14a may be configured by laminating electromagnetic steel plates or may be configured by a single magnetic material. In the stator core 14a, magnetic pole teeth TE (tooth; see FIG. 4), slots SL that are spaces provided between adjacent magnetic pole teeth, and the like are formed to wind the stator winding 14b. Both the number of magnetic pole teeth TE and the number of slots SL may be set arbitrarily. Usually, since the magnetic pole teeth TE and the slots SL are alternately arranged, the number of the magnetic pole teeth TE and the slots SL is equal. In this embodiment, the number of slots SL is “6” (see FIG. 3).

固定子巻線14bは多相の巻線であり、本形態では三相(例えばU相,V相,W相)を適用する。固定子コア14aへの巻き付けは、集中巻でもよく、分布巻でもよい。本形態では、集中巻を適用する。固定子巻線14bには、U相巻線Ua,V相巻線Va,W相巻線Waと、U相巻線Ub,V相巻線Vb,W相巻線Wbとを含む。前者のU相巻線Ua,V相巻線Va,W相巻線Waは「第1巻線」に相当する。後者のU相巻線Ub,V相巻線Vb,W相巻線Wbは「第2巻線」に相当する。第1巻線と第2巻線は「巻線組」に相当し、互いに逆方向に電流が流れるように設けられる。第1巻線と第2巻線は、互いに逆方向に巻き付けてもよく、同方向に巻き付けて逆方向に電流を流してもよい。本形態では、U相巻線UaとU相巻線Ubの組、V相巻線VaとV相巻線Vbの組、W相巻線WaとW相巻線Wbの組がそれぞれ「巻線組」に相当する。   The stator winding 14b is a multi-phase winding, and three phases (for example, U phase, V phase, W phase) are applied in this embodiment. The winding around the stator core 14a may be concentrated winding or distributed winding. In this embodiment, concentrated winding is applied. The stator winding 14b includes a U-phase winding Ua, a V-phase winding Va, a W-phase winding Wa, and a U-phase winding Ub, a V-phase winding Vb, and a W-phase winding Wb. The former U-phase winding Ua, V-phase winding Va, and W-phase winding Wa correspond to “first winding”. The latter U-phase winding Ub, V-phase winding Vb, and W-phase winding Wb correspond to “second winding”. The first winding and the second winding correspond to a “winding set” and are provided so that currents flow in opposite directions. The first winding and the second winding may be wound in opposite directions, or may be wound in the same direction and current may flow in the opposite direction. In this embodiment, a set of U-phase winding Ua and U-phase winding Ub, a set of V-phase winding Va and V-phase winding Vb, and a set of W-phase winding Wa and W-phase winding Wb are respectively “windings”. Corresponds to “set”.

固定子14に巻き付けられる固定子巻線14bのうちで固定子コア14aから突出する部位は、コイルエンド部CEと呼ぶ(図4を参照)。本形態のコイルエンド部CEには、第1巻線(本例ではU相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(本例ではU相巻線Ub,V相巻線Vb,W相巻線Wb)を含む(図4を参照)。   A portion of the stator winding 14b wound around the stator 14 that protrudes from the stator core 14a is referred to as a coil end portion CE (see FIG. 4). The coil end portion CE of this embodiment includes a first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa in this example) and a second winding (U-phase winding Ub in this example). , V-phase winding Vb, W-phase winding Wb) (see FIG. 4).

界磁極コア11は、界磁巻線16を巻き付けるための被巻付部11aなどを有する。同様に界磁極コア15は、界磁巻線17を巻き付けるための被巻付部15aなどを有する。界磁極コア11,15は、いずれも少なくとも磁束(例えば図5に示す磁束ψaや図6に示す磁束ψbなど)が流れる部位を磁性体で形成する。   The field pole core 11 has a wound portion 11 a for winding the field winding 16 and the like. Similarly, the field pole core 15 has a wound portion 15a for winding the field winding 17 and the like. Each of the field pole cores 11 and 15 is formed of a magnetic material at least where a magnetic flux (for example, the magnetic flux ψa shown in FIG. 5 or the magnetic flux ψb shown in FIG. 6) flows.

図3を参照しながら巻線組について説明する。図3に示す構成例では、U相巻線UaとU相巻線Ubとが周方向に隣り合うように巻き付けられる。V相巻線VaとV相巻線Vbとも周方向に隣り合うように巻き付けられる。W相巻線WaとW相巻線Wbとも周方向に隣り合うように巻き付けられる。矢印を含む破線は、コイルエンド部CEで流れる電流の方向を示す。凡例で示す電流の向きは、スロットSLで流れる電流の方向を示す。   The winding group will be described with reference to FIG. In the configuration example shown in FIG. 3, the U-phase winding Ua and the U-phase winding Ub are wound so as to be adjacent in the circumferential direction. The V-phase winding Va and the V-phase winding Vb are also wound so as to be adjacent in the circumferential direction. W-phase winding Wa and W-phase winding Wb are also wound so as to be adjacent in the circumferential direction. A broken line including an arrow indicates a direction of current flowing in the coil end portion CE. The direction of current shown in the legend indicates the direction of current flowing in the slot SL.

図4に示すように、U相巻線UaとU相巻線Ubとは互いに逆方向に電流が流れる。すなわち、U相巻線Uaに流れるU相電流Iuaと、U相巻線Ubに流れるU相電流Iubとは、互いに逆方向になるようにする。U相巻線Uaに流れる電流によって生じる磁束と、U相巻線Ubに流れる電流によって生じる磁束とは、互いに逆方向になるためにキャンセルされる。このことは、V相巻線Va,V相電流IvaとV相巻線Vb,V相電流Ivbとの関係や、W相巻線Wa,W相電流IwaとW相巻線Wb,W相電流Iwbとの関係についても同様である。   As shown in FIG. 4, the U-phase winding Ua and the U-phase winding Ub have currents flowing in opposite directions. That is, the U-phase current Iua flowing in the U-phase winding Ua and the U-phase current Iub flowing in the U-phase winding Ub are set in opposite directions. The magnetic flux generated by the current flowing in the U-phase winding Ua and the magnetic flux generated by the current flowing in the U-phase winding Ub are canceled because they are in opposite directions. This is because the relationship between the V-phase winding Va, the V-phase current Iva and the V-phase winding Vb, the V-phase current Ivb, the W-phase winding Wa, the W-phase current Iwa, the W-phase winding Wb, and the W-phase current. The same applies to the relationship with Iwb.

図5には、第1巻線に電流を流して生じる磁束ψaで形成される磁気回路MC1a,MC2aの一例を示す。磁気回路MC1aは、固定子14,回転子13および界磁極コア11に流れる磁束ψaによって形成される。磁気回路MC2aは、固定子14,回転子13および界磁極コア15に流れる磁束ψbによって形成される。   FIG. 5 shows an example of the magnetic circuits MC1a and MC2a formed by the magnetic flux ψa generated by passing a current through the first winding. The magnetic circuit MC1a is formed by a magnetic flux ψa flowing through the stator 14, the rotor 13, and the field pole core 11. The magnetic circuit MC2a is formed by a magnetic flux ψb flowing through the stator 14, the rotor 13, and the field pole core 15.

図6には、第2巻線に電流を流して生じる磁束ψbで形成される磁気回路MC1b,MC2bの一例を示す。磁気回路MC1bは、固定子14,回転子13および界磁極コア11に流れる磁束ψbによって形成される。磁気回路MC2bは、固定子14,回転子13および界磁極コア15に流れる磁束ψbによって形成される。   FIG. 6 shows an example of the magnetic circuits MC1b and MC2b formed by the magnetic flux ψb generated by passing a current through the second winding. The magnetic circuit MC1b is formed by a magnetic flux ψb flowing through the stator 14, the rotor 13, and the field pole core 11. The magnetic circuit MC2b is formed by a magnetic flux ψb flowing through the stator 14, the rotor 13, and the field pole core 15.

第1巻線と第2巻線に流れる電流が互いに逆方向であるので、図5に示す磁束ψaと図6に示す磁束ψbもまた互いに逆方向に生じる。一点鎖線で示す磁束ψaと二点鎖線で示す磁束ψbとの変化例を図7に示す。磁束ψaと磁束ψbを合成した合成磁束ψc(実線で示す)は、理論的にゼロになる。こうして界磁極コア11,15に生じる磁束ψaと磁束ψb(特に高調波磁束)は互いにキャンセルされる。こうして磁束ψaと磁束ψbがキャンセルされることから、磁気回路MC1a,MC1b,MC2a,MC2bも生じない。よって、図5と図6に示す磁気回路MC1a,MC1b,MC2a,MC2bは、説明のために便宜的に図示するに過ぎない。   Since the currents flowing through the first winding and the second winding are in opposite directions, the magnetic flux ψa shown in FIG. 5 and the magnetic flux ψb shown in FIG. 6 are also generated in opposite directions. FIG. 7 shows an example of change between the magnetic flux ψa indicated by the one-dot chain line and the magnetic flux ψb indicated by the two-dot chain line. The combined magnetic flux ψc (indicated by the solid line) obtained by synthesizing the magnetic flux ψa and the magnetic flux ψb is theoretically zero. Thus, the magnetic flux ψa and the magnetic flux ψb (particularly harmonic magnetic flux) generated in the field pole cores 11 and 15 are canceled each other. Since the magnetic flux ψa and the magnetic flux ψb are canceled in this way, the magnetic circuits MC1a, MC1b, MC2a, MC2b are not generated. Therefore, the magnetic circuits MC1a, MC1b, MC2a, and MC2b shown in FIGS. 5 and 6 are merely shown for convenience of explanation.

なお図8に示すように、従来技術ではU相巻線による磁束ψuと、V相巻線による磁束ψvと、W相巻線による磁束ψwとによって合成される合成磁束ψx(二点鎖線で示す)が生じて界磁極コア11に流れる。これに対して図7に示すように、磁束ψaと磁束ψbがキャンセルされるために、合成磁束ψcはゼロになる。   As shown in FIG. 8, in the prior art, a combined magnetic flux ψx (indicated by a two-dot chain line) synthesized by a magnetic flux ψu by a U-phase winding, a magnetic flux ψv by a V-phase winding, and a magnetic flux ψw by a W-phase winding. ) Occurs and flows to the field pole core 11. On the other hand, as shown in FIG. 7, since the magnetic flux ψa and the magnetic flux ψb are canceled, the combined magnetic flux ψc becomes zero.

図9には、界磁極コア11,15に流れる界磁鎖交磁束(合成磁束ψcに相当する)と、固定子巻線14bに流す電流を変化させた場合に生じる電機子起磁力との関係例を示す。二点鎖線で示す特性線L1は、従来と同様に第1巻線と第2巻線に流す電流を同じにした場合の変化である。実線で示す特性線L2は、第1巻線と第2巻線に流す電流を逆方向にした場合の変化である。特性線L1は電機子起磁力が大きくなるにつれて界磁鎖交磁束が大きくなる。これに対して、特性線L2は電機子起磁力が大きくなっても界磁鎖交磁束はほとんど変化しない。   FIG. 9 shows the relationship between the field linkage magnetic flux (corresponding to the combined magnetic flux ψc) flowing in the field pole cores 11 and 15 and the armature magnetomotive force generated when the current flowing in the stator winding 14b is changed. An example is shown. A characteristic line L1 indicated by a two-dot chain line is a change when currents flowing through the first winding and the second winding are the same as in the conventional case. A characteristic line L2 indicated by a solid line is a change when the currents flowing through the first winding and the second winding are reversed. In the characteristic line L1, the field linkage magnetic flux increases as the armature magnetomotive force increases. On the other hand, in the characteristic line L2, the field linkage magnetic flux hardly changes even when the armature magnetomotive force increases.

図10には、合成磁束ψcによって界磁極コア11,15で生じる鉄損と、固定子巻線14bに流す電流を変化させた場合に生じる電機子起磁力との関係例を示す。二点鎖線で示す特性線L3は、従来と同様に第1巻線と第2巻線に流す電流を同じにした場合の変化である。実線で示す特性線L4は、第1巻線と第2巻線に流す電流を逆方向にした場合の変化である。特性線L3は電機子起磁力が大きくなるにつれて鉄損が大きくなる。これに対して、特性線L4は電機子起磁力が大きくなっても鉄損はほとんど変化しない。   FIG. 10 shows an example of the relationship between the iron loss generated in the field pole cores 11 and 15 by the combined magnetic flux ψc and the armature magnetomotive force generated when the current flowing through the stator winding 14b is changed. A characteristic line L3 indicated by a two-dot chain line is a change when the currents flowing through the first winding and the second winding are the same as in the conventional case. A characteristic line L4 indicated by a solid line is a change when the currents flowing through the first winding and the second winding are reversed. In the characteristic line L3, the iron loss increases as the armature magnetomotive force increases. On the other hand, in the characteristic line L4, the iron loss hardly changes even when the armature magnetomotive force increases.

〔実施の形態2〕
実施の形態2は図11,図12を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1と相違する点を説明する。
[Embodiment 2]
The second embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from the first embodiment will be mainly described.

図11に示す回転電機10Bは、回転電機10の一例である。この回転電機10Bは、図3に示す回転電機10Aの変形例であり、界磁巻線16に流す界磁電流Ifを制御することで回転子13と固定子14との間の磁束密度を可変できるように構成される。   A rotating electrical machine 10 </ b> B illustrated in FIG. 11 is an example of the rotating electrical machine 10. This rotating electrical machine 10B is a modification of the rotating electrical machine 10A shown in FIG. 3, and the magnetic flux density between the rotor 13 and the stator 14 can be varied by controlling the field current If flowing in the field winding 16. Configured to be able to.

回転電機10Bが回転電機10Aと相違するのは、巻線組の配置である。すなわち、回転電機10Aは第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を周方向に隣り合うように巻き付ける。これに対して回転電機10Bは、第1巻線と第2巻線を周方向に離間して巻き付ける。   The rotating electrical machine 10B differs from the rotating electrical machine 10A in the arrangement of the winding set. That is, the rotating electrical machine 10A includes a first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and a second winding (U-phase winding Ub, V-phase winding Vb, W-phase winding). The wire Wb) is wound so as to be adjacent in the circumferential direction. On the other hand, the rotating electrical machine 10B winds the first winding and the second winding apart in the circumferential direction.

上述した巻き付けにおける周方向の展開図を図11に示す。図12に図示するV−V線の断面図は図5と同様になり、VI−VI線の断面図は図6と同様になる。第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)は離間しているものの、流れる電流は互いに逆方向である。界磁極コア11,15の全体でみれば、磁束ψaと磁束ψbは互いにキャンセルされる。よって、回転電機10Bも図9や図9に示す特性線L2,L4のような特性が得られる。   FIG. 11 shows a development view in the circumferential direction in the winding described above. 12 is the same as FIG. 5 and the VI-VI line is the same as FIG. The first winding (U phase winding Ua, V phase winding Va, W phase winding Wa) and the second winding (U phase winding Ub, V phase winding Vb, W phase winding Wb) are separated from each other. However, the flowing currents are in opposite directions. In the entire field pole core 11, 15, the magnetic flux ψa and the magnetic flux ψb are canceled each other. Therefore, the rotary electric machine 10B also has characteristics such as the characteristic lines L2 and L4 shown in FIG. 9 and FIG.

〔実施の形態3〕
実施の形態3は図13を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1,2と相違する点を説明する。
[Embodiment 3]
The third embodiment will be described with reference to FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 and 2 will be mainly described.

図13に示す回転電機10Cは、回転電機10の一例であり、回転子13と固定子14との間の磁束密度を界磁巻線16に流す界磁電流Ifを制御することで可変できるように構成される。   A rotating electrical machine 10 </ b> C shown in FIG. 13 is an example of the rotating electrical machine 10 so that the magnetic flux density between the rotor 13 and the stator 14 can be varied by controlling the field current If flowing in the field winding 16. Configured.

回転電機10Cは、図3に示す回転電機10Aの変形例である。回転電機10Cが回転電機10Aと相違するのは、スロットSLの数と、磁石13bの数である。すなわち回転電機10Aは、スロットSLの数が「6」であり、磁石13bの数が「2」である。これに対して回転電機10Cは、スロットSLの数が「12」であり、磁石13bの数が「5」である。   The rotating electrical machine 10C is a modification of the rotating electrical machine 10A shown in FIG. The rotating electrical machine 10C differs from the rotating electrical machine 10A in the number of slots SL and the number of magnets 13b. That is, in the rotating electrical machine 10A, the number of slots SL is “6”, and the number of magnets 13b is “2”. On the other hand, in the rotating electrical machine 10C, the number of slots SL is “12”, and the number of magnets 13b is “5”.

巻線組の配置は、スロットSLの数が異なるものの、実施の形態1と同様である。よって、回転電機10Cは図9や図9に示す特性線L2,L4のような特性が得られる。また、界磁極コア11,15に生じる磁束ψa,ψb(特に高調波磁束)がキャンセルされて小さくなる(あるいは無くなる)ので、界磁極コア11,15での鉄損発生を抑制できる。また、この構成にすることで短節係数を高めることができる。周方向に隣り合うように巻き付けられる第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)はスロットSLの数や磁石13bの数に応じてコイルピッチが電気角θ(例えば120度≦θ≦240度)になるため、短節係数が高くなる。さらに、固定子巻線14bを隣り合うように配置することで、第1巻線と第2巻線との間を接続する渡り線を短くできる。   The arrangement of the winding sets is the same as that of the first embodiment although the number of slots SL is different. Therefore, the rotating electrical machine 10C can obtain characteristics such as the characteristic lines L2 and L4 shown in FIG. 9 and FIG. Further, since the magnetic fluxes ψa and ψb (particularly harmonic magnetic flux) generated in the field pole cores 11 and 15 are canceled and become smaller (or eliminated), generation of iron loss in the field pole cores 11 and 15 can be suppressed. In addition, the short coefficient can be increased with this configuration. A first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and a second winding (U-phase winding Ub, V-phase winding Vb, In the W-phase winding Wb), the coil pitch becomes an electrical angle θ (for example, 120 degrees ≦ θ ≦ 240 degrees) in accordance with the number of slots SL and the number of magnets 13b, so that the short-node coefficient becomes high. Furthermore, by arranging the stator windings 14b so as to be adjacent to each other, the connecting wire connecting the first winding and the second winding can be shortened.

図示を省略するが、実施の形態2と同様にして、第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を周方向に離間して巻き付けてもよい。周方向の展開図は図11と同様になる。よって、回転電機10Cも図9や図9に示す特性線L2,L4のような特性が得られる。   Although not shown, in the same manner as in the second embodiment, the first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and the second winding (U-phase winding Ub, The V-phase winding Vb and the W-phase winding Wb) may be wound apart in the circumferential direction. The developed view in the circumferential direction is the same as FIG. Therefore, the rotary electric machine 10C also has characteristics such as the characteristic lines L2 and L4 shown in FIG. 9 and FIG.

〔実施の形態4〕
実施の形態4は図14を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜3と相違する点を説明する。
[Embodiment 4]
Embodiment 4 will be described with reference to FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 to 3 will be mainly described.

図14に示す回転電機10Dは、回転電機10の一例であり、回転子13と固定子14との間の磁束密度を界磁巻線16に流す界磁電流Ifを制御することで可変できるように構成される。   A rotating electrical machine 10D shown in FIG. 14 is an example of the rotating electrical machine 10 so that the magnetic flux density between the rotor 13 and the stator 14 can be varied by controlling the field current If flowing in the field winding 16. Configured.

回転電機10Dは、図11に示す回転電機10Bの変形例である。回転電機10Dが回転電機10Aと相違するのは、スロットSLの数と、磁石13bの数である。すなわち回転電機10Aは、スロットSLの数が「6」であり、磁石13bの数が「2」である。これに対して回転電機10Dは、スロットSLの数が「12」であり、磁石13bの数が「7」である。   The rotating electrical machine 10D is a modification of the rotating electrical machine 10B shown in FIG. The rotating electrical machine 10D differs from the rotating electrical machine 10A in the number of slots SL and the number of magnets 13b. That is, in the rotating electrical machine 10A, the number of slots SL is “6”, and the number of magnets 13b is “2”. On the other hand, in the rotating electrical machine 10D, the number of slots SL is “12”, and the number of magnets 13b is “7”.

巻線組の配置は、スロットSLの数が異なるものの、実施の形態1と同様である。よって、回転電機10Dは図9や図9に示す特性線L2,L4のような特性が得られる。また、界磁極コア11,15に生じる磁束ψa,ψb(特に高調波磁束)がキャンセルされて小さくなる(あるいは無くなる)ので、界磁極コア11,15での鉄損発生を抑制できる。また、この構成にすることで短節係数を高めることができる。周方向に隣り合うように巻き付けられる第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)はスロットSLの数や磁石13bの数に応じてコイルピッチが電気角θ(例えば120度≦θ≦240度)になるため、短節係数が高くなる。さらに、固定子巻線14bを隣り合うように配置することで、第1巻線と第2巻線との間を接続する渡り線を短くできる。   The arrangement of the winding sets is the same as that of the first embodiment although the number of slots SL is different. Therefore, the rotating electrical machine 10D can obtain characteristics such as the characteristic lines L2 and L4 shown in FIG. 9 and FIG. Further, since the magnetic fluxes ψa and ψb (particularly harmonic magnetic flux) generated in the field pole cores 11 and 15 are canceled and become smaller (or eliminated), generation of iron loss in the field pole cores 11 and 15 can be suppressed. In addition, the short coefficient can be increased with this configuration. A first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and a second winding (U-phase winding Ub, V-phase winding Vb, In the W-phase winding Wb), the coil pitch becomes an electrical angle θ (for example, 120 degrees ≦ θ ≦ 240 degrees) in accordance with the number of slots SL and the number of magnets 13b, so that the short-node coefficient becomes high. Furthermore, by arranging the stator windings 14b so as to be adjacent to each other, the connecting wire connecting the first winding and the second winding can be shortened.

図示を省略するが、実施の形態2と同様にして、第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を周方向に離間して巻き付けてもよい。周方向の展開図は図11と同様になる。よって、回転電機10Dも図9や図9に示す特性線L2,L4のような特性が得られる。   Although not shown, in the same manner as in the second embodiment, the first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and the second winding (U-phase winding Ub, The V-phase winding Vb and the W-phase winding Wb) may be wound apart in the circumferential direction. The developed view in the circumferential direction is the same as FIG. Therefore, the rotating electrical machine 10D can also have characteristics such as the characteristic lines L2 and L4 shown in FIG. 9 and FIG.

〔実施の形態5〕
実施の形態5は図15を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜4用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜4と相違する点を説明する。
[Embodiment 5]
Embodiment 5 will be described with reference to FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, the points different from the first to fourth embodiments will be mainly described.

図15に示す回転電機10Eは、回転電機10の一例であり、回転子13と固定子14との間の磁束密度を界磁巻線16に流す界磁電流Ifを制御することで可変できるように構成される。   A rotating electrical machine 10E shown in FIG. 15 is an example of the rotating electrical machine 10, and the magnetic flux density between the rotor 13 and the stator 14 can be varied by controlling the field current If flowing in the field winding 16. Configured.

回転電機10Eは、図3に示す回転電機10Aの変形例である。回転電機10Eが回転電機10Aと相違するのは、磁石13bの数である。すなわち、回転電機10Aは磁石13bの数が「2」であるのに対し、回転電機10Eは磁石13bの数が「1」である。   The rotating electrical machine 10E is a modification of the rotating electrical machine 10A shown in FIG. The rotating electrical machine 10E is different from the rotating electrical machine 10A in the number of magnets 13b. That is, the rotating electrical machine 10A has “2” in the number of magnets 13b, whereas the rotating electrical machine 10E has “1” in the number of magnets 13b.

巻線組の配置は、実施の形態1と同様にして、第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を周方向に隣り合うように巻き付ける。この場合の周方向の展開図は図4と同様になる。図示を省略するが、実施の形態2と同様にして、第1巻線と第2巻線を周方向に離間して巻き付けてもよい。この場合の周方向の展開図は図11と同様になる。いずれの巻き付けにせよ、回転電機10Eは図9や図9に示す特性線L2,L4のような特性が得られる。よって、音の発生を抑制できる。   The arrangement of the winding set is the same as in the first embodiment, and the first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and the second winding (U-phase winding Ub). , V-phase winding Vb, W-phase winding Wb) are wound adjacent to each other in the circumferential direction. The developed view in the circumferential direction in this case is the same as FIG. Although not shown, the first winding and the second winding may be wound apart in the circumferential direction as in the second embodiment. The developed view in the circumferential direction in this case is the same as FIG. In any case, the rotating electrical machine 10E can obtain characteristics such as characteristic lines L2 and L4 shown in FIGS. Therefore, the generation of sound can be suppressed.

〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜5に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
In the above, although the form for implementing this invention was demonstrated according to Embodiment 1-5, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態1〜5では、固定子コア14aに対して固定子巻線14bを集中巻で巻き付ける構成とした(図3,図11,図13,図14,図15を参照)。この形態に代えて、図16に示すように、固定子コア14aに対して固定子巻線14bを分布巻で巻き付ける構成としてもよい。図16に示す回転電機10Fは回転電機10の一例であり、U相巻線Ua,Ubを実線で示し、V相巻線Va,Vbを二点鎖線で示し、W相巻線Wa,Wbを一点鎖線で示す。第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)とは、周方向に逆方向に巻き付ける。固定子コア14aに対する固定子巻線14bの巻き付けが相違するに過ぎないので、実施の形態1〜5と同様の作用効果が得られる。   In the first to fifth embodiments described above, the stator winding 14b is wound around the stator core 14a by concentrated winding (see FIGS. 3, 11, 13, 14, and 15). Instead of this configuration, as shown in FIG. 16, the stator winding 14b may be wound around the stator core 14a by distributed winding. A rotary electric machine 10F shown in FIG. 16 is an example of the rotary electric machine 10, U-phase windings Ua and Ub are shown by solid lines, V-phase windings Va and Vb are shown by two-dot chain lines, and W-phase windings Wa and Wb are shown. Shown with a dashed line. The first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and the second winding (U-phase winding Ub, V-phase winding Vb, W-phase winding Wb) are: Wrap in the opposite direction to the circumferential direction. Since only the winding of the stator winding 14b around the stator core 14a is different, the same effect as in the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、回転子13は一以上の磁石13bを有する構成とした(図2,図3,図5,図6,図11,図13〜図15を参照)。この形態に代えて、回転子13は任意の構成としてもよい。回転子13に設ける磁石13bの数や配置等を問わず、磁石13bが無い回転子13でもよい。すなわち、界磁極コア11および界磁極コア15のうちで一方または双方と、第1巻線と第2巻線との組み合わせを含み、コイルエンド部CEを起磁力とする磁気回路が形成される回転電機10に適用することができる。固定子14は電流が互いに逆方向に流れる第1巻線と第2巻線を有するので、実施の形態1〜5と同様の作用効果が得られる。   In the first to fifth embodiments described above, the rotor 13 is configured to have one or more magnets 13b (see FIGS. 2, 3, 5, 6, 11, and 13 to 15). Instead of this form, the rotor 13 may have an arbitrary configuration. Regardless of the number or arrangement of the magnets 13b provided in the rotor 13, the rotor 13 without the magnet 13b may be used. That is, a rotation in which a magnetic circuit including one or both of the field pole core 11 and the field pole core 15 and a combination of the first winding and the second winding and having the coil end portion CE as a magnetomotive force is formed. It can be applied to the electric machine 10. Since the stator 14 has a first winding and a second winding in which currents flow in opposite directions, the same effect as in the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、電流方向が逆方向になる第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を固定子14に備える構成とした(図3,図4,図11,図12,図13〜図15を参照)。この形態に代えて、第1巻線および第2巻線とともに、固定子巻線14bに相当する他の巻線を固定子14に備える構成としてもよい。他の巻線は、第1巻線や第2巻線と同様にして、例えば第3巻線(U相巻線Uc,V相巻線Vc,W相巻線Wc)や、当該第3巻線とともに第4巻線(U相巻線Ud,V相巻線Vd,W相巻線Wd)などが該当する(図示せず)。第3巻線と第4巻線は「巻線組」に相当し、コイルエンド部CEなどで電流方向が逆方向になるように配置するとよい。他の巻線については、数を問わず、巻き付け(集中巻や分布巻など)を問わず、巻線組であるか否かを問わない。固定子巻線14bの構成が相違するに過ぎないので、実施の形態1〜5と同様の作用効果が得られる。   In the first to fifth embodiments described above, the first winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and the second winding (U-phase winding) whose current directions are opposite to each other. Ub, V-phase winding Vb, and W-phase winding Wb) are provided in the stator 14 (see FIGS. 3, 4, 11, 12, and 13 to 15). Instead of this configuration, the stator 14 may be provided with other windings corresponding to the stator winding 14b together with the first winding and the second winding. Other windings are the same as the first winding and the second winding, for example, the third winding (U-phase winding Uc, V-phase winding Vc, W-phase winding Wc) or the third winding. The fourth winding (U-phase winding Ud, V-phase winding Vd, W-phase winding Wd) and the like correspond to the wires (not shown). The third winding and the fourth winding correspond to a “winding set” and may be arranged so that the current direction is reversed in the coil end portion CE or the like. Regarding the other windings, regardless of the number, regardless of winding (concentrated winding, distributed winding, etc.), it does not matter whether they are a winding group or not. Since only the configuration of the stator winding 14b is different, the same effects as those of the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、固定子巻線14bを三相の巻線、すなわちU相巻線Ua,Ub、V相巻線Va,Vb、W相巻線Wa,Wbで構成した(図3,図4,図11〜図15を参照)。この形態に代えて、固定子巻線14bを四相以上の巻線で構成してもよい。単に固定子巻線14bの相数が相違するに過ぎないので、実施の形態1〜5と同様の作用効果が得られる。   In the first to fifth embodiments described above, the stator winding 14b is configured by three-phase windings, that is, U-phase windings Ua and Ub, V-phase windings Va and Vb, and W-phase windings Wa and Wb ( (See FIGS. 3, 4 and 11-15). Instead of this form, the stator winding 14b may be formed of four or more phase windings. Since only the number of phases of the stator winding 14b is different, the same effect as the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、多相(三相)の固定子巻線14bの全てについて、巻線組となる第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)を含む構成とした(図3,図4,図11〜図15を参照)。この形態に代えて、多相の固定子巻線14bのうち、全てを除く一相以上について、第1巻線と第2巻線を含む構成としてもよい。例えば、第1巻線としてのU相巻線Uaと、第2巻線としてのU相巻線Ubとの巻線組を固定子巻線14bに含む。多相の固定子巻線14bの全てについて巻線組を含む構成に比べると劣るものの、従来よりは実施の形態1〜5に示す作用効果が得られる。   In the first to fifth embodiments described above, the first winding (U-phase winding Ua, V-phase winding Va, W-phase) that constitutes a winding set for all of the multi-phase (three-phase) stator windings 14b. Winding Wa) and the second winding (U-phase winding Ub, V-phase winding Vb, W-phase winding Wb) are included (see FIGS. 3, 4, and 11 to 15). Instead of this form, it is good also as a structure containing a 1st coil | winding and a 2nd coil | winding about one or more phases except all among the multiphase stator windings 14b. For example, the stator winding 14b includes a winding set of a U-phase winding Ua as a first winding and a U-phase winding Ub as a second winding. Although all the polyphase stator windings 14b are inferior to the configuration including the winding set, the operational effects shown in the first to fifth embodiments can be obtained as compared with the conventional ones.

上述した実施の形態1,2では、スロットSLの数を「6」とし、磁石13bの数を「2」として固定子14を構成した(図3,図11を参照)。実施の形態3,4では、スロットSLの数を「12」とし、磁石13bの数を「5」として固定子14を構成した(図13,図14を参照)。実施の形態5では、スロットSLの数を「6」とし、磁石13bの数を「1」として固定子14を構成した(図15を参照)。これらの形態に代えて、これら以外の数で、スロットSLの数と磁石13bの数を設定してもよい。回転電機10の定格や使用目的(トルク重視や回転速度重視など)等に応じて、それぞれ適切な数を設定するとよい。スロットSLや磁石13bの数が相違するに過ぎないので、実施の形態1〜5と同様の作用効果が得られる。   In the first and second embodiments described above, the stator 14 is configured with the number of slots SL being “6” and the number of magnets 13b being “2” (see FIGS. 3 and 11). In the third and fourth embodiments, the number of slots SL is set to “12” and the number of magnets 13b is set to “5” to configure the stator 14 (see FIGS. 13 and 14). In the fifth embodiment, the number of slots SL is set to “6” and the number of magnets 13b is set to “1” to configure the stator 14 (see FIG. 15). Instead of these forms, the number of slots SL and the number of magnets 13b may be set by other numbers. An appropriate number may be set in accordance with the rating and purpose of use of the rotating electrical machine 10 (such as emphasis on torque and rotation speed). Since only the number of slots SL and magnets 13b is different, the same effect as in the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、回転電機10(10A〜10E)をインナーロータ型で構成した(図1〜図3,図5,図6,図11,図13〜図15を参照)。この形態に代えて、回転電機10をアウターロータ型で構成してもよい。回転子13と固定子14の配置が相違するに過ぎないので、実施の形態1〜5と同様の作用効果が得られる。   In Embodiments 1 to 5 described above, the rotating electrical machine 10 (10A to 10E) is configured as an inner rotor type (see FIGS. 1 to 3, 5, 6, 11, and 13 to 15). Instead of this form, the rotating electrical machine 10 may be configured as an outer rotor type. Since only the arrangement of the rotor 13 and the stator 14 is different, the same effect as the first to fifth embodiments can be obtained.

上述した実施の形態1〜5では、界磁極コア11および界磁巻線16と、界磁極コア15および界磁巻線17の双方を備える構成とした(図1,図2,図4〜図6,図12を参照)。この形態に代えて、界磁極コア11および界磁巻線16と、界磁極コア15および界磁巻線17とのうちで、いずれか一方の界磁極コアおよび界磁巻線を備える構成としてもよい。この構成であっても、界磁極コアに生じる磁束ψaと磁束ψbを互いにキャンセルできるので、実施の形態1〜5と同様の作用効果が得られる。   In the above-described first to fifth embodiments, the field pole core 11 and the field winding 16 and both the field pole core 15 and the field winding 17 are configured (FIGS. 1, 2, and 4 to 4). 6, see FIG. Instead of this form, any one of the field pole core 11 and the field winding 16 and the field pole core 15 and the field winding 17 may be provided with any one of the field pole core and the field winding. Good. Even in this configuration, the magnetic flux ψa and the magnetic flux ψb generated in the field pole core can be canceled each other, so that the same effect as in the first to fifth embodiments can be obtained.

〔作用効果〕
上述した実施の形態1〜5および他の実施の形態によれば、以下に示す各効果を得ることができる。
[Function and effect]
According to the first to fifth embodiments and other embodiments described above, the following effects can be obtained.

(1)回転電機10において、多相のうちで一相以上の固定子巻線14bは、界磁極コア11,15で生じる磁束ψa,ψbをキャンセルするように、所定方向に電流が流れる第1巻線(U相巻線Ua,V相巻線Va,W相巻線Wa)と、第1巻線とは逆方向に電流が流れる第2巻線(U相巻線Ub,V相巻線Vb,W相巻線Wb)とを含む巻線組を有する構成とした(図1〜図15を参照)。この構成によれば、多相のうちで一相以上の固定子巻線14bは、電流の流れる方向が互いに逆となる第1巻線と第2巻線とを含む巻線組を有する。第1巻線と第2巻線とに流れる電流で発生する磁束ψa,ψbが逆方向になるので、固定子巻線14bに流れる電流によって界磁極コア11,15に生じる磁束ψa,ψb(特に高調波磁束)がキャンセルされる。よって、界磁極コア11,15に生じる磁束ψa,ψbが小さくなる(あるいは無くなる)ので、鉄損の発生を抑制できる。   (1) In the rotating electrical machine 10, the stator winding 14 b of one or more phases among the multiple phases is a first in which a current flows in a predetermined direction so as to cancel the magnetic fluxes ψa and ψb generated in the field pole cores 11 and 15. Winding (U-phase winding Ua, V-phase winding Va, W-phase winding Wa) and second winding (U-phase winding Ub, V-phase winding) in which current flows in the opposite direction to the first winding Vb, W-phase winding Wb) is included (see FIGS. 1 to 15). According to this configuration, the stator winding 14b of one or more phases among the multiple phases has a winding set including the first winding and the second winding in which the directions of current flow are opposite to each other. Since the magnetic fluxes ψa and ψb generated by the current flowing in the first winding and the second winding are in opposite directions, the magnetic fluxes ψa and ψb (particularly, the magnetic fluxes ψa and ψb generated in the field pole cores 11 and 15 by the current flowing in the stator winding 14b). Harmonic magnetic flux) is canceled. Therefore, since the magnetic fluxes ψa and ψb generated in the field pole cores 11 and 15 are reduced (or eliminated), the occurrence of iron loss can be suppressed.

界磁極コア11,15を通る磁束は界磁巻線16,17に鎖交するため、高調波磁束などの磁束変化は界磁巻線16,17に電流を印加する際に外乱となる。この外乱によって、例えば指令電流を流せない、電流の制御性が悪化等のように、制御する上で問題が生じる。しかし、本発明は電流の流れる方向が互いに逆となる第1巻線と第2巻線からなる巻線組を含むので、高調波磁束がキャンセルされ、当該問題が解決される。   Since the magnetic flux passing through the field pole cores 11 and 15 is linked to the field windings 16 and 17, a magnetic flux change such as a harmonic magnetic flux becomes a disturbance when a current is applied to the field windings 16 and 17. Due to this disturbance, a problem arises in the control, for example, the command current cannot be flowed or the current controllability is deteriorated. However, since the present invention includes a winding set composed of the first winding and the second winding in which the directions of current flow are opposite to each other, the harmonic magnetic flux is canceled and the problem is solved.

(2)第1巻線および第2巻線の固定子コア14aから突出するコイルエンド部CEに流れる電流方向が逆方向である構成とした(図4,図12を参照)。この構成によれば、界磁極コア11,15に生じる磁束ψa,ψbの発生源である固定子巻線14bのうちコイルエンド部CEに第1巻線と第2巻線を含むので、磁束ψa,ψb(特に高調波磁束)がより確実にキャンセルされる。よって、磁束ψa,ψbがさらに小さくなる(あるいは無くなる)ので、さらに鉄損の発生を抑制できる。   (2) The direction of the current flowing through the coil end portion CE protruding from the stator core 14a of the first winding and the second winding is opposite (see FIGS. 4 and 12). According to this configuration, since the coil end portion CE includes the first winding and the second winding in the stator winding 14b that is a generation source of the magnetic fluxes ψa and ψb generated in the field pole cores 11 and 15, the magnetic flux ψa , Ψb (particularly harmonic flux) is more reliably canceled. Therefore, since the magnetic fluxes ψa and ψb are further reduced (or eliminated), the occurrence of iron loss can be further suppressed.

(3)多相の全ての固定子巻線14bは、巻線組を有する構成とした(図4,図12を参照)。この構成によれば、多相の固定子巻線14bの全てに巻線組を有するので、磁束ψa,ψb(特に高調波磁束)がより確実にキャンセルされる。よって、磁束ψa,ψbがさらに小さくなる(あるいは無くなる)ので、さらに鉄損の発生を抑制できる。   (3) All the multiphase stator windings 14b have a winding set (see FIGS. 4 and 12). According to this configuration, since all of the multiphase stator windings 14b have the winding sets, the magnetic fluxes ψa and ψb (particularly harmonic magnetic fluxes) are more reliably canceled. Therefore, since the magnetic fluxes ψa and ψb are further reduced (or eliminated), the occurrence of iron loss can be further suppressed.

(4)巻線組を有する同相の固定子巻線14bは、周方向に隣り合うように固定子コア14aに巻き付けられる構成とした(図3,図4,図13〜図15を参照)。この構成によれば、同相の固定子巻線14bに含まれる組巻線、すなわち第1巻線と第2巻線が周方向に隣り合うように固定子コア14aに巻き付けられる。第1巻線と第2巻線とに流れる電流で発生する磁束ψa,ψb(特に高調波磁束)がキャンセルされて小さくなる(あるいは無くなる)ので、界磁極コア11,15での鉄損発生を抑制できる。また、この構成にすることで短節係数を高めることができる。   (4) The in-phase stator winding 14b having the winding set is configured to be wound around the stator core 14a so as to be adjacent in the circumferential direction (see FIGS. 3, 4, and 13 to 15). According to this configuration, the combined winding included in the stator winding 14b having the same phase, that is, the first winding and the second winding are wound around the stator core 14a so as to be adjacent in the circumferential direction. Since magnetic fluxes ψa and ψb (particularly harmonic magnetic flux) generated by the current flowing through the first winding and the second winding are canceled and reduced (or eliminated), iron loss occurs in the field pole cores 11 and 15. Can be suppressed. In addition, the short coefficient can be increased with this configuration.

(5)巻線組を有する同相の固定子巻線14bは、周方向に離間して固定子コア14aに巻き付けられる構成とした(図11,図12を参照)。この構成によれば、同相の固定子巻線14bに含まれる組巻線、すなわち第1巻線と第2巻線が周方向に離間して固定子コア14aに巻き付けられる。第1巻線と第2巻線は離間しているので、磁極歯TE(ティース)に鎖交する磁束により発生するラジアル力が分散するため、固定子14の振動が減り、騒音の発生を抑制できる。   (5) The in-phase stator winding 14b having a winding set is configured to be wound around the stator core 14a so as to be separated in the circumferential direction (see FIGS. 11 and 12). According to this configuration, the set windings included in the stator winding 14b having the same phase, that is, the first winding and the second winding are wound around the stator core 14a while being separated in the circumferential direction. Since the first winding and the second winding are separated from each other, the radial force generated by the magnetic flux linked to the magnetic pole teeth TE (teeth) is dispersed, so the vibration of the stator 14 is reduced and the generation of noise is suppressed. it can.

(6)巻線組を有する同相の固定子巻線14bは、周方向にコイルピッチが電気角θの120度以上で固定子コア14aに巻き付けられる構成とした(図3,図13,図14を参照)。この構成によれば、より確実に短節係数を高めることができる。   (6) The in-phase stator winding 14b having the winding set is configured to be wound around the stator core 14a with a coil pitch of 120 degrees or more of the electrical angle θ in the circumferential direction (FIGS. 3, 13, and 14). See). According to this configuration, it is possible to increase the short clause coefficient more reliably.

10(10A〜10E) 回転電機
11,15 界磁極コア
13 回転子(ロータ)
14 固定子(ステータ)
14a 固定子コア(ステータコア)
14b 固定子巻線(ステータ巻線)
16,17 界磁巻線
ψa,ψb 磁束
G ギャップ
Ua,Va,Wa 第1巻線(固定子巻線)
Ub,Vb,Wb 第2巻線(固定子巻線)
10 (10A to 10E) Rotating electric machine 11, 15 Field pole core 13 Rotor (rotor)
14 Stator
14a Stator core (stator core)
14b Stator winding (stator winding)
16, 17 Field winding ψa, ψb Magnetic flux G Gap Ua, Va, Wa First winding (stator winding)
Ub, Vb, Wb Second winding (stator winding)

Claims (6)

固定子コア(14a)と、前記固定子コアに巻き付けられる多相の固定子巻線(14b)とを含む固定子(14)と、
前記固定子コアとギャップ(G)を介して回転自在に設けられる回転子(13)と、
軸方向に前記固定子コアを挟むように設けられる界磁極コア(11,15)と、
前記界磁極コアに巻き付けられる界磁巻線(16,17)とを有し、
前記固定子,前記回転子および前記界磁極コアに流れる磁束(ψa,ψb)によって磁気回路(MC1a,MC1b,MC2a,MC2b)が形成される回転電機(10)において、
前記多相のうちで一相以上の前記固定子巻線は、前記界磁極コアで生じる前記磁束をキャンセルするように、所定方向に電流が流れる第1巻線(Ua,Va,Wa)と、前記第1巻線とは逆方向に電流が流れる第2巻線(Ub,Vb,Wb)とを含む巻線組を有することを特徴とする回転電機。
A stator (14) including a stator core (14a) and a multiphase stator winding (14b) wound around the stator core;
A rotor (13) rotatably provided through the stator core and a gap (G);
Field pole cores (11, 15) provided to sandwich the stator core in the axial direction;
Field windings (16, 17) wound around the field pole core;
In a rotating electrical machine (10) in which a magnetic circuit (MC1a, MC1b, MC2a, MC2b) is formed by magnetic flux (ψa, ψb) flowing through the stator, the rotor, and the field pole core,
The stator winding of one or more phases among the multiphases, the first winding (Ua, Va, Wa) through which a current flows in a predetermined direction so as to cancel the magnetic flux generated in the field pole core, A rotating electrical machine having a winding set including a second winding (Ub, Vb, Wb) through which a current flows in a direction opposite to that of the first winding.
前記第1巻線および前記第2巻線の前記固定子コアから突出するコイルエンド部(CE)に流れる電流方向が逆方向であることを特徴とする請求項1に記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein a direction of a current flowing through a coil end portion (CE) protruding from the stator core of the first winding and the second winding is opposite. 前記多相の全ての前記固定子巻線は、前記巻線組を有することを特徴とする請求項1または2に記載の回転電機。   3. The rotating electrical machine according to claim 1, wherein all the stator windings of the multiphase have the winding set. 前記巻線組を有する同相の前記固定子巻線は、周方向に隣り合うように前記固定子コアに巻き付けられることを特徴とする請求項1から3のいずれか一項に記載の回転電機。   4. The rotating electrical machine according to claim 1, wherein the same-phase stator windings having the winding sets are wound around the stator core so as to be adjacent to each other in the circumferential direction. 前記巻線組を有する同相の前記固定子巻線は、周方向に離間して前記固定子コアに巻き付けられることを特徴とする請求項1から3のいずれか一項に記載の回転電機。   4. The rotating electrical machine according to claim 1, wherein the same-phase stator windings having the winding set are wound around the stator core so as to be spaced apart from each other in a circumferential direction. 前記巻線組を有する同相の前記固定子巻線は、コイルピッチが周方向に電気角の120度以上で前記固定子コアに巻き付けられることを特徴とする請求項4に記載の回転電機。   5. The rotating electrical machine according to claim 4, wherein the stator winding of the same phase having the winding set is wound around the stator core with a coil pitch of 120 degrees or more in the circumferential direction.
JP2015108119A 2015-05-28 2015-05-28 Rotating electric machine Active JP6451992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108119A JP6451992B2 (en) 2015-05-28 2015-05-28 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108119A JP6451992B2 (en) 2015-05-28 2015-05-28 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2016226097A true JP2016226097A (en) 2016-12-28
JP6451992B2 JP6451992B2 (en) 2019-01-16

Family

ID=57748757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108119A Active JP6451992B2 (en) 2015-05-28 2015-05-28 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP6451992B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215900A (en) * 1998-01-20 1999-08-06 Kokusan Denki Co Ltd Power supply unit using magnet type ac generator
JP2004064893A (en) * 2002-07-29 2004-02-26 Mitsubishi Electric Corp Motor and its drive unit
JP4623471B2 (en) * 2006-08-08 2011-02-02 トヨタ自動車株式会社 Rotating motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215900A (en) * 1998-01-20 1999-08-06 Kokusan Denki Co Ltd Power supply unit using magnet type ac generator
JP2004064893A (en) * 2002-07-29 2004-02-26 Mitsubishi Electric Corp Motor and its drive unit
JP4623471B2 (en) * 2006-08-08 2011-02-02 トヨタ自動車株式会社 Rotating motor

Also Published As

Publication number Publication date
JP6451992B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP4983022B2 (en) motor
JP2004032984A (en) Induction motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP5542849B2 (en) Switched reluctance motor
JP2013074743A (en) Rotary electric machine
US20120086288A1 (en) Electric rotating machine
JP6455725B2 (en) Rotating electric machine
WO2013021428A1 (en) Rotary electrical machine
JP7159800B2 (en) Rotating electric machine
JP5431886B2 (en) motor
JP4657820B2 (en) Annular winding motor
JP2017135863A (en) Hybrid field type double gap synchronous machine
JP2011223676A (en) Permanent magnet type motor
JP5605721B2 (en) Rotating electric machine
JP6376409B2 (en) AC excitation synchronous rotating electric machine
JP5011719B2 (en) Rotating electric machine and control method thereof, compressor, blower, and air conditioner
JP2001169517A (en) Capacitor motor
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP5960068B2 (en) Rotating electrical machine system
JP6451992B2 (en) Rotating electric machine
JP2007166796A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2018148675A (en) Stator for rotary electric machine
JP2017139864A (en) Rotary electric machine
JP5340332B2 (en) Rotating electric machine
JP5611094B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R151 Written notification of patent or utility model registration

Ref document number: 6451992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250