JP2016221461A - Condenser for physicochemical experiment - Google Patents

Condenser for physicochemical experiment Download PDF

Info

Publication number
JP2016221461A
JP2016221461A JP2015111059A JP2015111059A JP2016221461A JP 2016221461 A JP2016221461 A JP 2016221461A JP 2015111059 A JP2015111059 A JP 2015111059A JP 2015111059 A JP2015111059 A JP 2015111059A JP 2016221461 A JP2016221461 A JP 2016221461A
Authority
JP
Japan
Prior art keywords
fluid
cooling fluid
steam
fluid passage
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111059A
Other languages
Japanese (ja)
Inventor
清勝 柴田
Kiyokatsu Shibata
清勝 柴田
眞一 有賀
Shinichi Ariga
眞一 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rikakikai Co Ltd
Original Assignee
Tokyo Rikakikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rikakikai Co Ltd filed Critical Tokyo Rikakikai Co Ltd
Priority to JP2015111059A priority Critical patent/JP2016221461A/en
Publication of JP2016221461A publication Critical patent/JP2016221461A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a condenser for a physicochemical experiment for improving heat exchange efficiency, and reducing a size, by using a raw material of high heat conductivity.SOLUTION: A plurality of ceramic plates 11-16 are arranged in parallel at a predetermined interval toward the vertical direction, and steam fluid passages 22 and 24 and cooling fluid passages 21, 23 and 25 are alternately formed between the respective ceramic plates, and both side edges of the respective fluid passages are respectively blocked up by a side part blocking-up member, and a steam fluid introduction part 41 and a steam fluid lead-out part cut off by a first blocking-up member 33 to the cooling fluid passages and communicating only with the steam fluid passages, are respectively provided in both upper-lower end parts of the steam fluid passages, and a cooling fluid introduction part and a cooling fluid lead-out part 52 cut off by a second blocking-up member 34 to the steam fluid passages and communicating only with the cooling fluid passages, are respectively provided in both upper-lower end parts of the cooling fluid passages.SELECTED DRAWING: Figure 2

Description

本発明は、理化学実験用コンデンサーに関し、詳しくは、一般研究用器材として、理化学研究現場における濃縮、乾燥、分離、精製、蒸留、抽出液の溶媒除去等の作業に使用される理化学実験用のコンデンサーに関する。   TECHNICAL FIELD The present invention relates to a condenser for physics and chemistry experiments, and more specifically, as a general research equipment, a condenser for physics and chemistry experiments used for work such as concentration, drying, separation, purification, distillation, and solvent removal of an extract at a chemistry research site. About.

各種理化学実験における蒸留操作や還流操作にコンデンサーが広く用いられており、この種のコンデンサーには、耐薬品性を考慮してガラス製のものが用いられている(例えば、特許文献1参照。)。   A condenser is widely used for distillation operation and reflux operation in various physics and chemistry experiments, and this kind of condenser is made of glass in consideration of chemical resistance (for example, see Patent Document 1). .

特開2000−279703号公報JP 2000-279703 A

しかし、ガラス製のコンデンサーは、外管の内部に内管を配置した二重管構造を有しており、熟練したガラス職人の手作りで製作されるため、中規模以上のコンデンサーになると製造原価が高価になり、製品コストを大きく押し上げる要因となっていた。また、ガラスは熱伝導率が低いため、小型化が困難であるという問題もあった。   However, glass capacitors have a double-pipe structure in which the inner tube is placed inside the outer tube, and are manufactured by handmade by skilled glass craftsmen. It was expensive and greatly increased the product cost. In addition, since glass has low thermal conductivity, there is a problem that it is difficult to reduce the size.

そこで本発明は、熱伝導率が高い素材を用いることにより、熱交換効率の向上及び小型化を図ることができる理化学実験用コンデンサーを提供することを目的としている。   Accordingly, an object of the present invention is to provide a condenser for physicochemical experiments that can improve heat exchange efficiency and downsize by using a material having high thermal conductivity.

上記目的を達成するため、本発明の理化学実験用コンデンサーは、凝縮成分を含む蒸気流体が流通する蒸気流体通路と、該蒸気流体と間接熱交換して前記凝縮成分を凝縮させる冷却流体が流通する冷却流体通路とを備えた理化学実験用コンデンサーにおいて、複数枚のセラミック板を鉛直方向に向けてあらかじめ設定された間隔で平行に配置し、各セラミック板間に前記蒸気流体通路と前記冷却流体通路とを交互に形成し、各流体通路の両側縁を側部閉塞部材でそれぞれ閉塞するとともに、前記蒸気流体通路の上下両端部には、前記冷却流体通路に対しては第1閉塞部材によって遮断され、蒸気流体通路にのみ連通する蒸気流体導入部及び蒸気流体導出部をそれぞれ設け、前記冷却流体通路の上下両端部には、前記蒸気流体通路に対しては第2閉塞部材によって遮断され、冷却流体通路にのみ連通する冷却流体導入部及び冷却流体導出部をそれぞれ設けたことを特徴としている。   In order to achieve the above object, the condenser for physical and chemical experiments of the present invention has a vapor fluid passage through which a vapor fluid containing a condensed component flows, and a cooling fluid through which the condensed fluid is condensed by indirect heat exchange with the vapor fluid. In a condenser for physical and chemical experiments comprising a cooling fluid passage, a plurality of ceramic plates are arranged in parallel at predetermined intervals in the vertical direction, and the vapor fluid passage, the cooling fluid passage, and the like are arranged between the ceramic plates. Are alternately formed, and both side edges of each fluid passage are respectively closed with side closing members, and the upper and lower ends of the vapor fluid passage are blocked by the first closing member with respect to the cooling fluid passage, A steam fluid introducing portion and a steam fluid leading portion communicating only with the steam fluid passage are respectively provided, and upper and lower end portions of the cooling fluid passage are provided with respect to the steam fluid passage. Closing member is blocked by, it is characterized in that the cooling fluid inlet section communicating only with the cooling fluid passage and a cooling fluid outlet portion respectively provided.

さらに、本発明の理化学実験用コンデンサーは、前記セラミック板が4枚以上で、偶数枚のセラミック板が鉛直方向に向けて配置され、外面側から奇数番目となる流体通路を前記冷却流体通路とし、偶数番目となる流体通路を前記蒸気流体通路としたこと、前記各流体通路内に、隣接するセラミック板同士を連結するとともに、流体の流れをガイドする補強部材兼ガイド部材を設けたこと、また、前記蒸気流体導入部を前記蒸気流体通路の上部に設け、前記蒸気流体導出部を前記蒸気流体通路の下部に設けるとともに、前記冷却流体導入部を前記冷却流体通路の下部に設け、前記冷却流体導出部を前記冷却流体通路の上部に設けたことを特徴としている。   Furthermore, the condenser for physicochemical experiments of the present invention has four or more ceramic plates, an even number of ceramic plates are arranged in the vertical direction, and an odd-numbered fluid passage from the outer surface side is the cooling fluid passage, The even-numbered fluid passages are the steam fluid passages, and each of the fluid passages is provided with a reinforcing member / guide member that connects adjacent ceramic plates and guides the flow of fluid, The vapor fluid introduction part is provided in an upper part of the vapor fluid passage, the vapor fluid lead-out part is provided in a lower part of the vapor fluid path, and the cooling fluid introduction part is provided in a lower part of the cooling fluid passage, A portion is provided in the upper part of the cooling fluid passage.

本発明の理化学実験用コンデンサーによれば、コンデンサー用材料として、ガラスに比べて熱伝導率が20倍以上のセラミックを用いているので、冷却流体通路を流れる冷却流体と蒸気流体通路を流れる蒸気流体との間接熱交換効率を大幅に向上させることができ、ガラス製と同性能のコンデンサーを製作した場合、コンデンサーの大幅な小型化を図ることができる。また、コンデンサーの製作を機械化することが可能になるため、製造コストの大幅な低減を図ることができるとともに、個体差のない安定した形状、性能のコンデンサーを得ることができる。   According to the condenser for physics and chemistry experiments of the present invention, as the capacitor material, ceramic having a thermal conductivity of 20 times or more compared to glass is used, so that the cooling fluid flowing in the cooling fluid passage and the steam fluid flowing in the steam fluid passage The indirect heat exchange efficiency can be greatly improved, and when a condenser with the same performance as glass is manufactured, the condenser can be greatly reduced in size. Further, since it becomes possible to mechanize the capacitor, it is possible to greatly reduce the manufacturing cost and obtain a capacitor having a stable shape and performance without individual differences.

本発明の理化学実験用コンデンサーの一形態例を示す正面図である。It is a front view which shows one example of the capacitor | condenser for physicochemical experiments of this invention. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 金属製カバー取付前のコンデンサー本体を示す正面図である。It is a front view which shows the capacitor | condenser main body before metal cover attachment. 図3のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 図3のV−V断面図である。It is VV sectional drawing of FIG. 図4のVI−VI断面図である。It is VI-VI sectional drawing of FIG. 蒸気流体通路を示す斜視図である。It is a perspective view which shows a vapor | steam fluid channel | path. 図4のVIII−VIII断面図である。It is VIII-VIII sectional drawing of FIG. 冷却流体通路を示す斜視図である。It is a perspective view which shows a cooling fluid channel | path. コンデンサー本体を積層した本発明の理化学実験用コンデンサーの他の形態例を示す一部断面側面図である。It is a partial cross section side view which shows the other example of a form for the capacitor | condenser for physics and chemistry experiments of this invention which laminated | stacked the capacitor | condenser main body. 同じく蒸気流体通路の構造を示す断面図である。It is sectional drawing which similarly shows the structure of a vapor | steam fluid channel | path. 同じく冷却流体通路の構造を示す断面図である。It is sectional drawing which similarly shows the structure of a cooling fluid channel | path.

図1乃至図9は、本発明の理化学実験用コンデンサーの一形態例を示している。本形態例に示す理化学実験用コンデンサーは、外面板及び仕切板となる6枚のセラミック板11〜16を使用して蒸気流体通路と冷却流体通路とを交互に配置した5層の流体通路21〜25を有するコンデンサー本体10を、断熱材17を介して箱形の一対の金属製カバー18で覆ったものである。   1 to 9 show an example of one embodiment of the physicochemical capacitor of the present invention. The condenser for physics and chemistry experiments shown in this embodiment has five layers of fluid passages 21 to 21 in which vapor fluid passages and cooling fluid passages are alternately arranged using six ceramic plates 11 to 16 serving as outer plates and partition plates. The capacitor body 10 having 25 is covered with a pair of box-shaped metal covers 18 via a heat insulating material 17.

仕切板となるセラミック板12〜15(以下、仕切セラミック板12〜15という)は、例えば、高さが100〜200mm、幅が75〜125mm、厚さが0.6〜1.8mmの板材であって、外面板となるセラミック板11,16(以下、外面セラミック板11,16という)は、仕切セラミック板12〜15に対して高さ方向が15〜50mm大きく、上下両端が仕切セラミック板12〜15の上下端縁からあらかじめ設定された長さだけそれぞれ突出する大きさに設定されている。   The ceramic plates 12 to 15 (hereinafter referred to as “partition ceramic plates 12 to 15”) serving as partition plates are, for example, plate materials having a height of 100 to 200 mm, a width of 75 to 125 mm, and a thickness of 0.6 to 1.8 mm. The ceramic plates 11 and 16 serving as outer plates (hereinafter referred to as outer ceramic plates 11 and 16) have a height direction that is 15 to 50 mm larger than the partition ceramic plates 12 to 15 and the upper and lower ends are partitioned ceramic plates 12. ~ 15 are set to project from the upper and lower end edges by a predetermined length.

5層の流体通路21〜25は、両側縁が側部閉塞部材31でそれぞれ閉塞されており、外面側から偶数番目となる流体通路22,24が蒸気流体通路、奇数番目となる流体通路21,23,25が冷却流体通路となっている。また、各流体通路21〜25における流路幅(セラミック板同士の間隔)は、片側のみ熱交換を行う流体通路21,25が狭く、両側で熱交換を行う流体通路22,23,24は広く設定している。   The five-layer fluid passages 21 to 25 are closed at both side edges by side closing members 31, the even-numbered fluid passages 22 and 24 from the outer surface side are vapor fluid passages, and the odd-numbered fluid passages 21, Reference numerals 23 and 25 are cooling fluid passages. The fluid passages 21 to 25 have flow passage widths (intervals between ceramic plates) that are narrow in the fluid passages 21 and 25 that exchange heat only on one side and wide in the fluid passages 22, 23, and 24 that exchange heat on both sides. It is set.

蒸気流体通路である流体通路22,24(以下、蒸気流体通路22,24という)の上部及び下部には、外面セラミック板11,16の対向面外縁を外縁部閉塞部材32で閉塞した蒸気流体導入部41及び蒸気流体導出部42がそれぞれ設けられている。冷却流体通路となる流体通路21,23,25(以下、冷却流体通路21,23,25という)の上下両端部には、蒸気流体導入部41又は蒸気流体導出部42との間を遮断する第1閉塞部材33,33がそれぞれ設けられており、蒸気流体通路22,24の上下両端部は、開口部22a,24aによって蒸気流体導入部41又は蒸気流体導出部42にそれぞれ連通している。   Vapor fluid introduction in which the outer edges of the outer surface ceramic plates 11 and 16 are closed by the outer edge closing member 32 is provided above and below the fluid passages 22 and 24 (hereinafter referred to as vapor fluid paths 22 and 24), which are vapor fluid paths. A part 41 and a steam fluid outlet 42 are provided. The upper and lower ends of fluid passages 21, 23, 25 (hereinafter referred to as cooling fluid passages 21, 23, 25) that serve as cooling fluid passages are shielded from the steam fluid inlet 41 or the steam fluid outlet 42. One closing member 33, 33 is provided, respectively, and the upper and lower ends of the vapor fluid passages 22, 24 communicate with the vapor fluid inlet 41 or the vapor fluid outlet 42 through the openings 22a, 24a, respectively.

蒸気流体導入部41を画成する一方の外面セラミック板11には、蒸気流体導入部41に連通する蒸気流体導入口41aが開口しており、該蒸気流体導入口41aの外部には、蒸気流体導入ノズル43がOリング44を介して密封状態で連結されている。同様に、蒸気流体導出部42を画成する他方の外面セラミック板16には、蒸気流体導出部42に連通する蒸気流体導出口42aが開口しており、該蒸気流体導出口42aの外部には、蒸気流体導出ノズル45がOリング46を介して密封状態で連結されている。   A steam fluid inlet 41a communicating with the steam fluid inlet 41 is opened in one outer surface ceramic plate 11 that defines the steam fluid inlet 41, and a steam fluid is provided outside the steam fluid inlet 41a. The introduction nozzle 43 is connected in a sealed state via an O-ring 44. Similarly, the other outer surface ceramic plate 16 that defines the steam fluid outlet 42 has a steam fluid outlet 42a that communicates with the steam fluid outlet 42, outside the steam fluid outlet 42a. The vapor fluid outlet nozzle 45 is connected in a sealed state via an O-ring 46.

蒸気流体導入部41及び蒸気流体導出部42は、蒸気流体導入口41a又は蒸気流体導出口42aを頂点とし、開口部22a,24aの部分を底辺とした二等辺三角形状に形成されており、蒸気流体導入口41aから導入される蒸気流体を蒸気流体通路22,24の全体に満遍なく導入できるようにするとともに、蒸気流体通路22,24で発生した凝縮液を、鉛直方向に設けられた蒸気流体導出部42の下端中央に位置する蒸気流体導出口42aから確実に導出できるようにしている。   The steam fluid inlet 41 and the steam fluid outlet 42 are formed in an isosceles triangle shape with the steam fluid inlet 41a or the steam fluid outlet 42a as a top and the openings 22a and 24a as bases. The vapor fluid introduced from the fluid introduction port 41a can be uniformly introduced into the entire vapor fluid passages 22 and 24, and the condensate generated in the vapor fluid passages 22 and 24 is derived from the vapor fluid provided in the vertical direction. The vapor fluid can be reliably led out from the vapor fluid outlet 42 a located at the center of the lower end of the portion 42.

また、蒸気流体通路22,24の内部には、対向する仕切セラミック板12,13及び仕切セラミック板14,15の対向面同士を連結するとともに、蒸気流体の流れをガイドする補強部材を兼ねた複数の蒸気流体ガイド部材26,26が、蒸気流体の流れと平行な方向に等間隔でそれぞれ設けられている。   The vapor fluid passages 22 and 24 have a plurality of opposing ceramic ceramic plates 12 and 13 and opposed ceramic ceramic plates 14 and 15 connected to each other and serving as reinforcing members for guiding the flow of the vapor fluid. Are provided at equal intervals in a direction parallel to the flow of the vapor fluid.

一方、前記第1閉塞部材33の流体通路側には、冷却流体導入部51及び冷却流体導出部52がそれぞれ設けられている。この冷却流体導入部51及び冷却流体導出部52は、蒸気流体通路22,24及び蒸気流体導入部41、蒸気流体導出部42に対しては、リング状の第2閉塞部材34によって遮断され、冷却流体通路21,23,25に対しては、第2閉塞部材34の冷却流体通路21,23,25側を切り欠いた状態の連通部53によってそれぞれ連通している。   On the other hand, a cooling fluid introduction part 51 and a cooling fluid lead-out part 52 are respectively provided on the fluid passage side of the first closing member 33. The cooling fluid introduction part 51 and the cooling fluid lead-out part 52 are blocked by the ring-shaped second closing member 34 with respect to the steam fluid passages 22 and 24 and the steam fluid introduction part 41 and the steam fluid lead-out part 42 to cool the cooling fluid. The fluid passages 21, 23, and 25 are communicated with each other by the communication portions 53 in a state where the cooling fluid passages 21, 23, and 25 of the second closing member 34 are cut away.

適宜な外面セラミック板、本形態例では、前記他方の外面セラミック板16には、下方に位置する冷却流体導入部51に連通する冷却流体導入口51aと、上方に位置する冷却流体導出部52に連通する冷却流体導出口52aとが設けられるとともに、冷却流体導入口51aの外部には、冷却流体導入ノズル54がOリング55を介して密封状態で連結され、冷却流体導出口52aの外部には、冷却流体導出ノズル56がOリング57を介して密封状態で連結されている。   An appropriate outer surface ceramic plate, in the present embodiment, the other outer surface ceramic plate 16 includes a cooling fluid introduction port 51a communicating with the cooling fluid introduction unit 51 located below and a cooling fluid lead-out unit 52 located above. A cooling fluid outlet 52a is provided, and a cooling fluid inlet nozzle 54 is connected to the outside of the cooling fluid inlet 51a in a sealed state via an O-ring 55, and is connected to the outside of the cooling fluid outlet 52a. The cooling fluid outlet nozzle 56 is connected in a sealed state via an O-ring 57.

また、冷却流体通路21,23,25の内部には、対向する外面セラミック板11と仕切セラミック板12との間、仕切セラミック板12,14の間、仕切セラミック板15と外面セラミック板16との間に、対向面同士を連結するとともに、冷却流体の流れをガイドする補強部材を兼ねた冷却流体ガイド部材27,27がそれぞれ設けられている。この冷却流体ガイド部材27は、通路長を長くするため、冷却流体通路21,23,25の内部で冷却流体をS字状に1往復半させるように形成されている。   The cooling fluid passages 21, 23, 25 are provided between the opposed outer surface ceramic plate 11 and the partition ceramic plate 12, between the partition ceramic plates 12, 14, and between the partition ceramic plate 15 and the outer surface ceramic plate 16. There are provided cooling fluid guide members 27 and 27 that connect the opposing surfaces and also serve as a reinforcing member that guides the flow of the cooling fluid. The cooling fluid guide member 27 is formed so as to reciprocate the cooling fluid in an S shape by one and a half in the cooling fluid passages 21, 23, 25 in order to increase the passage length.

断熱材17及び金属製カバー18には、前記各ノズル43,45、54,56に対応したノズル挿通孔61がそれぞれ設けられるとともに、前記外縁部閉塞部材32を貫通するボルト挿通孔62が四隅部の4箇所に設けられている。また、ボルト挿通孔62を挿通したボルト63にナット64を締結することによって金属製カバー18をコンデンサー本体10の両面に取り付けると、金属製カバー18の内面が、各ノズルの基部に形成したフランジ65を各導入口、導出口の外面に向けて押圧して各ノズルを固定する。   The heat insulating material 17 and the metal cover 18 are provided with nozzle insertion holes 61 corresponding to the nozzles 43, 45, 54, and 56, respectively, and bolt insertion holes 62 that penetrate the outer edge closing member 32 are provided at the four corners. Are provided at four locations. Further, when the metal cover 18 is attached to both surfaces of the capacitor main body 10 by fastening the nut 64 to the bolt 63 inserted through the bolt insertion hole 62, the inner surface of the metal cover 18 is a flange 65 formed at the base of each nozzle. Is pressed toward the outer surface of each inlet and outlet to fix each nozzle.

各セラミック板や各閉塞部材などのコンデンサー本体10の構成部材は、アルミナやジルコニアを初めとした適宜なセラミック材料を、加圧成形、射出成形、押出成形などの周知の成形方法で所定形状に成形し、組み付け状態で焼成するなどの手法でコンデンサー本体10を形成するものであって、セラミック板部分と閉塞部材部分とは、適宜に一体成形することができ、3Dプリンターを利用することによって全体を一体成形することも可能である。また、各ノズルやOリング、断熱材は、耐薬品性を有する合成樹脂で形成することが好ましく、金属製カバーも、耐薬品性、耐食性を有する金属材料で形成することが好ましい。   The constituent members of the capacitor main body 10 such as each ceramic plate and each closing member are formed into a predetermined shape by a known molding method such as pressure molding, injection molding, extrusion molding, or the like, using an appropriate ceramic material such as alumina or zirconia. Then, the capacitor main body 10 is formed by a method such as firing in an assembled state, and the ceramic plate portion and the closing member portion can be integrally formed as appropriate, and the whole can be obtained by using a 3D printer. It is also possible to mold integrally. Further, each nozzle, O-ring, and heat insulating material are preferably formed of a synthetic resin having chemical resistance, and the metal cover is also preferably formed of a metal material having chemical resistance and corrosion resistance.

セラミック板の積層数は任意に選択することができるが、4枚以上の複数枚とし、各セラミック板の間に奇数層の通路を形成し、外面から奇数番目の通路を冷却流体通路、偶数番目を蒸気流体通路に設定することにより、蒸気流体通路の両側に冷却流体通路を配置することができ、蒸気流体通路を流れる蒸気流体を両側から効果的に冷却することができる。   The number of laminated ceramic plates can be selected arbitrarily, but it is four or more, and odd-numbered passages are formed between the ceramic plates, odd-numbered passages from the outer surface are cooling fluid passages, and even-numbered steam By setting the fluid passage, the cooling fluid passage can be arranged on both sides of the steam fluid passage, and the steam fluid flowing in the steam fluid passage can be effectively cooled from both sides.

さらに、各通路内に、蒸気流体ガイド部材26や冷却流体ガイド部材27を設けることにより、コンデンサー本体10の成形性の向上や強度の向上を図れるとともに、熱交換効率の向上も図ることができる。また、蒸気流体通路22,24では、下向流で蒸気流体を流し、冷却流体通路21,23,25では、全体として上昇流で冷却流体を流して向流状態で間接熱交換させることにより、熱交換効率の向上が図れるとともに、蒸気流体通路22,24で発生した凝縮液を下方から容易かつ確実に排出することができる。   Furthermore, by providing the vapor fluid guide member 26 and the cooling fluid guide member 27 in each passage, it is possible to improve the moldability and strength of the capacitor body 10 and to improve the heat exchange efficiency. Further, in the steam fluid passages 22 and 24, the steam fluid is caused to flow in the downward flow, and in the cooling fluid passages 21, 23 and 25, the cooling fluid is caused to flow in the upward flow as a whole and indirectly heat exchange is performed in the counterflow state. The heat exchange efficiency can be improved, and the condensate generated in the steam fluid passages 22 and 24 can be easily and reliably discharged from below.

図10乃至図12は、本発明の理化学実験用コンデンサーの他の形態例を示すもので、前記形態例に示したコンデンサー本体と同様の構成を有する3個のコンデンサー本体70A,70B,70Cを積層して3層構造の理化学実験用コンデンサーを形成した例を示している。なお、以下の説明において、前記形態例に示した理化学実験用コンデンサーの構成要素と同一の主な構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 10 to FIG. 12 show another example of the capacitor for physicochemical experiment of the present invention, in which three capacitor bodies 70A, 70B, and 70C having the same configuration as the capacitor body shown in the above embodiment are laminated. Thus, an example of forming a three-layer capacitor for physicochemical experiments is shown. In the following description, the same components as those of the capacitor for physicochemical experiment shown in the above-described embodiment are given the same reference numerals, and detailed description thereof is omitted.

図11に示すように、蒸気流体に関しては、第1のコンデンサー本体70Aは、上部の蒸気流体導入部71Aの両側に蒸気流体上部連通口72A,72Aを設け、下部の蒸気流体導出部73Aの内側となる第2のコンデンサー本体70Bの積層側に蒸気流体下部連通口74Aを設けるとともに、蒸気流体導出部73Aの外側を外面セラミック板11で覆って閉塞している。   As shown in FIG. 11, regarding the steam fluid, the first condenser body 70A is provided with steam fluid upper communication ports 72A and 72A on both sides of the upper steam fluid introducing portion 71A, and inside the lower steam fluid leading portion 73A. A vapor fluid lower communication port 74A is provided on the stacked side of the second capacitor main body 70B, and the outer side of the vapor fluid outlet 73A is covered and closed by the outer surface ceramic plate 11.

中間に挟まれる第2のコンデンサー本体70Bは、上部の蒸気流体導入部71B及び下部の蒸気流体導出部73Bの両側に蒸気流体上部連通口72B,74Bをそれぞれ設けている。   The second condenser main body 70B sandwiched between the upper and lower steam fluid inlets 71B and 73B has steam fluid upper communication ports 72B and 74B, respectively.

第3のコンデンサー本体70Cは、上部の蒸気流体導入部71Cの内側となる第2のコンデンサー本体70Bの積層側に蒸気流体上部連通口72Cを設け、蒸気流体導入部71Cの外側を外面セラミック板16で覆って閉塞するとともに、下部の蒸気流体導出部73Cの両側に蒸気流体下部連通口74C,74Cを設けている。   The third condenser main body 70C is provided with a vapor fluid upper communication port 72C on the laminated side of the second condenser main body 70B that is inside the upper vapor fluid introduction part 71C, and the outer surface ceramic plate 16 is disposed outside the vapor fluid introduction part 71C. The steam fluid lower communication ports 74C and 74C are provided on both sides of the lower steam fluid outlet 73C.

また、図12に示すように、冷却流体に関しては、第1のコンデンサー本体70Aは、下部の冷却流体導入部75A及び上部の冷却流体導出部76A共に、外側を外面セラミック板11でそれぞれ覆って閉塞するとともに、内側に冷却流体連通口77A,78Aをそれぞれ設けている。   Further, as shown in FIG. 12, with respect to the cooling fluid, the first condenser main body 70A is closed by covering the outside with the outer ceramic plate 11 in both the lower cooling fluid introduction part 75A and the upper cooling fluid lead-out part 76A. In addition, cooling fluid communication ports 77A and 78A are provided on the inner side.

中間に挟まれる第2のコンデンサー本体70Bでは、下部の冷却流体導入部75B及び上部の冷却流体導出部76B共に、両側に冷却流体連通口77B,78Bをそれぞれ設けている。   In the second condenser main body 70B sandwiched between them, both the lower cooling fluid introduction part 75B and the upper cooling fluid lead-out part 76B are provided with cooling fluid communication ports 77B and 78B on both sides, respectively.

冷却流体の導入、導出側となる第3のコンデンサー本体70Cにおいても、中間の第2のコンデンサー本体70Bと同様に、下部の冷却流体導入部75C及び上部の冷却流体導出部76C共に、両側に冷却流体連通口77C,78Cをそれぞれ設けている。   In the third condenser body 70C on the introduction / extraction side of the cooling fluid, both the lower cooling fluid introduction section 75C and the upper cooling fluid extraction section 76C are cooled on both sides, similarly to the intermediate second condenser body 70B. Fluid communication ports 77C and 78C are provided, respectively.

3個のコンデンサー本体70A,70B,70Cを積層する際には、積層時に対向する各蒸気流体連通口同士、各冷却流体連通口同士の間に、必要に応じてOリングや円形ガスケット79a,79bを配置して密着させる。また、外側に位置する蒸気流体連通口及び冷却流体連通口には、前記形態例と同様にして蒸気流体導入ノズル43,蒸気流体導出ノズル45,冷却流体導入ノズル54及び冷却流体導出ノズル56をそれぞれ連結する。   When the three capacitor bodies 70A, 70B, and 70C are stacked, an O-ring and circular gaskets 79a and 79b are provided between the vapor fluid communication ports facing each other and the cooling fluid communication ports facing each other when stacked. Place and adhere. Further, the steam fluid introduction nozzle 43, the steam fluid outlet nozzle 45, the cooling fluid introduction nozzle 54, and the cooling fluid outlet nozzle 56 are respectively provided in the steam fluid communicating port and the cooling fluid communicating port located outside. Link.

積層したコンデンサー本体70A,70B,70Cの外側は、断熱材17を介して金属製カバー18で覆い、ボルト63で締結することにより、コンデンサー本体を3個積層した3層構造の理化学実験用コンデンサーが得られる。   The outer sides of the laminated capacitor bodies 70A, 70B, and 70C are covered with a metal cover 18 via a heat insulating material 17, and fastened with bolts 63, whereby a three-layer structure capacitor for physicochemical experiments in which three capacitor bodies are laminated. can get.

これにより、大型化や重量増を抑えながら、熱交換容量の増大を図ることができる。また、中間に位置するコンデンサー本体70Bの積層数を変更することにより、2層以上の任意の積層数の理化学実験用コンデンサーを形成することができる。このとき、断熱材17として十分な柔軟性を有する材料を選択するとともに、金属製カバー18をインロー方式とすることにより、積層数が異なる場合でも対応することが可能となる。   Thereby, the heat exchange capacity can be increased while suppressing an increase in size and weight. In addition, by changing the number of stacked capacitor bodies 70B located in the middle, it is possible to form a capacitor for physicochemical experiments having an arbitrary number of stacked layers of two or more. At this time, by selecting a material having sufficient flexibility as the heat insulating material 17 and making the metal cover 18 an inlay method, it is possible to cope with cases where the number of layers is different.

このような構成を有する本発明の理化学実験用コンデンサーは、前記特許文献1に記載されたロータリーエバポレーターの冷却器として最適であるが、蒸留水製造装置、試験管濃縮装置、反応装置、各種トラップ装置などの各種用途に用いることができる。   The condenser for physicochemical experiments of the present invention having such a configuration is optimal as a cooler for the rotary evaporator described in Patent Document 1, but is a distilled water production apparatus, a test tube concentration apparatus, a reaction apparatus, and various trap apparatuses. It can be used for various applications such as.

10…コンデンサー本体、11…外面セラミック板、12,13,14,15…仕切セラミック板、16…外面セラミック板、17…断熱材、18…金属製カバー、21…冷却流体通路、22…蒸気流体通路、22a…開口部、23…冷却流体通路、24…蒸気流体通路、24a…開口部、25…冷却流体通路、26…蒸気流体ガイド部材、27…冷却流体ガイド部材、31…側部閉塞部材、32…外縁部閉塞部材、33…第1閉塞部材、34…第2閉塞部材、41…蒸気流体導入部、41a…蒸気流体導入口、42…蒸気流体導出部、42a…蒸気流体導出口、43…蒸気流体導入ノズル、44…Oリング、45…蒸気流体導出ノズル、46…Oリング、51…冷却流体導入部、51a…冷却流体導入口、52…冷却流体導出部、52a…冷却流体導出口、53…連通部、54…冷却流体導入ノズル、55…Oリング、56…冷却流体導出ノズル、57…Oリング、61…ノズル挿通孔、62…ボルト挿通孔、63…ボルト、64…ナット、65…フランジ、70A,70B,70C…コンデンサー本体、71A,71B,71C…蒸気流体導入部、72A,72B,72C…蒸気流体上部連通口、73A,73B,73C…蒸気流体導出部、74A,74B,74C…蒸気流体下部連通口、75A,75B,75C…冷却流体導入部、76A,76B,76C…冷却流体導出部、77A,77B,77C,78A,78B,78C…冷却流体連通口、79a,79b…円形ガスケット DESCRIPTION OF SYMBOLS 10 ... Condenser main body, 11 ... Outer surface ceramic board, 12, 13, 14, 15 ... Partition ceramic board, 16 ... Outer surface ceramic board, 17 ... Thermal insulation, 18 ... Metal cover, 21 ... Cooling fluid passage, 22 ... Steam fluid Passage, 22a ... opening, 23 ... cooling fluid passage, 24 ... vapor fluid passage, 24a ... opening, 25 ... cooling fluid passage, 26 ... steam fluid guide member, 27 ... cooling fluid guide member, 31 ... side block member 32 ... Outer edge portion closing member, 33 ... First closing member, 34 ... Second closing member, 41 ... Steam fluid inlet, 41a ... Steam fluid inlet, 42 ... Steam fluid outlet, 42a ... Steam fluid outlet, 43 ... Steam fluid introduction nozzle, 44 ... O-ring, 45 ... Steam fluid outlet nozzle, 46 ... O-ring, 51 ... Cooling fluid inlet, 51a ... Cooling fluid inlet, 52 ... Cooling fluid outlet, 52a ... Rejected fluid outlet, 53 ... communication portion, 54 ... cooling fluid introduction nozzle, 55 ... O-ring, 56 ... cooling fluid outlet nozzle, 57 ... O-ring, 61 ... nozzle insertion hole, 62 ... bolt insertion hole, 63 ... bolt, 64 ... Nut, 65 ... Flange, 70A, 70B, 70C ... Condenser body, 71A, 71B, 71C ... Vapor fluid inlet, 72A, 72B, 72C ... Vapor fluid upper communication port, 73A, 73B, 73C ... Vapor fluid outlet 74A, 74B, 74C ... Steam fluid lower communication port, 75A, 75B, 75C ... Cooling fluid inlet, 76A, 76B, 76C ... Cooling fluid outlet, 77A, 77B, 77C, 78A, 78B, 78C ... Cooling fluid communication Mouth, 79a, 79b ... Circular gasket

Claims (4)

凝縮成分を含む蒸気流体が流通する蒸気流体通路と、該蒸気流体と間接熱交換して前記凝縮成分を凝縮させる冷却流体が流通する冷却流体通路とを備えた理化学実験用コンデンサーにおいて、複数枚のセラミック板を鉛直方向に向けてあらかじめ設定された間隔で平行に配置し、各セラミック板間に前記蒸気流体通路と前記冷却流体通路とを交互に形成し、各流体通路の両側縁を側部閉塞部材でそれぞれ閉塞するとともに、前記蒸気流体通路の上下両端部には、前記冷却流体通路に対しては第1閉塞部材によって遮断され、蒸気流体通路にのみ連通する蒸気流体導入部及び蒸気流体導出部をそれぞれ設け、前記冷却流体通路の上下両端部には、前記蒸気流体通路に対しては第2閉塞部材によって遮断され、冷却流体通路にのみ連通する冷却流体導入部及び冷却流体導出部をそれぞれ設けたことを特徴とする理化学実験用コンデンサー。   In a condenser for physical and chemical experiments, comprising a vapor fluid passage through which a vapor fluid containing a condensed component flows, and a cooling fluid passage through which a cooling fluid through which the condensed fluid is condensed by indirect heat exchange with the vapor fluid, The ceramic plates are arranged in parallel at predetermined intervals in the vertical direction, the vapor fluid passages and the cooling fluid passages are alternately formed between the ceramic plates, and both side edges of each fluid passage are closed at the side. A steam fluid introduction part and a steam fluid lead-out part, which are respectively closed by a member, are shut off by the first closing member with respect to the cooling fluid passage at both upper and lower ends of the steam fluid passage and communicate only with the steam fluid passage. The cooling fluid passage is provided at both upper and lower ends of the cooling fluid passage and is blocked by the second closing member with respect to the steam fluid passage and communicates only with the cooling fluid passage. Physicochemical experimental capacitors, wherein the inlet portion and a cooling fluid outlet portion respectively provided. 前記セラミック板は、4枚以上で、偶数枚のセラミック板が鉛直方向に向けて配置され、外面側から奇数番目となる流体通路を前記冷却流体通路とし、偶数番目となる流体通路を前記蒸気流体通路としたことを特徴とする請求項1記載の理化学実験用コンデンサー。   There are four or more ceramic plates, and an even number of ceramic plates are arranged in the vertical direction. An odd-numbered fluid passage from the outer surface side is the cooling fluid passage, and an even-numbered fluid passage is the vapor fluid. 2. The condenser for physical and chemical experiments according to claim 1, wherein the condenser is a passage. 前記各流体通路内に、隣接するセラミック板同士を連結するとともに、流体の流れをガイドする補強部材兼ガイド部材を設けたことを特徴とする請求項1又は2記載の理化学実験用コンデンサー。   3. The condenser for physical and chemical experiments according to claim 1, wherein a reinforcing member and a guide member for connecting adjacent ceramic plates to each other and guiding the flow of fluid are provided in each fluid passage. 前記蒸気流体導入部を前記蒸気流体通路の上部に設け、前記蒸気流体導出部を前記蒸気流体通路の下部に設けるとともに、前記冷却流体導入部を前記冷却流体通路の下部に設け、前記冷却流体導出部を前記冷却流体通路の上部に設けたことを特徴とする請求項1乃至3のいずれか1項記載の理化学実験用コンデンサー。   The vapor fluid introduction part is provided in an upper part of the vapor fluid passage, the vapor fluid lead-out part is provided in a lower part of the vapor fluid path, and the cooling fluid introduction part is provided in a lower part of the cooling fluid passage, The condenser for physical and chemical experiments according to any one of claims 1 to 3, wherein a portion is provided in an upper part of the cooling fluid passage.
JP2015111059A 2015-06-01 2015-06-01 Condenser for physicochemical experiment Pending JP2016221461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111059A JP2016221461A (en) 2015-06-01 2015-06-01 Condenser for physicochemical experiment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111059A JP2016221461A (en) 2015-06-01 2015-06-01 Condenser for physicochemical experiment

Publications (1)

Publication Number Publication Date
JP2016221461A true JP2016221461A (en) 2016-12-28

Family

ID=57745307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111059A Pending JP2016221461A (en) 2015-06-01 2015-06-01 Condenser for physicochemical experiment

Country Status (1)

Country Link
JP (1) JP2016221461A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022503B1 (en) * 1969-06-05 1975-07-31
JPS61222543A (en) * 1985-02-20 1986-10-03 インタ−テツク アソシエイツ インコ−ポレイテイド Plastic condenser for laboratory room
JP2002005593A (en) * 2000-06-23 2002-01-09 Kyocera Corp Ceramic component of heat exchanger
JP2009222261A (en) * 2008-03-13 2009-10-01 Ryonetsu Kogyo Kk Steam capturing device
JP2013534608A (en) * 2010-06-30 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア HEAT TRANSFER PLATE, FLAT HEAT TRANSFER HAVING THE SAME, AND METHOD FOR PRODUCING PLATE HEAT TRANSFER
JP2013226560A (en) * 2005-10-24 2013-11-07 Alfa Laval Corporate Ab Multipurpose flow module and method for using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022503B1 (en) * 1969-06-05 1975-07-31
JPS61222543A (en) * 1985-02-20 1986-10-03 インタ−テツク アソシエイツ インコ−ポレイテイド Plastic condenser for laboratory room
JP2002005593A (en) * 2000-06-23 2002-01-09 Kyocera Corp Ceramic component of heat exchanger
JP2013226560A (en) * 2005-10-24 2013-11-07 Alfa Laval Corporate Ab Multipurpose flow module and method for using the same
JP2009222261A (en) * 2008-03-13 2009-10-01 Ryonetsu Kogyo Kk Steam capturing device
JP2013534608A (en) * 2010-06-30 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア HEAT TRANSFER PLATE, FLAT HEAT TRANSFER HAVING THE SAME, AND METHOD FOR PRODUCING PLATE HEAT TRANSFER

Similar Documents

Publication Publication Date Title
US8844611B2 (en) Plate stacking type heat exchanger
RU2604121C1 (en) Plate of plate-type heat exchanger and plate-type heat exchanger
KR101667133B1 (en) Plate heat exchanger
KR20120088554A (en) Modular flow system
JP6718806B2 (en) Fluid distribution device
GB2303911A (en) Heat exchanger having a sandwiched plate structure
JP4606786B2 (en) Multi-fluid heat exchanger
JP6296775B2 (en) Microchannel heat exchanger
JP5832922B2 (en) Heat exchanger equipment
JPS6314280B2 (en)
KR20150030229A (en) Heat exchanger
KR101100097B1 (en) Plate type fresh water generator
US20080190594A1 (en) Heat Exchanger Device for Rapid Heating or Cooling of Fluids
US20170131044A1 (en) Header for exchanger bundle of a heat exchanger
JP2016221461A (en) Condenser for physicochemical experiment
KR20170140338A (en) Heat exchanger with stacked plates
US9234778B2 (en) Operation method of multi-flow passage device, and multi-flow passage device
EP3467422A1 (en) Heat exchanger assembly
JP2011200809A (en) Film reactor
DK3155344T3 (en) PLATE HEAT EXCHANGE
KR100829801B1 (en) Heat exchanger for waste water
KR100898065B1 (en) Micro reactor
KR102232165B1 (en) Heat exchanger with collecting channel for discharging a liquid phase
KR20170029768A (en) Heat exchanger of double-sided flow path type
ITTO951023A1 (en) HEAT EXCHANGE AND / OR MATERIAL DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407