JP2016217426A - 冷温水管路配管システム - Google Patents

冷温水管路配管システム Download PDF

Info

Publication number
JP2016217426A
JP2016217426A JP2015101655A JP2015101655A JP2016217426A JP 2016217426 A JP2016217426 A JP 2016217426A JP 2015101655 A JP2015101655 A JP 2015101655A JP 2015101655 A JP2015101655 A JP 2015101655A JP 2016217426 A JP2016217426 A JP 2016217426A
Authority
JP
Japan
Prior art keywords
reinforced composite
layer
composite pipe
fiber
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015101655A
Other languages
English (en)
Other versions
JP6484106B2 (ja
Inventor
三二 敏文
Toshifumi Sanji
敏文 三二
寺地 信治
Shinji Terachi
信治 寺地
雄亮 星野
Yusuke Hoshino
雄亮 星野
伸太郎 梅山
Shintaro UMEYAMA
伸太郎 梅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015101655A priority Critical patent/JP6484106B2/ja
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to CN201680010751.9A priority patent/CN107250640B/zh
Priority to PCT/JP2016/054738 priority patent/WO2016133167A1/ja
Priority to US15/552,252 priority patent/US10544886B2/en
Priority to KR1020177022898A priority patent/KR101993147B1/ko
Priority to AU2016220736A priority patent/AU2016220736B2/en
Priority to SG11201706694TA priority patent/SG11201706694TA/en
Priority to TW105105004A priority patent/TWI688472B/zh
Publication of JP2016217426A publication Critical patent/JP2016217426A/ja
Application granted granted Critical
Publication of JP6484106B2 publication Critical patent/JP6484106B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】寸法安定性に優れかつ施工性が向上した冷温水管路配管システムを提供する。
【解決手段】冷温水管路配管システム100は、温度幅が20℃以上の冷温水を輸送するための配管システムである。冷温水管路配管システムは、ポリオレフィン樹脂およびガラス繊維を含む繊維強化複合管200と、ポリオレフィン樹脂および金属を含む金属強化複合管と、繊維強化複合管および金属強化複合管を接続する接続部材と、を含む。また、繊維強化複合管の線膨張率は6×10−5/℃以下である。さらに、繊維強化複合管と金属強化複合管300との合計容量に対し、繊維強化複合管が占める容量は70%以上である。
【選択図】図1

Description

本発明は、冷温水管路配管システムに関する。
従来の配管システムでは、基本的に同種管接続によりシステム全体が構成される(たとえば特許文献1参照)。たとえば、既製品のラインナップおよびコスト等の制限によりやむを得ず異種管接続がなされる場合もあるが、異種管接続は施工が難しい点などでデメリットが大きく、一方で同種管接続は施工が容易でありかつ機械的特性も揃う点などでメリットが大きいことから、同種管接続が積極的に採用されている。
特開2010−243129号公報
同種管接続では、配管システムの用途にとって有利な特性に着目して配管の素材が選択されなければならない。配管は配管システムの用途にとって有利な特性と不利な特性との両方を併せ持つことが通常である。たとえば、強度の点で良好な特性を有する配管は施工性の点で劣る傾向にあり、耐食性の点で良好な特性を有する配管は取扱容易性の点で劣る傾向にある。したがって、同種管接続で構成される配管システムは、当該配管システムの用途にとって有利な特性とともに不利な特性がそのまま受け継がれることを免れない。特に、温度幅が20℃を超えるような冷温水管路配管システムの場合、適応させるべき温度条件が過酷であるため要求特性が厳しく、配管の選択は極めて困難である。
そこで本発明の目的は、寸法安定性に優れかつ施工性が向上した冷温水管路配管システムを提供することにある。
(1)
本発明の冷温水管路配管システムは、温度幅が20℃以上の冷温水を輸送するための配管システムである。本発明の冷温水管路配管システムは、ポリオレフィン樹脂およびガラス繊維を含む繊維強化複合管と、ポリオレフィン樹脂および金属を含む金属強化複合管と、繊維強化複合管および金属強化複合管を接続する接続部材と、を含む。また、繊維強化複合管の線膨張率は6×10−5/℃以下である。さらに、繊維強化複合管と金属強化複合管との合計容量に対し、繊維強化複合管が占める容量は70%以上である。
このように、本発明の冷温水管路配管システムは、線膨張率が6×10−5/℃以下の低線膨張性の繊維強化複合管を70%以上の容量を占めるように構成することによって、輸送する冷温水の温度変化に対する寸法安定性に優れる。また、繊維強化複合管体が有する軽量性、切断容易性などの加工性に加え、金属強化複合管による曲げ加工性ならびに狭い配管空間内での配設容易性および接続容易性などの加工性も備わるため、配管システム全体として向上した施工性を有する。さらに、継手を除く管路が全て樹脂ベースの可撓性管で構成されるため、耐震性にも優れる。
(2)
上記(1)の冷温水管路配管システムでは、繊維強化複合管の内径の直径が19mm以上かつ金属強化複合管の内径の直径が75mm以下であってよい。
また、上記(1)の冷温水管路配管システムでは、繊維強化複合管の内径の直径が50mm以上かつ金属強化複合管の内径の直径が50mm以下であってもよい。
これによって、内径の直径50mmを境に、大口径の配管部分を繊維強化複合管で構成し、小口径の配管部分を金属強化複合管で構成することができる。したがって、金属強化複合管による屈曲容易性ならびに狭い配管空間内での配設容易性および接続容易性などの加工性をより好ましく得ることができる。
(3)
上記(1)または(2)の冷温水管路配管システムにおいて、接続部材は、繊維強化複合管との接続のためのエレクトロフュージョン用接合部と、金属強化複合管との接続のためのねじ連結部とを含んでよい。
これによって、金属強化複合管側では接続容易性が備わり狭い配管空間でも当該特性が担保されるとともに、繊維強化複合管側では信頼性の高い接続が可能である。
(4)
上記(1)から(3)の冷温水管路配管システムにおいて、繊維強化複合管は、軸心から外周への方向に、少なくとも、管状の第1層、第2層および第3層をこの順で含んでよい。この場合、第1層および第3層はポリオレフィン系樹脂を主成分として含み、第2層はポリオレフィン系樹脂とガラス繊維とを含む。さらに、繊維強化複合管の厚肉全体に対する第2層の層厚の比は0.3以上である。
このように、繊維強化複合管の厚肉全体に対して繊維強化樹脂層の厚みの比を0.3以上となるように構成することによって、寸法安定性をより好ましく得ることができる。
(5)
ガラス繊維の平均繊維径は5μm以上20μm以下であってよい。
これによって、強度、寸法安定性及び高温での伸びをより好ましく得ることができる。
本発明の冷温水管路配管システムの一例を模式的に示す。 図1における繊維強化複合管200と金属強化複合管300との接続を示す模式的分解図である。 図1における繊維強化複合管200を模式的に示す断面図である。 図1における金属強化複合管300を模式的に示す断面図である。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の要素には同一の符号を付しており、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
[1.冷温水管路配管システムの構成]
図1に、本発明の冷温水管路配管システムの一例を模式的に示す。図1に示す冷温水管配管システム100は、空調機器の冷温水配管に用いられる。冷温水管路配管システム100は、繊維強化複合管200と金属強化複合管300とを含む。
繊維強化複合管200は、繊維強化複合管200の容量と金属強化複合管300の容量との合計容量に対し、70%以上の容積を占める。繊維強化複合管200は寸法安定性に優れるため、繊維強化複合管200の容量が当該合計容量の大部分を占めるように冷温水管路配管システム100が構成されることで、輸送される冷温水の温度変化に対する寸法安定性に優れる。
繊維強化複合管200は、軽量であることおよび切断が容易であることなどにより施工性に優れる。これに加えて、金属強化複合管300は、曲げ加工性に優れること、配管空間が狭くても配設も接続も容易であることなどにより、施工性に優れる。冷温水管配管システム100では、これらの優れた施工性が相乗することで、全体としての施工性が顕著に向上する。さらに、繊維強化複合管200も金属強化複合管300も樹脂ベースの可撓性管であるため、冷温水管配管システム100全体の耐震性にも優れる。
冷温水管路配管システム100内を輸送される冷温水の温度幅は20℃以上である。この温度幅の範囲内の上限は、繊維強化複合管200および金属強化複合管300の構成樹脂の耐熱温度などによって異なるため特に限定されないが、たとえば105℃、好ましくは95℃、さらに好ましくは75℃、よりいっそう好ましくは55℃であってよい。冷温水の具体的な温度も、繊維強化複合管200および金属強化複合管300の構成樹脂の耐熱温度などによって異なるため特に限定されないが、たとえばポリエチレン系樹脂であれば−5℃以上60℃以下であってよく、たとえばポリプロピレン系樹脂であれば−5℃以上90℃以下または−5℃以上100℃以下であってよい。
冷温水管路配管システム100は、温水ボイラー410、冷凍機(本実施形態では吸収式冷凍機)420、ファンコイルユニット430、および膨張槽440を含み、ファンコイルユニット430を出入りする冷温水を輸送する管路全体が繊維強化複合管200および金属強化複合管300で構成されている。図1中、ファンコイルユニット430へ向かう冷温水の方向を示す矢印が付された管路は往路を示し、ファンコイルユニット430から出る冷温水の方向を示す矢印が付された管路は還路を示す。
冷温水管路配管システム100では、金属強化複合管300は、冷温水の往路および還路の折り返し部分を含む機器(本実施形態ではコイルを内蔵するファンコイルユニット430)に接続される管を構成することが好ましい。冷温水管路配管システム100に示すように、ファンコイルユニット430には、往路および還路ともに、金属強化複合管300が接続されている。冷温水の往路および還路の折り返し部分を含むファンコイルユニット430は、狭い配管空間(たとえば天井裏など)に配置されるため、金属強化複合管300で接続することは、曲げ加工性などの施工性の点で好ましい。ファンコイルユニット430に接続された金属強化複合管300は、温水ボイラー410または冷凍機420に通じる繊維強化複合管200と連結されている。
繊維強化複合管200と、ファンコイルユニット430に接続された金属強化複合管300との接続態様としては、図1に示すように、繊維強化複合管200からチーズ型継手によって分岐させた繊維強化複合管200に対し、ファンコイルユニット430に接続された金属強化複合管300が連結していてよい。
本実施形態の冷温水管路配管システム100は2管式冷温水システムであり、金属強化複合管300およびそれに連結された繊維強化複合管200は、同じ管路が冷水の輸送にも温水の輸送にも用いられる。繊維強化複合管200は、三方弁により、温水ボイラー410に接続された温水管510と、冷凍機420に接続された冷水管520とに分岐して連通している。
冷温水管路配管システム100は、さらに冷却塔450を含んでおり、冷凍機420と冷水管550によって接続されている。
温水管510、冷水管520、および冷水管550は、輸送される温水または冷水の温度差が小さいため、必ずしも繊維強化複合管200で構成されなくてもよい。しかしながら、状況によっては、温水管510内を想定以上の高温の水が流れる可能性があること、および、空調が止まっている時と起動している時とで管の温度が大きく変わる場合がある(たとえば外気温が高い場合は、空調が止まっている時は外気温によって冷水管520,550が温められ、空調が起動している時は冷水管520,550が冷やされる。外気温が低い場合は、空調が止まっている時は外気温によって温水管510が冷やされ、空調が起動している時は温水管510が温められる。)ことなど、通常の樹脂管(繊維強化樹脂層を有しない樹脂管)の場合に想定される管伸縮を考慮すると、繊維強化複合管200で構成された方が好ましい。
[2.冷温水管路配管システムの構成の変形態様]
本実施形態では、空調機器の冷温水管路配管システムの一例を示したが、本発明は、たとえば、熱源が、冷凍機、ヒートポンプ、およびボイラなどから選択され、かつ、空調機が、エアハンドリングユニット、ファンコイルユニット、インダクションユニットなどから選択される任意の組み合わせによる冷温水管路配管システムであってよい。この中でも、本発明は、多数の細かな分岐が存在する部分に用いられるファンコイルユニットが空調機として選択される場合に特に有用である。
さらに、本発明の冷温水管路配管システムは、ガス給湯器および温水ボイラーなどの給湯器の給湯給水配管システム、集合住宅および戸建住宅などの給湯給水配管システム、加湿器への加湿給水配管システム、氷蓄熱式の熱交換機の配管システムなどにも適用することができる。
本実施形態では2管式の冷水管システムを例示したが、本発明は4管式の冷水管システムであってもよい。冷水の管路と温水の管路とは共有されずに独立しているが、空調が止まっている時と起動している時とで管の温度が大きく変わるため、本実施形態の冷温水管路配管システム100と同様に繊維強化複合管200が用いられる。
本実施形態では、金属強化複合管300を、繊維強化複合管200からの分岐管路をファンコイルユニット430に連通させる部位に用いる態様を例示したが、本発明は、配管スペースが狭い空間(たとえば天井裏、壁裏など)において一部の配管を金属強化複合管300で修理する態様にも適用される。
繊維強化複合管200と、ファンコイルユニット430に接続された金属強化複合管300との接続態様としては、本実施形態で示すものの他、繊維強化複合管200からチーズ型継手によって分岐させたエルボに対し、金属強化複合管300が連結していてもよい。あるいは、当該チーズ型継手に対して直接的に金属強化複合管300が連結していてもよい。
[3.繊維強化複合管および金属強化複合管の接続部]
図2に、本発明の冷温水管路配管システムにおける繊維強化複合管と金属強化複合管との接続部の模式的分解図を示す。図2に示すように、繊維強化複合管200と金属強化複合管300とは、エレクトロフュージョン式ジョイント290とカシメ式ジョイント390とを介して接続することができる。なお、図2に示すように、各ジョイントに接続される、繊維強化複合管200の末端部分と金属強化複合管300の末端部分は、それぞれ、保温材(後述図3における保温材280、後述図4における保温材380)が無い。
繊維強化複合管200の末端部分は、エレクトロフュージョン式ジョイント290に接合される。エレクトロフュージョン式ジョイント290は、エレクトロフュージョン用接合部と、ねじ連結部とを有する。エレクトロフュージョン用接合部は、繊維強化複合管200の末端部分に外挿した状態でエレクトロフュージョン接合されることで、繊維強化複合管200を接合する。ねじ連結部は、金属強化複合管300が連結されたカシメ式ジョイント390のねじ連結部(後述)に螺合して連結される。
金属強化複合管300の末端部分は、カシメ式ジョイント390に接合される。カシメ式ジョイント390は、カシメ用接合部とねじ連結部とを有する。カシメ用接合部は、金属強化複合管300の末端部分を嵌合させた状態でカシメられることで、金属強化複合管300を接合する。
繊維強化複合管200と金属強化複合管300とがエレクトロフュージョン式ジョイント290およびカシメ式ジョイント390を介して連結された後には、保温材が欠失していた部分に保温材を被覆することで、連結部分も保温することができる。
なお、本実施形態では、繊維強化複合管200と金属強化複合管300は、接合に関与する末端部分を除き、連結時当初から保温材が被覆されている態様を例示したが、この態様に限定されない。たとえば、繊維強化複合管200と金属強化複合管300は、両方とも保温材を全く有さない状態で連結され、連結が完了した後に、繊維強化複合管200全体、金属強化複合管300全体、および連結部を保温材で被覆することができる。または、繊維強化複合管200および金属強化複合管300のいずれか一方(たとえば繊維強化複合管200)が保温材を全く有さない状態で連結され、連結が完了した後に、当該いずれか一方(たとえば繊維強化複合管200)の全体、および連結部を保温材で被覆することができる。
[4.繊維強化複合管および金属強化複合管の接続部の変形態様]
本実施形態では、繊維強化複合管200側のエレクトロフュージョン式ジョイント290のねじ連結部が雌型、金属強化複合管300側のカシメ式ジョイント390のねじ連結部が雄型である態様を例示したが、それぞれのねじ連結部の雌雄は逆であってもよい。
本実施形態では、エレクトロフュージョン式ジョイント290が直列型である態様を例示したが、分岐型であってもよい。エレクトロフュージョン式ジョイント290が分岐型である場合、2本の繊維強化複合管200と1本の金属強化複合管300とを連結させることができる。この場合、繊維強化複合管200から分岐型エレクトロフュージョン式ジョイント290で分岐させるとともに、分岐型エレクトロフュージョン式ジョイント290に直接金属強化複合管300を連結することができる。
本発明では、繊維強化複合管200と金属強化複合管300との連結は、上記の態様の他にも、フランジによる連結および鋼管を介した連結であってもよい。
[5.繊維強化複合管]
[5−1.層構成]
図3は、図1における繊維強化複合管200を模式的に示す断面図である。
図3に示す繊維強化複合管200(多層成形体)は、管状の第1層210(内層/成形体)と、第1層210の外側に配置された管状の第2層220(中間層/成形体)と、第2層220の外側に配置された管状の第3層230(外層/成形体)とを含む。第1層210の外側の表面に接触して第2層220が積層され、第2層220の外側の表面に接触して第3層230が積層されていることで、軸心側から外周側へ第1層210と第2層220と第3層230とがこの順で積層されている。第3層230の外周面側は、保温材280によって覆われていることが好ましい。保温材280は、比表面積が大きい構造体で構成される。保温材280は、繊維強化複合管200内を輸送される冷温水と、繊維強化複合管200の外部環境との間の熱移動を遮断することで、繊維強化複合管200内を輸送される冷温水の温度を保つ観点、および、当該熱移動によって生じる結露(保温性を著しく下げる要因となりうる)を防止する観点から、繊維強化複合管200に設けられることが好ましい。
第1層210は、ポリオレフィン系樹脂を含む。第1層210は、後述の第2層220のようなガラス繊維は実質的に含んでいない。第2層220は、ポリオレフィン系樹脂とガラス繊維を含む。つまり、第2層220は、ポリオレフィン系樹脂とガラス繊維とを含むポリオレフィン系樹脂組成物の成形体である。第2層220が繊維強化樹脂であることにより、繊維強化複合管200に低線膨張性能を付与し、良好な寸法安定性が得られる。第2層220には、さらに相溶化剤を含んでもよい。第3層230は、ポリオレフィン系樹脂を含む。第3層230も、第1層210と同様にガラス繊維は実質的に含んでいない。第1層210、第2層220および第3層230がポリオレフィン系樹脂を含むことにより、繊維強化複合管200全体が可撓性を有し、良好な耐震性が得られる。
繊維強化複合管200は、第1層210、第2層220及び第3層230の外側に、さらに管状の接着層240とガスバリア層250とを更に含んでよい。この場合、第3層230の外側の表面に接触して接着層240が積層され、接着層240の外側の表面に接触してガスバリア層250が積層されてよい。この場合、保温材280は、ガスバリア層250の外周面に接触して設けられる。
ガスバリア層250は、ガスバリア性樹脂を含む。ガスバリア層250は、繊維強化複合管200の外周表面に接触する気体に対するバリア性を高めるために設けられる。
接着層240は、接着性樹脂を含む。接着層240は第3層230とガスバリア層250との間の密着性を高めるために設けられている。接着層240は第3層230の外周面の全体に接触する管状であることが好ましいが、この態様に限定されるものではなく、たとえば、第3層230の外周面において、軸方向および/または周方向に部分的に配設されていてもよい。
第1層210は、繊維強化複合管200の最も内側の層であり、繊維強化複合管200内を輸送される冷温水に接する。本実施形態では、ガスバリア層250は繊維強化複合管200の最も外側の層であり、外部環境に晒される。繊維強化複合管200が接着層240及びガスバリア層250を有しない場合には、第3層230は多層成形体の最も外側の層である。
本実施形態では、繊維強化複合管200では、第1層210、第2層220、第3層230は、直接接するように積層されているが、この態様に限定されない。第1層210と第2層220、および/または、第2層220と第3層230とは、たとえば接着層などを介して間接的に積層されていてもよい。
繊維強化複合管200は上述のように樹脂およびガラス繊維で構成されており、金属強化複合管300のように金属層を含まない。繊維強化複合管200は軽量かつ切断容易であるため、施工性に優れる。
[5−2.厚み]
繊維強化複合管200において、第2層220の厚みの、繊維強化複合管200全体の肉厚に対する比(R2)は、たとえば0.3以上、0.8以下であってよい。上記比(R2)は、好ましくは0.5以上、0.8以下、より好ましくは0.55以上、0.75以下である。上記比(R2)が上記下限以上であると、寸法安定性がより一層良好になる。上記比(R2)が上記上限以下であると、融着性及び施工性がより一層高くなり、耐衝撃性及び耐震性がより一層高くなる。
繊維強化複合管200において、第1層210の厚みの、繊維強化複合管200全体の肉厚に対する比(R1)は、好ましくは0.1以上、より好ましくは0.12以上、好ましくは0.3以下、より好ましくは0.25以下、さらに好ましくは0.23以下である。上記比(R1)が上記下限以上であると、融着性及び施工性がより一層高くなり、耐衝撃性及び耐震性がより一層高くなる。上記比(R1)が上記上限以下であると、寸法安定性がより一層良好になる。
繊維強化複合管200において、第3層230の厚みの、繊維強化複合管200全体の肉厚に対する比(R3)は、好ましくは0.1以上、より好ましくは0.12以上、好ましくは0.3以下、より好ましくは0.25以下、さらに好ましくは0.23以下である。上記比(R3)が上記下限以上であると、融着性及び施工性がより一層高くなり、耐衝撃性及び耐震性がより一層高くなる。さらに、繊維強化複合管200が接着層240およびガスバリア層250を有さない場合には第3層230が最外層となるため、エレクトロフュージョン接合の信頼性がより一層高くなる。上記比(R3)が上記上限以下であると、寸法安定性がより一層良好になる。
第1層210と第2層220と第3層230との合計の厚みは、好ましくは1.5mm以上、より好ましくは3.5mm以上、好ましくは60mm以下、より好ましくは35mm以下である。当該厚みが上記下限以上であると、剛性、耐圧性、耐衝撃性がより一層高くなる。当該厚みが上記上限以下であると、軽量性、二次加工性、成形性がより一層高くなる。
繊維強化複合管200が本実施形態のように第1層、第2層および第3層以外の、接着層240およびガスバリア層250のような他の層を含む場合、当該他の層の合計の厚みは、繊維強化複合管200全体の肉厚に対する比として、たとえば0.002以上0.2以下、好ましくは0.003以上0.1以下となるように構成してよい。他の層の合計の厚みが上記下限以上であると、繊維強化複合管200に対して当該他の層による特性を効果的に付与することができる。他の層の合計の厚みが上記上限以下であると、繊維強化複合管200に対して第2層220による低線膨張性能をより一層効果的に付与することができる。なお、接着層240とガスバリア層250との合計肉厚は0.125mm以上0.4mm以下であってよい。
接着層240の厚みは、好ましくは50μm以上、より好ましくは75μm以上、好ましくは200μm以下、より好ましくは150μm以下である。接着層240の厚みが上記下限以上であると、厚み制御がより一層容易であり、接着性がより一層高くなる。接着層240の厚みが上記上限以下であると、材料の使用量が減り、材料コストが安くかつ軽量になる。
ガスバリア層250の厚みは、好ましくは75μm以上、より好ましくは100μm以上、好ましくは200μm以下、より好ましくは150μm以下である。ガスバリア層250の厚みが上記下限以上であると、ガスバリア層250の厚みを容易に制御でき、ガスバリア性がより一層高くなる。ガスバリア層250の厚みが上記上限以下であると、材料の使用量が減り、材料コストが安くかつ軽量になる。
なお、繊維強化複合管200がガスバリア層250を含む場合にエレクトロフュージョン接合を行うためには、繊維強化複合管200の末端部分のガスバリア層250を除去して、第3層230を露出させてからエレクトロフュージョン接合を行う。
[5−3.組成]
第2層220の100重量%中、ポリオレフィン系樹脂の含有量は、たとえば45重量%以上、84重量%以下、好ましくは50重量%以上、79重量%以下、さらに好ましくは57重量%以上、73重量%以下であってよく、ガラス繊維の含有量は、たとえば15重量%以上、45重量%以下、好ましくは20重量%以上、40重量%以下、さらに好ましくは25重量%以上、35重量%以下であってよく、上記相溶化剤の含有量は、0.5重量%以上、10重量%以下、好ましくは2重量%以上、好ましくは8重量%以下である。
第2層220において、ポリオレフィン系樹脂の含有量が上記下限以上であると、クリープ性能および耐震性がより一層良好になる。ポリオレフィン系樹脂の含有量が上記上限以下であると、寸法安定性がより一層良好になる。ガラス繊維の含有量が上記下限以上であると、寸法安定性がより一層良好になる。ガラス繊維の含有量が上記上限以下であると、クリープ性能がより一層良好になる。さらに、相溶化剤の含有量が上記下限以上であると、各成分の相溶性が高くなり、耐圧性がより一層高くなる。相溶化剤の含有量が上記上限以下であると、クリープ性能がより一層良好になる。
第1層210において、ポリオレフィン系樹脂の含有量は、好ましくは90重量%以上、より好ましくは95重量%以上、好ましくは100重量%(全量)以下である。第3層230において、ポリオレフィン系樹脂の含有量は好ましくは90重量%以上、より好ましくは95重量%以上、好ましくは100重量%(全量)以下である。
[5−4.成分]
[5−4−1.ポリオレフィン系樹脂]
第1層210、第2層220および第3層230に用いられるポリオレフィン系樹脂は特に限定されず、公知のポリオレフィン系樹脂を用いることができる。ポリオレフィン系樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。第1層210、第2層220および第3層230それぞれに用いられるポリオレフィン系樹脂としては、同じ樹脂であってもよいし、異なる樹脂であってもよい。層間の接着性を考慮すると、互いに隣接する層には同じ樹脂が用いられることが好ましい。
ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−酢酸ビニル共重合体及びエチレン−α−オレフィン共重合体等が挙げられる。繊維強化複合管200の強度、寸法安定性及び高温での伸びをより一層効果的に高める観点、および/または可撓性による耐震性をより一層効果的に高める観点からは、ポリエチレン又はポリプロピレンが好ましく、ポリエチレンがより好ましい。
ポリエチレン(PE)としては、LDPE、LLDPE及びHDPE等が挙げられる。ポリプロピレン(PP)としては、ホモPP、ブロックPP及びランダムPP等が挙げられる。ポリブテンとしては、ポリブテン−1等が挙げられる。
エチレン−α−オレフィン共重合体は、エチレンに対して、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン又は1−オクテン等のα−オレフィンを数モル%程度の割合で共重合させた共重合体であることが特に好ましい。
また、熱間内圧クリープ性能を良好にする観点から、ポリオレフィン系樹脂は、ISO/TR9080に従って求めた長期水圧強度をもとに、20℃で50年間管が破壊しない一定応力値が10.0MPa以上であるPE100に適合することがさらに好ましい。
[5−4−2.ガラス繊維]
第2層220に用いられるガラス繊維は、繊維径が、好ましくは5μm以上、好ましくは20μm以下、より好ましくは15μm以下の短繊維である。ガラス繊維の繊維径が上記下限以上及び上記上限以下であると、繊維強化複合管200の強度、寸法安定性及び高温での伸びが効果的に高くなる。
繊維径は、第2層220中に含まれるガラス繊維それぞれの最大径の平均値である。
ガラス繊維は表面処理されていてもよい。表面処理剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等がある。好ましくはアミノシランである。本発明の効果により一層優れることから、上記ガラス繊維は、アミノシランにより表面処理されていることが好ましい。
[4−4−3.相溶化剤]
第2層220に用いられてよい相溶化剤としては、例えば、マレイン酸変性ポリオレフィン、シラン変性ポリオレフィン、及び塩素化ポリオレフィン等が挙げられる。なお、これらの相溶化剤は、上述のポリオレフィン系樹脂の項目で述べたポリオレフィン系樹脂とは、本発明の構成上区別される。相溶化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
繊維強化複合管200の強度、寸法安定性及び高温での伸びをより一層効果的に高める観点からは、相溶化剤は、マレイン酸変性ポリオレフィン又はシラン変性ポリオレフィンであることが好ましい。
[5−4−4.接着性樹脂]
接着層240を構成する接着性樹脂としては、たとえば、ゴム系ホットメルト接着剤および変性ポリオレフィン(特に、変性ポリエチレン、変性ポリプロピレン)が挙げられる。変性ポリオレフィンとしては、たとえば、酸変性ポリオレフィンおよびシラン変性ポリオレフィンなどが挙げられる。変性ポリオレフィンの変性態様としては、グラフトおよび共重合による変性が挙げられる。酸変性ポリオレフィンは、ポリオレフィン系樹脂が不飽和カルボン酸によって変性されたものである。不飽和カルボン酸としては、たとえば、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸、フタル酸等が挙げられる。また、その誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等が挙げられ、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸、無水フタル酸、アクリル酸メチル、メタクル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N−ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽和ジカルボン酸及びその誘導体が好ましく、特に無水マレイン酸および無水フタル酸が好ましく挙げられる。変性ポリオレフィンは、1種を単独で用いても良いし、2種以上を併用してもよい。
[5−4−5.ガスバリア性樹脂]
ガスバリア層250を構成するガスバリア性樹脂としては、例えば、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン樹脂(PVDC)、及びポリアクリロニトリル(PAN)等の樹脂が挙げられる。
[5−4−6.他の成分]
第1層210、第2層220、第3層230、接着層240、ガスバリア層250は、それぞれ、ポリオレフィン系樹脂以外の熱可塑性樹脂を副成分(つまり樹脂成分のうち50%未満量の成分)として含んでいてもよい。
繊維強化複合管200の高温下での耐久性をより一層高めたり、銅などの金属による耐久性の低下を抑えたりする観点からは、第1層210、第2層220、第3層230はそれぞれ、酸化防止剤を含むことが好ましい。酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤及びラクトン系酸化防止剤等が挙げられる。
ヒンダードフェノール系酸化防止剤としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオンアミド]、ベンゼンプロパン酸、3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシ、C7−C9側鎖アルキルエステル、3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(ドデシルチオメチル)−o−クレゾール、4,6−ビス(オクチルチオメチル)−o―クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert―ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,6−ジ−tert−ブチル−4−[4,6−ビス(オクチルチオ)−1,3,5−トリアジン2−イルアミノ]フェノール、及びジエチル[{3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル}メチル]ホスフォネート等が挙げられる。
リン系酸化防止剤としては、トリス(2,4−ジ−tert−ブチルフェニル)フォスファイト、トリス[2−[[2,4,8,10−テトラ−tert−ブチルジベンゾ[d,f][1,3,2]ジオキサフォスフェフィン−6−イル]オキシ]エチル]アミン、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸、及びテトラキス(2,4−ジ−tert−ブチルフェニル)(1,1−ビフェニル)−4,4’−ジイルビスホスフォナイト等が挙げられる。
ラクトン系酸化防止剤としては、3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物等が挙げられる。
繊維強化複合管200の高温下での耐久性をさらに一層高めたり、銅などの金属による耐久性の低下を抑えたりする観点からは、第1層210、第2層220、第3層230が酸化防止剤を含む場合に、酸化防止剤は、フェノール系酸化防止剤であることが好ましく、ヒンダードフェノール系酸化防止剤であることがより好ましい。フェノール系酸化防止剤及びヒンダードフェノール系酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
繊維強化複合管200の高温下での耐久性をさらに一層高めたり、銅などの金属による耐久性の低下を抑えたりする観点からは、酸化防止剤は、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸ステアリル又は2,4,6−トリス(3’,5’−ジ−tert−ブチル−4’−ヒドロキシベンシル)メシチレンであることが好ましく、上記ポリオレフィン系樹脂組成物は、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸ステアリル又は2,4,6−トリス(3’,5’−ジ−tert−ブチル−4’−ヒドロキシベンシル)メシチレンを含むことが好ましい。
第1層210、第2層220、第3層230の100重量%中、酸化防止剤、フェノール系酸化防止剤、及びヒンダードフェノール系酸化防止剤の含有量はそれぞれ、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは5重量%以下、より好ましくは1重量%以下、更に好ましくは0.5重量%以下である。酸化防止剤、フェノール系酸化防止剤、及びヒンダードフェノール系酸化防止剤の含有量が、上記下限以上であると、繊維強化複合管200の高温下での耐久性がより一層高くなり、上記上限を超える含有量では、繊維強化複合管200の高温下での耐久性は変わらないため、上記上限以下であると、過剰な酸化防止剤の使用が抑えられる。
第1層210、第2層220、第3層230は、必要に応じて、架橋剤、銅害防止剤、滑剤、光安定剤及び顔料等の添加剤を含んでいてもよい。
架橋剤としては、有機過酸化物等が挙げられる。ポリオレフィン系樹脂組成物は、有機過酸化物としては、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン等が挙げられる。架橋剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
有機過酸化物の使用量は特に限定されない。有機過酸化物を用いる場合に、ポリオレフィン系樹脂100重量部に対して、有機酸化物の含有量は、好ましくは0.01重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。
滑剤としては特に限定されず、例えば、フッ素系滑剤、パラフィンワックス系滑剤及びステアリン酸系滑剤等が挙げられる。滑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
滑剤の使用量は特に限定されない。ポリオレフィン系樹脂100重量部に対して、滑剤の含有量は好ましくは0.01重量部以上、好ましくは3重量部以下である。
光安定剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系及びシアノアクリレート系等の紫外線吸収剤、並びにヒンダードアミン系の光安定剤等が挙げられる。光安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系及び染料レーキ系等の有機顔料、並びに酸化物系、クロム酸モリブデン系、硫化物−セレン化物系及びフェロシアン化物系等の無機顔料等が挙げられる。顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[5−5.保温材]
保温材280を構成する比表面積が大きい構造体は、多孔質材料(たとえば、樹脂発泡体など)、繊維質材料(たとえば、不織布、織布、単繊維体、網状体など)が挙げられる。
発泡樹脂は、断熱性、柔軟性、寸法安定性、取付容易性などの観点から、第1層210および第3層230に用いられる樹脂として上述したポリオレフィン系樹脂の発泡体であってよい。断熱性、柔軟性、寸法安定性、取付容易性などをより効果的に得る観点からは、第1層210および第3層230に用いられる樹脂として上述したポリオレフィン系樹脂の架橋体(架橋ポリオレフィン系樹脂)であることが好ましい。
繊維質材料は、ガラス繊維、炭素繊維などの無機繊維であってもよいし、天然繊維、樹脂繊維などの有機繊維であってもよい。
[5−6.熱線膨張係数]
繊維強化複合管200の熱線膨張係数は6−5/℃以下、好ましくは5.5×10−5/℃以下、さらに好ましくは5×10−5/℃以下、特に好ましくは4.5×10−5/℃以下、最も好ましくは4×10−5/℃以下である。繊維強化複合管200の熱線膨張係数が低いと、繊維強化複合管200中を流れる20℃以上の温度幅のある冷温水に対して熱伸縮が生じにくい。
熱線膨張係数は以下のようにして測定される。繊維強化複合管200を軸方向の長さが1mとなるように切断し、評価サンプルを得る。得られた評価サンプルを60℃(Thot)で2時間保管し、保管直後の60℃での軸方向の長さ(Lhot)を測定する。次いで、同じ評価サンプルを5℃(Tcool)で2時間保管し、保管直後の5℃での軸方向の長さ(Lcool)を測定する。得られた値を下記の式1に代入し、熱線膨張係数を算出する。
Figure 2016217426
[5−7.熱間内圧クリープ性能]
繊維強化複合管200の80℃での熱間内圧クリープ性能に関しては、円周応力5.0MPaで1000時間以上、より好ましくは5.1MPaで1000時間以上、更に好ましくは5.2MPaで1000時間以上、特に好ましくは5.5MPaで1000時間以上である。熱間内圧クリープ性能における時間は、破壊時間である。繊維強化複合管200の高温でのクリープ性能は高い方が好ましい。繊維強化複合管200の高温でのクリープ性能が高いと、高温流体を流す配管として適用範囲が広がる。また、線膨張性能とクリープ性能を両立することで冷温水管としてより有用となる。破壊形態は、好ましくはやや脆性、さらに好ましくは延性割れである。
上記80℃での熱間内圧クリープ性能は、熱間内圧クリープ試験機を用いて、80℃で試験される。熱間内圧クリープ試験機としては、コンドー科学社製の試験機が挙げられる。80℃に調整された恒温水槽内に50cmの長さに切断した上記多層管材を入れ、専用の密栓治具を使用し、水圧をかける事で所望の円周応力に設定する方法を用いる。
[5−8.成形]
繊維強化複合管200は、第1層210、第2層220、第3層230、接着層240およびガスバリア層250をそれぞれ製造するための樹脂組成物を調製し、共押出によって成形することができる。成形機としては特に限定されず、単軸押出機、二軸異方向パラレル押出機、二軸異方向コニカル押出機、及び二軸同方向押出機等が挙げられる。賦形する金型、樹脂温度等は、特に限定されない。
[6.金属強化複合管]
[6−1.層構成]
図4は、図1における金属強化複合管300を模式的に示す断面図である。
図4に示す金属強化複合管300は、管状の第1層310(内層/成形体)と、第1層310の外側に配置された管状の第2層330(中間層/金属)と、第2層330の外側に配置された管状の第3層350(外層/成形体)とを含む。第1層310と第2層330との間には第1接着層320が介在し、第2層330と第3層350との間には第2接着層340が介在するが、必須ではない。第1接着層320および第2接着層340は、それぞれ、第1層310と第2層330との間、および、第2層330と第3層350との間の密着性を高めるために設けられている。したがって、金属強化複合管300は、軸心側から外周側へ、第1層310、第1接着層320、第2層330、第2接着層340、第3層350がこの順で積層されている。
第1層310は、ポリオレフィン系樹脂を含む。第2層330は、金属から構成される。第3層350は、ポリオレフィン系樹脂を含む。第1層310および第3層350には、繊維強化複合管200におけるようなガラス繊維は含まない。金属強化複合管300は、中間層として金属から構成される第2層330を含むことにより、曲げ加工性に優れる。曲げ加工性とは、曲げやすく、かつ、曲げたあとの形状がもとに戻りにくい性質をいう。
第1層310は、金属強化複合管300の最も内側の層であり、金属強化複合管300内を輸送される冷温水に接する。本実施形態における金属強化複合管300は、冷温水の管路を構成する管路部(本実施形態においては、第1層310、第1接着層320、第2層330、第2接着層340、第3層350で構成される多層複合管)の外周面が保温材380によって覆われていることが好ましい。保温材380は、比表面積が大きい構造体で構成される。保温材380は、金属強化複合管300内を輸送される冷温水と、金属強化複合管300の外部環境との間の熱移動を遮断することで、金属強化複合管300内を輸送される冷温水の温度を保つ観点、および、当該熱移動によって生じる結露(保温性を著しく下げる要因となりうる)を防止する観点から、金属強化複合管300に設けられる。
また、金属強化複合管300の管路部には、第1層310、第1接着層320、第2層330、第2接着層340、第3層350に加えて、他の層、たとえば最外層に耐候層、最内側層に耐薬層などが積層されていてもよい。
[6−2.厚み]
金属強化複合管300において、第2層330の厚みの、金属強化複合管300全体の肉厚に対する比(r2)は、たとえば0.05以上、0.35以下であってよい。上記比(r2)は、好ましくは0.1以上、好ましくは0.2以下である。上記比(r2)が上記下限以上であると、強度(補強性)がより一層良好になる。上記比(r2)が上記上限以下であると、曲げ加工性がより一層良好になる。
金属強化複合管300において、第1層310の厚みの、金属強化複合管300全体の肉厚に対する比(r1)は、好ましくは0.35以上、より好ましくは0.45以上、好ましくは0.65以下、より好ましくは0.6以下である。上記比(r1)が上記下限以上であると、耐熱性、耐薬品性、耐腐食性、曲げ加工性がより一層高くなる。上記比(r1)が上記上限以下であると、剛性、強度がより一層良好になる。
金属強化複合管300において、第3層350の厚みの、金属強化複合管300全体の肉厚に対する比(r3)は、好ましくは0.1以上、より好ましくは0.15以上、好ましくは0.3以下、より好ましくは0.25以下である。上記比(r3)が上記下限以上であると、耐熱性、耐薬品性、耐腐食性、曲げ加工性がより一層高くなる。上記比(r3)が上記上限以下であると、剛性、強度がより一層良好になる。

金属強化複合管300の管路部の厚み(本実施形態においては、第1層310、第1接着層320、第2層330、第2接着層340、第3層350の合計の厚み)は、好ましくは1mm以上、より好ましくは1.25mm以上、好ましくは6mm以下、より好ましくは3.5mm以下である。当該厚みが上記下限以上であると、剛性、強度、耐圧性がより一層高くなる。当該厚みが上記上限以下であると、曲げ加工性、軽量性がより一層高くなる。
金属強化複合管300において、第1接着層320および第2接着層340それぞれの厚みは、好ましくは50μm以上、より好ましくは75μm以上、好ましくは200μm以下、より好ましくは155μm以下である。第1接着層320および第2接着層340それぞれの厚みが上記下限以上であると、厚み制御がより一層容易であり、接着性がより一層高くなる。第1接着層320および第2接着層340それぞれの厚みが上記上限以下であると、曲げ加工性がより一層良好となり、さらに、材料の使用量が減り、材料コストが安くかつ軽量になる。
[6−3.組成]
第1層310において、ポリオレフィン系樹脂の含有量は、好ましくは90重量%以上、より好ましくは95重量%以上、好ましくは100重量%(全量)以下である。第3層350において、ポリオレフィン系樹脂の含有量は好ましくは90重量%以上、より好ましくは95重量%以上、好ましくは100重量%(全量)以下である。
[6−4.成分]
[6−4−1.ポリオレフィン系樹脂]
第1層310および第3層350に用いられるポリオレフィン系樹脂は特に限定されず、公知のポリオレフィン系樹脂を用いることができる。ポリオレフィン系樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。第1層310および第3層350それぞれに用いられるポリオレフィン系樹脂としては、同じ樹脂であってもよいし、異なる樹脂であってもよい。たとえば、第1層310には、耐熱性、耐久性などの点でより優れた樹脂を選択することができる。第3層350については、外部からの衝撃および擦れ、ならびに継手の接合部で長時間負荷される応力などに対する最低限の耐性さえ備えた樹脂であれば、特に限定されなくてよい。たとえばコストなどの入手容易性に基づいて選択してよい。
さらに、第1層310および第3層350それぞれに用いられるポリオレフィン系樹脂としては、上述の繊維強化複合管200の第1層210、第2層220および/または第3層230に用いられるポリオレフィン系樹脂と同じ樹脂であってもよいし、異なる樹脂であってもよい。
ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−酢酸ビニル共重合体及びエチレン−α−オレフィン共重合体等が挙げられる。
耐熱性、耐久性の観点からは、ポリエチレン又はポリプロピレンが好ましく、ポリエチレンがより好ましい。さらに、ポリオレフィン系樹脂は、架橋ポリオレフィン系樹脂(特に架橋ポリエチレンPEX)であってもよい。架橋ポリオレフィン系樹脂としては、過酸化物架橋ポリオレフィン系樹脂(特に過酸化物架橋ポリエチレンPEX−A)、シラン架橋ポリオレフィン系樹脂(特にシラン架橋ポリエチレンPEX−B)、電子線照射架橋ポリオレフィン系樹脂(電子線架橋ポリエチレンPEX−C)が挙げられる。耐熱性、耐久性、曲げ特性の観点からは、架橋ポリエチレン(PEX)、耐熱性ポリエチレン(PE−RT)であることが特に好ましい。
ポリエチレン(PE)としては、LDPE、LLDPE及びHDPE等が挙げられる。ポリプロピレン(PP)としては、ホモPP、ブロックPP及びランダムPP等が挙げられる。ポリブテンとしては、ポリブテン−1等が挙げられる。
エチレン−α−オレフィン共重合体は、エチレンに対して、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン又は1−オクテン等のα−オレフィンを数モル%程度の割合で共重合させた共重合体であることが特に好ましい。
また、ポリオレフィン系樹脂は、長期クリープ性を有するものを選択してよい。これによって、破損による漏水事故を防止することができる。たとえば、耐熱性ポリエチレン(PE−RT)は、90℃の高温で長時間使用しても二−ポイントが発生しにくく、耐久性に優れる。あるいは、長期クリープ性を有するポリオレフィン系樹脂は、ISO/TR9080に従って求めた長期水圧強度をもとに、20℃で50年間管が破壊しない一定応力値が10.0MPa以上であるPE100に適合するものであってもよい。
[6−4−2.金属]
金属層を構成する金属としては、強度および延伸性に優れるものを特に限定されることなく選択することができ、たとえば、アルミニウム、銅、鉛等が挙げられる。好ましくはアルミニウムが用いられる。
[6−4−3.接着性樹脂]
第1接着層320および第2接着層340は、たとえば、ゴム系ホットメルト接着剤および変性ポリオレフィン(特に、変性ポリエチレン、変性ポリプロピレン)、アイオノマーが挙げられる。接着性樹脂は、以下の例示の1種を単独で用いてもよいし、2種以上を併用してもよい。
変性ポリオレフィンとしては、たとえば、酸変性ポリオレフィンおよびシラン変性ポリオレフィンなどが挙げられる。変性ポリオレフィンの変性態様としては、グラフトおよび共重合による変性が挙げられる。酸変性ポリオレフィンは、ポリオレフィン系樹脂が不飽和カルボン酸またはその誘導体によって変性されたものである。不飽和カルボン酸としては、たとえば、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸、メサコン酸、アンゲリカ酸、フタル酸等が挙げられる。また、その誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等が挙げられ、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ナジック酸、無水フタル酸、アクリル酸メチル、メタクル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N−ブチルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム等が挙げられる。これらの中でも、不飽和ジカルボン酸及びその誘導体が好ましく、特に無水マレイン酸および無水フタル酸が好ましく挙げられる。
アイオノマーは、ポリオレフィンの共重合体(コモノマーとしては、不飽和カルボン酸、不飽和カルボン酸エステルが挙げられる。)が分子鎖間で金属イオンによって架橋により中和された樹脂である。共重合体は、単独で、または複数種の組み合わせで用いられてよい。金属イオンとしては、亜鉛、マンガン、コバルトなどの遷移金属イオン;リチウム、ナトリウム、カリウムなどのアルカリ金属イオン;および、カルシウムなどのアルカリ土類金属イオンが挙げられる。これらの金属イオンは、単独で、または複数種の組み合わせで用いられてよい。
[6−4−4.具体例]
より具体的な層構成としては、たとえば、金属強化複合管300が第1層310−第2層330−第3層350で構成される場合、シラン変性PE(架橋PE)−アルミ−シラン変性PE(架橋PE)が挙げられる。また、金属強化複合管300が第1層310−第1接着層320−第2層330−第2接着層340−第3層350で構成される場合、PE−RT(耐熱性PE)−マレイン酸変性PE(接着層)−アルミ−マレイン酸変性PE(接着層)−高密度PE、シラン変性PE(架橋PE) −マレイン酸変性PE(接着層)−アルミ−マレイン酸変性PE(接着層)−シラン変性PE(架橋PE)が挙げられる。
[6−4−5.保温材]
保温材380を構成する比表面積が大きい構造体は、多孔質材料(たとえば、樹脂発泡体など)、繊維質材料(たとえば、不織布、織布、単繊維体、網状体など)が挙げられる。
発泡樹脂は、断熱性、柔軟性、寸法安定性、取付容易性などの観点から、第1層310および第3層350に用いられる樹脂として上述したポリオレフィン系樹脂の発泡体であってよい。断熱性、柔軟性、寸法安定性、取付容易性などをより効果的に得る観点からは、第1層310および第3層350に用いられる樹脂として上述したポリオレフィン系樹脂の架橋体(架橋ポリオレフィン系樹脂)であることが好ましい。
繊維質材料は、ガラス繊維、炭素繊維などの無機繊維であってもよいし、天然繊維、樹脂繊維などの有機繊維であってもよい。
[6−4−6.他の成分]
第1層310、第3層350、第1接着層320および第2接着層340は、それぞれ、所望の特性を保つ範囲内でポリオレフィン系樹脂以外の熱可塑性樹脂を含んでいてもよい。但し、ポリオレフィン系樹脂以外の熱可塑性樹脂を含ませる場合には、ポリオレフィン系樹脂組成物におけるポリオレフィン系樹脂以外の熱可塑性樹脂の含有量は、ポリオレフィン系樹脂組成物におけるポリオレフィン系樹脂の含有量よりも少ないことが好ましい。具体的な他の成分としては、上記の繊維強化複合管200において他の成分として挙げた、ポリオレフィン系樹脂以外の熱可塑性樹脂、酸化防止剤、架橋剤、滑剤、光安定剤、顔料と同じ成分が挙げられる。
[6−5.熱間内圧クリープ性能]
金属強化複合管300のクリープ強度は、繊維強化複合管200の1.5倍以上3倍以下であってよい。
本発明の好ましい実施形態は上記の通りであるが、本発明はそれらのみに限定されるものではなく、本発明の趣旨と範囲とから逸脱することのない様々な実施形態が他になされる。さらに、本実施形態において述べられる作用および効果は一例であり、本発明を限定するものではない。
100 冷温水管路配管システム
200 繊維強化複合管
290 接続部材
300 金属強化複合管

Claims (5)

  1. ポリオレフィン樹脂およびガラス繊維を含む繊維強化複合管と
    ポリオレフィン樹脂および金属を含む金属強化複合管と、
    前記繊維強化複合管と前記金属強化複合管とを接続する接続部材と、を含み、
    前記繊維強化複合管の線膨張率が6×10−5/℃以下であり、かつ、
    前記繊維強化複合管と前記金属強化複合管との合計容量に対し、前記繊維強化複合管が占める容量が70%以上であり、かつ、
    温度幅が20℃以上の冷温水を輸送する、冷温水管路配管システム。
  2. 前記繊維強化複合管の内径の直径が19mm以上かつ前記金属強化複合管の内径の直径が75mm以下である、請求項1に記載の冷温水管路配管システム。
  3. 前記接続部材が、前記繊維強化複合管との接続のためのエレクトロフュージョン用接合部と、前記金属強化複合管との接続のためのねじ連結部とを含む、請求項1または2に記載の冷温水管路配管システム。
  4. 前記繊維強化複合管が、軸心から外周への方向に、少なくとも、管状の第1層、第2層および第3層をこの順で含み、前記第1層および前記第3層がポリオレフィン系樹脂を主成分として含み、前記第2層が、ポリオレフィン系樹脂とガラス繊維とを含み、かつ、
    前記繊維強化複合管の厚肉全体に対する前記第2層の層厚の比が0.3以上である、請求項1から3のいずれか1項に記載の冷温水管路配管システム。
  5. 前記ガラス繊維の平均繊維径が5μm以上20μm以下である、請求項1から4のいずれか1項に記載の冷温水管路配管システム。
JP2015101655A 2015-02-20 2015-05-19 冷温水管路配管システム Active JP6484106B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015101655A JP6484106B2 (ja) 2015-05-19 2015-05-19 冷温水管路配管システム
PCT/JP2016/054738 WO2016133167A1 (ja) 2015-02-20 2016-02-18 繊維強化複合管および冷温水配管システム
US15/552,252 US10544886B2 (en) 2015-02-20 2016-02-18 Fiber-reinforced composite pipe and cold/warm water piping system
KR1020177022898A KR101993147B1 (ko) 2015-02-20 2016-02-18 섬유 강화 복합관 및 냉온수 배관 시스템
CN201680010751.9A CN107250640B (zh) 2015-02-20 2016-02-18 纤维强化复合管和冷热水配管系统
AU2016220736A AU2016220736B2 (en) 2015-02-20 2016-02-18 Fiber-reinforced composite pipe and cold/warm water piping system
SG11201706694TA SG11201706694TA (en) 2015-02-20 2016-02-18 Fiber-reinforced composite pipe and cold/warm water piping system
TW105105004A TWI688472B (zh) 2015-02-20 2016-02-19 纖維強化複合管及冷溫水配管系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101655A JP6484106B2 (ja) 2015-05-19 2015-05-19 冷温水管路配管システム

Publications (2)

Publication Number Publication Date
JP2016217426A true JP2016217426A (ja) 2016-12-22
JP6484106B2 JP6484106B2 (ja) 2019-03-13

Family

ID=57580880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101655A Active JP6484106B2 (ja) 2015-02-20 2015-05-19 冷温水管路配管システム

Country Status (1)

Country Link
JP (1) JP6484106B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173305A (ja) * 2020-04-22 2021-11-01 積水化学工業株式会社 多層管
JP2021173306A (ja) * 2020-04-22 2021-11-01 積水化学工業株式会社 多層管
CN114573897A (zh) * 2022-03-04 2022-06-03 四川仁智新材料科技有限责任公司 一种聚乙烯静音排水管专用料及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132743A (ja) * 1984-07-26 1986-02-15 昭和電工株式会社 多層構造管
JPH0557582U (ja) * 1992-01-09 1993-07-30 三菱樹脂株式会社 管継手
JPH0559093U (ja) * 1992-01-20 1993-08-03 株式会社栗本鐵工所 複合管継手
JPH07253187A (ja) * 1994-03-15 1995-10-03 Sekisui Chem Co Ltd 管継手
JP2000291854A (ja) * 1999-04-09 2000-10-20 Sekisui Chem Co Ltd 管継手
JP2001355767A (ja) * 2000-04-13 2001-12-26 Gerhard Rosenberg 液体状、ペースト状、および/または気体状の媒体用の配管を敷設するために押出成形、射出成形、または吹込成形されたプラスチック製のパイプ、取付部品、または成形品
JP2002144487A (ja) * 2000-11-09 2002-05-21 Sekisui Chem Co Ltd 管状体及びその製造方法
JP2002195462A (ja) * 2000-12-26 2002-07-10 Komei Seisakusho:Kk 仮設用水道管
JP2004148511A (ja) * 2002-10-28 2004-05-27 Osaka Gas Co Ltd
JP2007285444A (ja) * 2006-04-18 2007-11-01 Kitz Corp 管継手
JP2013007421A (ja) * 2011-06-23 2013-01-10 Furukawa Electric Co Ltd:The 強化複合管

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132743A (ja) * 1984-07-26 1986-02-15 昭和電工株式会社 多層構造管
JPH0557582U (ja) * 1992-01-09 1993-07-30 三菱樹脂株式会社 管継手
JPH0559093U (ja) * 1992-01-20 1993-08-03 株式会社栗本鐵工所 複合管継手
JPH07253187A (ja) * 1994-03-15 1995-10-03 Sekisui Chem Co Ltd 管継手
JP2000291854A (ja) * 1999-04-09 2000-10-20 Sekisui Chem Co Ltd 管継手
JP2001355767A (ja) * 2000-04-13 2001-12-26 Gerhard Rosenberg 液体状、ペースト状、および/または気体状の媒体用の配管を敷設するために押出成形、射出成形、または吹込成形されたプラスチック製のパイプ、取付部品、または成形品
JP2002144487A (ja) * 2000-11-09 2002-05-21 Sekisui Chem Co Ltd 管状体及びその製造方法
JP2002195462A (ja) * 2000-12-26 2002-07-10 Komei Seisakusho:Kk 仮設用水道管
JP2004148511A (ja) * 2002-10-28 2004-05-27 Osaka Gas Co Ltd
JP2007285444A (ja) * 2006-04-18 2007-11-01 Kitz Corp 管継手
JP2013007421A (ja) * 2011-06-23 2013-01-10 Furukawa Electric Co Ltd:The 強化複合管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173305A (ja) * 2020-04-22 2021-11-01 積水化学工業株式会社 多層管
JP2021173306A (ja) * 2020-04-22 2021-11-01 積水化学工業株式会社 多層管
JP7453841B2 (ja) 2020-04-22 2024-03-21 積水化学工業株式会社 多層管
JP7453840B2 (ja) 2020-04-22 2024-03-21 積水化学工業株式会社 多層管
CN114573897A (zh) * 2022-03-04 2022-06-03 四川仁智新材料科技有限责任公司 一种聚乙烯静音排水管专用料及制备方法

Also Published As

Publication number Publication date
JP6484106B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
TWI688472B (zh) 纖維強化複合管及冷溫水配管系統
US20110155359A1 (en) Hollow structures and associated method for conveying refrigerant fluids
JP6484106B2 (ja) 冷温水管路配管システム
JP6595787B2 (ja) 多層配管
CA2784113A1 (en) Multilayer structures comprising a barrier layer and their use to convey fluids
JP6574546B2 (ja) 多層管
AU2011240325B2 (en) Domestic service pipe system and use thereof
JP6523045B2 (ja) ポリオレフィン系樹脂多層配管およびポリオレフィン系樹脂多層配管の製造方法
US20090162591A1 (en) Multilayer coolant pipes
WO2016133167A1 (ja) 繊維強化複合管および冷温水配管システム
JP4618584B2 (ja) 流体用ホース
JP2002241546A (ja) 燃料取扱用部材
JP7074421B2 (ja) ポリオレフィン系樹脂多層管
JP2016196122A (ja) 多層配管
JP2016155363A (ja) 多層管材
JP6502639B2 (ja) 配管システム
JP6397280B2 (ja) 多層管
CN211875323U (zh) 一种用于水暖的新型5层阻氧管
JP2019007605A (ja) ホース及びホースの製造方法
JP2022157416A (ja) 多層管
JP2024118447A (ja) 排水管および雨水排水装置
JP2024118445A (ja) 排水管および雨水排水装置
WO2023218483A1 (en) Multilayer flexible pressure pipes
JPH07186310A (ja) 多層パイプ
JP6170417B2 (ja) ポリエチレン系樹脂組成物及び成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R151 Written notification of patent or utility model registration

Ref document number: 6484106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151