JP2016215294A - End mill - Google Patents

End mill Download PDF

Info

Publication number
JP2016215294A
JP2016215294A JP2015100794A JP2015100794A JP2016215294A JP 2016215294 A JP2016215294 A JP 2016215294A JP 2015100794 A JP2015100794 A JP 2015100794A JP 2015100794 A JP2015100794 A JP 2015100794A JP 2016215294 A JP2016215294 A JP 2016215294A
Authority
JP
Japan
Prior art keywords
cutting
cutting edge
outer peripheral
end mill
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015100794A
Other languages
Japanese (ja)
Inventor
平野 哲也
Tetsuya Hirano
哲也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015100794A priority Critical patent/JP2016215294A/en
Publication of JP2016215294A publication Critical patent/JP2016215294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an end mill capable of securing a large feeding amount in an axial direction and cutting with high efficiency.SOLUTION: An end mill comprises in an order from a tip end side: a cutting blade part 4; a neck part 3 having diameter which is smaller than outer diameter of the cutting blade part 4; and a shank part 2. An outer periphery of the cutting blade part 4 comprises: a chip discharge groove 5 which is twisted spirally with respect to an axial line O of the cutting blade part 4; and an outer peripheral cutting blade 6 formed on a side ridge part on the outer peripheral side of the chip discharge groove 5. When outer diameter of the outer peripheral cutting blade 6 is D, outer diameter of the neck part 3 is d, and when a cutting amount in a radial direction to the workpiece during processing is (D-d)/2, for processing, blade length L of the cutting blade part 4 in the axial direction is longer than length when a next forefront part starts cutting at a time point when a last end part of the outer peripheral cutting blade 6 in a spiral state finishes cutting, and is shorter than length when the next forefront part also finishes the cutting at a time point when the last end part of the outer peripheral cutting blade 6 finishes the cutting.SELECTED DRAWING: Figure 1

Description

この発明は、エンドミルに関し、特に、切刃部の外径が小径でかつロングネックのエンドミルに関するものである。   The present invention relates to an end mill, and more particularly, to an end mill having a small cutting edge and a long neck.

金属部品の加工などに使用されるエンドミルは、本体の後端側のシャンク部が工作機械に片持ち状態で保持され、エンドミルの軸線まわりに高速回転されて、軸線に交差する方向に送り出しながら切刃部の外周切刃を被削材に切り込ませて使用される。このため、一般に、切削時には、被削材から軸線に交差する方向の反力が作用して、軸線が湾曲するような撓みがエンドミル本体に生じ、この状態で切削に供されることになる。
特に、加工すべき深さがエンドミルの切刃部の長さよりも深い、いわゆる深彫り加工を行う場合には、前述の切刃部の後端側に切刃部の外径よりも小径の首部またはシャンク部を備えたいわゆるロングネックのエンドミルを用い、深さ方向に多段階に分けた切削操作が行われている。
End mills used for processing metal parts, etc., have a shank on the rear end side of the main body held in a cantilevered state by a machine tool, rotated at high speed around the axis of the end mill, and fed while cutting in the direction intersecting the axis. It is used by cutting the outer peripheral cutting edge of the blade part into the work material. For this reason, generally, at the time of cutting, a reaction force in a direction intersecting the axis from the work material acts, and a bending that the axis is curved occurs in the end mill body, and is used for cutting in this state.
In particular, when performing so-called deep engraving, where the depth to be processed is deeper than the length of the end mill cutting edge, the neck having a smaller diameter than the outer diameter of the cutting edge on the rear end side of the cutting edge described above. Alternatively, a so-called long neck end mill having a shank portion is used, and cutting operations are performed in multiple stages in the depth direction.

従来のエンドミルにおいて、深い加工面でも首下部分の倒れを防いで高い加工面精度を得る技術として、例えば、次のような技術が開示されている。
エンドミル本体の先端側に切刃部を設け、この切刃部から首部先端にかけてのエンドミル本体外周には切屑排出溝を形成し、この切屑排出溝の切刃部における外周側辺稜部に切刃を形成して、この切刃部外径Dを首部の外径よりも大径とし、切刃部の軸線方向における刃長Lを、切刃部外径Dに対して0.2×D〜0.8×Dの範囲とするとともに、切刃部先端からの切屑排出溝の軸線方向における切上げ長さMを切刃部外径D以上とし、かつ切上げ長さMと切刃の刃長Lとの差(M−L)を0.1×D〜1.0×Dの範囲としている(例えば、特許文献1参照)。
In the conventional end mill, for example, the following technique is disclosed as a technique for obtaining a high machining surface accuracy by preventing the lower part of the neck from falling even on a deep machining surface.
A cutting edge is provided on the tip side of the end mill body, a chip discharge groove is formed on the outer periphery of the end mill body from the cutting edge to the tip of the neck, and a cutting edge is formed on the outer side edge of the cutting edge of the chip discharge groove. And the cutting edge portion outer diameter D is larger than the outer diameter of the neck portion, and the blade length L in the axial direction of the cutting edge portion is 0.2 × D to the cutting edge portion outer diameter D. In addition to the range of 0.8 × D, the cutting length M in the axial direction of the chip discharge groove from the tip of the cutting edge is set to be equal to or larger than the cutting edge outer diameter D, and the cutting length M and the cutting edge length L of the cutting edge (M−L) is in the range of 0.1 × D to 1.0 × D (see, for example, Patent Document 1).

また、例えば、軸線回りに回転される略円柱棒状のエンドミル本体の先端側に切刃部が設けられ、切刃部の外周には、切屑排出溝と、その切屑排出溝の外周側辺稜部に切刃が形成されたものにおいて、切刃部の外径が、切刃部の先端から後端側に向けて漸次縮径し、この縮径率が、先端側よりも後端側で大となるように形成されたエンドミルが開示されている(例えば、特許文献2参照)。   In addition, for example, a cutting edge portion is provided on the tip side of the substantially cylindrical rod-shaped end mill body that rotates about the axis, and on the outer periphery of the cutting edge portion, there is a chip discharge groove and an outer peripheral side ridge portion of the chip discharge groove. In the case where the cutting edge is formed, the outer diameter of the cutting edge portion gradually decreases from the front end of the cutting edge portion toward the rear end side, and this diameter reduction ratio is larger on the rear end side than on the front end side. An end mill formed so as to become is disclosed (for example, see Patent Document 2).

特開2005−279899号公報(第3頁、図1−2)Japanese Patent Laying-Open No. 2005-279899 (page 3, FIG. 1-2) 特開2007−245278号公報(第4頁、図1−2)JP 2007-245278 A (page 4, Fig. 1-2)

深彫り加工を行うようなエンドミルにあっては、特に小径の場合は、撓みの影響をできるだけ少なくするために、軸方向の切り込み量をなるべく小さくする必要があった。
特許文献1のエンドミルでは、切刃部の軸線方向の刃長を外径寸法より短くし、切刃の接触長さを短くすることによって撓みを小さくしているが、所定の軸方向深さまで加工するのに、多数の切削操作を行う必要があり、加工完了までに非常に時間がかかるという問題があった。
また、特許文献2のようなエンドミルでも、加工時の軸方向の送り量は、切刃の長さより短く制限されるので、深彫り加工を行うには多数の切削操作と加工時間がかかるという問題があった。
In an end mill that performs deep engraving, particularly in the case of a small diameter, it is necessary to make the amount of cut in the axial direction as small as possible in order to minimize the influence of bending.
In the end mill of Patent Document 1, the blade length in the axial direction of the cutting edge portion is made shorter than the outer diameter dimension, and the bending is reduced by shortening the contact length of the cutting edge. However, machining to a predetermined axial depth is performed. In order to do so, a large number of cutting operations must be performed, and it takes a very long time to complete the processing.
Further, even in the end mill as in Patent Document 2, since the feed amount in the axial direction at the time of machining is limited to be shorter than the length of the cutting blade, it takes a lot of cutting operations and machining time to perform deep engraving. was there.

この発明は、上記のような問題を解決するためになされたもので、軸方向の送り量を多く確保でき、高能率で切削可能なエンドミルを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an end mill capable of securing a large amount of feed in the axial direction and capable of cutting with high efficiency.

この発明に係るエンドミルは、先端側に切刃部、後端側にシャンク部、中間に切刃部の外径より小径の首部を有し、切刃部の外周には、切刃部の軸線に対して螺旋状にねじれた切屑排出溝と、切屑排出溝の外周側辺稜部に形成された外周切刃とを備えたエンドミルであって、外周切刃の外径をD、首部の外径をdとし、ワークに対する加工時の径方向の切り込み量を(D−d)/2に設定して加工するとき、軸線方向の切刃部の刃長は、螺旋状をした外周切刃の最後端部が切削を終了する時点で最先端部が切削を開始するような長さよりも長く、且つ、外周切刃の最後端部が切削を終了する時点で最先端部も切削を終了するような長さよりも短い長さに形成されているものである。   The end mill according to the present invention has a cutting edge portion on the front end side, a shank portion on the rear end side, a neck portion having a diameter smaller than the outer diameter of the cutting blade portion in the middle, and an axis of the cutting edge portion on the outer periphery of the cutting blade portion An end mill having a spirally twisted chip discharge groove and an outer peripheral cutting edge formed on a peripheral edge of the chip discharge groove, the outer diameter of the outer peripheral cutting edge being D, When the machining is performed with the diameter d and the cutting depth in the radial direction for the workpiece set to (D−d) / 2, the blade length of the cutting edge in the axial direction is the spiral outer peripheral cutting edge. It is longer than the length at which the most advanced part starts cutting when the last end finishes cutting, and the most advanced part also finishes cutting when the last end of the outer peripheral cutting edge finishes cutting. The length is shorter than the desired length.

この発明のエンドミルによれば、ワークに対し所定の切り込み量で加工するとき、軸線方向の切刃部の刃長は、螺旋状をした外周切刃の最後端部が切削を終了する時点で最先端部が切削を開始する長さよりも長く、且つ、外周切刃の最後端部が切削を終了する時点で最先端部も切削を終了する長さよりも短い長さに形成されているので、加工時の切削抵抗の変動を抑制できる。これにより、撓みの変動を抑制しつつ外周切刃の刃長を長くできるため、1回の切削操作で刃長分の切り込みを行うことで、所定の深さまでの加工を少ない切削操作で実現でき、加工時間を大幅に短縮できる。   According to the end mill of the present invention, when the workpiece is machined with a predetermined cutting amount, the blade length of the axial cutting edge portion is the maximum when the last end portion of the spiral outer peripheral cutting edge finishes cutting. Since the tip is longer than the length at which cutting is started and the rearmost end of the outer peripheral cutting edge finishes cutting, the leading edge is also formed to be shorter than the length at which cutting ends. It is possible to suppress fluctuations in cutting resistance at the time. This makes it possible to increase the length of the outer peripheral cutting edge while suppressing fluctuations in bending, so that cutting up to a predetermined depth can be realized with a small number of cutting operations by performing cutting for the length of the blade with a single cutting operation. Processing time can be greatly reduced.

この発明の実施の形態1によるエンドミルを示す側面図である。It is a side view which shows the end mill by Embodiment 1 of this invention. 図1に示すエンドミルの先端部を拡大した模式図である。It is the schematic diagram which expanded the front-end | tip part of the end mill shown in FIG. 実施の形態1によるエンドミルの刃長L1を説明する説明図である。It is explanatory drawing explaining the blade length L1 of the end mill by Embodiment 1. FIG. 実施の形態1によるエンドミルの刃長L2を説明する説明図である。It is explanatory drawing explaining the blade length L2 of the end mill by Embodiment 1. FIG. 実施の形態1によるエンドミルの切削中の反力を示す説明図である。FIG. 3 is an explanatory diagram showing a reaction force during cutting of the end mill according to the first embodiment. 刃長LがL1より短い場合の加工面の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a process surface in case the blade length L is shorter than L1. 刃長LがL1より長くL2より短い場合における切削中の反力を示す説明図である。It is explanatory drawing which shows the reaction force during cutting in case the blade length L is longer than L1 and shorter than L2. 実施の形態1によるエンドミルでの深堀加工の説明図である。FIG. 3 is an explanatory diagram of deep drilling in the end mill according to the first embodiment. 従来のエンドミルによる深堀加工の説明図である。It is explanatory drawing of the deep digging by the conventional end mill.

実施の形態1.
図1は、この発明の実施の形態1によるエンドミルの側面図である。また、図2は、図1のエンドミルの先端部を拡大した模式図である。
図1において、エンドミル本体1は、超硬合金等の硬質材料を用いて形成され、軸線Oを中心として概略円筒棒状をなし、後端1b側(図で右側)が、エンドミル本体1を工作機械の主軸に装着するためのシャンク部2となっている。一方の先端1a側は、シャンク部2よりも小径の首部3、およびその先端に形成した切刃部4を備えている。
シャンク部2を工作機械の主軸に把持した状態で、回転方向Tで示すように軸線Oまわりに回転しながら軸線Oに交差する方向に送り出されることによって、切刃部4によりワークに切削加工を施して加工面を形成する。
Embodiment 1 FIG.
FIG. 1 is a side view of an end mill according to Embodiment 1 of the present invention. FIG. 2 is an enlarged schematic view of the tip of the end mill of FIG.
In FIG. 1, an end mill main body 1 is formed using a hard material such as a cemented carbide, has a substantially cylindrical rod shape with an axis O as a center, and a rear end 1b side (right side in the figure) shows the end mill main body 1 as a machine tool. This is a shank portion 2 for mounting on the main shaft. One tip 1a side includes a neck portion 3 having a smaller diameter than the shank portion 2, and a cutting edge portion 4 formed at the tip thereof.
With the shank portion 2 gripped by the spindle of the machine tool, the workpiece is cut by the cutting edge portion 4 by being sent around in the direction intersecting the axis O while rotating around the axis O as indicated by the rotation direction T. To form a processed surface.

各部の形状をさらに詳しく説明する。
シャンク部2は、工作機械の主軸に把持される部分となるストレートの円柱状部2aと、この円柱状部2aの先端側にあって、漸次縮径する円錐台状部2bとからなっている。
円錐台状部2bの先端は首部3と同径となって首部3につながっている。すなわち、シャンク部2は、円柱状部2aと円錐台状部2bを合わせた部分である。
円錐台状部2bに続く首部3は、ストレートの円柱状であり、その先端側に切刃部4が形成されている。シャンク部2,首部3および切刃部4は、ともに軸線Oを中心としている。
円錐台状部2b先端の首部3とのつなぎ部が、首部3とシャンク部2との境界となり、この境界よりも先端側が首下部分であり、境界から先端1aまでが首下長さNである。
The shape of each part will be described in more detail.
The shank portion 2 is composed of a straight cylindrical portion 2a that is a portion to be gripped by the spindle of the machine tool, and a truncated cone-shaped portion 2b that is gradually reduced in diameter on the tip side of the cylindrical portion 2a. .
The tip of the truncated cone portion 2 b has the same diameter as the neck portion 3 and is connected to the neck portion 3. That is, the shank part 2 is a part that combines the columnar part 2a and the truncated cone part 2b.
The neck portion 3 following the truncated cone portion 2b has a straight cylindrical shape, and a cutting edge portion 4 is formed on the tip side thereof. The shank portion 2, the neck portion 3 and the cutting edge portion 4 are both centered on the axis O.
The connecting part between the neck 3 at the tip of the truncated cone part 2b becomes the boundary between the neck 3 and the shank part 2, the tip side of the boundary is the neck lower part, and the length from the boundary to the tip 1a is N below the neck. is there.

次に、切刃部4の詳細について説明する。
切刃部4は、外径が首部の外径よりもわずかに大きくなっており、さらに切刃部4には、先端側から後端側に向かうに従い外径がわずかに漸減するようにバックテーパが付されており、軸線Oを中心とした円錐台状をなしている。
そして、この切刃部4の外周の先端から後端にかけて、すなわちエンドミル本体1の先端1a側から首部3の先端側部分にかけて、回転方向Tの後方側に向かうように螺旋状にねじれた切屑排出溝5が、複数条(本実施形態では2条)軸線Oに対して回転対称に形成されている。
この切屑排出溝5の回転方向T側を向く壁面と、径方向外側を向く外周面との交差稜線部には、切刃部4の軸線方向全長にわたって延びる外周切刃6が形成されている。
Next, the detail of the cutting blade part 4 is demonstrated.
The cutting edge portion 4 has an outer diameter slightly larger than the outer diameter of the neck portion, and the cutting edge portion 4 has a back taper so that the outer diameter slightly decreases from the front end side toward the rear end side. Is attached and has a truncated cone shape with the axis O as the center.
Then, from the front end to the rear end of the outer periphery of the cutting edge portion 4, that is, from the front end 1a side of the end mill body 1 to the front end side portion of the neck portion 3, the chip discharge spirally twisted toward the rear side in the rotation direction T. The grooves 5 are formed to be rotationally symmetric with respect to a plurality of strips (two strips in the present embodiment) axis O.
An outer peripheral cutting edge 6 extending over the entire length in the axial direction of the cutting edge portion 4 is formed on the intersecting ridge line portion between the wall surface facing the rotational direction T of the chip discharge groove 5 and the outer peripheral surface facing the outer side in the radial direction.

図2は、図1のエンドミル本体1の先端部を拡大して表した模式図である。
図中のDは外周切刃6の外径(以下、切刃部外径Dと称す)を示し、Lは外周切刃6の軸線Oと同方向の刃長を示している。すなわち、刃長Lは、図2のように見た場合の、先端1aから首部3の先端部までの長さである。また、dは首部3の外径(以下、首部外径dと称す)を示している。
さらに、γは軸線Oと外周切刃6がなす角、すなわち、ねじれ角γを示し、θはバックテーパ角θである。なお、バックテーパ角θは、分かりやすいように誇張して示している。また、切刃部4の後端と首部3の外周面との間に、段部7が形成されている。
FIG. 2 is an enlarged schematic view of the tip of the end mill body 1 shown in FIG.
In the drawing, D indicates the outer diameter of the outer peripheral cutting edge 6 (hereinafter referred to as cutting edge portion outer diameter D), and L indicates the blade length in the same direction as the axis O of the outer peripheral cutting edge 6. That is, the blade length L is the length from the tip 1a to the tip of the neck 3 when viewed as shown in FIG. D indicates the outer diameter of the neck 3 (hereinafter referred to as the neck outer diameter d).
Further, γ represents an angle formed by the axis O and the outer peripheral cutting edge 6, that is, a twist angle γ, and θ is a back taper angle θ. Note that the back taper angle θ is exaggerated for easy understanding. A stepped portion 7 is formed between the rear end of the cutting edge portion 4 and the outer peripheral surface of the neck portion 3.

ここで、本願発明の刃長Lについて説明する。
ワークに対して切削加を行う場合、加工時にエンドミルを送り出す方向(軸方向)に直行する方向(径方向)の切り込み量をAeとするとき、この切り込み量Aeを、首部3の逃がし量、すなわち切刃部外径Dから首部外径dを減じ2で除した値(Ae=(D−d)/2)に設定した場合に、本願発明の刃長Lは、次に説明するL1からL2の範囲内、つまりL1よりも長くし、且つ、L2よりも短くすることを特徴とするものである。そこで、次に、刃長L1と刃長L2の詳細を図3および図4に基づいて説明する。
Here, the blade length L of the present invention will be described.
When cutting a workpiece, when the cutting amount in the direction (radial direction) perpendicular to the direction (axial direction) for feeding the end mill at the time of machining is Ae, this cutting amount Ae is the amount of relief of the neck portion 3, that is, When it is set to a value (Ae = (D−d) / 2) obtained by subtracting the neck outer diameter d from the cutting blade outer diameter D and dividing by 2 (Ae = (D−d) / 2), the blade length L of the present invention is L1 to L2 described next. In other words, it is longer than L1, and shorter than L2. Then, next, the detail of the blade length L1 and the blade length L2 is demonstrated based on FIG. 3 and FIG.

図3は、切刃部4の刃長L1を説明する説明図であり、図4は、刃長L2を説明する説明図ある。いずれも説明用として模式的に表している。図3および図4とも、(a)は図2に対応する側面図であり、(b)は(a)を軸方向に見た平面図である。説明を分かりやすくするために、バックテーパ角θは示していない。また、図中で切削対象のワークは、被削材Wとして表示している。   FIG. 3 is an explanatory diagram for explaining the blade length L1 of the cutting blade portion 4, and FIG. 4 is an explanatory diagram for explaining the blade length L2. Both are schematically shown for explanation. 3 and 4, (a) is a side view corresponding to FIG. 2, and (b) is a plan view of (a) viewed in the axial direction. For ease of explanation, the back taper angle θ is not shown. In addition, the workpiece to be cut is shown as a work material W in the drawing.

図3に示すように、刃長L1は、切刃部4の螺旋状をした一つの外周切刃6aの最も後端の部分(以下、最後端部と称す)の切削が終了する時点で、次の外周切刃6bの最も先端の部分(以下、最先端部と称す)が切削を開始するような長さに形成された場合を示している。
図3(b)に示す角度φは、軸心に対して上記の切削終了点と切削開始点のなす角を示している。
すなわち、刃長L1の場合は、一つの外周切刃6aの最後端部が切削終了点に来た時点で、次の外周切刃6bの最先端部が切削開始点に来るようになっている。
この刃長L1は、ねじれ角γと首部外径dと切刃部外径Dと切屑排出溝5の条数nを用いて、次の式(1)で表すことができる。
L1=(2π−nφ)D/(2n・tanγ)・・・・・・(1)
ここでφ=cos−1(d/D)(ただし、単位はラジアン)
As shown in FIG. 3, the blade length L1 is when the cutting of the rearmost end portion (hereinafter referred to as the rearmost end portion) of one outer peripheral cutting blade 6a having a spiral shape of the cutting blade portion 4 is completed. The case where the most distal end portion (hereinafter referred to as the most advanced portion) of the next outer peripheral cutting edge 6b is formed to such a length as to start cutting is shown.
An angle φ shown in FIG. 3B indicates an angle formed by the cutting end point and the cutting start point with respect to the axis.
That is, in the case of the blade length L1, when the rearmost end of one outer peripheral cutting edge 6a reaches the cutting end point, the most distal end of the next outer peripheral cutting edge 6b comes to the cutting start point. .
The blade length L1 can be expressed by the following equation (1) using the twist angle γ, the neck outer diameter d, the cutting blade outer diameter D, and the number n of the chip discharge grooves 5.
L1 = (2π−nφ) D / (2n · tan γ) (1)
Where φ = cos −1 (d / D) (in units of radians)

次に、図4に示すように、刃長L2は、切刃部4の螺旋状をした一つの外周切刃6aの最後端部の切削が終了すると同時に、次の外周切刃6b最先端部の切削も終了するような長さに形成された場合を示している。すなわち、一つの外周切刃6aの最後端部が切削終了点に来た時点で、次の外周切刃6bの最先端部も切削終了点に来るようになっている。
この刃長L2は、ねじれ角γと切刃部外径Dと切屑排出溝5の条数nを用いて、次の式(2)で表すことができる。
L2=πD/(n・tanγ)・・・・・・・・・・・・・・(2)
本願発明は,刃長Lを、L1<L<L2とするものである。
Next, as shown in FIG. 4, the blade length L2 is determined so that the cutting edge portion 4 has a spiral end of the outer peripheral cutting edge 6a, and the cutting edge portion 6b ends at the same time as the cutting of the rearmost end portion of the next outer peripheral cutting edge 6b. The case where it formed in the length which also complete | finishes cutting of this is shown. That is, when the rearmost end portion of one outer peripheral cutting edge 6a reaches the cutting end point, the most distal end portion of the next outer peripheral cutting edge 6b also comes to the cutting end point.
This blade length L2 can be expressed by the following equation (2) using the twist angle γ, the cutting blade outer diameter D, and the number n of the chip discharge grooves 5.
L2 = πD / (n · tan γ) (2)
In the present invention, the blade length L is L1 <L <L2.

一例として、ねじれ角γ=30°、首部外径d=0.46mm、切刃部外径D=0.5mm、切屑排出溝5の条数n=2の場合では、上記の式(1)および式(2)から、L1=1.19mm、L2=1.36mmを得ることができる。
式の形から、ねじれ角γと切屑排出溝5の条数nを上記と同じとし、首部外径dと切刃部外径Dの比が上記と同じであれば、切刃部外径Dが変化しても同様に求まり、刃長Lは2.38D<L<2.72Dとすればよいことがわかる。
As an example, in the case where the twist angle γ = 30 °, the neck outer diameter d = 0.46 mm, the cutting edge outer diameter D = 0.5 mm, and the number n of the chip discharge grooves 5 = 2, the above formula (1) And from equation (2), L1 = 1.19 mm and L2 = 1.36 mm can be obtained.
From the shape of the equation, if the twist angle γ and the number n of the chip discharge grooves 5 are the same as above, and the ratio of the neck outer diameter d and the cutting edge outer diameter D is the same as above, the cutting edge outer diameter D It can be found that the blade length L should be 2.38D <L <2.72D.

ここで、Lの範囲が表す意義について述べる。
図5は、にエンドミル本体1での切削加工中の軸線Oまわりの断面図を示すものである。エンドミルの加工において、外周切刃6が被削材Wを削る厚みは、切削開始点で最も厚く、切削が進むと徐々に厚みが薄くなり、切削終了点では厚みが0となる。一般に切削時にエンドミルが受ける反力は削り取る厚みに比例することが知られている。従って、被削材Wを削る際にエンドミル本体1が受ける反力は、(a)の切削開始時点が最も大きく、(b)の切削終了時点にはほぼ0となる。一方で、切削開始時の面は次の刃によって削り取られるため、最終的に加工によって残される面は切削終了点で加工された面となる。
Here, the significance represented by the range of L will be described.
FIG. 5 is a sectional view around the axis O during the cutting process in the end mill body 1. In the processing of the end mill, the thickness at which the outer peripheral cutting edge 6 cuts the workpiece W is the largest at the cutting start point, gradually decreases as the cutting progresses, and becomes zero at the cutting end point. Generally, it is known that the reaction force received by the end mill during cutting is proportional to the thickness to be cut. Accordingly, the reaction force received by the end mill main body 1 when the work material W is cut is the largest at the cutting start time of (a), and is almost 0 at the cutting end time of (b). On the other hand, since the surface at the start of cutting is scraped off by the next blade, the surface finally left by processing is the surface processed at the end point of cutting.

図6は、刃長LがL1より短い場合の、加工中の被削材Wの加工端部における断面形状を示す図である。
もし刃長LがL1よりも短い場合には、外周切刃6の後端部で切削するとき、非常に小さな反力となる。従って、瞬間的にエンドミル本体1の撓みがおさえられ、図6のように後端部で切削した部分がえぐれた形状として加工面に残されることとなる。加工面の断面は、図中の網掛けで示すように、加工残りが発生して加工面の品質が低下する。
FIG. 6 is a diagram showing a cross-sectional shape at the machining end of the workpiece W being machined when the blade length L is shorter than L1.
If the blade length L is shorter than L1, when the cutting is performed at the rear end portion of the outer peripheral cutting edge 6, a very small reaction force is generated. Accordingly, the bending of the end mill body 1 is instantaneously suppressed, and the portion cut at the rear end as shown in FIG. 6 is left on the processing surface as a hollow shape. In the cross section of the processed surface, as shown by the shaded area in the drawing, a processing residue occurs and the quality of the processed surface is deteriorated.

刃長LがL1よりも長くL2より短い場合には、図7に示すように、切刃部4の後端で切削が終了する際には、次の切刃部先端で切削が開始されているため、切刃部4の先端に反力がかかり、エンドミル本体1にかかる反力の変動が少なくなることから、上述のようにえぐれた形状が発生することなく、安定した加工が可能となる。
また、刃長LがL2よりも長い場合には複数の箇所で切削開始点となる部分が生じる。すなわちエンドミル本体1にかかる反力が大きくなり撓みが大きくなり安定した加工が困難となる。
When the blade length L is longer than L1 and shorter than L2, as shown in FIG. 7, when the cutting ends at the rear end of the cutting blade portion 4, the cutting starts at the tip of the next cutting blade portion. Therefore, a reaction force is applied to the tip of the cutting edge portion 4 and the variation of the reaction force applied to the end mill body 1 is reduced, so that stable machining can be performed without the occurrence of a hollow shape as described above. .
Moreover, when the blade length L is longer than L2, the part which becomes a cutting start point arises in several places. That is, the reaction force applied to the end mill body 1 is increased, the deflection is increased, and stable machining becomes difficult.

また、先に説明したように、切刃部4の外径が、前述のように、厳密には後端側に向かうに従いその外径がわずかに漸減する円錐台状とされているのに伴い、その外周に形成される外周切刃6も、その外径が後端側に向けてわずかに小さくなるように傾斜させられて、バックテーパが付されている。
なお、こうして外周切刃6にバックテーパが付されてその外径が後端側に向けて漸減する場合、この外周切刃6の刃長Lに対しては、外径の最大値、すなわち外周切刃6の先端における切刃部外径Dを基準とする。また、先に説明したように、外周切刃6の後端と首部3の外周面との間には、段部7が形成されている。
Further, as described above, the outer diameter of the cutting edge portion 4 is, as described above, strictly a truncated cone shape in which the outer diameter slightly decreases gradually toward the rear end side. The outer peripheral cutting edge 6 formed on the outer periphery is also inclined so that the outer diameter thereof becomes slightly smaller toward the rear end side, and has a back taper.
In this way, when the outer peripheral cutting edge 6 is back-tapered and its outer diameter gradually decreases toward the rear end side, the maximum value of the outer diameter, that is, the outer peripheral length is set for the blade length L of the outer peripheral cutting edge 6. The cutting edge outer diameter D at the tip of the cutting edge 6 is used as a reference. Further, as described above, the stepped portion 7 is formed between the rear end of the outer peripheral cutting edge 6 and the outer peripheral surface of the neck portion 3.

ここでバックテーパは、切削時の反力によってエンドミル本体1が撓んだときに残される加工面が軸線Oと平行になるように設定するものであり、この範囲よりも小さなバックテーパとすると撓みによって湾曲した切刃部4の形状が加工面に転写される。一方で、上記範囲よりも大きなバックテーパとすると撓みによる湾曲の角度よりも大きくなり、加工面にはバックテーパ状の形状が残される。
本願発明のエンドミルは、切刃部外径Dが数ミリ程度以下の細径でかつロングネックのエンドミルを対象にしている。そこで、本実施の形態では、一般に使用される超硬合金等の硬質材料を用いた場合の材料の撓みや加工時の切り込み量を勘案して、バックテーパ角θは、0.1度〜1.0度としている。こうすることで、撓みによる影響を効果的に除去でき、加工面の面精度を向上させることができるのを検証した。
なお、エンドミルの形状によっては、バックテーパなしでも良い。
Here, the back taper is set so that the processed surface left when the end mill body 1 is bent by the reaction force at the time of cutting is parallel to the axis O. If the back taper is smaller than this range, the back taper is bent. The shape of the curved cutting edge portion 4 is transferred to the processing surface. On the other hand, if the back taper is larger than the above range, it becomes larger than the angle of bending due to the bending, and the back tapered shape is left on the processed surface.
The end mill of the present invention is intended for a long neck end mill having a cutting edge portion outer diameter D of a few millimeters or less. Therefore, in the present embodiment, the back taper angle θ is 0.1 ° to 1 ° in consideration of the bending of the material in the case of using a hard material such as a generally used cemented carbide or the amount of cut at the time of processing. .0 degrees. By doing so, it was verified that the influence of bending can be effectively removed and the surface accuracy of the machined surface can be improved.
Depending on the shape of the end mill, there may be no back taper.

次に、上記の構成からなるエンドミル本体1を用いて被削材Wを切削する方法について、図8により説明する。加工は、被削材Wに垂直の加工面を形成し、且つ、加工すべき深さがエンドミル本体1の外周切刃6の刃長Lよりも深い、いわゆる深掘加工を行う場合で説明する。
はじめに、シャンク部2を、例えばマシニングセンタなどの工作機械(図示せず)に把持させて、片持ち状態でエンドミル本体1を保持させる。ついで、工作機械の回転駆動手段を駆動してエンドミル本体1を軸線Oまわりの回転方向Tに高速回転させつつ軸線方向と軸線Oに交差する方向に送り出して切刃部4の外周切刃6を被削材Wに切り込ませる。
Next, a method of cutting the workpiece W using the end mill body 1 having the above-described configuration will be described with reference to FIG. The machining will be described in the case of performing so-called deep digging in which a machining surface perpendicular to the workpiece W is formed and the depth to be machined is deeper than the edge length L of the outer peripheral cutting edge 6 of the end mill body 1. .
First, the end mill main body 1 is held in a cantilever state by causing the machine tool (not shown) such as a machining center to grip the shank portion 2. Next, the rotation driving means of the machine tool is driven to rotate the end mill main body 1 at a high speed in the rotation direction T around the axis O while feeding it in the direction intersecting the axis and the axis O, so that the outer peripheral cutting edge 6 of the cutting edge 4 is removed. Cut into the work material W.

本願との比較のために、従来のような、刃長が切刃部の外周切刃の外径よりも短いエンドミルの場合の、深掘加工を簡単に説明する。
図9は、刃長が切刃部の外周切刃の外径よりも短いエンドミルにより深掘加工する場合の説明図である。
図9に示すように、撓みをおさえるために刃長よりも短い軸方向の切り込み量を多数回繰り返すことによって、所定の深さまで加工を行っていた。
For comparison with the present application, deep digging in the case of an end mill in which the blade length is shorter than the outer diameter of the outer peripheral cutting edge of the cutting edge portion as in the prior art will be briefly described.
FIG. 9 is an explanatory diagram when deep digging is performed by an end mill whose blade length is shorter than the outer diameter of the outer peripheral cutting edge of the cutting edge portion.
As shown in FIG. 9, in order to suppress bending, the axial depth of cut shorter than the blade length was repeated many times to perform processing to a predetermined depth.

一方、本願のエンドミルの場合、図8のように、軸方向の切り込み量を、刃長Lに設定し、径方向の切込量を切刃部外径Dから首部外径dを減じて2で除した値に設定して加工する。このような条件に設定すると従来の加工方法よりも切削時にエンドミル本体1が受ける反力が大きくなり、エンドミル本体1が撓み、切刃部4が湾曲した状態で加工が行われことになるが、本願発明では、刃長Lを上述したような長さに設定することで、加工時のエンドミル本体1にかかる反力の変動を抑制でき、さらに切刃部4にバックテーパが付されているため、垂直な加工面を得ることができる。
また、エンドミル本体1の撓みによって一度では径方向に所定の幅に加工ができない場合には、径方向に再度切り込み所定の径方向の寸法に加工する。径方向に所定の幅に加工できると、再び軸方向に切り込むというような手順を繰り返すことによって、所定の深さまで加工する。
On the other hand, in the case of the end mill of the present application, as shown in FIG. 8, the axial cut amount is set to the blade length L, and the radial cut amount is reduced by subtracting the neck outer diameter d from the cutting blade outer diameter D to 2 Set to the value divided by and process. When such conditions are set, the reaction force received by the end mill body 1 during cutting is larger than that of the conventional processing method, and the end mill body 1 is bent and the cutting edge portion 4 is curved, but the processing is performed. In the present invention, by setting the blade length L to the length as described above, the reaction force applied to the end mill main body 1 during processing can be suppressed, and the cutting edge portion 4 is further back-tapered. A vertical machining surface can be obtained.
Further, when the end mill body 1 cannot be processed to a predetermined width in the radial direction at a time due to the bending of the end mill body 1, the end mill body 1 is cut again in the radial direction and processed to a predetermined radial dimension. When it can be processed to a predetermined width in the radial direction, it is processed to a predetermined depth by repeating the procedure of cutting in the axial direction again.

以上までの説明では、切刃部4の切屑排出溝5の条数nは2として説明したが、これに限定するものではなく、1もしくは3以上であってもよい。
ただし、1条の場合には、刃長L1は、螺旋状をした外周切刃6の最後端部が切削終了点に来た時点で、同じ外周切刃6の最先端部が切削開始点に来る長さであり、刃長L2は、外周切刃6の最後端部が切削終了点に来た時点で、同じ外周切刃6の最先端部も切削終了点に来る長さとなる。
また、切屑排出溝5が複数条の場合、軸線Oに対して複数条が回転対称に形成されている場合について説明しが、これに限定するものではなく、回転対称とせずに、軸線Oまわりに位相をずらして配置した、いわゆる不等ピッチや不等リードの形状としてもよい。このような構成にすることによって、切削加工時の「びびり」の発生を抑制するなどの効果を得ることができる。
In the above description, the number n of the chip discharge grooves 5 of the cutting edge portion 4 has been described as 2, but is not limited thereto, and may be 1 or 3 or more.
However, in the case of a single thread, the blade length L1 is such that when the last end of the spiral outer peripheral cutting edge 6 comes to the cutting end point, the cutting edge of the same outer peripheral cutting edge 6 is the cutting start point. The blade length L2 is the length at which the tip end portion of the same outer peripheral cutting edge 6 comes to the cutting end point when the rearmost end portion of the outer peripheral cutting edge 6 reaches the cutting end point.
Further, in the case where the chip discharge grooves 5 are a plurality of strips, a case where a plurality of strips are formed rotationally symmetric with respect to the axis O will be described. However, the present invention is not limited to this. It is also possible to adopt a so-called unequal pitch or unequal lead shape with the phases shifted to each other. By adopting such a configuration, it is possible to obtain effects such as suppressing the occurrence of “chatter” during cutting.

また、エンドミル本体1の材質は、超硬合金に限定するものではなく、例えば、表面にDLC(ダイヤモンドライクカーボン)などの硬質膜を施したものでもよい。このような構成にすることによって、工具摩耗の抑制や、被削材Wと外周切刃6との摩擦を低減し、撓みの抑制にもつながる。   Moreover, the material of the end mill main body 1 is not limited to the cemented carbide, but may be one having a hard film such as DLC (diamond-like carbon) on the surface, for example. By adopting such a configuration, it is possible to suppress tool wear, reduce friction between the work material W and the outer peripheral cutting edge 6, and lead to suppression of bending.

また、図1および図2では、切刃部4の後端と首部3との境界に段部7が形成された形状として説明したが、切刃部4の刃長Lを確保し、それよりも後端を首部3となめらかにつなぎ、段部7が形成されないよいようにしてもよい。
このような構成にすることによって、応力集中する箇所をなくすことで、切刃部4の欠損の防止につながるとともに、わずかに剛性が向上し、撓みの低減にもつながる。
また、エンドミルにより軸方向に複数回切り込む際の、加工面に境目の筋がつくことの防止にもつながる。ただし、切刃部4と首部3の間になめらかにつなぐ箇所を設ける場合には、外周切刃6のバックテーパθよりも角度を大きくとり、切刃部4が撓んだ際に被削材Wと干渉しないようにする必要がある。
Moreover, in FIG. 1 and FIG. 2, although demonstrated as the shape in which the step part 7 was formed in the boundary of the rear end of the cutting blade part 4, and the neck part 3, the blade length L of the cutting blade part 4 is ensured, and from it. Alternatively, the rear end may be smoothly connected to the neck portion 3 so that the stepped portion 7 may not be formed.
By adopting such a configuration, by eliminating the stress concentration, it is possible to prevent the cutting edge portion 4 from being lost, to slightly improve rigidity, and to reduce bending.
In addition, when the end mill is cut a plurality of times in the axial direction, it leads to prevention of streaking on the processed surface. However, in the case where a smooth connecting portion is provided between the cutting edge portion 4 and the neck portion 3, the angle is larger than the back taper θ of the outer peripheral cutting edge 6, and the work material is cut when the cutting edge portion 4 is bent. It is necessary not to interfere with W.

また、首部3を設けない代わりに、シャンク部2の外径を切刃部外径Dよりも小さいくした、いわゆる逆段タイプであってもよい。     Instead of providing the neck portion 3, a so-called reverse stage type in which the outer diameter of the shank portion 2 is made smaller than the outer diameter D of the cutting edge portion may be used.

以上のように、実施の形態1のエンドミルによれば、先端側に切刃部、後端側にシャンク部、中間に切刃部の外径より小径の首部を有し、切刃部の外周には、切刃部の軸線に対して螺旋状にねじれた切屑排出溝と、切屑排出溝の外周側辺稜部に形成された外周切刃とを備えたエンドミルであって、外周切刃の外径をD、首部の外径をdとし、ワークに対する加工時の径方向の切り込み量を(D−d)/2に設定して加工するとき、軸線方向の切刃部の刃長は、螺旋状をした外周切刃の最後端部が切削を終了する時点で最先端部が切削を開始するような長さよりも長く、且つ、外周切刃の最後端部が切削を終了する時点で最先端部も切削を終了するような長さよりも短い長さに形成されているので、加工時の切削抵抗の変動を抑制できる。これにより、撓みの変動を抑制しつつ外周切刃の刃長を長くできるため、1回の切削操作で刃長分の切り込みを行うことで、軸方向の切削操作の回数を大幅に低減して、所定の深さまでの加工を少ない切削操作で実現でき、加工時間を大幅に短縮できる。   As described above, according to the end mill of the first embodiment, the cutting edge portion is provided on the front end side, the shank portion is provided on the rear end side, and the neck portion having a diameter smaller than the outer diameter of the cutting blade portion is provided in the middle. Is an end mill comprising a chip discharge groove spirally twisted with respect to the axis of the cutting edge, and an outer peripheral cutting edge formed on the outer edge of the chip discharging groove. When the outer diameter is D, the outer diameter of the neck is d, and the cutting amount in the radial direction when machining the workpiece is set to (D−d) / 2, the length of the cutting edge in the axial direction is: When the last end of the spiral outer peripheral cutting edge is longer than the length at which the cutting edge starts cutting when the cutting ends, and the last end of the outer peripheral cutting edge ends when the cutting ends. Since the tip portion is also formed with a length shorter than the length at which cutting is completed, fluctuations in cutting resistance during processing can be suppressed. As a result, since the blade length of the outer peripheral cutting edge can be increased while suppressing fluctuations in bending, the number of cutting operations in the axial direction can be greatly reduced by performing cutting for the blade length in one cutting operation. Therefore, machining to a predetermined depth can be realized with few cutting operations, and the machining time can be greatly shortened.

また、切刃部には、切刃部の後端側に向かって縮径するバックテーパが付されているので、切削時の反力によってエンドミルが撓んだ場合でも、撓みによる加工への影響を抑制して加工面の面精度を向上させることができる。   In addition, since the cutting edge is provided with a back taper that reduces the diameter toward the rear end of the cutting edge, even if the end mill is bent by the reaction force during cutting, the influence of bending on the machining is affected. It is possible to improve the surface accuracy of the processed surface.

また、首部と切刃部の長さを加えた首下長さNと外周切刃の外径Dの比N/Dが20以上かつ外周切刃の外径Dが1mm以下であり、バックテーパの角度は、0.1度から1.0度の範囲内としたので、特に、首下長さNと外周切刃の外径Dの比N/Dが20以上かつ外周切刃の外径Dが1mm以下の低剛性なエンドミルの場合に、撓みによる影響を効果的に除去でき、加工面の面精度を向上させることができる。   Further, the ratio N / D between the neck length N including the length of the neck portion and the cutting edge portion and the outer diameter D of the outer peripheral cutting edge is 20 or more, and the outer diameter D of the outer peripheral cutting edge is 1 mm or less. Is within the range of 0.1 degree to 1.0 degree. In particular, the ratio N / D between the neck length N and the outer diameter D of the outer peripheral cutting edge is 20 or more and the outer diameter of the outer peripheral cutting edge. In the case of a low-rigid end mill with D of 1 mm or less, the influence of bending can be effectively removed, and the surface accuracy of the processed surface can be improved.

なお、本願発明は、その発明の範囲内において、実施の形態を適宜、変更、省略することができる。   It should be noted that the embodiment of the present invention can be modified or omitted as appropriate within the scope of the invention.

1 エンドミル本体、1a 先端、1b 後端、2 シャンク部、2a 円柱状部、
2b 円錐台状部、3 首部、4 切刃部、5 切屑排出溝、
6,6a,6b 外周切刃、7 段部、d 首部外径、D 切刃部外径、
L,L1,L2 刃長、n 条数、N 首下長さ、O 軸線、T 回転方向、
W 被削材、γ ねじれ角、θ バックテーパ角
1 End mill body, 1a tip, 1b back end, 2 shank part, 2a cylindrical part,
2b frustoconical part, 3 neck part, 4 cutting edge part, 5 chip discharge groove,
6, 6a, 6b Outer peripheral cutting edge, 7 steps, d Neck outer diameter, D Cutting edge outer diameter,
L, L1, L2 Blade length, n number of strips, N neck length, O axis, T rotation direction,
W Work material, γ Torsion angle, θ Back taper angle

Claims (3)

先端側に切刃部、後端側にシャンク部、中間に前記切刃部の外径より小径の首部を有し、前記切刃部の外周には、前記切刃部の軸線に対して螺旋状にねじれた切屑排出溝と、前記切屑排出溝の外周側辺稜部に形成された外周切刃とを備えたエンドミルであって、
前記外周切刃の外径をD、前記首部の外径をdとし、ワークに対する加工時の径方向の切り込み量を(D−d)/2に設定して加工するとき、
前記軸線方向の前記切刃部の刃長は、螺旋状をした前記外周切刃の最後端部が切削を終了する時点で最先端部が切削を開始するような長さよりも長く、且つ、前記外周切刃の前記最後端部が切削を終了する時点で前記最先端部も切削を終了するような長さよりも短い長さに形成されていることを特徴とするエンドミル。
It has a cutting edge part on the front end side, a shank part on the rear end side, and a neck part having a diameter smaller than the outer diameter of the cutting edge part in the middle, and the outer periphery of the cutting edge part spirals with respect to the axis of the cutting edge part An end mill comprising a chip discharge groove twisted in a shape and an outer peripheral cutting edge formed on the outer peripheral side ridge of the chip discharge groove,
When processing by setting the outer diameter of the outer peripheral cutting edge as D, the outer diameter of the neck as d, and setting the cutting amount in the radial direction when machining the workpiece to (D−d) / 2,
The blade length of the cutting edge portion in the axial direction is longer than the length at which the most advanced portion starts cutting when the rearmost end portion of the spiral outer peripheral cutting edge finishes cutting, and An end mill characterized in that the end mill is formed to have a length shorter than the length at which the most distal end also ends cutting when the rearmost end of the outer peripheral cutting edge ends cutting.
請求項1に記載のエンドミルにおいて、
前記切刃部には、前記切刃部の後端側に向かって縮径するバックテーパが付されていることを特徴とするエンドミル。
The end mill according to claim 1,
The end mill is characterized in that a back taper that is reduced in diameter toward the rear end side of the cutting blade portion is attached to the cutting blade portion.
請求項2に記載のエンドミルにおいて、
前記首部と前記切刃部の長さを加えた首下長さNと前記外周切刃の外径Dの比N/Dが20以上かつ前記外周切刃の外径Dが1mm以下であり、前記バックテーパの角度は、0.1度から1.0度の範囲内であることを特徴とするエンドミル。
The end mill according to claim 2, wherein
The ratio N / D between the neck length N including the length of the neck and the cutting edge and the outer diameter D of the outer cutting edge is 20 or more and the outer diameter D of the outer cutting edge is 1 mm or less, An end mill characterized in that an angle of the back taper is in a range of 0.1 degree to 1.0 degree.
JP2015100794A 2015-05-18 2015-05-18 End mill Pending JP2016215294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015100794A JP2016215294A (en) 2015-05-18 2015-05-18 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100794A JP2016215294A (en) 2015-05-18 2015-05-18 End mill

Publications (1)

Publication Number Publication Date
JP2016215294A true JP2016215294A (en) 2016-12-22

Family

ID=57577852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100794A Pending JP2016215294A (en) 2015-05-18 2015-05-18 End mill

Country Status (1)

Country Link
JP (1) JP2016215294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695407A (en) * 2017-11-17 2018-02-16 中山市园丰精密刃具有限公司 A kind of tungsten-cobalt coating profile milling cutter
CN107716959A (en) * 2017-11-21 2018-02-23 麻城鑫鸿电子科技有限公司 A kind of processing mobile phone miniature parts bloom rose reamer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695407A (en) * 2017-11-17 2018-02-16 中山市园丰精密刃具有限公司 A kind of tungsten-cobalt coating profile milling cutter
CN107716959A (en) * 2017-11-21 2018-02-23 麻城鑫鸿电子科技有限公司 A kind of processing mobile phone miniature parts bloom rose reamer

Similar Documents

Publication Publication Date Title
JP5194637B2 (en) End mill
US20130058734A1 (en) Combined drill and reamer tool
JP2008093805A (en) Drill
JP5377992B2 (en) Drill and cutting method using the drill
JP6343005B2 (en) Drill and method of manufacturing cut product using the same
JP6359419B2 (en) drill
US10926344B2 (en) Taper reamer
JP2010234462A (en) End mill
JP2008110453A (en) End mill
EP1611983B1 (en) High-speed processing tap
JP4699526B2 (en) Drill
JP2010131736A (en) Boring drill and method of machining boring drill
JP2016215294A (en) End mill
JP2009184043A (en) Stepped twist drill and method of manufacturing the same
EP3812069A1 (en) Tapered end mill
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
JP2018176360A (en) Rotary cutting type drilling tool
JP2006281407A (en) Machining drill for nonferrous metal
JP2020040179A (en) Method of machining wall surface of rib groove and tapered end mill
JP5237659B2 (en) Cutting tap
JP6410544B2 (en) Drill and cutting method
WO2018134924A1 (en) Thread milling cutter
JP5895654B2 (en) End mill
JP2011110661A (en) End mill
JP6013641B1 (en) Reamer