JP2016204318A - MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID - Google Patents

MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID Download PDF

Info

Publication number
JP2016204318A
JP2016204318A JP2015089757A JP2015089757A JP2016204318A JP 2016204318 A JP2016204318 A JP 2016204318A JP 2015089757 A JP2015089757 A JP 2015089757A JP 2015089757 A JP2015089757 A JP 2015089757A JP 2016204318 A JP2016204318 A JP 2016204318A
Authority
JP
Japan
Prior art keywords
group
iron
carboxylic acid
unsaturated carboxylic
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089757A
Other languages
Japanese (ja)
Inventor
田中 真司
Shinji Tanaka
真司 田中
喜裕 今
Yoshihiro Kon
喜裕 今
正則 田村
Masanori Tamura
正則 田村
佐藤 一彦
Kazuhiko Sato
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015089757A priority Critical patent/JP2016204318A/en
Publication of JP2016204318A publication Critical patent/JP2016204318A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can get α,β-unsaturated carboxylic acid at a high yield by liquid phase oxidation of α,β-unsaturated aldehyde by oxygen or air with a handy metal catalyst under a mild reaction condition.SOLUTION: Preferably under a presence of organic solvent, α,β-unsaturated carboxylic acid is manufactured by oxidation of α,β-unsaturated aldehydes and oxygen or air under a presence of an iron salt catalyst and a catalyst of alkali metal salt of carboxylic acid.SELECTED DRAWING: None

Description

本発明は、種々の有機化合物の中間体として有用なα,β‐不飽和カルボン酸の新規な製造方法に関する。   The present invention relates to a novel process for producing an α, β-unsaturated carboxylic acid useful as an intermediate for various organic compounds.

α,β‐不飽和アルデヒドを酸化してα,β‐不飽和カルボン酸を製造する方法としては、亜塩素酸ナトリウムを用いる方法(非特許文献1参照)、シアン化水素を用いたのち酸化銀(II)(AgO)を作用させる方法(非特許文献2参照)、酸化銀(I)(Ag2O)を用いる方法(非特許文献3参照)、などが報告されているが、これらは、毒性の高い酸化剤の使用、光に対し不安定という点で工業的に優れた方法とは言い難い。また、過酸化水素を酸化剤とし、触媒としてルテニウムの塩化物を用いる方法(非特許文献4参照)、イリジウム、ロジウム、パラジウムの塩化物を用いる方法(非特許文献5参照)、パラジウムのカルボン酸塩を用いる方法(特許文献1参照)が知られているが、高価な貴金属を使用するため、実用的な方法とは言い難い。 As a method for producing an α, β-unsaturated carboxylic acid by oxidizing an α, β-unsaturated aldehyde, a method using sodium chlorite (see Non-Patent Document 1), silver oxide after using hydrogen cyanide (II) ) (AgO) action method (see non-patent document 2), silver oxide (I) (Ag 2 O) method (see non-patent document 3), etc. have been reported. It is difficult to say that it is an industrially superior method in terms of the use of a high oxidizing agent and instability to light. Further, a method using hydrogen peroxide as an oxidizing agent and ruthenium chloride as a catalyst (see Non-Patent Document 4), a method using iridium, rhodium and palladium chlorides (see Non-Patent Document 5), palladium carboxylic acid Although a method using a salt (see Patent Document 1) is known, it is difficult to say that it is a practical method because an expensive noble metal is used.

これに対して、酸素又は空気を酸化剤として、α,β‐不飽和アルデヒドからα,β‐不飽和カルボン酸を製造できれば、安価で腐食性がなく、副生成物は生成しない、あるいは無害な水のみであるため環境負荷が小さく、工業的に利用するのに優れた方法ということができる。   On the other hand, if α, β-unsaturated carboxylic acid can be produced from α, β-unsaturated aldehyde using oxygen or air as an oxidizing agent, it is inexpensive, non-corrosive, does not produce by-products, or is harmless. Since it is only water, the environmental load is small and it can be said that it is an excellent method for industrial use.

酸素を酸化剤として用いたα,β‐不飽和アルデヒドからα,β‐不飽和カルボン酸を製造する方法としては、パラジウムとタングステンを担持させた触媒を用いる方法(特許文献2)や、モリブデンとバナジウムを有する固体触媒を用いる方法(特許文献3)が示されているが、アクリル酸とメタクリル酸の製造法のみしか示されていない。これらに対し、金属錯体触媒を用いる例として、メタクリレート部位を有するβ-ケトエステルを配位子とした鉄触媒による方法が示されているが、ハロゲン系溶媒を使用する必要があり環境調和性に優れた方法とは言えない(非特許文献6)。有機分子を触媒とする例としてN-ヘテロサイクリックカルベン類を触媒とする方法が示されているが、等モル量の無機塩基の添加が必要であった(非特許文献7)。   As a method of producing α, β-unsaturated carboxylic acid from α, β-unsaturated aldehyde using oxygen as an oxidizing agent, a method using a catalyst supporting palladium and tungsten (Patent Document 2), molybdenum and Although a method using a solid catalyst having vanadium (Patent Document 3) is shown, only a method for producing acrylic acid and methacrylic acid is shown. On the other hand, as an example of using a metal complex catalyst, an iron catalyst method using a β-ketoester having a methacrylate moiety as a ligand has been shown, but it is necessary to use a halogen-based solvent and is excellent in environmental harmony. It cannot be said that it is a method (Non-Patent Document 6). As an example using an organic molecule as a catalyst, a method using an N-heterocyclic carbene as a catalyst is shown. However, it is necessary to add an equimolar amount of an inorganic base (Non-patent Document 7).

したがって、酸素又は空気を酸化剤とし、安価な金属を触媒として簡便かつクリーンにα,β‐不飽和アルデヒドからα,β‐不飽和カルボン酸を効率的に製造する方法の開発が強く望まれている。   Therefore, development of a method for efficiently producing α, β-unsaturated carboxylic acids from α, β-unsaturated aldehydes simply and cleanly using oxygen or air as an oxidant and inexpensive metals as catalysts is strongly desired. Yes.

特開2010−189326号公報JP 2010-189326 A 特開2014−203848号公報JP 2014-203848 A 特開2013−226546号公報JP 2013-226546 A

J. Org. Chem. 1986, 51, 567.J. Org. Chem. 1986, 51, 567. J. Am. Chem. Soc. 1968, 90, 5616.J. Am. Chem. Soc. 1968, 90, 5616. J. Org. Chem. 1980, 45, 3698.J. Org. Chem. 1980, 45, 3698. Appl. Organomet. Chem. 2006, 20, 20.Appl. Organomet. Chem. 2006, 20, 20. Appl. Organomet. Chem. 2007, 21, 135.Appl. Organomet. Chem. 2007, 21, 135. J. Mol. Catal. 1994, 94, 27.J. Mol. Catal. 1994, 94, 27. Org. Lett. 2011, 13, 2422.Org. Lett. 2011, 13, 2422.

本発明は、上記のような従来技術の問題点を克服するためになされたもので、温和な反応条件下で、α,β‐不飽和アルデヒドからα,β‐不飽和カルボン酸を高収率で得ることができるとともに、環境や人体への影響・毒性が極めて小さい、簡便で効率的なα,β‐不飽和カルボン酸の新規な製造方法を提供することを目的とする。   The present invention has been made to overcome the above-mentioned problems of the prior art, and produces a high yield of α, β-unsaturated carboxylic acid from α, β-unsaturated aldehyde under mild reaction conditions. It is an object of the present invention to provide a simple and efficient method for producing an α, β-unsaturated carboxylic acid which can be obtained by the above-mentioned method and has a very low environmental and human impact / toxicity.

本発明者らは、前記課題を解決するために鋭意研究した結果、酸化剤を酸素又は空気とし、鉄塩とカルボン酸のアルカリ金属塩を組み合わせた触媒を用い、無溶媒下、あるいは触媒とα,β‐不飽和アルデヒドを均一に可溶な溶媒を使用し、室温で、α,β‐不飽和アルデヒドからα,β‐不飽和カルボン酸が高収率で製造できることを見いだし、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have used a catalyst in which an oxidizing agent is oxygen or air and a combination of an iron salt and an alkali metal salt of a carboxylic acid, in the absence of a solvent, or in a catalyst and α. We have found that α, β-unsaturated carboxylic acids can be produced in high yield from α, β-unsaturated aldehydes at room temperature using a solvent that uniformly dissolves α, β-unsaturated aldehydes. It came to do.

すなわち、本出願は、以下の発明を提供するものである。
〈1〉α,β‐不飽和アルデヒド類を、鉄(II)もしくは鉄(III)塩とカルボン酸のアルカリ金属塩の共存下、酸素または空気で酸化反応させることを特徴とするα,β‐不飽和カルボン酸類の製造方法。
〈2〉前記鉄(II)もしくは鉄(III)塩として、酢酸鉄(II)もしくは硝酸鉄(III)を用いることを特徴とする、〈1〉に記載のα,β‐不飽和カルボン酸類の製造方法。
〈3〉前記カルボン酸のアルカリ金属塩として、酢酸ナトリウム、酢酸カリウム、トリフルオロ酢酸ナトリウム、トリフルオロ酢酸カリウムを単独で、または2種以上、使用することを特徴とする、〈1〉又は〈2〉に記載のα,β‐不飽和カルボン酸類の製造方法。
〈4〉有機溶媒の存在下で酸化反応を行うことを特徴とする、〈1〉〜〈3〉のいずれかに記載のα,β‐不飽和カルボン酸類の製造方法。
That is, this application provides the following invention.
<1> An α, β-unsaturated aldehyde is oxidized with oxygen or air in the presence of iron (II) or iron (III) salt and an alkali metal salt of carboxylic acid. A method for producing unsaturated carboxylic acids.
<2> The iron, II, or iron (III) salt is iron (II) acetate or iron (III) nitrate, wherein the α, β-unsaturated carboxylic acids according to <1> are used. Production method.
<3> Sodium acetate, potassium acetate, sodium trifluoroacetate, or potassium trifluoroacetate used alone or in combination of two or more as the alkali metal salt of the carboxylic acid, <1> or <2 The manufacturing method of (alpha), (beta)-unsaturated carboxylic acids described in>.
<4> The method for producing an α, β-unsaturated carboxylic acid according to any one of <1> to <3>, wherein the oxidation reaction is performed in the presence of an organic solvent.

本発明により提供されるα,β‐不飽和カルボン酸の製造方法は、種々の医薬原料、有機化合物の中間体として幅広く用いられる有用なα,β‐不飽和カルボン酸を、温和な条件下で、かつ高収率で得ることができる。また、本発明方法は、塩基やハロゲン系溶媒を使用する必要がないため、環境や人体への影響・毒性がきわめて小さく、環境に対する負荷を軽減する効果も有し、安全かつ簡便で効率的にα,β‐不飽和カルボン酸を得ることができる。したがって、本発明方法は工業的に多大な効果をもたらす発明ということができる。   The method for producing an α, β-unsaturated carboxylic acid provided by the present invention comprises a variety of pharmaceutical raw materials and useful α, β-unsaturated carboxylic acid widely used as an intermediate for organic compounds under mild conditions. And in high yield. In addition, since the method of the present invention does not require the use of a base or a halogen-based solvent, it has an extremely low impact and toxicity on the environment and the human body, has the effect of reducing the burden on the environment, and is safe, simple and efficient. α, β-unsaturated carboxylic acid can be obtained. Therefore, the method of the present invention can be said to be an invention that has a great industrial effect.

本発明方法のα,β‐不飽和カルボン酸の製造方法は、α,β‐不飽和アルデヒド類と酸素または空気を、鉄塩とカルボン酸のアルカリ金属塩を組み合わせた触媒の存在下で、酸化反応させることを特徴とする。   The method for producing an α, β-unsaturated carboxylic acid according to the present invention comprises oxidizing an α, β-unsaturated aldehyde and oxygen or air in the presence of a catalyst combining an iron salt and an alkali metal salt of a carboxylic acid. It is made to react.

本発明の製造法において用いられるα,β‐不飽和アルデヒド類は一般式(1)で示される。式中、R1〜R3はそれぞれ独立して、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素芳香環基、アルコキシ基、アルコキシカルボニル基、アシル基、アシロキシ基、ヒドロキシ基、ハロゲン原子、カルボキシル基、アミド基、シリル基、ホスホリル基、スルフィニル基、スルホニル基又はスルホナート基を示す。これらの基はさらに置換基により置換されていても良い。また、R1〜R3のうちいずれかが連結して環状構造を成していても良い。

Figure 2016204318
The α, β-unsaturated aldehydes used in the production method of the present invention are represented by the general formula (1). In the formula, R 1 to R 3 are each independently a hydrogen atom, alkyl group, cycloalkyl group, aryl group, aralkyl group, heteroaromatic ring group, alkoxy group, alkoxycarbonyl group, acyl group, acyloxy group, hydroxy group. , A halogen atom, a carboxyl group, an amide group, a silyl group, a phosphoryl group, a sulfinyl group, a sulfonyl group or a sulfonate group. These groups may be further substituted with a substituent. Moreover, any of R 1 to R 3 may be connected to form a cyclic structure.
Figure 2016204318

前記一般式(1)において、R1〜R3が置換基を有していてもよいアルキル基の場合のアルキル基としては、炭素数は1〜30、好ましくは1〜20の直鎖状又は分岐状のアルキル基が挙げられ、具体例としては例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。 In the general formula (1), when R 1 to R 3 are an alkyl group which may have a substituent, the alkyl group has 1 to 30 carbon atoms, preferably 1 to 20 linear or Examples include branched alkyl groups, and specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.

1〜R3が置換基を有していてもよいシクロアルキル基の場合のシクロアルキル基としては、例えば、炭素数3〜20、好ましくは3〜10の単環、多環又は縮合環式のシクロアルキル基が挙げられ、より具体的には、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 Examples of the cycloalkyl group in the case where R 1 to R 3 may have a substituent include a monocyclic, polycyclic or condensed cyclic group having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms. And more specifically, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like.

1〜R3が置換基を有していてもよいアリール基の場合のアリール基としては、例えば炭素数は6〜20、好ましくは6〜14の単環、多環又は縮合環式の芳香族炭化水素基が挙げられ、より具体的には、例えば、フェニル基、トリル基、キシリル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。 Examples of the aryl group in the case where R 1 to R 3 are an optionally substituted aryl group include a monocyclic, polycyclic or condensed cyclic aromatic group having 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms. More specifically, examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a methylnaphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.

1〜R3が置換基を有していてもよいアラルキル基の場合のアラルキル基としては、例えば、炭素数は7〜20、好ましくは7〜15の単環、多環又は縮合環式のアラルキル基が挙げられ、より具体的には、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。 The aralkyl group in the case where R 1 to R 3 may have a substituent is, for example, a monocyclic, polycyclic or condensed cyclic group having 7 to 20 carbon atoms, preferably 7 to 15 carbon atoms. An aralkyl group is mentioned, More specifically, a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group etc. are mentioned, for example.

1〜R3が置換基を有していてもよい複素環基の場合の複素環基としては、環中に少なくとも1個以上の窒素原子、酸素原子又は硫黄原子を有する3〜15員環、好ましくは3〜10員環であって、シクロアルキル基、シクロアルケニル基又はアリール基などの炭素環式基と縮合していてもよい飽和又は不飽和の単環、多環又は縮合環式のものが挙げられ、より具体的には、例えば、オキシラニル基、ピリジル基、チエニル基、フェニルチエニル基、チアゾリル基、フリル基、ピペリジル基、ピペラジル基、ピロリル基、イミダゾリル基、キノリル基、ピリミジル基等が挙げられる。 The heterocyclic group in the case where R 1 to R 3 may have a substituent is a 3- to 15-membered ring having at least one nitrogen atom, oxygen atom or sulfur atom in the ring. , Preferably a 3- to 10-membered ring, which may be condensed with a carbocyclic group such as a cycloalkyl group, a cycloalkenyl group or an aryl group, or a saturated or unsaturated monocyclic, polycyclic or condensed ring More specifically, for example, oxiranyl group, pyridyl group, thienyl group, phenylthienyl group, thiazolyl group, furyl group, piperidyl group, piperazyl group, pyrrolyl group, imidazolyl group, quinolyl group, pyrimidyl group, etc. Is mentioned.

1〜R3が置換基を有していてもよいアルコキシ基の場合のアルコキシ基としては、炭素数1〜20、好ましくは1〜10の直鎖状又は分岐状のアルコキシ基が挙げられ、具体例としては例えば、メトキシ基、エトキシ基、i-プロポキシ基、t-ブトキシ基等が挙げられる。 Examples of the alkoxy group in the case where R 1 to R 3 may have a substituent include linear or branched alkoxy groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, Specific examples include methoxy group, ethoxy group, i-propoxy group, t-butoxy group and the like.

1〜R3が置換基を有していてもよいアルコキシカルボニル基の場合のアルコキシカルボニル基としては、炭素数1〜30、好ましくは1〜20の直鎖状又は分岐状のアルコキシカルボニル基が挙げられ、具体例としては例えば、メトキシカルボニル基、エトキシカルボニル基、i-プロポキシカルボニル基、t-ブトキシカルボニル基、フェノキシカルボニル基等が挙げられる。 The alkoxycarbonyl group in the case where R 1 to R 3 may have a substituent is a linear or branched alkoxycarbonyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms. Specific examples include methoxycarbonyl group, ethoxycarbonyl group, i-propoxycarbonyl group, t-butoxycarbonyl group, phenoxycarbonyl group and the like.

1〜R3が置換基を有していてもよいアシル基の場合のアシル基としては、炭素数1〜30、好ましくは1〜20の直鎖状又は分岐状のアシル基が挙げられ、具体例としては例えば、アセチル基、ベンゾイル基、ヘプタノイル基、シクロヘキサンカルボニル基等が挙げられる。R1〜R3が置換基を有していてもよいアシロキシ基の場合のアシロキシ基としては、アセチルオキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等が挙げられる。 Examples of the acyl group in the case where R 1 to R 3 may have a substituent include linear or branched acyl groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, Specific examples include acetyl group, benzoyl group, heptanoyl group, cyclohexanecarbonyl group and the like. Examples of the acyloxy group in the case where R 1 to R 3 may be an acyloxy group include an acetyloxy group, a propionyloxy group, and a benzoyloxy group.

1〜R3が置換基を有していてもよいアミド基の場合のアミド基としては、炭素数1〜30、好ましくは1〜20の直鎖状又は分岐状のアミド基が挙げられ、具体例としては例えば、メチルアミド基、エチルアミド基、i-プロピルアミド基、テトラデシルアミド基等が挙げられる。 Examples of the amide group in the case where R 1 to R 3 may have a substituent include linear or branched amide groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, Specific examples include a methylamide group, an ethylamide group, an i-propylamide group, a tetradecylamide group, and the like.

1〜R3が置換基を有していてもよいシリル基の場合のシリル基としては、具体例として、例えばトリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等が挙げられる。 Specific examples of the silyl group in the case where R 1 to R 3 are silyl groups which may have a substituent include a trimethylsilyl group, a triethylsilyl group, and a triphenylsilyl group.

1〜R3が置換基を有していてもよいホスホリル基の場合のホスホリル基としては、具体例として、例えばジヒドロキシホスホリル基、ジメトキシホスホリル基等が挙げられる。 Specific examples of the phosphoryl group in the case where R 1 to R 3 are a phosphoryl group which may have a substituent include a dihydroxyphosphoryl group and a dimethoxyphosphoryl group.

1〜R3が置換基を有していてもよいスルフィニル基の場合のスルフィニル基としては、具体例として、メチルスルフィニル基、フェニルスルフィニル基等が挙げられる。 Specific examples of the sulfinyl group in the case where R 1 to R 3 may have a substituent include a methylsulfinyl group and a phenylsulfinyl group.

1〜R3が置換基を有していてもよいスルホニル基の場合のスルホニル基としては、具体例として、メチルスルホニル基、フェニルスルホニル基等が挙げられる。R1〜R3が置換基を有していてもよいスルホナート基の場合のスルホナート基としては、具体例として、メチルスルホナート基、フェニルスルホナート基等が挙げられる。 Specific examples of the sulfonyl group in the case where R 1 to R 3 are optionally substituted sulfonyl groups include a methylsulfonyl group and a phenylsulfonyl group. Specific examples of the sulfonate group in the case where R 1 to R 3 are sulfonate groups which may have a substituent include a methyl sulfonate group and a phenyl sulfonate group.

これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルコキシ基、アルコキシカルボニル基、アシル基、アミド基、シリル基、ホスホリル基、スルフィニル基、スルホニル基、スルホナート基の置換基としては、当該反応に悪影響を及ぼさないものであればどのような置換基でも良いが、例えばメチル基、エチル基、プロピル基等のアルキル基、例えばフェニル基、ナフチル基等のアリール基、例えばオキシラニル基、ピリジル基、フリル基等の複素環基、例えばメトキシ基、エトキシ基、フェノキシ基、ナフチルオキシ基等のアルコキシ基、例えばメトキシカルボニル基、i-プロポキシカルボニル基、t-ブトキシカルボニル基、フェノキシカルボニル基等のアルコキシカルボニル基、スルホン酸基、シアノ基、ニトロ基、例えばトリメチルシリル基、トリフェニルシリル基等のシリル基、ヒドロキシ基、例えば無置換アミド基、メチルアミド基、プロピルアミド基、テトラデシルアミド基等のアミド基、例えばアセチル基、ベンゾイル基等のアシル基、例えばジヒドロキシホスホリル基、ジメトキシホスホリル基等のホスホリル基、例えばメチルスルフィニル基、フェニルスルフィニル基等のスルフィニル基、例えばメチルスルホニル基、フェニルスルホニル基等のスルホニル基、例えばメチルスルホナート基、フェニルスルホナート基等のスルホナート基等が挙げられる。   As substituents for these alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, heterocyclic groups, alkoxy groups, alkoxycarbonyl groups, acyl groups, amide groups, silyl groups, phosphoryl groups, sulfinyl groups, sulfonyl groups, sulfonate groups May be any substituent as long as it does not adversely affect the reaction, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group, for example, an aryl group such as a phenyl group or a naphthyl group, such as an oxiranyl group. , Heterocyclic groups such as pyridyl group, furyl group, etc., alkoxy groups such as methoxy group, ethoxy group, phenoxy group, naphthyloxy group, such as methoxycarbonyl group, i-propoxycarbonyl group, t-butoxycarbonyl group, phenoxycarbonyl group Such as alkoxycarbonyl group, sulfonic acid group, cyano group, Nitro groups such as silyl groups such as trimethylsilyl group and triphenylsilyl group, hydroxy groups such as unsubstituted amide group, methylamide group, propylamide group, tetradecylamide group and other amide groups such as acetyl group and benzoyl group Groups, for example, phosphoryl groups such as dihydroxyphosphoryl group, dimethoxyphosphoryl group, for example, sulfinyl groups such as methylsulfinyl group, phenylsulfinyl group, for example, sulfonyl groups such as methylsulfonyl group, phenylsulfonyl group, such as methylsulfonate group, phenylsulfonate And sulfonate groups such as groups.

また、R1、R2及びR3の何れか二つがそれぞれから水素原子を取り除いた残基で互いに結合して環を形成していても良く、更にはR1、R2及びR3の何れか二つから水素原子を取り除いた残基が2価の原子又は/及び2価の官能基を介して互いに結合して環を形成していても良い。この場合の二価の原子としては、酸素原子、窒素原子、硫黄原子等が、また2価の官能基としてはシリレン基、エチレンジオキシ基、アリーレンジオキシ基、カルボニル基、スルホキシド基、スルホン基等が例示される。 Further, any two of R 1 , R 2 and R 3 may be bonded to each other with a residue from which a hydrogen atom has been removed to form a ring, and any one of R 1 , R 2 and R 3 may be formed. Residues obtained by removing hydrogen atoms from the two may be bonded to each other via a divalent atom or / and a divalent functional group to form a ring. In this case, the divalent atom is an oxygen atom, a nitrogen atom, a sulfur atom, etc., and the divalent functional group is a silylene group, an ethylenedioxy group, an aryleneoxy group, a carbonyl group, a sulfoxide group, a sulfone group. Etc. are exemplified.

本発明においては、このような一般式(1)で示されるα,β‐不飽和アルデヒドとして、種々のものを用いることができるが、好ましくは、trans-2-デセナール、trans-2-オクテナール、trans-2-ヘキセナール、3-メチル-2-ブテナール、ベンズアルデヒド-2-チオフェンアルデヒド-2-オクテナールを用いることが望ましい。   In the present invention, various α, β-unsaturated aldehydes represented by the general formula (1) can be used. Preferably, trans-2-decenal, trans-2-octenal, It is desirable to use trans-2-hexenal, 3-methyl-2-butenal, benzaldehyde-2-thiophenaldehyde-2-octenal.

本発明の製造法において用いられる酸素の濃度、圧力に制限はなく、濃度、圧力に応じてα,β‐不飽和カルボン酸類への反応は生起するが、1気圧の酸素あるいは1気圧の空気が好ましい。   There is no limitation on the concentration and pressure of oxygen used in the production method of the present invention, and the reaction to α, β-unsaturated carboxylic acids occurs depending on the concentration and pressure, but 1 atmosphere of oxygen or 1 atmosphere of air is used. preferable.

鉄塩としては、有機溶媒中で鉄(II)もしくは鉄(III)カチオンを生成する化合物であり、例えば無水酢酸鉄(II)、塩化鉄(II)四水和物、無水塩化鉄(II)、塩基性酢酸鉄(III)、硝酸鉄(III)九水和物、硫酸鉄(III)水和物、過塩素酸鉄(III)水和物、無水塩化鉄(III)等が挙げられるが、無水酢酸鉄(II)が好ましい。これらは単独で使用しても、2種以上を混合使用してもよい。その使用量は基質のα,β‐不飽和アルデヒド類に対して0.0001〜20モル%、好ましくは0.01〜10モル%の範囲から選ばれる。   The iron salt is a compound that generates an iron (II) or iron (III) cation in an organic solvent, such as anhydrous iron (II) acetate, iron (II) chloride tetrahydrate, anhydrous iron (II) chloride. , Basic iron acetate (III), iron nitrate (III) nonahydrate, iron sulfate (III) hydrate, iron (III) perchlorate hydrate, anhydrous iron chloride (III), etc. Anhydrous iron (II) acetate is preferred. These may be used alone or in combination of two or more. The amount to be used is selected from the range of 0.0001 to 20 mol%, preferably 0.01 to 10 mol%, based on the α, β-unsaturated aldehyde as a substrate.

カルボン酸のアルカリ金属塩としては、具体例として、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、トリフルオロ酢酸リチウム、トリフルオロ酢酸ナトリウム、トリフルオロ酢酸カリウム、トリフルオロ酢酸セシウム、ピバル酸リチウム、ピバル酸ナトリウム、ピバル酸カリウム、ピバル酸セシウムなどがあげられる。これらのうち、酢酸ナトリウム、酢酸カリウム、トリフルオロ酢酸ナトリウム、トリフルオロ酢酸カリウムが好ましい。これらは単独で使用しても、2種以上を混合使用してもよい。その使用量は基質のα,β‐不飽和アルデヒド類に対して0.001〜30モル%、好ましくは0.1〜20モル%の範囲から選ばれる。   Specific examples of the alkali metal salt of carboxylic acid include lithium acetate, sodium acetate, potassium acetate, cesium acetate, lithium trifluoroacetate, sodium trifluoroacetate, potassium trifluoroacetate, cesium trifluoroacetate, lithium pivalate, and pivalate. Examples thereof include sodium acid, potassium pivalate, cesium pivalate and the like. Of these, sodium acetate, potassium acetate, sodium trifluoroacetate, and potassium trifluoroacetate are preferable. These may be used alone or in combination of two or more. The amount to be used is selected from the range of 0.001 to 30 mol%, preferably 0.1 to 20 mol%, based on the α, β-unsaturated aldehyde as a substrate.

本発明においては、溶媒を使用しなくても効率的に反応が進行するが、好ましくは触媒とα,β‐不飽和アルデヒド類を均一に可溶な溶媒として、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、N,N‐ジメチルホルムアミド、酢酸エチル、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリル、ベンゾニトリル、アセトン等を用いる方がよく、特に酢酸エチルが望ましい。これらは単独で使用しても、2種以上を混合使用してもよい。その使用量は基質のα,β‐不飽和アルデヒド類に対して重量比0.1〜1000倍、好ましくは1〜100倍の範囲から選ばれる。   In the present invention, the reaction proceeds efficiently without using a solvent. Preferably, the catalyst and α, β-unsaturated aldehydes are used as homogeneously soluble solvents such as methanol, ethanol, isopropyl alcohol, t It is better to use -butyl alcohol, N, N-dimethylformamide, ethyl acetate, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, benzonitrile, acetone, etc., and ethyl acetate is particularly desirable. These may be used alone or in combination of two or more. The amount used is selected from the range of 0.1 to 1000 times, preferably 1 to 100 times the weight ratio of the substrate α, β-unsaturated aldehydes.

本発明方法においては、前記特有な触媒を用いたことから、該酸化反応を効果的に実施することができ、対応するα,β‐不飽和カルボン酸類を高収率で製造することができる。また、反応操作が簡便で、環境や人体への影響・毒性が小さく、環境に対する負荷を軽減する効果も有し、安全かつ迅速にα,β‐不飽和カルボン酸類を得ることができる。   In the method of the present invention, since the specific catalyst is used, the oxidation reaction can be carried out effectively, and the corresponding α, β-unsaturated carboxylic acids can be produced in a high yield. In addition, the reaction operation is simple, the influence and toxicity to the environment and the human body are small, the effect of reducing the burden on the environment, and α, β-unsaturated carboxylic acids can be obtained safely and rapidly.

本発明方法の反応条件には、特に制約はないが、通常、反応は−40〜80℃、好ましくは0〜40℃の範囲で行われる。   The reaction conditions for the process of the present invention are not particularly limited, but the reaction is usually carried out in the range of -40 to 80 ° C, preferably 0 to 40 ° C.

本発明の製造法における反応時間は、用いる触媒の量や反応温度等により左右され、一概に定めることはできないが、通常は1〜80時間の範囲で、好ましくは10〜30時間の範囲で行われる。   The reaction time in the production method of the present invention depends on the amount of catalyst used, the reaction temperature, etc., and cannot be generally defined, but is usually in the range of 1 to 80 hours, preferably in the range of 10 to 30 hours. Is called.

本発明方法で得られるα,β‐不飽和カルボン酸類は、例えば、trans-2-デセン酸、trans-2-オクテン酸、trans-2-ヘキセン酸、3-メチルクロトン酸、ゲラン酸、安息香酸、桂皮酸などが例示される。   Α, β-unsaturated carboxylic acids obtained by the method of the present invention include, for example, trans-2-decenoic acid, trans-2-octenoic acid, trans-2-hexenoic acid, 3-methylcrotonic acid, gellanic acid, benzoic acid And cinnamic acid.

本発明の一般的な実施態様は、反応器に鉄を含む金属塩及びカルボン酸のアルカリ金属塩、溶媒を入れて混合し、さらにα,β‐不飽和アルデヒド類を加えて所定の温度で反応を行うものである。反応終了後、溶媒を溜去し、蒸留、クロマト分離、再結晶や昇華等の通常の方法によって、得られたα,β‐不飽和カルボン酸類を取り出すことができる。必要に応じ、反応終了後に有機溶媒と希塩酸を追添し、有機層と水層に分離した後、有機層のみを分離して濃縮してもよい。   In a general embodiment of the present invention, a metal salt containing iron, an alkali metal salt of carboxylic acid, and a solvent are mixed in a reactor, and an α, β-unsaturated aldehyde is added and reacted at a predetermined temperature. Is to do. After completion of the reaction, the solvent is distilled off, and the obtained α, β-unsaturated carboxylic acid can be taken out by a usual method such as distillation, chromatographic separation, recrystallization or sublimation. If necessary, after completion of the reaction, an organic solvent and dilute hydrochloric acid may be added and separated into an organic layer and an aqueous layer, and then only the organic layer may be separated and concentrated.

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited to a following example.

実施例1
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、酢酸ナトリウム(和光純薬工業(株)製)16.4mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は99%、trans-2-デセン酸の収率は74%、選択率は75%であった。
Example 1
In a test tube, iron nitrate (III) nonahydrate (manufactured by Wako Pure Chemical Industries), 4.1 mg (0.010 mol), sodium acetate (manufactured by Wako Pure Chemical Industries, Ltd.), 16.4 mg (0.20 mmol), ethyl acetate 1 mL (manufactured by Wako Pure Chemical Industries, Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 99%, the yield of trans-2-decenoic acid was 74%, and the selectivity was 75%.

なお、転化率、収率、選択率は1H NMRにより分析した結果を元に、以下の計算式により計算した。
転化率(%)=(1−残存した原料のモル数/使用した原料のモル数)×100
収率(%) =(目的化合物のモル数/使用した原料のモル数)×100
選択率(%)=収率(%)/転化率(%)×100
The conversion rate, yield, and selectivity were calculated by the following calculation formula based on the results of analysis by 1 H NMR.
Conversion rate (%) = (1−number of moles of raw material remaining / number of moles of raw material used) × 100
Yield (%) = (number of moles of target compound / number of moles of starting material used) × 100
Selectivity (%) = yield (%) / conversion (%) × 100

比較例1
実施例1の条件で、硝酸鉄(III)九水和物と酢酸ナトリウムを加えずに反応を行った。その結果、trans-2-デセナールの転化率は0%であった。
Comparative Example 1
The reaction was carried out under the conditions of Example 1 without adding iron (III) nitrate nonahydrate and sodium acetate. As a result, the conversion rate of trans-2-decenal was 0%.

比較例2
実施例1の条件で、酢酸ナトリウムを加えずに反応を行った。trans-2-デセナールの転化率は99%、trans-2-デセン酸の収率は49%、選択率は49%であった。
Comparative Example 2
The reaction was performed under the conditions of Example 1 without adding sodium acetate. The conversion rate of trans-2-decenal was 99%, the yield of trans-2-decenoic acid was 49%, and the selectivity was 49%.

実施例2
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、トリフルオロ酢酸ナトリウム(東京化成工業(株)製)28mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は98%、trans-2-デセン酸の収率は80%、選択率は82%であった。
Example 2
In a test tube, iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), sodium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 mg (0.20 mmol), ethyl acetate ( 1 mL of Wako Pure Chemical Industries, Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 98%, the yield of trans-2-decenoic acid was 80%, and the selectivity was 82%.

実施例3
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、酢酸カリウム(ナカライテスク(株)製)19.8mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol) を入れ、1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は74%、trans-2-デセン酸の収率は63%、選択率は85%であった。
Example 3
In a test tube, iron nitrate (III) nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), potassium acetate (manufactured by Nacalai Tesque) 19.8 mg (0.20 mmol), ethyl acetate (Japanese 1 mL of Kojun Pharmaceutical Co., Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (Tokyo Chemical Industry Co., Ltd.) were added and stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 74%, the yield of trans-2-decenoic acid was 63%, and the selectivity was 85%.

実施例4
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、トリフルオロ酢酸カリウム(東京化成工業(株)製)31.5mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は96%、trans-2-デセン酸の収率は84%、選択率は87%であった。
Example 4
In a test tube, iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), potassium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 31.5 mg (0.20 mmol), acetic acid 1 mL of ethyl (manufactured by Wako Pure Chemical Industries, Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 96%, the yield of trans-2-decenoic acid was 84%, and the selectivity was 87%.

実施例5
試験管に無水酢酸鉄(II)(ALDRICHI製)1.7mg(0.010mmol)、トリフルオロ酢酸ナトリウム(東京化成工業(株)製)28mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の酸素下、25℃、16時間撹拌した。1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。有機層のガスクロマトグラフィー測定を行ったところ、trans-2-デセナールの転化率は99%、trans-2-デセン酸の収率は82%、選択率は83%であった。
Example 5
In a test tube, anhydrous iron acetate (II) (manufactured by ALDRICHI) 1.7 mg (0.010 mmol), sodium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 mg (0.20 mmol), ethyl acetate (Wako Pure Chemical Industries, Ltd.) 1 mL, trans-2-decenal (manufactured by Tokyo Chemical Industry Co., Ltd.) 167 mg (1.0 mmol) was added, and the mixture was stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. 1M hydrochloric acid (1 mL) was added, and the mixture was extracted 3 times with ethyl acetate (3 mL). As a result of gas chromatography measurement of the organic layer, the conversion of trans-2-decenal was 99%, the yield of trans-2-decenoic acid was 82%, and the selectivity was 83%.

実施例6
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、トリフルオロ酢酸ナトリウム(東京化成工業(株)製)28mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)1mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の空気下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol) を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は83%、trans-2-デセン酸の収率は73%、選択率は88%であった。
Example 6
In a test tube, iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), sodium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 mg (0.20 mmol), ethyl acetate ( 1 mL of Wako Pure Chemical Industries, Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (Tokyo Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 25 ° C. for 16 hours under 1 atmosphere of air. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and 1 H NMR measurement was conducted. The conversion rate of trans-2-decenal was determined. Was 83%, the yield of trans-2-decenoic acid was 73%, and the selectivity was 88%.

実施例7
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、トリフルオロ酢酸ナトリウム(東京化成工業(株)製)28mg(0.20mmol)、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、無溶媒の条件のもと1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は90%、trans-2-デセン酸の収率は73%、選択率は81%であった。
Example 7
In a test tube, iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), sodium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 mg (0.20 mmol), trans-2 -167 mg (1.0 mmol) of Decenal (Tokyo Kasei Kogyo Co., Ltd.) was added, and the mixture was stirred at 25 ° C for 16 hours under 1 atmosphere of oxygen under the absence of solvent. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 90%, the yield of trans-2-decenoic acid was 73%, and the selectivity was 81%.

実施例8
試験管に硝酸鉄(III)九水和物(和光純薬製)4.1mg(0.010mol)、トリフルオロ酢酸ナトリウム(東京化成工業(株)製)28mg(0.20mmol)、酢酸エチル(和光純薬工業(株)製)0.5mL、trans-2-デセナール(東京化成工業(株)製)167mg(1.0mmol)を入れ、1気圧の酸素下で25℃、16時間撹拌した。その後、1M塩酸(1mL)を加え、酢酸エチル(3mL)を用いて3度抽出した。内部標準としてビフェニル(東京化成工業(株)製)31mg(0.20mmol)を加えて濃縮し、一部を重クロロホルムに溶かして1H NMR測定を行ったところ、trans-2-デセナールの転化率は87%、trans-2-デセン酸の収率は84%、選択率は97%であった。
Example 8
In a test tube, iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 4.1 mg (0.010 mol), sodium trifluoroacetate (manufactured by Tokyo Chemical Industry Co., Ltd.) 28 mg (0.20 mmol), ethyl acetate ( 0.5 mL of Wako Pure Chemical Industries, Ltd.) and 167 mg (1.0 mmol) of trans-2-decenal (Tokyo Chemical Industry Co., Ltd.) were added and stirred at 25 ° C. for 16 hours under 1 atmosphere of oxygen. Thereafter, 1M hydrochloric acid (1 mL) was added, and the mixture was extracted three times with ethyl acetate (3 mL). As an internal standard, 31 mg (0.20 mmol) of biphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and concentrated. A portion was dissolved in deuterated chloroform and subjected to 1 H NMR measurement. The conversion of trans-2-decenal Was 87%, the yield of trans-2-decenoic acid was 84%, and the selectivity was 97%.

実施例9
実施例8と同様に種々のα,β‐不飽和アルデヒド類について酸化反応を行った。結果を併せて表−1に示す。
Example 9
In the same manner as in Example 8, various α, β-unsaturated aldehydes were oxidized. The results are also shown in Table-1.

Figure 2016204318
Figure 2016204318

Claims (4)

α,β‐不飽和アルデヒド類を、鉄(II)もしくは鉄(III)塩とカルボン酸のアルカリ金属塩の共存下、酸素または空気で酸化反応させることを特徴とするα,β‐不飽和カルボン酸類の製造方法。   α, β-unsaturated carboxylic acids characterized by oxidation reaction of α, β-unsaturated aldehydes with oxygen or air in the presence of iron (II) or iron (III) salts and alkali metal salts of carboxylic acids A method for producing acids. 前記鉄(II)もしくは鉄(III)塩として、酢酸鉄(II)もしくは硝酸鉄(III)を用いることを特徴とする、請求項1に記載のα,β‐不飽和カルボン酸類の製造方法。   The method for producing an α, β-unsaturated carboxylic acid according to claim 1, wherein iron (II) acetate or iron (III) nitrate is used as the iron (II) or iron (III) salt. 前記カルボン酸のアルカリ金属塩として、酢酸ナトリウム、酢酸カリウム、トリフルオロ酢酸ナトリウム、トリフルオロ酢酸カリウムを単独で、または2種以上、使用することを特徴とする、請求項1又は2に記載のα,β‐不飽和カルボン酸類の製造方法。   3. The α according to claim 1, wherein the alkali metal salt of the carboxylic acid is sodium acetate, potassium acetate, sodium trifluoroacetate, or potassium trifluoroacetate alone or in combination of two or more. , Process for producing β-unsaturated carboxylic acids. 有機溶媒の存在下で酸化反応を行うことを特徴とする、請求項1〜3のいずれか一項に記載のα,β‐不飽和カルボン酸類の製造方法。   The method for producing an α, β-unsaturated carboxylic acid according to any one of claims 1 to 3, wherein the oxidation reaction is performed in the presence of an organic solvent.
JP2015089757A 2015-04-24 2015-04-24 MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID Pending JP2016204318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015089757A JP2016204318A (en) 2015-04-24 2015-04-24 MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089757A JP2016204318A (en) 2015-04-24 2015-04-24 MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID

Publications (1)

Publication Number Publication Date
JP2016204318A true JP2016204318A (en) 2016-12-08

Family

ID=57488802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089757A Pending JP2016204318A (en) 2015-04-24 2015-04-24 MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID

Country Status (1)

Country Link
JP (1) JP2016204318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303091A (en) * 2020-03-23 2020-06-19 中国科学技术大学 Preparation method of furoic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913767B1 (en) * 1965-03-27 1974-04-03
JP2007302669A (en) * 2006-05-12 2007-11-22 Oxea Deutschland Gmbh METHOD FOR CATALYTICALLY PRODUCING LINEAR AND beta-ALKYL BRANCHED ALIPHATIC CARBOXYLIC ACID

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913767B1 (en) * 1965-03-27 1974-04-03
JP2007302669A (en) * 2006-05-12 2007-11-22 Oxea Deutschland Gmbh METHOD FOR CATALYTICALLY PRODUCING LINEAR AND beta-ALKYL BRANCHED ALIPHATIC CARBOXYLIC ACID

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Aerobic oxidation of aldehydes, ketones, sulfides, alcohols and alkanes catalysed by polymerizable,", JOURNAL OF MOLECULAR CATALYSIS, vol. 94, JPN6019009041, 1994, pages 27 - 36, ISSN: 0004116855 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303091A (en) * 2020-03-23 2020-06-19 中国科学技术大学 Preparation method of furoic acid

Similar Documents

Publication Publication Date Title
Zhu et al. Formal fluorine atom transfer radical addition: silver-catalyzed carbofluorination of unactivated alkenes with ketones in aqueous solution
Roembke et al. Application of (phosphine) gold (I) carboxylates, sulfonates and related compounds as highly efficient catalysts for the hydration of alkynes
Ke et al. Cu-catalyzed hydrofluoroacetylation of alkynes or alkynyl carboxylic acids leading highly stereoselectively to fluoroacetylated alkenes
CN102675015B (en) Decarboxylation and fluorination method for carboxylic acid
JPWO2013099819A1 (en) Method for producing farnesal using vanadium complex
JP7291142B2 (en) Method for producing 1-acyloxy-2-methyl-2-propene
Mao et al. Uranyl-catalysed C–H alkynylation and olefination
Enthaler et al. Exploring the coordination chemistry of 2-picolinic acid to zinc and application of the complexes in catalytic oxidation chemistry
JP2016204318A (en) MANUFACTURING METHOD OF α,β-UNSATURATED CARBOXYLIC ACID
JP6696507B2 (en) Method for producing 4- (trifluoromethylsulfonyl) phenol compound
JP5599570B2 (en) Method for producing aryl derivative using heterogeneous catalyst
JP3882462B2 (en) Method for producing allyl compounds
Barbosa et al. Niobium to alcohol mol ratio control of the concurring esterification and etherification reactions promoted by NbCl5 and Al2O3 catalysts under microwave irradiation
JPWO2013125020A1 (en) Catalyst for dehydrogenation, carbonyl compound using the catalyst, and method for producing hydrogen
JP6245605B2 (en) Process for producing .ALPHA.,. BETA.-unsaturated carbonyl compounds.
BR112015013603B1 (en) METHOD FOR PREPARING BIS (3-AMINOPHENYL) DISSULPHATES AND 3-AMINOTIOLS
KR20150026729A (en) Method for oxidizing alcohols
ES2727344T3 (en) Process for the production of 1- (5,5-dimethylcyclohex-1-en-1-yl) ethanone and 1- (5,5-dimethylcyclohex-6-en-1-yl) ethanone
JP4392500B2 (en) Method for producing α, β-unsaturated carbonyl compound
JP2011140474A (en) Method for producing difluorocyclopropane compound
Kon et al. Palladium-catalyzed oxidation of vinyl ether to acetate with hydrogen peroxide
JP2010189326A (en) Method for producing alpha, beta-unsaturated carboxylic acid
Xiong et al. Nitrate promoted mild and versatile Pd-catalysed C (sp 2)–H oxidation with carboxylic acids
JP2009215203A (en) Method for producing carbonyl compound
CN109092372A (en) A kind of catalyst and method of elective oxidation of primary alcohols

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190925