JP2016197614A - Instrument transformer - Google Patents

Instrument transformer Download PDF

Info

Publication number
JP2016197614A
JP2016197614A JP2015075714A JP2015075714A JP2016197614A JP 2016197614 A JP2016197614 A JP 2016197614A JP 2015075714 A JP2015075714 A JP 2015075714A JP 2015075714 A JP2015075714 A JP 2015075714A JP 2016197614 A JP2016197614 A JP 2016197614A
Authority
JP
Japan
Prior art keywords
impedance
voltage
phase
instrument transformer
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015075714A
Other languages
Japanese (ja)
Inventor
正治 猪山
Masaharu Iyama
正治 猪山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiden Eng Corp
Meiden Engineering Corp
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meiden Eng Corp
Meiden Engineering Corp
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiden Eng Corp, Meiden Engineering Corp, Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meiden Eng Corp
Priority to JP2015075714A priority Critical patent/JP2016197614A/en
Publication of JP2016197614A publication Critical patent/JP2016197614A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: Use of a wire-wound instrument transformer in an AC system formed by superposing a low-frequency voltage makes it impossible to make a correct determination as insulation monitoring.SOLUTION: The instrument transformer is formed as follows: A main impedance Zs and a first partial-pressure impedance Ze are connected in series to each phase of an alternating current and a measurement terminal is derived from each connection position. The other end of the first partial-pressure impedance Ze is subjected to three-phase star connection. A second partial-pressure impedance Zo is connected between the connection position and a ground terminal. A measurement terminal is derived from each of a three-phase star connection position and a connection position of the ground terminal to the second partial-pressure impedance Zo.SELECTED DRAWING: Figure 1

Description

本発明は、計器用変成器に係わり、特に低周波電圧を重畳した交流系統に適用される計器用変成器に関するものである。   The present invention relates to an instrument transformer, and more particularly to an instrument transformer applied to an AC system in which a low-frequency voltage is superimposed.

三相交流回路において、主回路の各相対地電圧、線間電圧及び零相電圧などを計測し、測定された電気量から系統故障や異常を検知して保護継電器などを動作させて系統監視・保護を行うことを目的として計器用変圧器や接地型計器用変圧器が使用される。   In a three-phase AC circuit, measure the relative ground voltage, line voltage, zero-phase voltage, etc. of the main circuit, detect system faults and abnormalities from the measured electricity, operate the protective relay, etc. For the purpose of protection, instrument transformers and grounded instrument transformers are used.

変成器として、接地型計器用変圧器を例にすると、特許文献1や特許文献2等が公知なっている。図8は接地型計器用変圧器による電圧計測状態を示したもので、接地型計器用変圧器EVTの一次巻線の一端は三相交流のA相、B相、C相に各別に接続され、一次巻線の他端は三相スター接続されて接地されている。Va,Vb,Vcは各相の対地電圧である。   For example, Patent Document 1, Patent Document 2 and the like are well known when a transformer for grounding type is taken as an example of a transformer. FIG. 8 shows a voltage measurement state by a grounded-type instrument transformer. One end of the primary winding of the ground-type instrument transformer EVT is connected to the A-phase, B-phase, and C-phase of the three-phase AC separately. The other end of the primary winding is grounded by a three-phase star connection. Va, Vb, and Vc are ground voltages of the respective phases.

特許第3419168Patent No. 3419168 特開昭62−40015JP 62-40015

近年、三相交流の高・低圧系統での系統絶縁監視を行うことを目的として、三相交流回路に低周波電圧を重畳する方式が企図されている。この方式は三相交流回路に重畳された低周波電圧に対する電流を計測・処理することにより、系統の絶縁状態を判断するものである。   In recent years, a method of superimposing a low-frequency voltage on a three-phase AC circuit has been proposed for the purpose of monitoring system insulation in a three-phase AC high / low voltage system. In this method, the insulation state of the system is judged by measuring and processing the current with respect to the low-frequency voltage superimposed on the three-phase AC circuit.

低周波電圧重畳方式における計測器として、図8で示すような接地型計器用変圧器EVTを使用すると、その一次巻線は主回路と対地間にインダクタンスを接続したことと等価になり、周波数の低下に対応して各相のインピーダンスが低くなる。この現象は、絶縁監視のために系統に低周波電圧を重畳する場合、低周波電圧に対する接地型計器用変圧器EVTのインピーダンスの低下が系統の絶縁低下と同程度になると、絶縁監視として正しく判断できなくなる可能性がある。したがって、接地型計器用変圧器EVTなどのように主回路と対地間にインダクタンスに相当するような巻線機器を使用した系統では、低周波電圧重畳方式による絶縁監視を正しく行うことができない虞を有している。   When a grounded instrument transformer EVT as shown in FIG. 8 is used as a measuring instrument in the low-frequency voltage superposition method, its primary winding is equivalent to connecting an inductance between the main circuit and the ground, Corresponding to the decrease, the impedance of each phase decreases. This phenomenon is correctly determined as insulation monitoring when a low-frequency voltage is superimposed on the system for insulation monitoring, when the drop in impedance of the grounded instrument transformer EVT with respect to the low-frequency voltage is comparable to that of the system. It may not be possible. Therefore, in a system using a winding device that corresponds to the inductance between the main circuit and the ground, such as a grounded instrument transformer EVT, there is a possibility that the insulation monitoring by the low frequency voltage superposition method cannot be performed correctly. Have.

なお、従来において、分圧器としてコンデンサ単体、抵抗単体、或いはコンデンサと抵抗の組み合わせにより分圧器を構成し、この分圧器により主回路各部の電圧を計測することは行われている。その際、零相電圧の検出には零相電圧用の分圧器を、或いは主回路各相電圧の計測時には各相電圧を計測する分圧器と、それぞれ計測目的によって別々に構成された分圧器が使用されている。   Conventionally, as a voltage divider, a voltage divider is configured by a single capacitor, a single resistor, or a combination of a capacitor and a resistor, and the voltage of each part of the main circuit is measured by this voltage divider. At that time, a zero-phase voltage divider is used to detect the zero-phase voltage, or a voltage divider that measures each phase voltage when measuring the main-phase voltage, and a voltage divider configured separately for each measurement purpose. It is used.

本発明が目的とするところは、巻線型の計器用変成器が適用できない系統に用いられる計器用変成器を提供することにある。   An object of the present invention is to provide an instrument transformer used in a system to which a wound-type instrument transformer cannot be applied.

本発明は、三相交流系統に接続されて各種の電気量を計測する計器用変成器において、
交流各相に主インピーダンスZsと第1の分圧インピーダンスZeを直列に接続し、それぞれの直列接続位置より測定端子を導出すると共に、各第1の分圧インピーダンスZeの他端を三相スター接続し、この接続位置と大地端子間に第2の分圧インピーダンスZoを接続し、前記三相スター接続位置および大地端子と第2の分圧インピーダンスZoの接続位置からそれぞれ測定端子を導出することを特徴としたものである。
The present invention is an instrument transformer for measuring various amounts of electricity connected to a three-phase AC system,
The main impedance Zs and the first divided voltage impedance Ze are connected in series to each AC phase, the measurement terminals are derived from the respective series connection positions, and the other end of each first divided voltage impedance Ze is connected in a three-phase star. And connecting a second divided impedance Zo between the connection position and the ground terminal, and deriving measurement terminals from the three-phase star connection position and the connection position of the ground terminal and the second divided impedance Zo, respectively. It is a feature.

本発明は、主インピーダンスZsの値と第1の分圧インピーダンスZeの値および第2の分圧インピーダンスZoの値は、主インピーダンスZsが、第1の分圧インピーダンスZe及び第2の分圧インピーダンスZoに比べて十分に大きな値に選定されることを特徴としたものである。   In the present invention, the value of the main impedance Zs, the value of the first divided impedance Ze, and the value of the second divided impedance Zo are the main impedance Zs, the first divided impedance Ze, and the second divided impedance. It is characterized in that it is selected to be a sufficiently large value compared to Zo.

また、本発明の主インピーダンスZs、第1の分圧インピーダンスZeおよび第2の分圧インピーダンスZoは、コンデンサ単体、抵抗単体、或いはコンデンサと抵抗の組み合わせの何れかで構成されたことを特徴としたものである。   In addition, the main impedance Zs, the first divided voltage impedance Ze, and the second divided voltage impedance Zo of the present invention are configured by any one of a capacitor, a resistor alone, or a combination of a capacitor and a resistor. Is.

また、本発明の計器用変成器は、低周波電圧を重畳した三相交流系統に接続されて、各相の対地電圧、零相電圧及び線間電圧に対応した測定電圧の検出ができるよう構成されたことを特徴としたものである。   Further, the instrument transformer according to the present invention is connected to a three-phase AC system on which a low-frequency voltage is superimposed, and is configured to detect a measurement voltage corresponding to a ground voltage, a zero-phase voltage, and a line voltage of each phase. It is characterized by that.

以上のとおり、本発明によれば、相毎に直列接続された主インピーダンスZsと第1の分圧インピーダンスZeに加え、第2の分圧インピーダンスZoも直列に接続した単純構成により、1組の分圧器で主回路各相の対地電圧、零相電圧及び主回路の線間電圧に対応した測定電圧が得られるものである。   As described above, according to the present invention, in addition to the main impedance Zs and the first divided impedance Ze that are connected in series for each phase, the second divided voltage impedance Zo is also connected in series. The voltage divider can obtain a measurement voltage corresponding to the ground voltage, the zero phase voltage of each phase of the main circuit, and the line voltage of the main circuit.

また、各インピーダンスZs,Ze,Zoとしてコンデンサ単体、抵抗単体、或いはコンデンサと抵抗の組み合わせなど、低周波になっても絶縁監視に影響を及ぼしにくい種類のインピーダンスを選定することで、低周波電圧重畳方式においても絶縁監視の判定に悪影響を及ぼすことなく各部の電圧測定を正しく行うことができるものである。   In addition, by selecting a type of impedance that does not affect insulation monitoring even at low frequencies, such as a single capacitor, a single resistor, or a combination of a capacitor and a resistor as each impedance Zs, Ze, and Zo, low frequency voltage superposition Even in the method, voltage measurement of each part can be performed correctly without adversely affecting the determination of insulation monitoring.

また、本発明の構成によれば、一般的にコンデンサや抵抗は小型軽量であることから、従来の巻線型に比較して全体的に小型・軽量の分圧器が構成できるなどの効果が得られるものである。   In addition, according to the configuration of the present invention, since the capacitor and the resistor are generally small and light, it is possible to obtain an effect that a small and light voltage divider can be configured as a whole compared to the conventional winding type. Is.

本発明の計器用変成器の構成図。The block diagram of the measuring instrument transformer of this invention. 本発明の計器用変成器の構成図(実施例1)。The block diagram (Example 1) of the measuring instrument transformer of this invention. 本発明の計器用変成器の構成図(実施例2)。The block diagram of the instrument transformer of this invention (Example 2). 本発明の計器用変成器の構成図(実施例3)。The block diagram of the instrument transformer of this invention (Example 3). 本発明の計器用変成器の構成図(実施例4)。The block diagram of the instrument transformer of this invention (Example 4). 本発明の計器用変成器の構成図(実施例5)。The block diagram of the instrument transformer of this invention (Example 5). 本発明の計器用変成器の構成図(実施例6)。The block diagram of the instrument transformer of the present invention (Example 6). 従来の接地型計器用変圧器の使用状態図。The use state figure of the conventional earthing type transformer for instruments.

図1は本発明による計器用変成器の構成図を示したものである。図1においてZsは主インピーダンスで、交流回路のA相,B相,C相の各相に接続される。各相の主インピーダンスZsには、それぞれ第1の分圧インピーダンスZeが直列接続され、その接続点からそれぞれ測定端子a,b,cが導出される。また、各第1の分圧インピーダンスZeの他端は共通(三相スター)に接続されて測定端子nが導出される。この三相スター接続された部分と大地端子間に第2の分圧インピーダンスZoが接続され、第2の分圧インピーダンスZoの大地端子側から測定端子gが導出される。なお、Va,Vb,Vcは主回路各相の対地電圧である。   FIG. 1 shows a configuration diagram of an instrument transformer according to the present invention. In FIG. 1, Zs is a main impedance, and is connected to the A phase, B phase, and C phase of the AC circuit. A first divided impedance Ze is connected in series to the main impedance Zs of each phase, and measurement terminals a, b, and c are derived from the connection points, respectively. Further, the other end of each first divided impedance Ze is connected in common (three-phase star), and the measurement terminal n is derived. A second divided impedance Zo is connected between the three-phase star-connected portion and the ground terminal, and a measurement terminal g is derived from the ground terminal side of the second divided impedance Zo. Va, Vb, and Vc are ground voltages of respective phases of the main circuit.

ここで、主インピーダンスZsの大きさがZe,Zoに比べて十分に大きい値に選定される。すなわち、Zs≫Ze,Zs≫Zoとなるように各インピーダンスを選定することで、以下のように主回路各相の対地電圧の測定と主回路零相電圧の測定が可能となる。
(1)主回路各相の対地電圧の測定について
主回路A相の対地電圧Vaを例にすると、対地電圧Vaは、各インピーダンスZs,Ze,Zoで分圧されて端子a−n間に出力される。その大きさは、Zs≫Ze,Zs≫Zoの条件から次式となって電圧が出力される。
(Ze/(Zs+Ze+Zo))Va≒(Ze/Zs)Va
同様にして、主回路B相の対地電圧Vbは端子b−n間に、主回路C相の対地電圧Vcは端子c−n間に、それぞれZe/Zsにより分圧された電圧が出力される。
(2)主回路零相電圧の測定
主回路各相の対称分電圧をEa,Eb,Ec、主回路各相に含まれている零相電圧をV0とすると、各相対地電圧Va,Vb,Vcは次のように表される。
Va=Ea+V0
Vb=Eb+V0
Vc=Ec+V0
これらの各電圧は各インピーダンスZs,Ze,Zoで分圧されて端子n−g間に出力されるが、この時の分圧比は、前記(1)における主回路各相の対地電圧の測定と同様Zs≫Ze,Zs≫Zoの条件からZo/Zsとなり、各相の対地電圧を分圧した電圧がベクトル的に加算されて出力される。すなわち、その出力値は次の通りである。
Here, the magnitude of the main impedance Zs is selected to be sufficiently larger than Ze and Zo. That is, by selecting each impedance so that Zs >> Ze, Zs >> Zo, it is possible to measure the ground voltage of each phase of the main circuit and measure the main circuit zero-phase voltage as follows.
(1) Measurement of the ground voltage of each phase of the main circuit When the ground voltage Va of the main circuit A phase is taken as an example, the ground voltage Va is divided by the respective impedances Zs, Ze, and Zo and output between the terminals an. Is done. The voltage is output in accordance with the following equation from the condition of Zs >> Ze, Zs >> Zo.
(Ze / (Zs + Ze + Zo)) Va≈ (Ze / Zs) Va
Similarly, the voltage divided by Ze / Zs is output between the terminals b and n, and the voltage Vc of the main circuit C phase is output between the terminals c and n, respectively. .
(2) Measurement of main circuit zero-phase voltage If the symmetrical voltage of each phase of the main circuit is Ea, Eb, Ec, and the zero-phase voltage included in each phase of the main circuit is V0, each relative ground voltage Va, Vb, Vc is expressed as follows.
Va = Ea + V0
Vb = Eb + V0
Vc = Ec + V0
Each of these voltages is divided by the respective impedances Zs, Ze, Zo and outputted between the terminals ng, and the voltage division ratio at this time is determined by measuring the ground voltage of each phase of the main circuit in (1). Similarly, Zo / Zs is obtained from the conditions of Zs >> Ze, Zs >> Zo, and voltages obtained by dividing the ground voltage of each phase are added in vector and output. That is, the output value is as follows.

Va(Zo/Zs)+Vb(Zo/Zs)+Vc(Zo/Zs)
=(Ea+V0)(Zo/Zs)+(Eb+V0)(Zo/Zs)+
(Ec+V0)(Zo/Zs)
=(Ea+Eb+Ec)(Zo/Zs)+3V0(Zo/Zs)
ここで、Ea,Eb,Ecは対称分電圧であるのでそのベクトル和はゼロとなり、端子n−g間には主回路各相の零相電圧V0を(3Zo/Zs)の分圧比で分圧された電圧が出力される。
Va (Zo / Zs) + Vb (Zo / Zs) + Vc (Zo / Zs)
= (Ea + V0) (Zo / Zs) + (Eb + V0) (Zo / Zs) +
(Ec + V0) (Zo / Zs)
= (Ea + Eb + Ec) (Zo / Zs) + 3V0 (Zo / Zs)
Here, since Ea, Eb, and Ec are symmetrical voltage divisions, the vector sum is zero, and the zero-phase voltage V0 of each phase of the main circuit is divided between terminals n and g at a voltage division ratio of (3Zo / Zs). Output voltage is output.

以上、(1)(2)の結果をまとめると、各測定端子間には下表のような電圧が出力される。   As described above, when the results of (1) and (2) are summarized, voltages as shown in the following table are output between the measurement terminals.

Figure 2016197614
Figure 2016197614

図2〜図7は、各インピーダンスZs,Ze,ZoとしてコンデンサC単体、抵抗R単体、或いはコンデンサCと抵抗Rの組み合わせによる計器用変成器の例を示したもので、これら何れの受動素子の組み合わせにおいても、絶縁監視に影響を及ぼさないような種類のインピーダンスを選定することで、低周波による絶縁監視を正しく行うことができる。図2〜図7におけるコンデンサCと抵抗Rに付された添え字s,e,oは、それぞれ図1に付されたものと同主旨の主、第1、第2を示す。   FIGS. 2 to 7 show examples of instrument transformers using capacitors C alone, resistors R alone, or combinations of capacitors C and resistors R as the respective impedances Zs, Ze, and Zo. Even in the combination, by selecting a kind of impedance that does not affect the insulation monitoring, the insulation monitoring at a low frequency can be performed correctly. The subscripts s, e, and o attached to the capacitor C and the resistor R in FIGS. 2 to 7 indicate main, first, and second, respectively, that are the same as those in FIG.

なお、図2〜図7で示す計器用変成器は、低周波電圧重畳方式以外の通常の交流系統に用いてもよく、また、低周波電圧を重畳しない交流系統では、インピーダンスとしてインダクタンスを含めて構成してもよい。したがって、従来、コンデンサ単体、抵抗単体、或いはコンデンサと抵抗の組み合わせにより主回路各部の電圧を計測しようとする場合、零相電圧用の分圧器と主回路各相の分圧器をそれぞれ別個に構成する必要があったが、本発明においては、相毎に直列接続された主インピーダンスZsと第1の分圧インピーダンスZeに加え、第2のインピーダンスZoも直列に接続した単純構成により、1組の分圧器で主回路各相の対地電圧、零相電圧及び主回路の線間電圧に対応した測定電圧が得られるものである。   The instrument transformer shown in FIGS. 2 to 7 may be used for a normal AC system other than the low-frequency voltage superposition method. In an AC system that does not superimpose the low-frequency voltage, an inductance is included as an impedance. It may be configured. Therefore, conventionally, when the voltage of each part of the main circuit is measured by a single capacitor, a single resistor, or a combination of a capacitor and a resistor, a zero-phase voltage divider and a voltage divider for each phase of the main circuit are configured separately. In the present invention, in addition to the main impedance Zs and the first divided voltage impedance Ze connected in series for each phase, the second impedance Zo is also connected in series by a simple configuration. With the pressure device, a measurement voltage corresponding to the ground voltage of each phase of the main circuit, the zero-phase voltage, and the line voltage of the main circuit can be obtained.

Rs… 主インピーダンス
Re… 第1の分圧インピーダンス
Ro… 第2の分圧インピーダンス
a,b,c,n,g… 測定端子
Va,Vb,Vc… 各相の対地電圧
Rs ... Main impedance Re ... First divided voltage impedance Ro ... Second divided voltage impedance a, b, c, n, g ... Measurement terminals Va, Vb, Vc ... Ground voltage of each phase

Claims (4)

三相交流系統に接続されて各種の電気量を計測する計器用変成器において、
交流各相に主インピーダンスZsと第1の分圧インピーダンスZeを直列に接続し、それぞれの直列接続位置より測定端子を導出すると共に、各第1の分圧インピーダンスZeの他端を三相スター接続し、この接続位置と大地端子間に第2の分圧インピーダンスZoを接続し、前記三相スター接続位置および大地端子と第2の分圧インピーダンスZoの接続位置からそれぞれ測定端子を導出することを特徴とした計器用変成器。
In an instrument transformer that is connected to a three-phase AC system and measures various types of electricity,
The main impedance Zs and the first divided voltage impedance Ze are connected in series to each AC phase, the measurement terminals are derived from the respective series connection positions, and the other end of each first divided voltage impedance Ze is connected in a three-phase star. And connecting a second divided impedance Zo between the connection position and the ground terminal, and deriving measurement terminals from the three-phase star connection position and the connection position of the ground terminal and the second divided impedance Zo, respectively. A characteristic instrument transformer.
前記主インピーダンスZsの値と第1の分圧インピーダンスZeの値および第2の分圧インピーダンスZoの値は、主インピーダンスZsが、第1の分圧インピーダンスZe及び第2の分圧インピーダンスZoに比べて十分に大きな値に選定されることを特徴とした請求項1記載の計器用変成器。 The value of the main impedance Zs, the value of the first voltage dividing impedance Ze, and the value of the second voltage dividing impedance Zo are such that the main impedance Zs is compared with the first voltage dividing impedance Ze and the second voltage dividing impedance Zo. 2. The instrument transformer according to claim 1, wherein a sufficiently large value is selected. 前記主インピーダンスZs、第1の分圧インピーダンスZeおよび第2の分圧インピーダンスZoは、コンデンサ単体、抵抗単体、或いはコンデンサと抵抗の組み合わせの何れかで構成されたことを特徴とした請求項1又は2記載の計器用変成器。 2. The main impedance Zs, the first divided impedance Ze, and the second divided impedance Zo are configured by any one of a capacitor, a resistor, and a combination of a capacitor and a resistor. 2. An instrument transformer according to 2. 前記計器用変成器は、低周波電圧を重畳した三相交流系統に接続されて、各相の対地電圧、零相電圧及び線間電圧に対応した測定電圧の検出ができるよう構成されたことを特徴とした請求項1乃至3の何れか1項に記載の計器用変成器。
The instrument transformer is connected to a three-phase AC system on which a low-frequency voltage is superimposed, and is configured to detect a measurement voltage corresponding to the ground voltage, zero-phase voltage, and line voltage of each phase. The instrument transformer according to any one of claims 1 to 3, wherein the instrument transformer is characterized.
JP2015075714A 2015-04-02 2015-04-02 Instrument transformer Pending JP2016197614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075714A JP2016197614A (en) 2015-04-02 2015-04-02 Instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075714A JP2016197614A (en) 2015-04-02 2015-04-02 Instrument transformer

Publications (1)

Publication Number Publication Date
JP2016197614A true JP2016197614A (en) 2016-11-24

Family

ID=57358519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075714A Pending JP2016197614A (en) 2015-04-02 2015-04-02 Instrument transformer

Country Status (1)

Country Link
JP (1) JP2016197614A (en)

Similar Documents

Publication Publication Date Title
TWI557412B (en) Leakage current calculation device and leakage current calculation method
JP6711844B2 (en) Fault position detection and distance protection device and related method
US20170331279A1 (en) Differential Protection Method And Differential Protection Device For Performing A Differential Protection Method
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP2009058234A (en) Leak current measuring instrument and measuring method
JP7084411B2 (en) Methods and equipment for monitoring the loss factor of condenser bushings
WO2018167909A1 (en) Leakage current detection device, method, and program for detecting leakage current
JP5449895B2 (en) Leakage current measuring device
JP2007071774A (en) Insulation measuring method and apparatus therefor
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
JP6289846B2 (en) Leakage current detection apparatus and method
US20160349310A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
US11364810B2 (en) Monitoring device for leakage currents
JP2010276377A (en) Ground fault detection system for dc circuit
JP2009069065A (en) Device for measuring effective leakage current
JP6621515B1 (en) Ground capacitance measuring apparatus and ground capacitance measuring method
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
RU2666757C1 (en) Differential protection method and differential protection device for transformer
JP2016197614A (en) Instrument transformer
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP2008309681A (en) Insulation deterioration monitoring device and its method
JP6736454B2 (en) Ground voltage detector
LV13922B (en) Method for determination of distance to fault place by phase-to-earth fault in distribution networks
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JP4919592B2 (en) Zero phase voltage detector