JP2016188827A - Temperature measuring device, heater for plating steel plate, pressing device for plating steel plate, method for heating plating steel plate, and method for pressing plating steel plate - Google Patents

Temperature measuring device, heater for plating steel plate, pressing device for plating steel plate, method for heating plating steel plate, and method for pressing plating steel plate Download PDF

Info

Publication number
JP2016188827A
JP2016188827A JP2015069469A JP2015069469A JP2016188827A JP 2016188827 A JP2016188827 A JP 2016188827A JP 2015069469 A JP2015069469 A JP 2015069469A JP 2015069469 A JP2015069469 A JP 2015069469A JP 2016188827 A JP2016188827 A JP 2016188827A
Authority
JP
Japan
Prior art keywords
plated steel
steel sheet
temperature
steel plate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015069469A
Other languages
Japanese (ja)
Other versions
JP6245209B2 (en
Inventor
紘明 大野
Hiroaki Ono
紘明 大野
飯塚 幸理
Yukinori Iizuka
幸理 飯塚
貴彦 大重
Takahiko Oshige
貴彦 大重
達也 中垣内
Tatsuya Nakagaito
達也 中垣内
功一 中川
Koichi Nakagawa
功一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015069469A priority Critical patent/JP6245209B2/en
Publication of JP2016188827A publication Critical patent/JP2016188827A/en
Application granted granted Critical
Publication of JP6245209B2 publication Critical patent/JP6245209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measuring device that can measure the temperature of a plating steel plate while suppressing influence due to variations in the emissivity of the plating steel plate at heating.SOLUTION: A temperature measuring device 4 includes: a reflecting member 6 facing a surface 1a of a plating steel plate 1 and having a reflecting surface 61 reflecting a light emitted from the plating steel plate and an opening 62 in the reflecting surface; and detection means 7 detecting the temperature of the plating steel plate based on the amount of light having entered the opening from the direction of the plating steel plate.SELECTED DRAWING: Figure 2

Description

本発明は、温度計測装置、メッキ鋼板の加熱装置、メッキ鋼板のプレス装置、メッキ鋼板の加熱方法、およびメッキ鋼板のプレス方法に関する。   The present invention relates to a temperature measuring device, a plated steel plate heating device, a plated steel plate pressing device, a plated steel plate heating method, and a plated steel plate pressing method.

近年、自動車の軽量化による燃費向上および安全性能の向上を目的とした薄板鋼板の高強度化に伴い、様々な鋼板加工技術が開発されている。その中の一つとして、高温加熱した鋼板を熱間でプレス加工し同時に焼入れを行うことで加工性に優れた高強度鋼板が得られるホットプレス技術が存在する。高温で成形するには、鋼板を適正温度まで加熱する必要があり、加熱方法として生産性の観点から素早く目標温度まで到達させることが可能である通電加熱方式がよく用いられている。また加熱制御方式として、鋼種・鋼板の大きさ等を限定して予め電流・電圧のパターンを決定し、そのパターンを用いて目標温度まで加熱する方法(特許文献1参照)や、加熱中に鋼板の温度を測定・制御する方法が存在する。後者では、生産性を考慮すると非接触の放射温度計で計測することが望ましい。   2. Description of the Related Art In recent years, various steel plate processing techniques have been developed along with the increase in strength of thin steel plates aimed at improving fuel efficiency and safety performance by reducing the weight of automobiles. As one of them, there is a hot press technology that can obtain a high-strength steel plate excellent in workability by hot-pressing a steel plate heated at high temperature and simultaneously quenching. In order to form at a high temperature, it is necessary to heat the steel plate to an appropriate temperature, and as a heating method, an electric heating method that can quickly reach the target temperature from the viewpoint of productivity is often used. Further, as a heating control method, a method of predetermining a current / voltage pattern by limiting the size of the steel type and the steel plate, and heating to a target temperature using the pattern (see Patent Document 1), or a steel plate during heating There are methods to measure and control the temperature of In the latter case, measurement with a non-contact radiation thermometer is desirable in consideration of productivity.

メッキ鋼板の放射率変動の影響を除外するため、多波長で計測しその関係性を用いることにより温度を計測する手法が存在する(特許文献2参照)。代表的なものとして放射光を2波長で計測し、その光量比を計算し理論曲線を用いて温度と対応させる手法が存在する。   In order to exclude the influence of the emissivity fluctuation of the plated steel sheet, there is a method of measuring temperature by measuring at multiple wavelengths and using the relationship (see Patent Document 2). As a representative method, there is a method of measuring radiated light at two wavelengths, calculating the light quantity ratio, and using a theoretical curve to correspond to the temperature.

特開2011−82006号公報JP 2011-82006 A 特開平5−231945号公報JP-A-5-231945

特許文献1の技術では、鋼種や鋼板の大きさによりその都度電流電圧パターンを実験的に導出せねばならず生産性が低いという問題がある。また、鋼板の形状や大きさのばらつきがそのまま温度誤差となるため、目標温度に対する精度が十分でない場合が多いといった問題もある。   The technique of Patent Document 1 has a problem that the current voltage pattern must be experimentally derived each time depending on the steel type and the size of the steel plate, resulting in low productivity. In addition, since the variation in shape and size of the steel sheet becomes a temperature error as it is, there is a problem that the accuracy with respect to the target temperature is often insufficient.

特許文献2の技術では、特許文献1と異なり加熱中に測温・制御を行う。ところで、ホットプレス技術に用いられる鋼板には焼き入れ時の表面酸化防止や耐食性の改善を目的として表面処理が施されていることが多く、成形時に高温加熱する際に温度変化に伴う表面性状の変化により放射率変動が発生する。このため、実際に放射温度計で計測を試みると表面メッキの溶融などにより2波長間の放射率の比が変化することが多く、測定値に大きな誤差が生じる。加熱時にメッキ鋼板の放射率が変動したとしても、その放射率の変動による影響を抑制しつつメッキ鋼板の温度を精度よく計測できることが望ましい。   In the technique of Patent Document 2, unlike Patent Document 1, temperature measurement and control are performed during heating. By the way, steel sheets used in hot press technology are often subjected to surface treatment for the purpose of preventing surface oxidation during quenching and improving corrosion resistance. The change causes emissivity fluctuation. For this reason, when an attempt is actually made to measure with a radiation thermometer, the ratio of the emissivity between the two wavelengths often changes due to melting of the surface plating, and a large error occurs in the measured value. Even if the emissivity of the plated steel sheet fluctuates during heating, it is desirable that the temperature of the plated steel sheet can be accurately measured while suppressing the influence of the fluctuation of the emissivity.

本発明の目的は、加熱時におけるメッキ鋼板の放射率の変動による影響を抑制しつつメッキ鋼板の温度を計測することができる温度計測装置、メッキ鋼板の加熱装置、メッキ鋼板のプレス装置、メッキ鋼板の加熱方法、およびメッキ鋼板のプレス方法を提供することである。   An object of the present invention is to provide a temperature measuring device capable of measuring the temperature of a plated steel plate while suppressing the influence of fluctuations in the emissivity of the plated steel plate during heating, a heating device for the plated steel plate, a press device for the plated steel plate, and a plated steel plate. And a method of pressing a plated steel sheet.

本発明の温度計測装置は、メッキ鋼板の表面に対向して配置され、前記メッキ鋼板から放射される光を反射する反射面と、前記反射面に形成された開口部とを有する反射部材と、前記メッキ鋼板側から前記開口部に入射する光の光量に基づいて前記メッキ鋼板の温度を検出する検出手段と、を備えることを特徴とする。   The temperature measuring device of the present invention is disposed opposite to the surface of the plated steel plate, has a reflective surface that reflects light emitted from the plated steel plate, and a reflective member having an opening formed in the reflective surface; Detecting means for detecting the temperature of the plated steel sheet based on the amount of light incident on the opening from the plated steel sheet side.

上記温度計測装置において、前記反射面の形状が凹形状であることが好ましい。   In the temperature measuring device, it is preferable that the shape of the reflecting surface is a concave shape.

上記温度計測装置において、前記メッキ鋼板の放射率が温度変化に応じてε11以上ε12以下の範囲で変動する場合において、前記メッキ鋼板の表面における前記反射面の正射影の面積S、前記反射面の外縁と前記正射影の外縁とを接続する面の面積と前記開口部の面積との合計面積S、前記反射面の面積S、および前記反射面の反射率rが[数1]および[数2]を満たすことにより前記メッキ鋼板の見かけの放射率をε 以上かつε 以下として温度計測することが好ましい。

Figure 2016188827
Figure 2016188827
In the temperature measuring device, when the emissivity of the plated steel sheet varies in a range of ε 11 or more and ε 12 or less according to a temperature change, the area S 1 of the orthogonal projection of the reflecting surface on the surface of the plated steel sheet, The total area S 3 of the area connecting the outer edge of the reflecting surface and the outer edge of the orthographic projection and the area of the opening, the area S 2 of the reflecting surface, and the reflectance r 2 of the reflecting surface is [several It is preferable to measure the temperature by satisfying [1] and [Equation 2] so that the apparent emissivity of the plated steel sheet is ε 1 * or more and ε 2 * or less.
Figure 2016188827
Figure 2016188827

上記温度計測装置において、更に、前記反射部材を前記表面と平行な方向に前記メッキ鋼板に対して相対移動させる移動手段を備え、前記移動手段によって前記反射部材を移動させながら前記メッキ鋼板の温度を検出することが好ましい。   The temperature measuring device further includes a moving means for moving the reflecting member relative to the plated steel sheet in a direction parallel to the surface, and the temperature of the plated steel sheet is adjusted while moving the reflecting member by the moving means. It is preferable to detect.

上記温度計測装置において、前記移動手段は、温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限速度以上の移動速度で前記反射部材を移動させることが好ましい。   In the temperature measuring apparatus, it is preferable that the moving unit moves the reflecting member at a moving speed equal to or higher than a lower limit speed determined from a temperature detection tolerance and a heat removal amount of the plated steel sheet.

本発明のメッキ鋼板の加熱装置は、上記温度計測装置と、前記メッキ鋼板を加熱する加熱装置と、を備え、前記温度計測装置によって検出された温度に基づいて前記メッキ鋼板を所定温度まで加熱することを特徴とする。   A device for heating a plated steel sheet according to the present invention includes the above temperature measuring device and a heating device for heating the plated steel plate, and heats the plated steel plate to a predetermined temperature based on a temperature detected by the temperature measuring device. It is characterized by that.

上記メッキ鋼板の加熱装置において、温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限値以上の温度上昇率で前記加熱装置によって前記メッキ鋼板を加熱することが好ましい。   In the heating apparatus for the plated steel sheet, it is preferable that the plated steel sheet is heated by the heating apparatus at a temperature increase rate equal to or higher than a lower limit value determined from a temperature detection tolerance and a heat removal amount of the plated steel sheet.

本発明のメッキ鋼板のプレス装置は、上記メッキ鋼板の加熱装置と、前記メッキ鋼板の加熱装置によって前記所定温度まで加熱された前記メッキ鋼板をプレス加工するプレス加工手段と、を備えることを特徴とする。   The plated steel sheet pressing apparatus of the present invention comprises the above-described plated steel sheet heating apparatus, and press working means for pressing the plated steel sheet heated to the predetermined temperature by the plated steel sheet heating apparatus. To do.

本発明のメッキ鋼板の加熱方法は、メッキ鋼板から放射される光を反射し、かつ開口部を有する反射面を前記メッキ鋼板の表面と対向させて、前記メッキ鋼板側から前記開口部に入射する光の光量に基づいて前記メッキ鋼板の温度を検出する検出工程と、前記検出工程において検出された温度に基づいて、前記メッキ鋼板を所定温度まで加熱する加熱工程と、を含むことを特徴とする。   The method for heating a plated steel sheet according to the present invention reflects light radiated from the plated steel sheet and makes the reflecting surface having an opening face the surface of the plated steel sheet and enters the opening from the plated steel sheet side. A detection step of detecting the temperature of the plated steel plate based on the amount of light; and a heating step of heating the plated steel plate to a predetermined temperature based on the temperature detected in the detection step. .

本発明のメッキ鋼板の加熱方法において、前記検出工程において、前記反射面を前記表面と平行な方向に前記メッキ鋼板に対して相対移動させながら温度を検出することが好ましい。   In the method for heating a plated steel sheet according to the present invention, it is preferable that in the detection step, the temperature is detected while the reflecting surface is moved relative to the plated steel sheet in a direction parallel to the surface.

本発明のメッキ鋼板の加熱方法において、前記検出工程において、温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限速度以上の移動速度で前記反射面を移動させることが好ましい。   In the method for heating a plated steel sheet according to the present invention, it is preferable that in the detection step, the reflecting surface is moved at a moving speed equal to or higher than a lower limit speed determined from an error in temperature detection and a heat removal amount of the plated steel sheet.

本発明のメッキ鋼板の加熱方法において、前記加熱工程において、温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限値以上の温度上昇率で前記メッキ鋼板を加熱することが好ましい。   In the method for heating a plated steel sheet according to the present invention, in the heating step, the plated steel sheet is preferably heated at a temperature increase rate equal to or higher than a lower limit value determined from a temperature detection tolerance and a heat removal amount of the plated steel sheet.

本発明のメッキ鋼板のプレス方法は、上記メッキ鋼板の加熱方法と、前記検出工程で検出された温度が前記所定温度に達した後に前記メッキ鋼板をプレス加工するプレス工程と、を含むことを特徴とする。   The method for pressing a plated steel sheet according to the present invention includes the method for heating the plated steel sheet, and a pressing process for pressing the plated steel sheet after the temperature detected in the detection step reaches the predetermined temperature. And

本発明に係る温度計測装置は、メッキ鋼板の表面に対向して配置され、メッキ鋼板から放射される光を反射する反射面と、反射面に形成された開口部とを有する反射部材と、メッキ鋼板側から開口部に入射する光の光量に基づいてメッキ鋼板の温度を検出する検出手段と、を備える。メッキ鋼板の表面に対向して反射面が配置されることで、メッキ鋼板の表面と反射面との間で放射光の多重反射が生じて見かけの放射率が増加する。これにより、加熱時にメッキ鋼板の実際の放射率が変化した場合に、実際の放射率の変化度合いに対して、見かけの放射率の変化度合いが小さくなる。よって、本発明に係る温度計測装置によれば、加熱時におけるメッキ鋼板の放射率の変動による影響を抑制しつつメッキ鋼板の温度を計測できるという効果を奏する。   A temperature measuring device according to the present invention is disposed so as to face a surface of a plated steel plate, has a reflective surface that reflects light emitted from the plated steel plate, and an opening formed in the reflective surface, and plating. Detecting means for detecting the temperature of the plated steel sheet based on the amount of light incident on the opening from the steel sheet side. By disposing the reflective surface opposite to the surface of the plated steel plate, multiple reflection of the emitted light occurs between the surface of the plated steel plate and the reflective surface, and the apparent emissivity increases. Thereby, when the actual emissivity of the plated steel sheet changes during heating, the apparent emissivity change degree becomes smaller than the actual emissivity change degree. Therefore, according to the temperature measuring device concerning the present invention, there is an effect that the temperature of the plated steel sheet can be measured while suppressing the influence due to the change in the emissivity of the plated steel sheet during heating.

図1は、実施形態に係るメッキ鋼板のプレス装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a plated steel plate pressing apparatus according to an embodiment. 図2は、実施形態に係る温度計測装置を示す図である。FIG. 2 is a diagram illustrating a temperature measurement device according to the embodiment. 図3は、実施形態に係る反射部材およびメッキ鋼板の斜視図である。FIG. 3 is a perspective view of the reflecting member and the plated steel plate according to the embodiment. 図4は、リフトオフ距離と見かけの放射率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the lift-off distance and the apparent emissivity. 図5は、リフトオフ距離が0mmである場合の見かけの放射率を示す図である。FIG. 5 is a diagram showing the apparent emissivity when the lift-off distance is 0 mm. 図6は、リフトオフ距離が1mmである場合の見かけの放射率を示す図である。FIG. 6 is a diagram showing the apparent emissivity when the lift-off distance is 1 mm. 図7は、リフトオフ距離が2mmである場合の見かけの放射率を示す図である。FIG. 7 is a diagram showing the apparent emissivity when the lift-off distance is 2 mm. 図8は、リフトオフ距離が3mmである場合の見かけの放射率を示す図である。FIG. 8 is a diagram showing the apparent emissivity when the lift-off distance is 3 mm. 図9は、反射面の反射率が0.99である場合の見かけの放射率を示す図である。FIG. 9 is a diagram showing the apparent emissivity when the reflectivity of the reflecting surface is 0.99. 図10は、反射面の反射率が0.98である場合の見かけの放射率を示す図である。FIG. 10 is a diagram showing the apparent emissivity when the reflectance of the reflecting surface is 0.98. 図11は、反射面の反射率が0.95である場合の見かけの放射率を示す図である。FIG. 11 is a diagram showing the apparent emissivity when the reflectivity of the reflecting surface is 0.95. 図12は、反射面の反射率が0.90である場合の見かけの放射率を示す図である。FIG. 12 is a diagram illustrating the apparent emissivity when the reflectivity of the reflecting surface is 0.90. 図13は、従来の放射温度計における検出値の変動を説明する図である。FIG. 13 is a diagram for explaining fluctuations in detection values in a conventional radiation thermometer. 図14は、本実施形態の温度計測装置における検出値の変動を説明する図である。FIG. 14 is a diagram for explaining fluctuations in the detection value in the temperature measurement device of the present embodiment. 図15は、温度計測装置の配置の一例を示す図である。FIG. 15 is a diagram illustrating an example of the arrangement of the temperature measurement devices. 図16は、実施形態の変形例に係るメッキ鋼板の加熱装置を示す図である。FIG. 16 is a diagram illustrating a heating apparatus for a plated steel plate according to a modification of the embodiment.

以下に、本発明の実施形態に係る温度計測装置、メッキ鋼板の加熱装置、メッキ鋼板のプレス装置、メッキ鋼板の加熱方法、およびメッキ鋼板のプレス方法につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。   Hereinafter, a temperature measuring device, a plated steel plate heating device, a plated steel plate pressing device, a plated steel plate heating method, and a plated steel plate pressing method according to embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

[実施形態]
図1から図15を参照して、実施形態について説明する。本実施形態は、温度計測装置、メッキ鋼板の加熱装置、メッキ鋼板のプレス装置、メッキ鋼板の加熱方法、およびメッキ鋼板のプレス方法に関する。図1は、本発明の実施形態に係るメッキ鋼板のプレス装置の概略構成図、図2は、実施形態に係る温度計測装置を示す図である。
[Embodiment]
The embodiment will be described with reference to FIGS. 1 to 15. The present embodiment relates to a temperature measuring device, a plated steel plate heating device, a plated steel plate pressing device, a plated steel plate heating method, and a plated steel plate pressing method. FIG. 1 is a schematic configuration diagram of a plated steel plate pressing device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating a temperature measuring device according to the embodiment.

図1に示す本実施形態に係るメッキ鋼板のプレス装置100は、メッキ鋼板1をプレス加工する。加工対象のメッキ鋼板1は、例えば、亜鉛メッキ鋼板である。メッキ鋼板のプレス装置100は、メッキ鋼板の加熱装置2と、メッキ鋼板1をプレス加工するプレス加工手段3とを有する。   A plated steel plate pressing apparatus 100 according to this embodiment shown in FIG. 1 presses a plated steel plate 1. The plated steel plate 1 to be processed is, for example, a galvanized steel plate. The plated steel plate pressing device 100 includes a plated steel plate heating device 2 and press working means 3 for pressing the plated steel plate 1.

メッキ鋼板の加熱装置2は、後述する温度計測装置4によって検出された温度に基づいてメッキ鋼板1を所定温度まで加熱する。プレス加工手段3は、メッキ鋼板の加熱装置2によって所定温度まで加熱されたメッキ鋼板1をプレス加工する。メッキ鋼板の加熱装置2によって加熱されたメッキ鋼板1は、ロボットアーム等の搬送手段によってプレス加工手段3に搬送される。本実施形態のプレス加工手段3は、パンチ31とダイ32とを有する。プレス加工手段3は、パンチ31およびダイ32によってメッキ鋼板1を押圧して所定の形状に成形する。   The plated steel sheet heating device 2 heats the plated steel sheet 1 to a predetermined temperature based on a temperature detected by a temperature measuring device 4 described later. The press working means 3 presses the plated steel sheet 1 heated to a predetermined temperature by the plated steel heating device 2. The plated steel sheet 1 heated by the plated steel plate heating device 2 is conveyed to the press working means 3 by a conveying means such as a robot arm. The press working means 3 of this embodiment has a punch 31 and a die 32. The press working means 3 presses the plated steel sheet 1 with the punch 31 and the die 32 to form a predetermined shape.

メッキ鋼板の加熱装置2は、温度計測装置4と、加熱装置5とを有する。図2に示すように、温度計測装置4は、反射部材6と、検出手段7とを有する。反射部材6は、メッキ鋼板1に対向して配置され、かつメッキ鋼板1から放射される光を反射する反射面61と、反射面61に形成された開口部62とを有する。本実施形態の反射部材6の反射面61は、形状が凹形状である。より具体的に説明すると、本実施形態の反射部材6は、中空円筒形状の円筒部6aと、中空半球形状の球形部6bを有する。球形部6bは、円筒部6aの一端を閉塞するように接続されている。反射面61は、円筒部6aの内面である第一反射面61aと、球形部6bの内面である第二反射面61bを含んでいる。第二反射面61bは、円筒部6aから遠ざかるに従って断面半径rが小さくなる湾曲形状となっている。本実施形態では、反射部材6はメッキ鋼板1の上側に配置されている。これにより、加熱の際にメッキ鋼板1の表面のスケールが剥落したとしても、反射面61に付着することが抑制される。ただし、反射部材6は、メッキ鋼板1の下側に配置されてもよい。   The plated steel plate heating device 2 includes a temperature measuring device 4 and a heating device 5. As shown in FIG. 2, the temperature measuring device 4 includes a reflecting member 6 and a detection means 7. The reflecting member 6 is disposed to face the plated steel plate 1 and has a reflecting surface 61 that reflects light emitted from the plated steel plate 1 and an opening 62 formed in the reflecting surface 61. The reflecting surface 61 of the reflecting member 6 of the present embodiment has a concave shape. More specifically, the reflecting member 6 of the present embodiment has a hollow cylindrical part 6a and a hollow hemispherical spherical part 6b. The spherical portion 6b is connected so as to close one end of the cylindrical portion 6a. The reflection surface 61 includes a first reflection surface 61a that is an inner surface of the cylindrical portion 6a and a second reflection surface 61b that is an inner surface of the spherical portion 6b. The second reflecting surface 61b has a curved shape in which the cross-sectional radius r decreases as the distance from the cylindrical portion 6a increases. In the present embodiment, the reflecting member 6 is disposed on the upper side of the plated steel plate 1. Thereby, even if the scale of the surface of the plated steel sheet 1 is peeled off during heating, the adhesion to the reflecting surface 61 is suppressed. However, the reflecting member 6 may be disposed below the plated steel plate 1.

反射面61には、開口部62が形成されている。本実施形態の反射部材6では、第二反射面61bに開口部62が形成されている。開口部62は、球形部6bの頂部に、かつ反射部材6の中心軸線と同軸上に形成されている。開口部62は、メッキ鋼板1から放射された放射光が射出する射出孔であり、放射光を検出する検出孔でもある。   An opening 62 is formed in the reflection surface 61. In the reflecting member 6 of the present embodiment, an opening 62 is formed in the second reflecting surface 61b. The opening 62 is formed at the top of the spherical portion 6 b and coaxially with the central axis of the reflecting member 6. The opening 62 is an emission hole through which the radiated light emitted from the plated steel plate 1 is emitted, and is also a detection hole for detecting the radiated light.

検出手段7は、メッキ鋼板1側(反射部材6の内部空間)から開口部62に入射する光の光量に基づいてメッキ鋼板1の温度を検出する。検出手段7は、レンズ71と、光ファイバー72と、ディテクタ73とを有する。レンズ71は、開口部62に配置されている。反射部材6の内部空間から開口部62に入射する光は、レンズ71によって光ファイバー72に集光される。光ファイバー72は、導光部材であり、レンズ71側から入射する光を制御装置8のディテクタ73に導く。ディテクタ73は、光ファイバー72によって伝送された光の強さ(光量)を検出する。   The detection means 7 detects the temperature of the plated steel sheet 1 based on the amount of light incident on the opening 62 from the plated steel sheet 1 side (internal space of the reflecting member 6). The detection means 7 includes a lens 71, an optical fiber 72, and a detector 73. The lens 71 is disposed in the opening 62. Light incident on the opening 62 from the internal space of the reflecting member 6 is collected on the optical fiber 72 by the lens 71. The optical fiber 72 is a light guide member, and guides light incident from the lens 71 side to the detector 73 of the control device 8. The detector 73 detects the intensity (light quantity) of the light transmitted by the optical fiber 72.

制御装置8は、制御部81およびディテクタ73を有しており、メッキ鋼板1の温度を検出する検出手段7としての機能を有する。また、制御装置8は、加熱装置5の加熱速度を調節する制御手段としての機能を有している。加熱装置5は、電極51a,51bと、電源52と、制御部81とを有する。加熱装置5は、電極51a,51b間に電圧をかけ、メッキ鋼板1に大電流を流すことによりメッキ鋼板1の温度を上昇させる。図1に示すように、第一電極51aは、メッキ鋼板1の幅方向(または長手方向)の一端に配置され、第二電極51bは、メッキ鋼板1の幅方向(または長手方向)の他端に配置される。第一電極51aおよび第二電極51bは、メッキ鋼板1を厚さ方向の両側から挟み込む。電極51a,51bは、電源52と接続されている。   The control device 8 includes a control unit 81 and a detector 73, and has a function as detection means 7 that detects the temperature of the plated steel sheet 1. Further, the control device 8 has a function as control means for adjusting the heating rate of the heating device 5. The heating device 5 includes electrodes 51a and 51b, a power source 52, and a control unit 81. The heating device 5 increases the temperature of the plated steel sheet 1 by applying a voltage between the electrodes 51 a and 51 b and causing a large current to flow through the plated steel sheet 1. As shown in FIG. 1, the first electrode 51 a is disposed at one end in the width direction (or longitudinal direction) of the plated steel plate 1, and the second electrode 51 b is the other end in the width direction (or longitudinal direction) of the plated steel plate 1. Placed in. The first electrode 51a and the second electrode 51b sandwich the plated steel sheet 1 from both sides in the thickness direction. The electrodes 51a and 51b are connected to a power source 52.

電源52は、第一電極51aと第二電極51bとの間の電圧値を調節可能である。電源52による印可電圧は、制御部81によって制御される。制御部81は、予め定められた加熱速度でメッキ鋼板1の温度を上昇させるように、電源52の印可電圧を調節する。制御部81は、温度計測装置4によって検出された温度に基づいて、検出温度の上昇率が目標とする温度上昇率となるように、印可電圧を調節する。また、制御部81は、温度計測装置4によって検出された温度が所定温度となるまでメッキ鋼板1を加熱する。所定温度は、プレス加工手段3による加工内容に応じて予め定められている。本実施形態の加熱装置5は、例えば、メッキ鋼板1を900[℃]まで加熱する。   The power source 52 can adjust the voltage value between the first electrode 51a and the second electrode 51b. The applied voltage by the power source 52 is controlled by the control unit 81. The controller 81 adjusts the applied voltage of the power source 52 so as to increase the temperature of the plated steel sheet 1 at a predetermined heating rate. The control unit 81 adjusts the applied voltage based on the temperature detected by the temperature measuring device 4 so that the rate of increase of the detected temperature becomes the target rate of temperature increase. Moreover, the control part 81 heats the plated steel plate 1 until the temperature detected by the temperature measuring device 4 reaches a predetermined temperature. The predetermined temperature is determined in advance according to the processing content by the press processing means 3. The heating device 5 of this embodiment heats the plated steel plate 1 to 900 [° C.], for example.

温度計測装置4は、所謂放射温度計であり、メッキ鋼板1から放射される放射光に基づいてメッキ鋼板1の温度を検出する。本実施形態の温度計測装置4の構成および温度検出の方法について説明する。図2に示すように、反射部材6は、反射面61をメッキ鋼板1の表面1aと対向させた状態で配置される。反射部材6は、反射部材6の中心軸線がメッキ鋼板1の表面1aと直交するようにして配置される。また、反射部材6は、円筒部6aの先端6cをメッキ鋼板1の表面1aから所定距離L1だけ離間させて配置される。本明細書では、この所定距離L1を「リフトオフ距離」と称する。   The temperature measuring device 4 is a so-called radiation thermometer, and detects the temperature of the plated steel sheet 1 based on the radiated light emitted from the plated steel sheet 1. The configuration of the temperature measurement device 4 and the temperature detection method of this embodiment will be described. As shown in FIG. 2, the reflecting member 6 is arranged with the reflecting surface 61 facing the surface 1 a of the plated steel plate 1. The reflecting member 6 is arranged so that the central axis of the reflecting member 6 is orthogonal to the surface 1 a of the plated steel plate 1. Further, the reflecting member 6 is disposed with the tip 6c of the cylindrical portion 6a spaced from the surface 1a of the plated steel plate 1 by a predetermined distance L1. In the present specification, the predetermined distance L1 is referred to as a “lift-off distance”.

本実施形態の温度計測装置4は、メッキ鋼板1を加熱する際にメッキ鋼板1から放射される光をメッキ鋼板1の表面1aと反射面61との間で多重反射させる。多重反射によって、メッキ鋼板1の見かけの放射率が増加する。これにより、以下に説明するように、加熱によってメッキ鋼板1の表面性状が変化し、真の放射率が変化したとしても、真の放射率の変化度合いに対して見かけの放射率の変化度合いが小さくなる。よって、本実施形態の温度計測装置4は、加熱時のメッキ鋼板1の温度を精度よく検出することができる。   The temperature measuring device 4 of the present embodiment multi-reflects light emitted from the plated steel plate 1 between the surface 1 a of the plated steel plate 1 and the reflecting surface 61 when the plated steel plate 1 is heated. The apparent emissivity of the plated steel sheet 1 increases due to the multiple reflection. Thereby, as will be described below, even if the surface properties of the plated steel sheet 1 are changed by heating and the true emissivity changes, the apparent emissivity change degree is relative to the true emissivity change degree. Get smaller. Therefore, the temperature measuring device 4 of the present embodiment can accurately detect the temperature of the plated steel sheet 1 during heating.

図3を参照して、見かけの放射率εについて説明する。図3には、温度計測時の反射部材6およびメッキ鋼板1の斜視図が示されている。放射光が多重反射する場合の反射光量は、面積S,S,Sによって表すことができる。ここで、面積Sは、メッキ鋼板1の表面1aにおける反射部材6の正射影1bの面積である。また、面積Sは、反射面61の面積である。開口面積Sは、図3に示す反射部材6とメッキ鋼板1との隙間の面積S31と、開口部62の面積S32との和である。隙間の面積S31は、反射部材6の円筒部6aをメッキ鋼板1に向けて延長した仮想壁部の内周面9の面積である。つまり、隙間の面積S31は、反射面61の外縁61cと正射影1bの外縁1cとを接続する面(正射影1bが曲線である場合には曲面)の面積である。隙間の面積S31は、反射面61の外縁61cの周長(正射影1bの周長)にリフトオフ距離L1を乗じた面積である。 The apparent emissivity ε * will be described with reference to FIG. FIG. 3 shows a perspective view of the reflecting member 6 and the plated steel sheet 1 during temperature measurement. The amount of reflected light when the emitted light is multiple-reflected can be represented by the areas S 1 , S 2 , S 3 . Here, the area S 1 is an area of the orthogonal projection 1 b of the reflecting member 6 on the surface 1 a of the plated steel plate 1. The area S 2 is the area of the reflecting surface 61. The opening area S 3 is the sum of the area S 31 of the gap between the reflecting member 6 and the plated steel plate 1 and the area S 32 of the opening 62 shown in FIG. The area S 31 of the gap is an area of the inner peripheral surface 9 of the virtual wall portion obtained by extending the cylindrical portion 6 a of the reflecting member 6 toward the plated steel plate 1. In other words, the area S 31 of the gap is the area of the surface connecting the outer edge 1c of the outer edge 61c and orthogonal projection 1b of the reflecting surface 61 (curved surface when orthogonal projection 1b is a curve). Area S 31 of the gap is the area multiplied by the lift-off distance L1 in the circumferential length (circumferential length of the orthogonal projection 1b) of the outer edge 61c of the reflecting surface 61.

反射モデルを簡素化するために、メッキ鋼板1の表面1aにおいて反射される反射光のうち、S/(S+S)が反射部材6の反射面61に向けて進み、残りのS/(S+S)が反射部材6の外部空間に向けて進むものとする。なお、開口部62を通って外部空間に向かう光は、検出手段7によって検出される。また、反射面61によって反射される反射光のうち、S/(S+S)が正射影1bに向けて進み、S/(S+S)が外部空間に向けて進むものとする。なお、反射面61において反射した光の一部は反射面61の別部分に向けて進むが、その量が無視できるほどわずかとなるように反射面61の形状が決められている。また、一度外部空間に出た光が、正射影1bや反射面61に戻ってくることはないものとする。 In order to simplify the reflection model, S 2 / (S 2 + S 3 ) of the reflected light reflected on the surface 1 a of the plated steel sheet 1 proceeds toward the reflecting surface 61 of the reflecting member 6, and the remaining S 3 It is assumed that / (S 2 + S 3 ) proceeds toward the external space of the reflecting member 6. Note that the light that travels through the opening 62 toward the external space is detected by the detection means 7. Further, of the reflected light reflected by the reflecting surface 61, S 1 / (S 1 + S 3 ) travels toward the orthogonal projection 1b, and S 3 / (S 1 + S 3 ) travels toward the external space. A part of the light reflected by the reflecting surface 61 travels toward another portion of the reflecting surface 61, but the shape of the reflecting surface 61 is determined so that the amount thereof is negligible. In addition, it is assumed that the light once emitted to the external space does not return to the orthographic projection 1b or the reflecting surface 61.

メッキ鋼板1から放射され、多重反射のn回目に表面1aにおいて反射される光の反射光量をInとする。n回目の反射光量Inは、下記[数3]によって算出される。ここで、T:メッキ鋼板1の表面1aの温度、Tb(T):温度Tにおける黒体放射エネルギー、ε:メッキ鋼板1の表面1aの放射率、r:メッキ鋼板1の表面1aの反射率、r:反射面61の反射率である。なお、メッキ鋼板1の表面温度Tは、反射部材6の内部空間の温度よりも十分に高く、反射部材6から放射される光の量は無視できるものとする。

Figure 2016188827
The reflected light quantity of light radiated from the plated steel sheet 1 and reflected on the surface 1a at the nth multiple reflection is assumed to be In. The nth reflected light amount In is calculated by the following [Equation 3]. Here, T: temperature of the surface 1a of the plated steel sheet 1, Tb (T): black body radiation energy at the temperature T, ε 1 : emissivity of the surface 1a of the plated steel sheet 1, r 1 : surface 1a of the plated steel sheet 1 Reflectance, r 2 : Reflectance of the reflecting surface 61. Note that the surface temperature T of the plated steel plate 1 is sufficiently higher than the temperature of the internal space of the reflecting member 6, and the amount of light emitted from the reflecting member 6 is negligible.
Figure 2016188827

メッキ鋼板1側から開口部62に入射し、検出手段7によって検出される光のエネルギーEは、多重反射の無限級数和として、下記[数4]で表される。

Figure 2016188827
The energy E of light incident on the opening 62 from the plated steel sheet 1 side and detected by the detection means 7 is expressed by the following [Equation 4] as an infinite series sum of multiple reflections.
Figure 2016188827

また、キルヒホッフの法則から、下記式(1)が成立する。従って、光ファイバー72から得られる光量における見かけの放射率εは、下記[数5]で表される。
= 1−ε…(1)

Figure 2016188827
Further, from Kirchhoff's law, the following formula (1) is established. Therefore, the apparent emissivity ε * in the amount of light obtained from the optical fiber 72 is expressed by the following [Equation 5].
r 1 = 1−ε 1 (1)
Figure 2016188827

図4には、見かけの放射率εのシミュレーション結果と実測値が示されている。図4において、横軸はリフトオフ距離L1、縦軸は見かけの放射率εを示す。なお、反射面61の反射率r=0.89、メッキ鋼板1の表面1aの放射率ε=0.4である。反射部材6の球形部6bは内径が25[mm]の半球形であり、開口部62は半径4[mm]の円形であるとする。図4において、曲線は上記[数5]によって算出された見かけの放射率εであり、点プロットは実測により求めた放射率である。実測値は、熱電対によって計測したメッキ鋼板1の表面温度と、反射部材6を設置した状態で放射温度計によって検出した光量から求めた見かけの放射率の値である。なお、放射温度計の検出対象の波長は900[nm]である。図4に示すように、シミュレーションと実測値がよく一致している。 FIG. 4 shows a simulation result and an actual measurement value of the apparent emissivity ε * . In FIG. 4, the horizontal axis represents the lift-off distance L1, and the vertical axis represents the apparent emissivity ε * . The reflectance r 2 of the reflecting surface 61 is 0.89 and the emissivity ε 1 of the surface 1a of the plated steel sheet 1 is 0.4. The spherical portion 6b of the reflecting member 6 is a hemispherical shape having an inner diameter of 25 [mm], and the opening 62 is a circular shape having a radius of 4 [mm]. In FIG. 4, the curve is the apparent emissivity ε * calculated by the above [Equation 5], and the point plot is the emissivity obtained by actual measurement. The actual measurement value is an apparent emissivity value obtained from the surface temperature of the plated steel sheet 1 measured by a thermocouple and the amount of light detected by the radiation thermometer with the reflection member 6 installed. The detection target wavelength of the radiation thermometer is 900 [nm]. As shown in FIG. 4, the simulation and the actual measurement values are in good agreement.

図4に示すように、本実施形態の温度計測装置4によれば、見かけの放射率εの値がメッキ鋼板1の表面1aの放射率ε(=0.4)よりも大きな値となる。また、見かけの放射率εは、リフトオフ距離L1に応じて変化する。リフトオフ距離L1が大きくなるに従って、見かけの放射率εが大きな値となる。 As shown in FIG. 4, according to the temperature measuring device 4 of the present embodiment, the value of the apparent emissivity ε * is larger than the emissivity ε 1 (= 0.4) of the surface 1a of the plated steel plate 1. Become. The apparent emissivity ε * changes according to the lift-off distance L1. As the lift-off distance L1 increases, the apparent emissivity ε * increases.

図5乃至図8を参照して説明するように、リフトオフ距離L1が小さくなるに従って放射率εが変化した場合の検出誤差を小さくすることができる。図5乃至図8において、横軸はメッキ鋼板1の表面1aの放射率εを示し、縦軸は見かけの放射率εを示す。図5から図8の順で、リフトオフ距離L1が大きくなる。具体的には、リフトオフ距離L1は、図5で0[mm]、図6で1[mm]、図7で2[mm]、図8で3[mm]である。なお、図5乃至図8に示すシミュレーションにおいて、反射面61の反射率rは0.99である。各図において、放射率εと見かけの放射率εとの関係を示す曲線は、上に凸(見かけの放射率ε>実際の放射率ε)となっている。また、リフトオフ距離L1が大きくなるに従って見かけの放射率εの実際の放射率εに対する倍率(ε/ε)が大きくなる。 5 to as described with reference to FIG. 8, it is possible to reduce the detection error when the emissivity epsilon 1 is changed in accordance with lift-off distance L1 decreases. In FIGS. 5 through 8, the horizontal axis represents the emissivity epsilon 1 of the surface 1a of the plated steel plate 1, the vertical axis represents the emissivity of the apparent epsilon *. The lift-off distance L1 increases in the order from FIG. 5 to FIG. Specifically, the lift-off distance L1 is 0 [mm] in FIG. 5, 1 [mm] in FIG. 6, 2 [mm] in FIG. 7, and 3 [mm] in FIG. In the simulation shown in FIGS. 5 to 8, the reflectance r 2 of the reflecting surface 61 is 0.99. In each figure, the curve showing the relationship between the emissivity ε 1 and the apparent emissivity ε * is convex upward (apparent emissivity ε * > actual emissivity ε 1 ). Further, as the lift-off distance L1 increases, the magnification (ε * / ε 1 ) of the apparent emissivity ε * with respect to the actual emissivity ε 1 increases.

図7に示すリフトオフ距離L1=2[mm]の場合、メッキ鋼板1の放射率εが0.5である場合に、見かけの放射率εが0.81となる。従って、0.5以上の放射率εの範囲では、見かけの放射率εの値が0.81以上の範囲で推移する。仮に、メッキ鋼板1の温度上昇によってメッキ鋼板1の放射率εが1.0から0.5に半減したとする。この場合に、従来の放射温度計では、検出光量が半減することになる。これに対して、本実施形態の温度計測装置4では、見かけの放射率εが1.0から0.81に低下するだけであり、従来と比較して温度の計測誤差が低減する。また、図5に示すリフトオフ距離L1=0の場合であれば、実際の放射率εが0.5である場合の見かけの放射率εが0.95である。このように、リフトオフ距離L1を小さくするに従って、実際の放射率εの変化が見かけの放射率εに与える影響を小さくし、温度の計測誤差を低減することができる。 In the case of the lift-off distance L1 = 2 [mm] shown in FIG. 7, when the emissivity ε1 of the plated steel sheet 1 is 0.5, the apparent emissivity ε * is 0.81. Therefore, in the range of emissivity ε 1 of 0.5 or more, the apparent emissivity ε * value changes in the range of 0.81 or more. Suppose that the emissivity ε 1 of the plated steel sheet 1 is halved from 1.0 to 0.5 due to the temperature rise of the plated steel sheet 1. In this case, in the conventional radiation thermometer, the detected light quantity is halved. On the other hand, in the temperature measurement device 4 of the present embodiment, the apparent emissivity ε * is only lowered from 1.0 to 0.81, and the temperature measurement error is reduced as compared with the conventional case. Further, in the case of the lift-off distance L1 = 0 shown in FIG. 5, a emissivity epsilon * 0.95 of apparent when the actual emissivity epsilon 1 is 0.5. Thus, in accordance with to reduce the lift-off distance L1, to reduce the effect on the actual emissivity of the changes in emissivity epsilon 1 apparently epsilon *, it is possible to reduce the measurement error of the temperature.

次に、反射面61の反射率rと見かけの放射率εとの関係について説明する。図9乃至図12において、横軸はメッキ鋼板1の表面1aの放射率εを示し、縦軸は見かけの放射率εを示す。図9から図12の順で、反射面61の反射率rが小さくなる。具体的には、反射面61の反射率rは、図9で0.99、図10で0.98、図11で0.95、図12で0.90である。なお、図9乃至図12に示すシミュレーションにおいて、リフトオフ距離L1は1[mm]である。反射面61の反射率rが大きくなるに従って、見かけの放射率εの実際の放射率εに対する倍率(ε/ε)が大きくなる。 Next, the relationship between the reflectance r 2 of the reflecting surface 61 and the apparent emissivity ε * will be described. 9 to FIG. 12, the horizontal axis represents the emissivity epsilon 1 of the surface 1a of the plated steel plate 1, the vertical axis represents the emissivity of the apparent epsilon *. In the order from FIG. 9 to FIG. 12, the reflectance r 2 of the reflecting surface 61 decreases. Specifically, the reflectance r 2 of the reflecting surface 61 is 0.99 in FIG. 9, 0.98 in FIG. 10, 0.95 in FIG. 11, and 0.90 in FIG. In the simulation shown in FIGS. 9 to 12, the lift-off distance L1 is 1 [mm]. As the reflectance r 2 of the reflecting surface 61 increases, the magnification (ε * / ε 1 ) of the apparent emissivity ε * with respect to the actual emissivity ε 1 increases.

図11に示す反射率r=0.95の場合、実際の放射率εが0.5である場合に、見かけの放射率εが0.84である。また、図12に示す反射率r=0.90の場合であっても、実際の放射率εが0.5以上であれば、見かけの放射率εが0.81以上となる。従って、メッキ鋼板1の温度上昇によって実際の放射率εが変化したとしても、見かけの放射率εはほとんど影響されないといえる。 In the case of the reflectivity r 2 = 0.95 shown in FIG. 11, when the actual emissivity ε 1 is 0.5, the apparent emissivity ε * is 0.84. Even when the reflectivity r 2 = 0.90 shown in FIG. 12, if the actual emissivity ε 1 is 0.5 or more, the apparent emissivity ε * is 0.81 or more. Therefore, even if the actual emissivity ε 1 changes due to the temperature rise of the plated steel sheet 1, it can be said that the apparent emissivity ε * is hardly affected.

なお、温度変化に応じたメッキ鋼板1の放射率εの変動範囲は、見かけの放射率ε*の変化が小さくなる範囲であることが好ましい。例えば、図11では、放射率εが0.5以上の範囲において、見かけの放射率εを示す曲線の傾き(放射率εの変動に対する見かけの放射率εの変動割合)が小さい。温度変化に応じてメッキ鋼板1の放射率εが変動する範囲において、見かけの放射率εを示す曲線の傾きが1未満であることが好ましい。 In addition, it is preferable that the fluctuation range of the emissivity ε 1 of the plated steel sheet 1 according to the temperature change is a range in which the change in the apparent emissivity ε * is small. For example, in FIG. 11, in a range emissivity epsilon 1 is more than 0.5, the slope of the curve showing the emissivity apparent epsilon * (percentage change in the emissivity of the apparent epsilon * to variations in emissivity epsilon 1) is less . To the extent emissivity epsilon 1 of plated steel sheet 1 varies according to the temperature change, the slope of the curve showing the emissivity apparent epsilon * is preferably less than 1.

実施形態の温度計測装置4による温度検出評価について説明する。測定対象のメッキ鋼板1は、亜鉛メッキがなされており、亜鉛合金の融点は700[℃]前後である。融点を超えて亜鉛合金が溶融することにより、メッキ鋼板1の表面の放射率εが0.8から0.5に変化するものとする。単色放射温度計の波長は900[nm]であり、測温域を600[℃]以上として、放射率を0.8に設定して計測を行うものとする。図13にはメッキ鋼板1の放射率εが1.0、0.8、および0.5のそれぞれの場合における、メッキ鋼板1の温度Tと放射輝度の関係が示されている。放射光量は、一般的なプランクの式を用いて算出されている。分光放射エネルギーuは、下記[数6]によって算出される。なお、hはプランク定数、cは光速、kはボルツマン定数、λは波長である。

Figure 2016188827
The temperature detection evaluation by the temperature measuring device 4 of the embodiment will be described. The plated steel sheet 1 to be measured is galvanized, and the melting point of the zinc alloy is around 700 [° C.]. It is assumed that the emissivity ε 1 on the surface of the plated steel sheet 1 changes from 0.8 to 0.5 by melting the zinc alloy beyond the melting point. The wavelength of the monochromatic radiation thermometer is 900 [nm], the temperature measurement region is 600 [° C.] or more, and the emissivity is set to 0.8. FIG. 13 shows the relationship between the temperature T of the plated steel sheet 1 and the radiance when the emissivity ε 1 of the plated steel sheet 1 is 1.0, 0.8, and 0.5, respectively. The amount of radiant light is calculated using a general Planck equation. The spectral radiant energy u is calculated by the following [Equation 6]. Here, h is the Planck constant, c is the speed of light, k is the Boltzmann constant, and λ is the wavelength.
Figure 2016188827

放射温度計において放射率を0.8に設定したままで、温度上昇によりメッキ鋼板1の実際の放射率εが0.8から0.5に低下したとする。図13からわかるように、メッキ鋼板1の温度Tが800[℃]の場合で、放射温度計は真の温度に対して33[℃]低い温度を示してしまう。また、メッキ鋼板1の温度Tが700[℃]の場合で、放射温度計は真の温度に対して27[℃]低い温度を示してしまう。 It is assumed that the actual emissivity ε 1 of the plated steel sheet 1 decreases from 0.8 to 0.5 due to the temperature rise while the emissivity is set to 0.8 in the radiation thermometer. As can be seen from FIG. 13, when the temperature T of the plated steel sheet 1 is 800 [° C.], the radiation thermometer shows a temperature 33 [° C.] lower than the true temperature. Further, when the temperature T of the plated steel plate 1 is 700 [° C.], the radiation thermometer shows a temperature 27 [° C.] lower than the true temperature.

図14には、本実施形態の温度計測装置4による計測例が示されている。反射部材6のリフトオフ距離L1を1[mm]、反射面61の反射率rを0.99とした場合、メッキ鋼板1の表面1aの放射率εが0.5、0.8のときに、上記[数5]から、見かけの放射率εはそれぞれ0.87、0.96と求まる。図14には、放射率εが1.0、0.96、0.87の場合におけるメッキ鋼板1の温度Tと放射輝度の関係が示されている。メッキ鋼板1の放射率εが0.8から0.5に変化すると、見かけの放射率εが0.96から0.87に変化する。従って、放射温度計において放射率εを0.96に設定した場合、メッキ鋼板1の温度Tが800[℃]であれば検出誤差が7[℃]となり、メッキ鋼板1の温度Tが700[℃]であれば検出誤差が6[℃]となる。よって、反射部材6を有する本実施形態の温度計測装置4は、従来と比較して、温度Tの検出誤差を4分の1未満に低減することができる。 FIG. 14 shows an example of measurement by the temperature measuring device 4 of the present embodiment. The lift-off distance L1 of the reflection member 6 1 [mm], when the reflectance r 2 of the reflecting surface 61 and 0.99, when the emissivity epsilon 1 of the surface 1a of the plated steel sheet 1 is 0.5, 0.8 In addition, from the above [Equation 5], the apparent emissivity ε * is obtained as 0.87 and 0.96, respectively. FIG. 14 shows the relationship between the temperature T of the plated steel sheet 1 and the radiance when the emissivity ε 1 is 1.0, 0.96, and 0.87. When emissivity epsilon 1 of plated steel sheet 1 is changed from 0.8 to 0.5, emissivity apparent epsilon * changes from 0.96 to 0.87. Therefore, when the emissivity ε is set to 0.96 in the radiation thermometer, if the temperature T of the plated steel sheet 1 is 800 [° C.], the detection error is 7 [° C.], and the temperature T of the plated steel sheet 1 is 700 [° C.]. [° C.], the detection error is 6 [° C.]. Therefore, the temperature measuring device 4 of the present embodiment having the reflecting member 6 can reduce the detection error of the temperature T to less than a quarter compared to the conventional case.

ここで、温度変化に応じたメッキ鋼板1の放射率εの値が予めわかっている場合には、見かけの放射率εが所望の範囲で変化するように設計することが可能である。例えば、加熱装置5によって目標温度まで加熱される間に、メッキ鋼板1の放射率εがε11以上かつε12以下の範囲で変動するものとする。この場合に、見かけの放射率εをε 以上としたい場合には、上記[数1]が成立するように面積S,S,Sや反射率rを定めればよい。 Here, when the value of the emissivity ε 1 of the plated steel sheet 1 corresponding to the temperature change is known in advance, the apparent emissivity ε * can be designed to change within a desired range. For example, it is assumed that the emissivity ε 1 of the plated steel sheet 1 varies in the range of ε 11 or more and ε 12 or less while being heated to the target temperature by the heating device 5. In this case, when it is desired to set the apparent emissivity ε * to be equal to or greater than ε 1 * , the areas S 1 , S 2 , S 3 and the reflectance r 2 may be determined so that the above [Equation 1] is satisfied. .

また、見かけの放射率εをε 以下としたい場合には、上記[数2]が成立するように面積S,S,Sや反射率rを定めればよい。 If the apparent emissivity ε * is desired to be equal to or less than ε 2 * , the areas S 1 , S 2 , S 3 and the reflectance r 2 may be determined so that the above [Equation 2] is satisfied.

なお、メッキ鋼板1からの放射光が反射部材6によってメッキ鋼板1に向けて反射されることで、反射部材6と対向する部分において、表面1aからの輻射抜熱が抑制される。これにより反射部材6と対向する部分とそれ以外の部分に温度差が生じてしまうと、メッキ鋼板1の温度を正しく測温できない可能性がある。そこで、抜熱が抑制されることによる影響を受けないほど素早くメッキ鋼板1の温度を目標温度まで昇温させることが好ましい。言い換えると、昇温速度を抜熱速度と比較して十分大きくして目標温度まで昇温させることが好ましい。   In addition, the radiation light from the plated steel plate 1 is reflected toward the plated steel plate 1 by the reflecting member 6, so that radiation heat from the surface 1 a is suppressed at a portion facing the reflecting member 6. Accordingly, if a temperature difference occurs between the portion facing the reflecting member 6 and the other portion, the temperature of the plated steel sheet 1 may not be measured correctly. Therefore, it is preferable to quickly raise the temperature of the plated steel sheet 1 to the target temperature so as not to be affected by the suppression of heat removal. In other words, it is preferable to raise the temperature increase rate to the target temperature by sufficiently increasing the temperature increase rate compared to the heat removal rate.

反射部材6によるメッキ鋼板1の単位面積当りの抜熱阻害量を評価する。簡易化のため、温度上昇率を一定値(α)とし、常温Tから目標温度Tまで加熱することを考える。鋼板表面の放射率をε、ステファンボルツマン定数をσ、加熱時間をtとすると、単位面積当たりの抜熱Qは下記[数7]で表される。

Figure 2016188827
The amount of heat removal inhibition per unit area of the plated steel sheet 1 by the reflecting member 6 is evaluated. For simplicity, the temperature rise rate constant value (alpha), considering that heating from room temperature T o to the target temperature T 1. The emissivity of the steel sheet surface epsilon o, Stefan Boltzmann constant sigma, the heating time is t o, heat removal Q per unit area is represented by the following [Equation 7].
Figure 2016188827

上記[数7]を積分計算すると、下記[数8]となる。

Figure 2016188827
When the above [Equation 7] is integrated, the following [Equation 8] is obtained.
Figure 2016188827

したがって、加熱中における単位時間当たりの抜熱量は加熱時間tに比例するため、加熱時間tの短縮により抜熱阻害影響を低減可能となる。例えば、抜熱量Qに応じた加熱中の表面1aの温度低下量の大きさが所定値以下となるように加熱時間tを決めればよい。所定値は、温度検出の許容誤差に基づいて定められる。例えば、反射部材6による抜熱阻害により、正射影1bとその周辺部との間に温度差Tdifが生じるとする。温度検出の許容誤差に基づいて、この温度差Tdifとして最大5[℃]まで許容できるとする。この場合、表面1aのうち反射部材6と対向していない部分における抜熱量Qに応じた温度低下量が5[℃]以下となるように加熱時間tの上限を決めることが好ましい。このようにすれば、仮に反射部材6と対向した部分において抜熱が完全に阻害されたとしても、温度検出の誤差を許容誤差の範囲内に抑えることが可能である。これにより、温度検出の許容誤差および加熱中のメッキ鋼板1の抜熱量Q(抜熱速度)から決まる下限値以上の温度上昇率αでメッキ鋼板1を加熱することができる。 Thus, heat removal amount per unit time during the heating is proportional to the heating time t o, it is possible reduce heat loss inhibiting effect by shortening the heating time t o. For example, the temperature decrease in the size of the surface 1a during heating according to the heat loss quantity Q may be determined heating time t o to be a predetermined value or less. The predetermined value is determined based on a tolerance for temperature detection. For example, it is assumed that a temperature difference Tdif occurs between the orthogonal projection 1b and its peripheral part due to the heat removal inhibition by the reflecting member 6. It is assumed that the temperature difference Tdif can be allowed up to 5 [° C.] based on the temperature detection tolerance. In this case, it is preferable to determine the upper limit of the reflective member 6 and the temperature decrease amount corresponding to the dissipation heat quantity Q in not facing the portion 5 [° C.] heating time as to become less t o of the surface 1a. In this way, even if heat removal is completely obstructed at the portion facing the reflecting member 6, the temperature detection error can be suppressed within the allowable error range. As a result, the plated steel sheet 1 can be heated at a temperature increase rate α equal to or higher than the lower limit determined from the tolerance of temperature detection and the heat removal amount Q (heat removal speed) of the plated steel sheet 1 being heated.

以上説明したように、本実施形態に係る温度計測装置4は、反射部材6と、検出手段7とを有する。反射部材6は、メッキ鋼板1の表面1aに対向して配置され、メッキ鋼板1から放射される光を反射する反射面61と、反射面61に形成された開口部62とを有する。検出手段7は、メッキ鋼板1側から開口部62に入射する光の光量に基づいてメッキ鋼板1の温度を検出する。反射部材6の反射面61がメッキ鋼板1に対向して配置されることで、多重反射により、メッキ鋼板1の見かけの放射率εが増加する。これにより、加熱中にメッキ鋼板1の表面性状の変化により放射率が変化しても、検出手段7によって検出される光量の変化が抑制される。よって、本実施形態の温度計測装置4は、加熱されるメッキ鋼板1の温度を高精度で検出することができる。 As described above, the temperature measurement device 4 according to the present embodiment includes the reflecting member 6 and the detection unit 7. The reflecting member 6 is disposed so as to face the surface 1 a of the plated steel plate 1, and has a reflecting surface 61 that reflects light emitted from the plated steel plate 1, and an opening 62 formed in the reflecting surface 61. The detecting means 7 detects the temperature of the plated steel sheet 1 based on the amount of light incident on the opening 62 from the plated steel sheet 1 side. By arranging the reflecting surface 61 of the reflecting member 6 so as to face the plated steel plate 1, the apparent emissivity ε * of the plated steel plate 1 increases due to multiple reflection. Thereby, even if emissivity changes by the change of the surface property of the plated steel plate 1 during heating, the change of the light quantity detected by the detection means 7 is suppressed. Therefore, the temperature measuring device 4 of this embodiment can detect the temperature of the plated steel plate 1 to be heated with high accuracy.

また、本実施形態の温度計測装置4では、反射面61の形状が凹形状である。これにより、反射面61とメッキ鋼板1の表面1aとの間の多重反射を促進し、見かけの放射率εを向上させることができる。なお、反射面61の形状は、半球形に限定されるものではなく、例えば、パラボラアンテナのような放物曲面や、多数の平面を組み合わせて全体として凹形状の面としたものであってもよい。また、反射面61は、平面であってもよい。 Moreover, in the temperature measuring device 4 of this embodiment, the shape of the reflective surface 61 is a concave shape. Thereby, the multiple reflection between the reflective surface 61 and the surface 1a of the plated steel plate 1 can be promoted, and the apparent emissivity ε * can be improved. The shape of the reflecting surface 61 is not limited to a hemispherical shape. For example, the reflecting surface 61 may be a parabolic curved surface such as a parabolic antenna or a concave surface as a whole by combining a number of flat surfaces. Good. Further, the reflecting surface 61 may be a flat surface.

また、本実施形態の温度計測装置4は、メッキ鋼板1の放射率が温度変化に応じてε11以上ε12以下の範囲で変動する場合において、メッキ鋼板1の表面1aにおける反射面61の正射影1bの面積S、反射面61の外縁61cと正射影1bの外縁1cとを接続する面の面積と開口部62の面積との合計面積S、反射面61の面積S、および反射面61の反射率rが上記[数1]および[数2]を満たすことによりメッキ鋼板1の見かけの放射率をε 以上かつε 以下として温度計測する。よって、見かけの放射率ε*を所望の範囲とすることができ、加熱されるメッキ鋼板1の温度を高精度で検出することが可能となる。 The temperature measuring device 4 of this embodiment, when the emissivity of the coated steel sheet 1 varies in a range of epsilon 11 or epsilon 12 below according to a temperature change, the positive reflecting surface 61 at the surface 1a of the plated steel sheet 1 The area S 1 of the projection 1b, the total area S 3 of the area connecting the outer edge 61c of the reflecting surface 61 and the outer edge 1c of the orthographic projection 1b and the area of the opening 62, the area S 2 of the reflecting surface 61, and the reflection When the reflectance r 2 of the surface 61 satisfies the above [Equation 1] and [Equation 2], the apparent emissivity of the plated steel sheet 1 is set to ε 1 * and not more than ε 2 * , and the temperature is measured. Therefore, the apparent emissivity ε * can be set in a desired range, and the temperature of the plated steel sheet 1 to be heated can be detected with high accuracy.

本実施形態のメッキ鋼板の加熱装置2は、温度計測装置4と、メッキ鋼板1を加熱する加熱装置5とを有する。メッキ鋼板の加熱装置2は、温度計測装置4によって検出された温度に基づいてメッキ鋼板1を所定温度まで加熱する。温度計測装置4の検出精度が高精度であることから、フィードバック制御により高精度でメッキ鋼板1の温度を所定温度に制御することができる。   The plated steel plate heating device 2 of the present embodiment includes a temperature measuring device 4 and a heating device 5 for heating the plated steel plate 1. The plated steel sheet heating device 2 heats the plated steel sheet 1 to a predetermined temperature based on the temperature detected by the temperature measuring device 4. Since the detection accuracy of the temperature measuring device 4 is high, the temperature of the plated steel sheet 1 can be controlled to a predetermined temperature with high accuracy by feedback control.

本実施形態のメッキ鋼板のプレス装置100は、メッキ鋼板の加熱装置2と、メッキ鋼板の加熱装置2によって所定温度まで加熱されたメッキ鋼板1をプレス加工するプレス加工手段3とを有している。メッキ鋼板の加熱装置2によってメッキ鋼板1の温度制御が高精度でなされることから、適正な温度で高品質にメッキ鋼板1のホットスタンプを行うことが可能である。   The plated steel plate pressing apparatus 100 according to this embodiment includes a plated steel plate heating device 2 and press working means 3 that presses the plated steel plate 1 heated to a predetermined temperature by the plated steel plate heating device 2. . Since the temperature control of the plated steel plate 1 is performed with high accuracy by the heating device 2 for the plated steel plate, it is possible to perform hot stamping of the plated steel plate 1 at an appropriate temperature with high quality.

本実施形態のメッキ鋼板の加熱方法は、検出工程と、加熱工程とを含む。検出工程は、メッキ鋼板1から放射される光を反射し、かつ開口部62を有する反射面61をメッキ鋼板1の表面1aと対向させて、メッキ鋼板1側から開口部62に入射する光の光量に基づいてメッキ鋼板1の温度を検出する工程である。加熱工程は、検出工程において検出された温度に基づいて、メッキ鋼板1を所定温度まで加熱する工程である。検出工程において、反射面61とメッキ鋼板1の表面1aとの間で放射光を多重反射させることで、見かけの放射率εを向上させ、温度検出の精度を向上させることができる。よって、本実施形態のメッキ鋼板の加熱方法は、高精度でメッキ鋼板1の温度を制御することができる。 The method for heating a plated steel sheet according to the present embodiment includes a detection step and a heating step. The detecting step reflects light emitted from the plated steel sheet 1 and causes the reflecting surface 61 having the opening 62 to face the surface 1a of the plated steel sheet 1 so that light incident on the opening 62 from the plated steel sheet 1 side is reflected. This is a step of detecting the temperature of the plated steel sheet 1 based on the amount of light. The heating process is a process of heating the plated steel sheet 1 to a predetermined temperature based on the temperature detected in the detection process. In the detection step, the reflected light 61 is reflected multiple times between the reflecting surface 61 and the surface 1a of the plated steel plate 1, thereby improving the apparent emissivity ε * and improving the temperature detection accuracy. Therefore, the heating method of the plated steel plate of this embodiment can control the temperature of the plated steel plate 1 with high accuracy.

また、本実施形態のメッキ鋼板の加熱方法は、加熱工程において、温度検出の許容誤差およびメッキ鋼板1の抜熱量から決まる(許容される)下限値以上の温度上昇率でメッキ鋼板1を加熱する。これにより、温度検出の誤差を許容誤差の範囲内に抑えることが可能となる。   Moreover, the heating method of the plated steel plate of this embodiment heats the plated steel plate 1 at a temperature increase rate equal to or higher than a lower limit value (allowable) determined (allowed) from the tolerance of temperature detection and the heat removal amount of the plated steel plate 1 in the heating process. . As a result, the temperature detection error can be suppressed within the allowable error range.

本実施形態のメッキ鋼板のプレス方法は、上記のメッキ鋼板の加熱方法と、検出工程で検出された温度が所定温度に達した後にメッキ鋼板1をプレス加工するプレス工程とを含む。加熱工程においてメッキ鋼板1の温度制御が高精度でなされることから、高品質にメッキ鋼板1のホットスタンプを行うことが可能である。   The method for pressing a plated steel sheet according to the present embodiment includes the above-described heating method for the plated steel sheet and a pressing process for pressing the plated steel sheet 1 after the temperature detected in the detection process reaches a predetermined temperature. Since the temperature control of the plated steel sheet 1 is performed with high accuracy in the heating step, it is possible to perform hot stamping of the plated steel sheet 1 with high quality.

なお、メッキ鋼板の加熱装置2において、図15に示すように、メッキ鋼板1が水平面に対して垂直に固定されてもよい。このようにすれば、メッキ鋼板1が加熱されて表面1aからスケールが剥離した場合に、剥離したスケールが反射面61に付着しにくい。   In addition, in the heating apparatus 2 for the plated steel plate, the plated steel plate 1 may be fixed perpendicular to the horizontal plane as shown in FIG. In this way, when the plated steel sheet 1 is heated and the scale peels from the surface 1 a, the peeled scale is difficult to adhere to the reflective surface 61.

放射光が反射部材6の外部空間に逃げることを抑制する観点からは、リフトオフ距離L1は0であることが望ましい。しかしながら、加熱装置5が電極51a,51bに通電しているときにメッキ鋼板1に反射部材6を接触させると、電流分布が変化してしまう。このため、メッキ鋼板1に接触しない範囲で反射部材6を可能な限り近づけることが必要となる。加熱中のメッキ鋼板1のばたつきを考慮すると、ある程度のリフトオフ距離L1が必要となる。そこで、例えば、同じリフトオフ距離L1で反射部材6を大型化することにより、隙間の面積S31の影響を相対的に小さくするようにしてもよい。また、通電加熱中にメッキ鋼板1に大きな張力をかけて振動やばたつきを抑制し、メッキ鋼板1と反射部材6との衝突を避けることでリフトオフ距離L1を低減してもよい。 From the viewpoint of suppressing radiated light from escaping to the external space of the reflecting member 6, the lift-off distance L1 is preferably zero. However, if the reflecting member 6 is brought into contact with the plated steel sheet 1 while the heating device 5 is energizing the electrodes 51a and 51b, the current distribution changes. For this reason, it is necessary to bring the reflecting member 6 as close as possible without touching the plated steel plate 1. Considering the flapping of the plated steel sheet 1 during heating, a certain amount of lift-off distance L1 is required. Therefore, for example, by increasing the size of the reflecting member 6 in the same lift distance L1, it may be relatively small influence of the gap area S 31. Alternatively, the lift-off distance L1 may be reduced by applying a large tension to the plated steel sheet 1 during energization heating to suppress vibration and fluttering and avoiding a collision between the plated steel sheet 1 and the reflecting member 6.

[実施形態の変形例]
実施形態の変形例について説明する。図16は、実施形態の変形例に係るメッキ鋼板の加熱装置を示す図である。変形例に係るメッキ鋼板の加熱装置2において、上記実施形態のメッキ鋼板の加熱装置2と異なる点は、反射部材6を移動させる移動手段10を有する点である。本変形例の温度計測装置4は、移動手段10によって反射部材6を移動させながらメッキ鋼板1の温度を検出する。これにより、反射部材6による抜熱抑制の程度を低減させ、温度検出精度を向上させることができる。
[Modification of Embodiment]
A modification of the embodiment will be described. FIG. 16 is a diagram illustrating a heating apparatus for a plated steel plate according to a modification of the embodiment. The plated steel sheet heating apparatus 2 according to the modification is different from the plated steel sheet heating apparatus 2 of the above embodiment in that it includes a moving unit 10 that moves the reflecting member 6. The temperature measuring device 4 of the present modification detects the temperature of the plated steel sheet 1 while moving the reflecting member 6 by the moving means 10. Thereby, the degree of suppression of heat removal by the reflection member 6 can be reduced, and the temperature detection accuracy can be improved.

移動手段10は、反射部材6をメッキ鋼板1の表面1aと平行な方向にメッキ鋼板1に対して相対移動させる。移動手段10は、例えば、モータ等の動力源が発生する力によって反射部材6を移動させる。移動手段10は、メッキ鋼板1の幅方向および長手方向の両方向に反射部材6を移動させることができるものであることが好ましい。加熱装置5がメッキ鋼板1を加熱している際に、メッキ鋼板1に対して反射部材6を相対移動させながら温度計測を行うことで、表面1aの抜熱が抑制される度合いが低減する。例えば、移動手段10による移動方向における反射部材6の長さをL、移動速度をVとした場合、表面1aの各計測部分において、反射部材6と対向している時間はL/Vとなる。よって、加熱時間tをVt/L分割することができる。 The moving means 10 moves the reflecting member 6 relative to the plated steel plate 1 in a direction parallel to the surface 1 a of the plated steel plate 1. The moving means 10 moves the reflecting member 6 by a force generated by a power source such as a motor, for example. It is preferable that the moving means 10 can move the reflecting member 6 in both the width direction and the longitudinal direction of the plated steel sheet 1. When the heating device 5 is heating the plated steel plate 1, by measuring the temperature while moving the reflecting member 6 relative to the plated steel plate 1, the degree to which heat removal from the surface 1 a is suppressed is reduced. For example, when the length of the reflecting member 6 in the moving direction by the moving means 10 is L and the moving speed is V, the time facing the reflecting member 6 in each measurement portion of the surface 1a is L / V. Therefore, the heating time t o may be divided Vt o / L.

反射部材6の移動速度は、例えば、抜熱が抑制されることによる誤差影響に基づいて、以下のように定めることができる。加熱開始時のメッキ鋼板1の温度Tを30[℃]、目標温度Tを900[℃]、メッキ鋼板の厚さdを2[mm]、比熱cを0.435[J/g・K]、密度ρを6.83[g/cm]、放射率εを0.8、ボルツマン定数σを5.67×10−8とする。メッキ鋼板1の温度が高いほど、輻射による抜熱量が大きくなることから、目標温度Tに到達する直前の抜熱量を算出する。目標温度T付近の抜熱による単位時間当りの温度変化量ΔT[℃/s]は、下記[数9]のように計算される。

Figure 2016188827
The moving speed of the reflecting member 6 can be determined as follows, for example, based on the error effect due to the suppression of heat removal. The temperature T o of the heating starting plated steel 1 30 [° C.], the target temperature T 1 900 [℃], 2 [mm] thickness d of the plated steel sheet, the specific heat c 0.435 [J / g · K], density ρ is 6.83 [g / cm 3 ], emissivity ε is 0.8, and Boltzmann constant σ is 5.67 × 10 −8 . As the temperature of the plated steel sheet 1 is high, since the heat removing amount increases due to radiation, to calculate the heat removal amount immediately before reaching the target temperature T 1. A temperature change amount ΔT [° C./s] per unit time due to heat removal in the vicinity of the target temperature T 1 is calculated as in the following [Equation 9].
Figure 2016188827

ここで、目標誤差δを5[℃]以内、反射部材6の移動方向の長さLを40[mm]とする。目標温度付近において、反射部材6が表面1a上の任意の点と対向している時間Δt、および反射部材6の移動速度v[mm/s]は、下記[数10]を満たさなくてはならない。つまり、この場合の反射部材6の下限速度は143.87[mm/s]となる。

Figure 2016188827
Here, it is assumed that the target error δ is within 5 [° C.] and the length L in the moving direction of the reflecting member 6 is 40 [mm]. In the vicinity of the target temperature, the time Δt during which the reflecting member 6 faces an arbitrary point on the surface 1a and the moving speed v [mm / s] of the reflecting member 6 must satisfy the following [Equation 10]. . That is, the lower limit speed of the reflecting member 6 in this case is 143.87 [mm / s].
Figure 2016188827

上記[数10]から、例えば、150[mm/s]以上の速度で反射部材6を移動させるようにすれば、温度の測定誤差を目標とする5[℃]以内とすることができる。なお、反射部材6を移動させることなく温度の測定後差を目標誤差δ以内とする場合には、初期温度から目標温度に到達するまでの抜熱による温度変化量ΔTを積分して総温度変化量を求めればよい。総温度変化量が目標誤差δ以内となるように、加熱装置5による温度上昇率αの下限が定められる。   From the above [Equation 10], for example, if the reflecting member 6 is moved at a speed of 150 [mm / s] or more, the temperature measurement error can be kept within 5 [° C.]. When the difference in temperature after measurement is within the target error δ without moving the reflecting member 6, the total temperature change is integrated by integrating the temperature change ΔT due to heat removal from the initial temperature until reaching the target temperature. Find the amount. The lower limit of the temperature increase rate α by the heating device 5 is determined so that the total temperature change amount is within the target error δ.

以上説明したように、本変形例の温度計測装置4は、反射部材6を表面1aと平行な方向にメッキ鋼板1に対して相対移動させる移動手段10を有しており、移動手段10によって反射部材6を移動させながらメッキ鋼板1の温度を検出する。すなわち、温度計測装置4は、検出工程において、反射面61を表面1aと平行な方向にメッキ鋼板1に対して相対移動させながら温度を検出する。よって、本変形例の温度計測装置4は、表面1aにおいて抜熱の偏り(表面温度の偏り)が発生することを抑制し、高精度にメッキ鋼板1の温度を検出することができる。   As described above, the temperature measuring device 4 of the present modification has the moving means 10 for moving the reflecting member 6 relative to the plated steel plate 1 in a direction parallel to the surface 1a, and is reflected by the moving means 10. The temperature of the plated steel sheet 1 is detected while moving the member 6. That is, in the detection process, the temperature measuring device 4 detects the temperature while moving the reflecting surface 61 relative to the plated steel plate 1 in a direction parallel to the surface 1a. Therefore, the temperature measuring device 4 of the present modification can suppress the occurrence of a heat removal bias (surface temperature bias) on the surface 1a, and can detect the temperature of the plated steel sheet 1 with high accuracy.

また、本変形例の温度計測装置4の移動手段10は、温度検出の許容誤差およびメッキ鋼板1の抜熱量から決まる下限速度以上の移動速度で反射部材6を移動させる。つまり、温度計測装置4は、検出工程において、温度検出の許容誤差およびメッキ鋼板1の抜熱量から決まる下限速度以上の移動速度で反射面61を移動させる。これにより、温度検出の誤差を許容誤差の範囲内に抑えることができる。   Further, the moving means 10 of the temperature measuring device 4 of the present modification moves the reflecting member 6 at a moving speed equal to or higher than the lower limit speed determined from the temperature detection tolerance and the amount of heat removed from the plated steel sheet 1. That is, in the detection process, the temperature measuring device 4 moves the reflecting surface 61 at a moving speed equal to or higher than the lower limit speed determined from the temperature detection tolerance and the amount of heat removed from the plated steel sheet 1. Thereby, the temperature detection error can be suppressed within the allowable error range.

上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行することができる。   The contents disclosed in the above embodiments and modifications can be executed in appropriate combination.

1 メッキ鋼板
1a 表面
1b 正射影
1c 正射影の外縁
2 メッキ鋼板の加熱装置
3 プレス加工手段
31 ハウジング
32 ワークロール
33 バックアップロール
4 温度計測装置
5 加熱装置
51a 第一電極
51b 第二電極
52 電源
6 反射部材
6a 円筒部
6b 球形部
61 反射面
61a 第一反射面
61b 第二反射面
61c 反射面の外縁
62 開口部
7 検出手段
71 レンズ
72 光ファイバー
73 ディテクタ
8 制御装置
81 制御部
9 仮想壁部
10 移動手段
100 メッキ鋼板のプレス装置
L1 リフトオフ距離
反射面の反射率
反射面の正射影の面積
反射面の面積
開口面積
ε メッキ鋼板の表面の放射率
DESCRIPTION OF SYMBOLS 1 Plated steel plate 1a Surface 1b Orthographic projection 1c Outer edge of orthographic projection 2 Heating device of plated steel plate 3 Press working means 31 Housing 32 Work roll 33 Backup roll 4 Temperature measuring device 5 Heating device 51a First electrode 51b Second electrode 52 Power supply 6 Reflection Member 6a Cylindrical part 6b Spherical part 61 Reflective surface 61a First reflective surface 61b Second reflective surface 61c Outer edge of reflective surface 62 Opening 7 Detection means 71 Lens 72 Optical fiber 73 Detector 8 Control device 81 Control part 9 Virtual wall part 10 Moving means 100 emissivity of the surface area S 3 opening area epsilon 1 plated steel orthogonal projection of the area S 2 reflection surface of the reflection factor S 1 reflecting surface of the press L1 liftoff distance r 2 the reflecting surface of the plated steel sheet

Claims (13)

メッキ鋼板の表面に対向して配置され、前記メッキ鋼板から放射される光を反射する反射面と、前記反射面に形成された開口部とを有する反射部材と、
前記メッキ鋼板側から前記開口部に入射する光の光量に基づいて前記メッキ鋼板の温度を検出する検出手段と、
を備えることを特徴とする温度計測装置。
A reflecting member that is disposed to face the surface of the plated steel plate, reflects the light emitted from the plated steel plate, and has an opening formed in the reflecting surface;
Detection means for detecting the temperature of the plated steel sheet based on the amount of light incident on the opening from the plated steel sheet side;
A temperature measuring device comprising:
前記反射面の形状が凹形状である
ことを特徴とする請求項1に記載の温度計測装置。
The temperature measuring device according to claim 1, wherein the shape of the reflecting surface is a concave shape.
前記メッキ鋼板の放射率が温度変化に応じてε11以上ε12以下の範囲で変動する場合において、前記メッキ鋼板の表面における前記反射面の正射影の面積S、前記反射面の外縁と前記正射影の外縁とを接続する面の面積と前記開口部の面積との合計面積S、前記反射面の面積S、および前記反射面の反射率rが下記数式(I)および数式(II)を満たすことにより前記メッキ鋼板の見かけの放射率をε 以上かつε 以下として温度計測する
ことを特徴とする請求項1または2に記載の温度計測装置。
Figure 2016188827
Figure 2016188827
When the emissivity of the coated steel sheet varies in a range of epsilon 11 or epsilon 12 below according to a temperature change, the orthogonal projection of the area S 1 of the reflecting surface at the surface of the plated steel sheet, the outer edge of the reflecting surface The total area S 3 of the area connecting the outer edges of the orthogonal projection and the area of the opening, the area S 2 of the reflecting surface, and the reflectance r 2 of the reflecting surface are expressed by the following formulas (I) and ( The temperature measurement device according to claim 1 or 2, wherein the temperature measurement is performed by satisfying II) so that the apparent emissivity of the plated steel sheet is ε 1 * or more and ε 2 * or less.
Figure 2016188827
Figure 2016188827
更に、前記反射部材を前記表面と平行な方向に前記メッキ鋼板に対して相対移動させる移動手段を備え、
前記移動手段によって前記反射部材を移動させながら前記メッキ鋼板の温度を検出する
ことを特徴とする請求項1から3の何れか1項に記載の温度計測装置。
Furthermore, it comprises a moving means for moving the reflecting member relative to the plated steel plate in a direction parallel to the surface,
The temperature measuring device according to any one of claims 1 to 3, wherein the temperature of the plated steel sheet is detected while the reflecting member is moved by the moving means.
前記移動手段は、温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限速度以上の移動速度で前記反射部材を移動させる
請求項4に記載の温度計測装置。
The temperature measuring apparatus according to claim 4, wherein the moving unit moves the reflecting member at a moving speed equal to or higher than a lower limit speed determined from an error in temperature detection and a heat removal amount of the plated steel sheet.
請求項1から5の何れか1項に記載の温度計測装置と、
前記メッキ鋼板を加熱する加熱装置と、
を備え、前記温度計測装置によって検出された温度に基づいて前記メッキ鋼板を所定温度まで加熱する
ことを特徴とするメッキ鋼板の加熱装置。
The temperature measuring device according to any one of claims 1 to 5,
A heating device for heating the plated steel sheet;
And heating the plated steel plate to a predetermined temperature based on the temperature detected by the temperature measuring device.
温度検出の許容誤差および前記メッキ鋼板の抜熱量から決まる下限値以上の温度上昇率で前記加熱装置によって前記メッキ鋼板を加熱する
ことを特徴とする請求項6に記載のメッキ鋼板の加熱装置。
The apparatus for heating a plated steel sheet according to claim 6, wherein the heating apparatus heats the plated steel sheet at a temperature increase rate equal to or higher than a lower limit value determined from a temperature detection tolerance and a heat removal amount of the plated steel sheet.
請求項6または7に記載のメッキ鋼板の加熱装置と、
前記メッキ鋼板の加熱装置によって前記所定温度まで加熱された前記メッキ鋼板をプレス加工するプレス加工手段と、
を備えることを特徴とするメッキ鋼板のプレス装置。
A heating apparatus for a plated steel sheet according to claim 6 or 7,
A pressing means for pressing the plated steel sheet heated to the predetermined temperature by the heating device for the plated steel sheet;
An apparatus for pressing a plated steel sheet, comprising:
メッキ鋼板から放射される光を反射し、かつ開口部を有する反射面を前記メッキ鋼板の表面と対向させて、前記メッキ鋼板側から前記開口部に入射する光の光量に基づいて前記メッキ鋼板の温度を検出する検出工程と、
前記検出工程において検出された温度に基づいて、前記メッキ鋼板を所定温度まで加熱する加熱工程と、
を含むことを特徴とするメッキ鋼板の加熱方法。
Reflecting the light radiated from the plated steel sheet, with the reflecting surface having an opening opposed to the surface of the plated steel sheet, based on the amount of light incident on the opening from the plated steel sheet side, A detection step for detecting the temperature;
Based on the temperature detected in the detection step, a heating step of heating the plated steel sheet to a predetermined temperature;
A method for heating a plated steel sheet, comprising:
前記検出工程において、前記反射面を前記表面と平行な方向に前記メッキ鋼板に対して相対移動させながら温度を検出する
ことを特徴とする請求項9に記載のメッキ鋼板の加熱方法。
The method for heating a plated steel sheet according to claim 9, wherein, in the detecting step, the temperature is detected while the reflective surface is moved relative to the plated steel sheet in a direction parallel to the surface.
前記検出工程において、温度検出の許容誤差および前記反射面と対向する部分の前記メッキ鋼板の抜熱量から決まる下限速度以上の移動速度で前記反射面を移動させる
ことを特徴とする請求項10に記載のメッキ鋼板の加熱方法。
The said detection process WHEREIN: The said reflective surface is moved by the moving speed more than the minimum speed determined from the tolerance of temperature detection, and the amount of heat removal of the said plated steel plate of the part facing the said reflective surface. Heating method for plated steel sheets.
前記加熱工程において、温度検出の許容誤差および前記反射面と対向する部分の前記メッキ鋼板の抜熱量から決まる下限値以上の温度上昇率で前記メッキ鋼板を加熱する
ことを特徴とする請求項9から11の何れか1項に記載のメッキ鋼板の加熱方法。
In the heating step, the plated steel sheet is heated at a temperature increase rate equal to or higher than a lower limit value determined from a tolerance of temperature detection and a heat removal amount of the plated steel sheet in a portion facing the reflection surface. The heating method of the plated steel plate according to any one of 11.
請求項9から12の何れか1項に記載のメッキ鋼板の加熱方法と、
前記検出工程で検出された温度が前記所定温度に達した後に前記メッキ鋼板をプレス加工するプレス工程と、を含むことを特徴とするメッキ鋼板のプレス方法。
A method for heating a plated steel sheet according to any one of claims 9 to 12,
And a pressing step of pressing the plated steel plate after the temperature detected in the detecting step reaches the predetermined temperature.
JP2015069469A 2015-03-30 2015-03-30 Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method Active JP6245209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069469A JP6245209B2 (en) 2015-03-30 2015-03-30 Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069469A JP6245209B2 (en) 2015-03-30 2015-03-30 Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method

Publications (2)

Publication Number Publication Date
JP2016188827A true JP2016188827A (en) 2016-11-04
JP6245209B2 JP6245209B2 (en) 2017-12-13

Family

ID=57239719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069469A Active JP6245209B2 (en) 2015-03-30 2015-03-30 Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method

Country Status (1)

Country Link
JP (1) JP6245209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467177B2 (en) 2010-10-29 2013-06-18 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527954B1 (en) * 1971-05-24 1977-03-05
JPS6227633A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for measuring temperature of body
JPH06204143A (en) * 1992-12-28 1994-07-22 Hitachi Ltd Cvd equipment
JPH08181179A (en) * 1994-12-26 1996-07-12 Nkk Corp Semiconductor manufacturing equipment
US5727017A (en) * 1995-04-11 1998-03-10 Ast Electronik, Gmbh Method and apparatus for determining emissivity of semiconductor material
JPH1098084A (en) * 1996-05-01 1998-04-14 Applied Materials Inc Substrate temperature measuring method and device
JP2001304968A (en) * 2000-04-20 2001-10-31 Tokai Carbon Co Ltd Method and device for measuring temperature of heated object
JP2005029890A (en) * 2003-06-19 2005-02-03 Jfe Steel Kk Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
WO2012026442A1 (en) * 2010-08-23 2012-03-01 新日本製鐵株式会社 Method for hot-stamping galvanized steel sheet
JP2014130074A (en) * 2012-12-28 2014-07-10 Kobe Steel Ltd Temperature measuring apparatus of plate to be measured

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527954B1 (en) * 1971-05-24 1977-03-05
JPS6227633A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for measuring temperature of body
JPH06204143A (en) * 1992-12-28 1994-07-22 Hitachi Ltd Cvd equipment
JPH08181179A (en) * 1994-12-26 1996-07-12 Nkk Corp Semiconductor manufacturing equipment
US5727017A (en) * 1995-04-11 1998-03-10 Ast Electronik, Gmbh Method and apparatus for determining emissivity of semiconductor material
JPH1098084A (en) * 1996-05-01 1998-04-14 Applied Materials Inc Substrate temperature measuring method and device
JP2001304968A (en) * 2000-04-20 2001-10-31 Tokai Carbon Co Ltd Method and device for measuring temperature of heated object
JP2005029890A (en) * 2003-06-19 2005-02-03 Jfe Steel Kk Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
WO2012026442A1 (en) * 2010-08-23 2012-03-01 新日本製鐵株式会社 Method for hot-stamping galvanized steel sheet
JP2014130074A (en) * 2012-12-28 2014-07-10 Kobe Steel Ltd Temperature measuring apparatus of plate to be measured

Also Published As

Publication number Publication date
JP6245209B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5558629B2 (en) Laser processing equipment
JP6415188B2 (en) Fixing device
JP2012240077A (en) Method of manufacturing differential thickness sheet, and rolling device
JP4217255B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
US20170001898A1 (en) Method and apparatus for reducing the camber in thin glasses
JP2010217205A (en) Fixing device
JP6245209B2 (en) Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method
JP6724543B2 (en) Laser light absorptivity measuring method, laser light absorptivity measuring device and laser processing method
JP2011214980A (en) Temperature measurement device of metal plate
JP2010217209A (en) Fixing device
JP6245208B2 (en) Temperature measuring device, plated steel plate heating device, plated steel plate pressing device, temperature measuring method, plated steel plate heating method, and plated steel plate pressing method
JP2015225034A (en) Measurement method of thermal diffusivity of translucent material
EP4212837A1 (en) Surface temperature measurement method, surface temperature measurement device, method for manufacturing hot-dip galvanized steel sheet, and facility for manufacturing hot-dip galvanized steel sheet
JP5359945B2 (en) Temperature control method and temperature control apparatus
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP2018081232A (en) Optical lens and laser processing apparatus
US20210072172A1 (en) Inspection system and inspection method of member for fuel cell separator
JP2022037762A (en) Temperature management system
WO2012120989A1 (en) Method for forming sheet material, sheet material forming apparatus, method for determining forming conditions for sheet material forming apparatus, and device for determining forming conditions for sheet material forming apparatus
JP5767606B2 (en) Temperature measuring device for measuring plate and measuring temperature correction method
JP2008224287A (en) Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method
Arnold et al. Non-contact measurement of silicon thin wafer warpage by THz tomography and laser triangulation
WO2020105344A1 (en) Method for measuring temperature of glass article
JPH05203497A (en) Measuring method for temperature of steel plate
JP5421840B2 (en) Temperature control method for reference plate in metal plate temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6245209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250