JP2016166502A - Slide bearing and base isolation system - Google Patents

Slide bearing and base isolation system Download PDF

Info

Publication number
JP2016166502A
JP2016166502A JP2015047443A JP2015047443A JP2016166502A JP 2016166502 A JP2016166502 A JP 2016166502A JP 2015047443 A JP2015047443 A JP 2015047443A JP 2015047443 A JP2015047443 A JP 2015047443A JP 2016166502 A JP2016166502 A JP 2016166502A
Authority
JP
Japan
Prior art keywords
fixing member
sliding
lower fixing
seismic isolation
sliding support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047443A
Other languages
Japanese (ja)
Other versions
JP2016166502A5 (en
JP6475520B2 (en
Inventor
慎司 小杉
Shinji Kosugi
慎司 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015047443A priority Critical patent/JP6475520B2/en
Publication of JP2016166502A publication Critical patent/JP2016166502A/en
Publication of JP2016166502A5 publication Critical patent/JP2016166502A5/ja
Application granted granted Critical
Publication of JP6475520B2 publication Critical patent/JP6475520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide bearing and a base isolation system that mitigate an impact load to a building structure after being lifted by a seismic ground motion, and enable a structure for mitigating the impact load to the building structure to be designed without being restricted by acting force in a static state without a seismic ground motion.SOLUTION: A slide bearing includes: a lower slide member 11 fixed on a top surface of a substructure 2; an upper slide member 12 disposed on the lower slide member 11, to allow relative sliding with regard to the lower slide member 11; a lower fixing member 14 disposed above the upper slide member 12 and having the upper slide member 12 fixed thereon; an upper fixing member 15 having an undersurface in contact with a top surface of the lower fixing member 14 and an upper edge part fixed on a superstructure 4; a housing part 25 formed between the lower fixing member 14 and the upper fixing member 15; and a cushioning member 30 disposed in the housing part 25, for mitigating with restoring force an impact when the superstructure 4 comes in contact after being lifted.SELECTED DRAWING: Figure 3

Description

本発明は、機器や建屋など構造物に適用される免震システム及び免震システムを構成するすべり支承に関する。   The present invention relates to a seismic isolation system applied to a structure such as a device or a building, and a sliding bearing constituting the seismic isolation system.

機器や建屋等の構造物の耐震性能を向上させる方策の一つとして、免震構造の適用が挙げられる。免震構造では、対象となる構造物を免震装置上に設置することで、地震時に免震装置が変形又は変位してエネルギー吸収し、対象の構造物に入力される地震荷重が低減される。免震装置は、免震化対象の構造物を支持する支持性能、地震時のエネルギーを吸収する減衰性能、地震時によって生じる変位に対して元の位置に戻ろうとする復元性能を有する。免震装置として、例えば、鉛プラグ入り積層ゴム、すべり支承、直動転がり支承、オイルダンパ、鋼材ダンパ、コイルばね等が挙げられる。これらの免震装置の組み合わせを含め、様々な形式の免震構造が提案されており、実際に適用されている。   One way to improve the seismic performance of structures such as equipment and buildings is to apply seismic isolation structures. In the seismic isolation structure, by installing the target structure on the seismic isolation device, the seismic isolation device deforms or displaces during the earthquake and absorbs energy, reducing the seismic load input to the target structure. . The seismic isolation device has a supporting performance for supporting the structure to be seismically isolated, a damping performance for absorbing energy at the time of the earthquake, and a restoring performance for returning to the original position with respect to a displacement caused by the earthquake. Examples of the seismic isolation device include lead plug-containing laminated rubber, sliding bearings, linear motion rolling bearings, oil dampers, steel dampers, coil springs, and the like. Various types of seismic isolation structures including combinations of these seismic isolation devices have been proposed and applied in practice.

免震構造を備えた構造物、特に構造物の高さと幅との比を表すアスペクト比(高さ/幅)が大きい構造物においては、水平方向の地震動が入力されると、転倒モーメントにより構造物が鉛直面内で回転するロッキング挙動が生じる場合がある。この場合、構造物は水平方向に加えて鉛直方向にも応答するので、免震装置には、引張力や圧縮力が作用する。   For structures with seismic isolation structure, especially structures with a large aspect ratio (height / width) representing the ratio of the height and width of the structure, if horizontal ground motion is input, the structure will fall There may be a rocking behavior in which an object rotates in a vertical plane. In this case, since the structure responds in the vertical direction in addition to the horizontal direction, a tensile force or a compressive force acts on the seismic isolation device.

ロッキング挙動に対応する免震構造として、例えば、地震時のロッキング挙動による引張力の発生しない部位に積層ゴムを設置し、地震時のロッキング挙動による引張力の発生する部位に、ロッキング挙動に伴う構造物の浮き上がりを許容すると共に浮き上がった構造物の復元時の衝撃を吸収・緩和する構成の滑り支承を設置するものが提案されている(特許文献1参照)。この滑り支承は、鉛直方向に離間可能なすべり材と相手部材とを備え、すべり材及び相手部材の少なくとも一方に、浮き上がった構造物の復元時の衝撃を吸収、緩和する弾性部材を設けたものである。   As a base-isolated structure corresponding to rocking behavior, for example, a laminated rubber is installed in a site where tensile force is not generated due to rocking behavior during an earthquake, and a structure accompanying rocking behavior is generated in a region where tensile force is generated due to rocking behavior during an earthquake. There has been proposed one that installs a sliding bearing having a structure that allows the object to be lifted and absorbs / relaxes the shock when the lifted structure is restored (see Patent Document 1). This sliding bearing is provided with a sliding member and a mating member that can be separated in the vertical direction, and at least one of the sliding material and the mating member is provided with an elastic member that absorbs and relieves shocks when the lifted structure is restored. It is.

特開2001−329716号公報JP 2001-329716 A

高い耐震安全性が求められる構造物に対しては、設計検討レベルを超える地震動が入力した場合でも、可能な限り構造物の地震応答を低減することが耐震安全上望ましい。特に、プラント設備では、建屋内部の機器の損傷防止の観点から、過大な地震動が入力された場合でも、建屋へ入力される地震荷重を低減する必要がある。   For structures that require high seismic safety, it is desirable for seismic safety to reduce the seismic response of the structure as much as possible even when earthquake motion exceeding the design study level is input. In particular, in the plant facility, it is necessary to reduce the seismic load input to the building even when excessive earthquake motion is input from the viewpoint of preventing damage to the equipment in the building.

特許文献1に記載の免震構造においては、過大な地震動等の入力により生じるロッキング挙動に対して、滑り支承のすべり材と相手部材が離間して構造物の浮上がりを許容することで、ロッキング挙動により生じる引張力に起因する免震構造の損傷を防止している。さらに、構造物の浮上がり後の復元時に入力される構造物への衝撃をすべり支承の弾性部材により吸収、緩和している。しかし、この弾性部材は、地震動が作用しない静止状態において、構造物を支持するように設置されているので、弾性部材の設計では、地震時の変動荷重のみならず構造物の重量の支持荷重等の静止状態での作用力も考える必要があり、複数の条件の考慮が求められる。   In the seismic isolation structure described in Patent Document 1, the sliding behavior of the sliding bearing and the mating member are separated from each other and the structure is allowed to lift against the rocking behavior caused by excessive seismic motion input. It prevents the seismic isolation structure from being damaged due to the tensile force caused by the behavior. Furthermore, the impact to the structure input at the time of restoration after the structure is lifted is absorbed and alleviated by the elastic member of the sliding support. However, since this elastic member is installed so as to support the structure in a stationary state where earthquake motion does not act, in the design of the elastic member, not only the fluctuating load at the time of the earthquake but also the load supporting the weight of the structure, etc. It is necessary to consider the acting force in a stationary state, and it is necessary to consider a plurality of conditions.

本発明は、上記の問題点を解消するためになされたものであり、その目的は、地震動の入力による構造物の浮上がり後の接触時に入力される構造物への衝撃荷重を低減可能とすると共に、構造物への衝撃荷重を低減する構造を地震動の作用しない静止状態での作用力に制約されることなく設計できるすべり支承及び免震システムを提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to make it possible to reduce the impact load applied to the structure when the structure is lifted by contact due to the input of earthquake motion. Another object of the present invention is to provide a sliding bearing and a seismic isolation system that can design a structure that reduces the impact load on a structure without being restricted by an acting force in a stationary state where no seismic motion acts.

上記課題を解決するため、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、構造物の下部構造物と上部構造物との間に設置されるすべり支承であって、前記下部構造物上に固定される下側すべり部材と、前記下側すべり部材上に配置され、前記下側すべり部材に対して相対的に摺動可能な上側すべり部材と、前記上側すべり部材の上側に配置され、前記上側すべり部材が固定された下側固定部材と、下面が前記下側固定部材の上面に当接すると共に上端部が前記上部構造物に固定される上側固定部材と、前記下側固定部材と前記上側固定部材との間に形成された収容部と、前記収容部内に配置され、前記上部構造物の浮上がり後の接触時の衝撃を復元力により緩和する緩衝部材とを備えることを特徴とする。   The present application includes a plurality of means for solving the above-described problems. For example, a sliding bearing installed between the lower structure and the upper structure of the structure, A lower sliding member fixed to the upper sliding member, disposed on the lower sliding member, and slidable relative to the lower sliding member, and disposed on the upper side of the upper sliding member, A lower fixing member to which the upper sliding member is fixed; an upper fixing member whose lower surface is in contact with the upper surface of the lower fixing member and whose upper end is fixed to the upper structure; the lower fixing member; An accommodation part formed between the upper fixing member and a buffer member arranged in the accommodation part and relieving an impact at the time of contact after the upper structure is lifted by a restoring force .

本発明によれば、上側固定部材の下面を下側固定部材の上面に当接させた状態で、下側固定部材と上側固定部材との間に形成した収容部に復元力を有する緩衝部材を収容することで、地震動の入力のない静止状態での上部構造物の重量の支持荷重等の作用力を緩衝部材に作用させないようにしたので、地震動の入力による上部構造物の浮き上がり後の接触時に入力される上部構造物への衝撃荷重を緩衝部材により低減することができると共に、静止状態での作用力に制約されることなく緩衝部材を設計することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the cushioning member having a restoring force in the accommodating portion formed between the lower fixing member and the upper fixing member in a state where the lower surface of the upper fixing member is in contact with the upper surface of the lower fixing member. By accommodating it, the acting force such as the supporting load of the weight of the upper structure in the stationary state without the input of ground motion is prevented from acting on the buffer member, so at the time of contact after the upper structure lifts due to the input of ground motion The shock load to the input superstructure can be reduced by the buffer member, and the buffer member can be designed without being restricted by the acting force in the stationary state.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the seismic isolation building which employ | adopted 1st Embodiment of the sliding bearing and seismic isolation system of this invention. 図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋をII−II矢視から見た横断面図である。It is the cross-sectional view which looked at the base isolation building which employ | adopted 1st Embodiment of the sliding bearing and base isolation system of this invention shown in FIG. 1 from the II-II arrow. 本発明のすべり支承の第1の実施の形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a slide bearing of the present invention. 図3に示す本発明のすべり支承の第1の実施の形態をIV−IV矢視から見た横断面図である。It is the cross-sectional view which looked at 1st Embodiment of the sliding support of this invention shown in FIG. 3 from the IV-IV arrow. 図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋における水平方向の地震動の入力時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the input of the horizontal ground motion in the seismic isolation building which employ | adopted 1st Embodiment of the sliding support and seismic isolation system of this invention shown in FIG. 図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋における過大な地震動の入力時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the input of the excessive earthquake motion in the seismic isolation building which employ | adopted 1st Embodiment of the sliding support and seismic isolation system of this invention shown in FIG. 図3に示す本発明のすべり支承の第1の実施の形態における過大な地震動の入力時の浮上がり状態を示す説明図である。It is explanatory drawing which shows the lift state at the time of the input of the excessive earthquake motion in 1st Embodiment of the sliding bearing of this invention shown in FIG. 図3に示す本発明のすべり支承の第1の実施の形態における浮上がり後の接触時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the contact after the lift in 1st Embodiment of the sliding support of this invention shown in FIG. 本発明のすべり支承の第1の実施の形態の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of 1st Embodiment of the sliding bearing of this invention. 図9に示す本発明のすべり支承の第1の実施の形態の変形例における過大な地震動の入力時の浮上がり状態を示す説明図である。It is explanatory drawing which shows the lift state at the time of the input of the excessive earthquake motion in the modification of 1st Embodiment of the sliding bearing of this invention shown in FIG. 本発明のすべり支承の第2の実施の形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the sliding bearing of this invention. 図11に示す本発明のすべり支承の第2の実施の形態の一部を構成する緩衝用リングを示す平面図である。It is a top view which shows the ring for a buffer which comprises a part of 2nd Embodiment of the sliding support of this invention shown in FIG. 図11に示す本発明のすべり支承の第2の実施の形態における過大な地震動の入力時の浮上がり状態を示す説明図である。It is explanatory drawing which shows the lift state at the time of the input of the excessive earthquake motion in 2nd Embodiment of the sliding bearing of this invention shown in FIG. 本発明のすべり支承の第2の実施の形態の変形例の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the modification of 2nd Embodiment of the sliding bearing of this invention. 本発明のすべり支承の第2の実施の形態の変形例の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the modification of 2nd Embodiment of the sliding bearing of this invention.

以下、本発明のすべり支承及び免震システムの実施の形態を図面を用いて説明する。
[第1の実施の形態]
本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋の構成を図1及び図2を用いて説明する。図1は本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋を示す概略縦断面図、図2は図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋をII−II矢視から見た横断面図である。
Hereinafter, embodiments of the sliding support and seismic isolation system of the present invention will be described with reference to the drawings.
[First Embodiment]
The structure of the base isolation building which employ | adopted 1st Embodiment of the sliding bearing and base isolation system of this invention is demonstrated using FIG.1 and FIG.2. FIG. 1 is a schematic longitudinal sectional view showing a seismic isolation building adopting the first embodiment of the sliding support and seismic isolation system of the present invention, and FIG. 2 is a first view of the sliding support and seismic isolation system of the present invention shown in FIG. It is the cross-sectional view which looked at the base isolation building which employ | adopted 1 embodiment from the II-II arrow.

図1において、免震建屋1は、下部構造物としての下部基礎版2と、下部基礎版2上に設置された免震システムとしての免震層3と、免震層3に支持された上部構造物としての上部建屋4とを備えている。免震層3は、下部基礎版2と上部建屋4との間に介在して、上部建屋4に入力される地震動荷重を低減するものである。免震層3は、例えば、免震装置である複数の積層ゴム支承5及び複数のすべり支承10で構成されている。免震層3の平面配置としては、図2に示すように、下部基礎版2の外周側にすべり支承10が、その内側に積層ゴム支承5が配置されている。   In FIG. 1, the seismic isolation building 1 includes a lower base plate 2 as a lower structure, a base isolation layer 3 as a base isolation system installed on the lower base plate 2, and an upper portion supported by the base isolation layer 3. It has an upper building 4 as a structure. The seismic isolation layer 3 is interposed between the lower foundation plate 2 and the upper building 4 to reduce the seismic motion load input to the upper building 4. The seismic isolation layer 3 includes, for example, a plurality of laminated rubber bearings 5 and a plurality of sliding bearings 10 which are seismic isolation devices. As shown in FIG. 2, the sliding base 10 is arranged on the outer peripheral side of the lower base plate 2, and the laminated rubber bearing 5 is arranged on the inner side thereof, as shown in FIG.

積層ゴム支承5は、図1に示すように、薄い鋼板(図示せず)と薄いゴムシート(図示せず)を交互に積層して一体化した柱状の積層ゴム6と、積層ゴム6の下面及び上面にそれぞれ設けた下フランジ7及び上フランジ8とで構成されている。積層ゴム支承5は、下フランジ7及び上フランジ8により下部基礎版2及び上部建屋4に取り付けられている。   As shown in FIG. 1, the laminated rubber support 5 includes a columnar laminated rubber 6 in which thin steel plates (not shown) and thin rubber sheets (not shown) are alternately laminated and integrated, and a bottom surface of the laminated rubber 6. And a lower flange 7 and an upper flange 8 provided on the upper surface, respectively. The laminated rubber support 5 is attached to the lower base plate 2 and the upper building 4 by a lower flange 7 and an upper flange 8.

次に、本発明のすべり支承の第1の実施の形態の詳細な構成を図3及び図4を用いて説明する。
図3は本発明のすべり支承の第1の実施の形態を示す縦断面図、図4は図3に示す本発明のすべり支承の第1の実施の形態をIV−IV矢視から見た横断面図である。なお、図3及び図4において、図1及び図2に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
Next, a detailed configuration of the first embodiment of the sliding bearing according to the present invention will be described with reference to FIGS.
3 is a longitudinal sectional view showing the first embodiment of the sliding bearing of the present invention, and FIG. 4 is a cross-sectional view of the first embodiment of the sliding bearing of the present invention shown in FIG. FIG. 3 and 4, the same reference numerals as those shown in FIG. 1 and FIG. 2 are the same parts, and detailed description thereof will be omitted.

図3及び図4において、すべり支承10は、下部基礎版2上に固定される下側すべり部材11と、下側すべり部材11上に配置され、下側すべり部材11に対して相対的に摺動可能な上側すべり部材12と、上側すべり部材12の上側に配置され、上部建屋4の荷重を下側すべり部材11及び上側すべり部材12に伝達する固定部材13とを備えている。下側すべり部材11は、例えば、表面上にフッ素樹脂等のコーティングがされた鋼板である。上側すべり部材12は、例えば、四フッ化エチレン樹脂(PTFE)やポリアミド樹脂等を主剤として形成された部材である。なお、下側すべり部材11及び上側すべり部材12の上下の配置は交換可能である。   3 and 4, the sliding support 10 is disposed on the lower sliding member 11 fixed on the lower base plate 2 and the lower sliding member 11, and slides relative to the lower sliding member 11. A movable upper sliding member 12 and a fixing member 13 that is disposed above the upper sliding member 12 and transmits the load of the upper building 4 to the lower sliding member 11 and the upper sliding member 12 are provided. The lower sliding member 11 is, for example, a steel plate having a surface coated with a fluorine resin or the like. The upper sliding member 12 is a member formed using, for example, tetrafluoroethylene resin (PTFE) or polyamide resin as a main ingredient. The upper and lower arrangements of the lower sliding member 11 and the upper sliding member 12 can be exchanged.

固定部材13は、上側すべり部材12の上側に配置され、上側すべり部材12が固定される略円柱状の下側固定部材14と、下面が下側固定部材14の上面に当接すると共に上端部が上部建屋4に固定される略円柱状の上側固定部材15とで構成されている。下側固定部材14の上面の略中央部には、凹部16が設けられている。上側固定部材15の下面の略中央部には、下側固定部材14の凹部16に滑らかに嵌合する突部17が設けられている。上側固定部材15の下面における突部17の外側には、略円環状の収容溝部18が設けられている。上側固定部材15は、突部17が下側固定部材14の凹部16に嵌合することにより、下側固定部材14に対する水平方向の相対的な移動が不能となっている。また、上側固定部材15は、下側固定部材14に対して上方向に離間可能とされている。   The fixing member 13 is disposed on the upper side of the upper sliding member 12, and has a substantially cylindrical lower fixing member 14 to which the upper sliding member 12 is fixed, a lower surface abutting on an upper surface of the lower fixing member 14, and an upper end portion. It is comprised with the substantially cylindrical upper side fixing member 15 fixed to the upper building 4. As shown in FIG. A concave portion 16 is provided at a substantially central portion of the upper surface of the lower fixing member 14. A protrusion 17 that smoothly fits into the recess 16 of the lower fixing member 14 is provided at a substantially central portion of the lower surface of the upper fixing member 15. A substantially annular housing groove 18 is provided outside the protrusion 17 on the lower surface of the upper fixing member 15. The upper fixing member 15 cannot move relative to the lower fixing member 14 in the horizontal direction because the protrusion 17 is fitted into the recess 16 of the lower fixing member 14. Further, the upper fixing member 15 can be separated upward from the lower fixing member 14.

上側固定部材15の収容溝部18と、収容溝部18の開口部を閉塞する下側固定部材14の上面とにより、収容部25が形成されている。つまり、収容部25は、下側固定部材14と上側固定部材15との間に形成されている。収容部25には、略円環状の弾性体30の全体が上下方向に圧縮された状態で収容されている。弾性体30は、復元力を有するものであり、力が作用していない状態において、一部が収容溝部18からはみ出る大きさに形成されている。この弾性体30は、詳細については後述するが、上部建屋4の浮上がり(上側固定部材15の下側固定部材14に対する上方向への離間)後に生じる上側固定部材15と下側固定部材14との接触による衝撃を復元力(反力)により緩和する緩衝部材として機能する。   A housing portion 25 is formed by the housing groove portion 18 of the upper fixing member 15 and the upper surface of the lower fixing member 14 that closes the opening of the housing groove portion 18. That is, the accommodating portion 25 is formed between the lower fixing member 14 and the upper fixing member 15. The housing portion 25 accommodates the substantially annular elastic body 30 in a state compressed in the vertical direction. The elastic body 30 has a restoring force, and is formed in a size that partially protrudes from the housing groove 18 in a state where no force is applied. As will be described in detail later, the elastic body 30 has an upper fixing member 15 and a lower fixing member 14 that are generated after the upper building 4 is lifted (separated upward from the lower fixing member 14 of the upper fixing member 15). It functions as a cushioning member that relieves the impact caused by the contact by the restoring force (reaction force).

次に、本発明のすべり支承及び免震システムの第1の実施の形態における作用を図3、図5乃至図8を用いて説明する。   Next, the operation of the sliding bearing and seismic isolation system according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 5 to 8.

図5は図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋における水平方向の地震動の入力時の状態を示す説明図、図6は図1に示す本発明のすべり支承及び免震システムの第1の実施の形態を採用した免震建屋における過大な地震動の入力時の状態を示す説明図、図7は図3に示す本発明のすべり支承の第1の実施の形態における過大な地震動の入力時の浮上がり状態を示す説明図、図8は図3に示す本発明のすべり支承の第1の実施の形態における浮上がり後の接触時の状態を示す説明図である。なお、図5乃至図8において、図1乃至図4に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。   FIG. 5 is an explanatory diagram showing a state when a horizontal ground motion is input in the seismic isolation building adopting the first embodiment of the sliding bearing and seismic isolation system of the present invention shown in FIG. 1, and FIG. FIG. 7 is an explanatory diagram showing a state when an excessive earthquake motion is input in the seismic isolation building adopting the first embodiment of the sliding bearing and seismic isolation system of the present invention shown in FIG. 7, and FIG. 7 is a diagram of the sliding bearing of the present invention shown in FIG. FIG. 8 is an explanatory view showing a lifted state when an excessive earthquake motion is input in the first embodiment, and FIG. 8 is a state at the time of contact after the lift in the first embodiment of the sliding bearing of the present invention shown in FIG. It is explanatory drawing which shows. 5 to 8, the same reference numerals as those shown in FIGS. 1 to 4 are the same parts, and detailed description thereof is omitted.

地震力の作用しない静止状態の場合、図3に示すように、すべり支承10は、上部建屋4を支持しているので、すべり支承10には、鉛直方向に圧縮荷重が作用する。すべり支承10では、弾性体30の全体を上下方向に圧縮した状態で収容部25内に収容することで、上側固定部材15の下面を下側固定部材14の上面に当接するように構成されているので、鉛直方向の圧縮荷重は、弾性体30を介さずに、上側固定部材15から下側固定部材14に直接伝達される。この圧縮荷重は、更に、下側固定部材14に固定した上側すべり部材12及び上側すべり部材12に当接している下側すべり部材11に伝達される。   In the stationary state where no seismic force is applied, as shown in FIG. 3, the sliding bearing 10 supports the upper building 4, so that a compressive load acts on the sliding bearing 10 in the vertical direction. The sliding support 10 is configured such that the lower surface of the upper fixing member 15 is brought into contact with the upper surface of the lower fixing member 14 by accommodating the entire elastic body 30 in the accommodating portion 25 in a state compressed in the vertical direction. Therefore, the compressive load in the vertical direction is directly transmitted from the upper fixing member 15 to the lower fixing member 14 without passing through the elastic body 30. This compressive load is further transmitted to the upper sliding member 12 fixed to the lower fixing member 14 and the lower sliding member 11 in contact with the upper sliding member 12.

このように、鉛直方向の圧縮荷重がすべり支承10に作用する静止状態において、上側固定部材15の下面と下側固定部材14の上面とを当接させることで、鉛直方向の圧縮荷重を、弾性体30を介さずに、上側すべり部材12及び下側すべり部材11に伝達することができる。このため、すべり支承10の鉛直方向の高い剛性を確保することができる。したがって、鉛直方向の圧縮荷重を弾性部材が支持する従来構造のすべり支承の場合と比較して、すべり支承1基当たりの支持荷重を大きくすることができる。その結果、免震システムに用いるすべり支承10や積層ゴム支承5の設置数を低減できる。また、鉛直方向の圧縮荷重を、弾性体30を介さずに、上側すべり部材12及び下側すべり部材11に伝達しているので、静止状態での上部建屋4を支持荷重等の作用力を考慮せずに弾性体30の設計が可能となる。   In this way, in a stationary state where the vertical compressive load acts on the sliding bearing 10, the vertical compressive load is elastically caused by bringing the lower surface of the upper fixing member 15 and the upper surface of the lower fixing member 14 into contact with each other. It can be transmitted to the upper sliding member 12 and the lower sliding member 11 without passing through the body 30. For this reason, the high rigidity of the vertical direction of the sliding bearing 10 is securable. Therefore, the supporting load per one sliding bearing can be increased as compared with a sliding bearing having a conventional structure in which a vertical compressive load is supported by an elastic member. As a result, the number of sliding supports 10 and laminated rubber supports 5 used in the seismic isolation system can be reduced. Further, since the compressive load in the vertical direction is transmitted to the upper sliding member 12 and the lower sliding member 11 without passing through the elastic body 30, the upper building 4 in a stationary state is considered in the acting force such as the support load. Without this, the elastic body 30 can be designed.

次に、図5に示すように、ある範囲内の大きさの水平方向及び鉛直方向の地震動が免震建屋1に作用した場合、下部基礎版2から入力される地震動による上部建屋4の変位に対して、積層ゴム支承5が変形すると共に、すべり支承10が変位する。免震層3は、地震動の入力に対して積層ゴム支承5の変形やすべり支承10の変位により入力エネルギーを消費するので、上部建屋4に伝達される地震荷重を低減することができる。その結果、上部建屋4の応答が低減される。   Next, as shown in FIG. 5, when horizontal and vertical ground motion within a certain range acts on the seismic isolation building 1, the displacement of the upper building 4 due to the ground motion input from the lower base plate 2 On the other hand, the laminated rubber bearing 5 is deformed and the sliding bearing 10 is displaced. The seismic isolation layer 3 consumes input energy due to the deformation of the laminated rubber bearing 5 and the displacement of the sliding bearing 10 in response to the input of ground motion, so that the seismic load transmitted to the upper building 4 can be reduced. As a result, the response of the upper building 4 is reduced.

具体的には、図3に示すすべり支承10では、上側固定部材15の突部17が下側固定部材14の凹部16に嵌合しているので、水平方向の地震動に対して、上側固定部材15が下側固定部材14に対して相対的に摺動することはない。このため、上部建屋4の下部基礎版2に対する相対的な水平変位に伴って、下側固定部材14及び上側固定部材15が一体となって水平方向に変位し、それによって、上側すべり部材12が下側すべり部材11上を摺動する。このとき、下側すべり部材11の上面(すべり面)と上側すべり部材12の下面(すべり面)との間の摩擦係数と、すべり支承10の支持荷重の積として求まる摩擦力が生じる。この摩擦力が地震荷重に対して抵抗することで、上部建屋4の応答が低減される。また、図5に示す積層ゴム支承5には、積層ゴム6の変形が元に戻る復元力が生じ、この復元力により上部建屋4が元の位置に復帰する。   Specifically, in the sliding bearing 10 shown in FIG. 3, since the protrusion 17 of the upper fixing member 15 is fitted in the recess 16 of the lower fixing member 14, the upper fixing member against horizontal earthquake motion. 15 does not slide relative to the lower fixing member 14. For this reason, with the relative horizontal displacement of the upper building 4 with respect to the lower foundation plate 2, the lower fixing member 14 and the upper fixing member 15 are integrally displaced in the horizontal direction, whereby the upper sliding member 12 is displaced. Slide on the lower sliding member 11. At this time, a frictional force is obtained as a product of the coefficient of friction between the upper surface (sliding surface) of the lower sliding member 11 and the lower surface (sliding surface) of the upper sliding member 12 and the support load of the sliding bearing 10. This frictional force resists the earthquake load, so that the response of the upper building 4 is reduced. Further, in the laminated rubber support 5 shown in FIG. 5, a restoring force is generated in which the deformation of the laminated rubber 6 is restored, and the upper building 4 is returned to the original position by the restoring force.

次いで、過大な地震動が作用した場合、図6に示すように、積層ゴム支承5が大きく変形すると共にすべり支承10が大きく変位し、上部建屋4のロッキング挙動が発生する。このため、上部建屋4の一方の端部が浮き上がり、免震層3端部の鉛直変位が図5に示す場合よりも増大する。このため、図7に示すように、すべり支承10の上側固定部材15が下側固定部材14に対して上方向に離間し、上側固定部材15と下側固定部材14との間に空間が生じる。これにより、弾性体30の拘束条件が全面拘束から下端自由拘束へ変化する。このため、弾性体30は、その復元力により、その一部が上側固定部材15の収容溝部18から下側にはみ出た状態となる。   Next, when excessive earthquake motion acts, as shown in FIG. 6, the laminated rubber bearing 5 is greatly deformed and the sliding bearing 10 is largely displaced, and the locking behavior of the upper building 4 occurs. For this reason, one edge part of the upper building 4 floats, and the vertical displacement of the seismic isolation layer 3 edge part increases more than the case where it shows in FIG. For this reason, as shown in FIG. 7, the upper fixing member 15 of the sliding bearing 10 is separated upward with respect to the lower fixing member 14, and a space is generated between the upper fixing member 15 and the lower fixing member 14. . As a result, the constraint condition of the elastic body 30 changes from full surface constraint to lower end free constraint. For this reason, a part of the elastic body 30 protrudes downward from the accommodation groove portion 18 of the upper fixing member 15 due to the restoring force.

その後、図8に示すように、上部建屋4の自重や逆向きのロッキング挙動により上側固定部材15が下側固定部材14に対して再接触する。この再接触の際、弾性体30は、その一部が収容溝部18から下側にはみ出た状態であるので、下側固定部材14の上面と上側固定部材15の収容溝部18の間で圧縮される。この弾性体30の圧縮変形によって生じる反力(復元力)によって、上側固定部材15と下側固定部材14との接触による衝撃が緩和される。つまり、上部建屋4に入力される衝撃荷重が低減される。   After that, as shown in FIG. 8, the upper fixing member 15 comes into contact with the lower fixing member 14 again due to the weight of the upper building 4 or the reverse locking behavior. At the time of this re-contact, the elastic body 30 is in a state where a part of the elastic body 30 protrudes downward from the housing groove portion 18, and is compressed between the upper surface of the lower fixing member 14 and the housing groove portion 18 of the upper fixing member 15. The The reaction force (restoring force) generated by the compression deformation of the elastic body 30 reduces the impact caused by the contact between the upper fixing member 15 and the lower fixing member 14. That is, the impact load input to the upper building 4 is reduced.

本実施の形態においては、図7及び図8に示すように、下側固定部材14の凹部16に上側固定部材15の突部17を嵌合させる構造にすることで、上部建屋4の浮上がりの際に生じる上側固定部材15の下側固定部材14からの脱落の防止を図ることができる。このため、上側固定部材15は、下側固定部材14に対して上部建屋4の浮上がり前の元の位置に復帰することができる。   In the present embodiment, as shown in FIGS. 7 and 8, the upper building 4 is lifted by adopting a structure in which the protrusions 17 of the upper fixing member 15 are fitted into the recesses 16 of the lower fixing member 14. In this case, it is possible to prevent the upper fixing member 15 from falling off the lower fixing member 14. For this reason, the upper fixing member 15 can return to the original position before the upper building 4 is lifted with respect to the lower fixing member 14.

また、本実施の形態においては、図6に示すように、引張力に弱い積層ゴム支承5を内側に配置することで、上部建屋4のロッキング挙動よる浮上がり時における免震層3の端部の鉛直方向の過大な変位が積層ゴム支承5に生じないようにしている。このため、積層ゴム6の損傷の抑制を図ることができる。   Moreover, in this Embodiment, as shown in FIG. 6, the edge part of the seismic isolation layer 3 at the time of the lift by the rocking behavior of the upper building 4 is arrange | positioned inside by arrange | positioning the laminated rubber bearing 5 weak to a tensile force. The excessive displacement in the vertical direction is prevented from occurring in the laminated rubber bearing 5. For this reason, it is possible to suppress damage to the laminated rubber 6.

上述した本発明のすべり支承及び免震システムの第1の実施の形態によれば、上側固定部材15の下面を下側固定部材14の上面に当接させた状態で、下側固定部材14と上側固定部材15との間に形成した収容部25に復元力を有する弾性体(緩衝部材)30を収容することで、地震動の入力のない静止状態での上部建屋(上部構造物)4の重量の支持荷重等の作用力を弾性体(緩衝部材)30に作用させないようにしたので、地震動の入力による上部建屋(上部構造物)4の浮き上がり後の接触時に入力される上部建屋(上部構造物)4への衝撃荷重を弾性体(緩衝部材)30により低減することができると共に、静止状態での作用力に制約されることなく弾性体(緩衝部材)30を設計することができる。   According to the above-described first embodiment of the sliding support and seismic isolation system of the present invention, the lower fixing member 14 and the lower fixing member 14 are in contact with the lower surface of the upper fixing member 15 in contact with the upper surface of the lower fixing member 14. The weight of the upper building (upper structure) 4 in a stationary state without the input of earthquake motion by accommodating the elastic body (buffer member) 30 having restoring force in the accommodating portion 25 formed between the upper fixing member 15 and The upper building (upper structure) that is input when the upper building (upper structure) 4 is lifted by the input of the seismic motion is prevented from acting on the elastic body (buffer member) 30. ) The impact load on 4 can be reduced by the elastic body (buffer member) 30, and the elastic body (buffer member) 30 can be designed without being restricted by the acting force in a stationary state.

[第1の実施の形態の変形例]
次に、本発明のすべり支承及び免震システムの第1の実施の形態の変形例を図9及び図10を用いて説明する。
図9は本発明のすべり支承の第1の実施の形態の変形例を示す縦断面図、図10は図9に示す本発明のすべり支承の第1の実施の形態の変形例における過大な地震動の入力時の浮上がり状態を示す説明図である。なお、図9及び図10において、図1乃至図8に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
[Modification of First Embodiment]
Next, a modification of the first embodiment of the sliding bearing and seismic isolation system of the present invention will be described with reference to FIGS.
FIG. 9 is a longitudinal sectional view showing a modification of the first embodiment of the sliding bearing of the present invention, and FIG. 10 is an excessive earthquake motion in the modification of the first embodiment of the sliding bearing of the present invention shown in FIG. It is explanatory drawing which shows the floating state at the time of input. 9 and 10, the same reference numerals as those shown in FIG. 1 to FIG. 8 are the same parts, and detailed description thereof will be omitted.

第1の実施の形態は、緩衝部材としての弾性体30を圧縮状態で収容部25に収容するものである。それに対して、図9に示す本発明のすべり支承の第1の実施の形態の変形例は、緩衝部材として弾塑性体30Aを用いると共に、弾塑性体30Aの下端部及び上端部をそれぞれ下側固定部材14及び上側固定部材15に固定した状態で弾塑性体30Aを収容部25に収容するものである。つまり、弾塑性体30Aを圧縮状態で収容部25に収容する必要はない。   1st Embodiment accommodates the elastic body 30 as a buffer member in the accommodating part 25 in a compression state. On the other hand, the modification of the first embodiment of the sliding bearing of the present invention shown in FIG. 9 uses an elastic-plastic body 30A as a buffer member, and the lower end portion and the upper end portion of the elastic-plastic body 30A are respectively set on the lower side. The elastic-plastic body 30 </ b> A is accommodated in the accommodating portion 25 in a state of being fixed to the fixing member 14 and the upper fixing member 15. That is, it is not necessary to accommodate the elastic-plastic body 30A in the accommodating portion 25 in a compressed state.

過大な地震動が作用した場合、図10に示すように、弾塑性体30Aの下端部及び上端部がそれぞれ下側固定部材14及び上側固定部材15に固定されているので、上部建屋4の浮上がりによる上側固定部材15の下側固定部材14に対する上方向への離間に伴い、弾塑性体30Aは引き延ばされる。その後、上側固定部材15と下側固定部材14との再接触の際に弾塑性体30Aが押し潰される。このように、上部建屋4の浮上がりが生じると、弾塑性体30Aに強制変形を与えることができ、それによって、上側固定部材15と下側固定部材14との再接触時に生じる衝撃を減衰することができる。   When excessive earthquake motion is applied, the lower end and upper end of the elastic-plastic body 30A are fixed to the lower fixing member 14 and the upper fixing member 15, respectively, as shown in FIG. The elastic-plastic body 30 </ b> A is stretched along with the upward separation from the lower fixing member 14 by the upper fixing member 15. Thereafter, the elastic-plastic body 30 </ b> A is crushed when the upper fixing member 15 and the lower fixing member 14 are recontacted. As described above, when the upper building 4 is lifted, the elastic-plastic body 30A can be forcibly deformed, thereby attenuating the impact generated when the upper fixing member 15 and the lower fixing member 14 come into contact again. be able to.

上述した本発明のすべり支承及び免震システムの第1の実施の形態の変形例によれば、前述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described modification of the first embodiment of the sliding bearing and seismic isolation system of the present invention, the same effects as those of the first embodiment can be obtained.

また、本実施の形態によれば、上部建屋4の浮上がり後の衝撃を弾塑性体30Aの弾塑性変形により緩和するので、緩衝部材として弾性体30を用いる場合よりも、すべり支承10Aの緩衝性能が向上する。   Further, according to the present embodiment, since the impact after the upper building 4 is lifted is mitigated by the elastic-plastic deformation of the elastic-plastic body 30A, the cushion of the sliding support 10A is more than that when the elastic body 30 is used as the buffer member. Performance is improved.

[第2の実施の形態]
次に、本発明のすべり支承及び免震システムの第2の実施の形態を図11乃至図13を用いて説明する。
図11は本発明のすべり支承の第2の実施の形態を示す縦断面図、図12は図11に示す本発明のすべり支承の第2の実施の形態の一部を構成する緩衝用リングを示す平面図、図13は図11に示す本発明のすべり支承の第2の実施の形態における過大な地震動の入力時の浮上がり状態を示す説明図である。なお、図11乃至図13において、図1乃至図10に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
[Second Embodiment]
Next, a second embodiment of the sliding support and seismic isolation system of the present invention will be described with reference to FIGS.
FIG. 11 is a longitudinal sectional view showing a second embodiment of the sliding support of the present invention, and FIG. 12 shows a buffer ring constituting a part of the second embodiment of the sliding support of the present invention shown in FIG. FIG. 13 is an explanatory view showing a floating state when an excessive earthquake motion is input in the second embodiment of the sliding bearing of the present invention shown in FIG. 11 to 13, the same reference numerals as those shown in FIGS. 1 to 10 are the same parts, and detailed description thereof is omitted.

第1の実施の形態は、上側固定部材15の下面に設けた収容溝部18と収容溝部18の開口部を閉塞する下側固定部材14の上面とで形成した収容部25に緩衝部材としての弾性体30を圧縮状態で収容するものである。それに対して、図11に示す本発明のすべり支承の第2の実施の形態は、緩衝部材としての緩衝用リング30Bを下側固定部材14Bの上面及び上側固定部材15Bの下面の外周部に形成した円環状の収容部25Bに収容するものである。   In the first embodiment, the accommodating portion 25 formed by the accommodating groove portion 18 provided on the lower surface of the upper fixing member 15 and the upper surface of the lower fixing member 14 that closes the opening of the accommodating groove portion 18 is elastic as a buffer member. The body 30 is accommodated in a compressed state. On the other hand, in the second embodiment of the sliding bearing of the present invention shown in FIG. 11, a buffer ring 30B as a buffer member is formed on the outer peripheral portion of the upper surface of the lower fixing member 14B and the lower surface of the upper fixing member 15B. It accommodates in the annular | circular shaped accommodating part 25B.

具体的には、下側固定部材14Bの上面の外周部には、第1の円錐面19が形成されている。上側固定部材15Bの下面の外周部には、第2の円錐面20が形成されている。下側固定部材14Bの第1の円錐面19と上側固定部材15Bの第2の円錐面20とにより、略円環状の収納部25Bが形成されている。   Specifically, a first conical surface 19 is formed on the outer peripheral portion of the upper surface of the lower fixing member 14B. A second conical surface 20 is formed on the outer periphery of the lower surface of the upper fixing member 15B. A substantially annular storage portion 25B is formed by the first conical surface 19 of the lower fixing member 14B and the second conical surface 20 of the upper fixing member 15B.

収容部25Bには、緩衝用リング30Bが収容されている。緩衝用リング30Bは、例えば、図11及び図12に示すように、復元力を有する材料、例えば金属によりC形に形成され、収容部25Bに収容された状態で固定部材13Bを締め付けるばね本体部31と、ばね本体部31に設けられ、ばね本体部31の締付力を調整可能な締付力調整機構32とで構成されている。緩衝用リング30Bは、詳細は後述するが、軸方向の圧縮荷重に応じた復元力が生じるものであり、上側固定部材15Bの浮上がり後の接触時の衝撃を復元力(反力)により緩和する緩衝部材として機能する。   A buffering ring 30B is accommodated in the accommodating portion 25B. For example, as shown in FIGS. 11 and 12, the buffer ring 30 </ b> B is formed in a C shape by a material having a restoring force, such as metal, and is a spring main body portion that tightens the fixing member 13 </ b> B in a state of being accommodated in the accommodating portion 25 </ b> B 31 and a tightening force adjusting mechanism 32 that is provided in the spring main body 31 and can adjust the tightening force of the spring main body 31. Although the details of the buffer ring 30B will be described later, a restoring force corresponding to the axial compressive load is generated, and the impact at the time of contact after the upper fixing member 15B is lifted is reduced by the restoring force (reaction force). It functions as a buffer member.

ばね本体部31は、その内周側に、下側固定部材14Bの第1の円錐面19に当接する第1のテーパ面31aと、上側固定部材15Bの第2の円錐面20に当接する第2のテーパ面31bとを有している。締付力調整機構32は、ばね本体部31のC形の両端部における径方向外側にそれぞれ設けた取付部33と、一方(図12では左側)の取付部33に固定した取付用ナット34と、取付用ナット34に螺合し、他方(図12では右側)の取付部33を貫通するねじ35と、ねじ35に対するねじ込み量を調整することでばね本体部31の締付力を調整可能な調整ナット36とで構成されている。   The spring main body 31 has a first tapered surface 31a that contacts the first conical surface 19 of the lower fixing member 14B and a second conical surface 20 of the upper fixing member 15B on the inner peripheral side thereof. 2 taper surfaces 31b. The tightening force adjusting mechanism 32 includes a mounting portion 33 provided on each radially outer side at both ends of the C shape of the spring main body portion 31, and a mounting nut 34 fixed to one (left side in FIG. 12) mounting portion 33. The tightening force of the spring body 31 can be adjusted by adjusting the screw 35 that is screwed into the mounting nut 34 and passes through the other mounting portion 33 (right side in FIG. 12) and the screwing amount with respect to the screw 35. And an adjustment nut 36.

次に、本発明のすべり支承及び免震システムの第2の実施の形態における作用を図11乃至図13を用いて説明する。   Next, the effect | action in 2nd Embodiment of the sliding support and seismic isolation system of this invention is demonstrated using FIG. 11 thru | or FIG.

図11に示すように、上側固定部材15Bの下面が下側固定部材14Bの上面に当接した状態で、緩衝用リング30Bを固定部材13Bの収容部25Bに配置する。その後、図12に示す締付力調整機構32により、ばね本体部31の締付力を調整する。具体的には、調整ナット36のねじ35に対するねじ込み量を調整する。これにより、緩衝用リング30Bは、ばね本体部31の径が収容部25Bの径と同一であるが、その円弧の長さが調整ナット36のねじ込み量に応じて締付力の調整前よりも長くなる。つまり、ばね本体部31のC形の両端部の隙間幅Wが締付力の調整前よりも小さくなる。   As shown in FIG. 11, with the lower surface of the upper fixing member 15B in contact with the upper surface of the lower fixing member 14B, the buffering ring 30B is disposed in the accommodating portion 25B of the fixing member 13B. Thereafter, the tightening force of the spring body 31 is adjusted by the tightening force adjusting mechanism 32 shown in FIG. Specifically, the screwing amount of the adjustment nut 36 with respect to the screw 35 is adjusted. Thus, the buffer ring 30B has the same diameter as that of the accommodating portion 25B, but the length of the arc is longer than that before adjusting the tightening force according to the screwing amount of the adjusting nut 36. become longer. That is, the gap width W at both ends of the C shape of the spring body 31 is smaller than that before adjusting the tightening force.

地震動が作用して上部建屋4の浮上がりが発生した場合、図13に示すように、上側固定部材15Bの上方への移動に伴い、緩衝用リング30Bに対する軸方向の圧縮荷重が小さくなる。このため、緩衝用リング30Bには、ばね本体部31の円弧の長さが元の長さに戻ろうとする復元力が生じる。すなわち、ばね本体部31は縮径する。これにより、緩衝用リング30Bは、下側固定部材14Bの第1の円錐面19に沿って上方に移動し、その内周部の一部分が下側固定部材14Bの上面と上側固定部材15Bの下面の間の隙間に入り込んだ状態となる。   When the upper building 4 is lifted due to the seismic motion, the axial compressive load on the buffering ring 30B becomes smaller as the upper fixing member 15B moves upward, as shown in FIG. For this reason, a restoring force is generated in the buffer ring 30B so that the arc length of the spring main body 31 returns to the original length. That is, the spring body 31 is reduced in diameter. As a result, the buffer ring 30B moves upward along the first conical surface 19 of the lower fixing member 14B, and a part of the inner periphery thereof is the upper surface of the lower fixing member 14B and the lower surface of the upper fixing member 15B. It will be in the state where it entered into the gap between.

その後、上側固定部材15Bが下側固定部材14Bに再び接触する際に、下側固定部材14Bの第1の円錐面19及び上側固定部材15Bの第2の円錐面20に当接する緩衝用リング30Bに対して、軸方向の圧縮荷重が増大する。つまり、緩衝用リング30Bは、径方向外側に押し広げられる力を受ける。このとき、緩衝用リング30Bには、緩衝用リング30Bを押し広げる力に抗して緩衝用リング30Bの締付力に比例した反力(復元力)が生じるので、下側固定部材14Bと上側固定部材15Bの接触による衝撃が緩和される。   Thereafter, when the upper fixing member 15B comes into contact with the lower fixing member 14B again, the buffering ring 30B that contacts the first conical surface 19 of the lower fixing member 14B and the second conical surface 20 of the upper fixing member 15B. On the other hand, the axial compressive load increases. That is, the buffer ring 30B receives a force that is spread outward in the radial direction. At this time, a reaction force (restoring force) proportional to the tightening force of the buffering ring 30B is generated in the buffering ring 30B against the force of expanding the buffering ring 30B. The impact caused by the contact of the fixing member 15B is reduced.

上述した本発明のすべり支承及び免震システムの第2の実施の形態によれば、前述した第1の実施の形態と同様の効果を得ることができる。   According to the second embodiment of the sliding bearing and seismic isolation system of the present invention described above, the same effects as those of the first embodiment described above can be obtained.

また、本実施の形態によれば、緩衝用リング30Bを固定部材13Bの外周側に形成した収容部25Bに収容するようにすべり支承10Bを構成しているので、すべり支承10Bの固定部材13B等を下部基礎版2と上部建屋4との間に据え付けた後でも緩衝用リング30Bの設置が可能となる。   In addition, according to the present embodiment, the sliding support 10B is configured so that the buffering ring 30B is accommodated in the accommodating portion 25B formed on the outer peripheral side of the fixing member 13B, so the fixing member 13B of the sliding support 10B, etc. It is possible to install the buffer ring 30 </ b> B even after installing between the lower foundation 2 and the upper building 4.

さらに、本実施の形態によれば、緩衝用リング30Bの締付力を締付力調整機構32で調整可能な構成としているので、緩衝用リング30Bの緩衝性能を容易に調整することができる。   Furthermore, according to the present embodiment, since the tightening force of the buffer ring 30B can be adjusted by the tightening force adjusting mechanism 32, the buffer performance of the buffer ring 30B can be easily adjusted.

また、本実施の形態によれば、締付力調整機構32を主にねじ35と調整ナット36とで構成しているので、簡易な構成で緩衝用リング30Bの締付力を調整することができる。   Further, according to the present embodiment, the tightening force adjusting mechanism 32 is mainly composed of the screw 35 and the adjusting nut 36, so that the tightening force of the buffer ring 30B can be adjusted with a simple configuration. it can.

さらに、本実施の形態によれば、締付力調整機構32を固定部材13Bの外周側に位置するように構成しているので、すべり支承10Bの固定部材13B等を下部基礎版2と上部建屋4との間に据え付けた後でも緩衝用リング30Bの締付力の調整が可能となる。   Furthermore, according to the present embodiment, since the tightening force adjusting mechanism 32 is configured to be positioned on the outer peripheral side of the fixing member 13B, the fixing member 13B and the like of the sliding bearing 10B are connected to the lower foundation plate 2 and the upper building. Even after installing between 4 and 4, the tightening force of the buffer ring 30B can be adjusted.

なお、上述した第2の実施の形態においては、下側固定部材14B及び上側固定部材15Bの外周部に亘って形成した収容部25Bに緩衝用リング30Bを配置する例を示したが、緩衝用リングは、上側固定部材及び下側固定部材に対して、その軸方向の圧縮荷重の変動に応じた反力を生じる構造を有していれば、その形状や配置を限定するものではない。例えば、以下のような変形例が可能である。   In the above-described second embodiment, the example in which the buffer ring 30B is disposed in the housing portion 25B formed over the outer peripheral portions of the lower fixing member 14B and the upper fixing member 15B has been described. The shape and arrangement of the ring are not limited as long as the ring has a structure that generates a reaction force according to a change in the compressive load in the axial direction with respect to the upper fixing member and the lower fixing member. For example, the following modifications are possible.

[第2の実施の形態の変形例]
次に、本発明のすべり支承及び免震システムの第2の実施の形態の変形例を図14及び図15を用いて説明する。
図14は、本発明のすべり支承の第2の実施の形態の変形例の一例を示す縦断面図であり、上部建屋の浮上がり後の接触時の状態を示す図である。図15は、本発明のすべり支承の第2の実施の形態の変形例の他の例を示す縦断面図であり、上部建屋の浮上がり後の接触時の状態を示す図である。なお、図14及び図15において、図1乃至図13に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
先ず、本発明のすべり支承及び免震システムの第2の実施の形態の変形例の一例を図14を用いて説明する。
[Modification of Second Embodiment]
Next, a modification of the second embodiment of the sliding support and seismic isolation system of the present invention will be described with reference to FIGS.
FIG. 14: is a longitudinal cross-sectional view which shows an example of the modification of 2nd Embodiment of the sliding support of this invention, and is a figure which shows the state at the time of the contact after the upper building lifts. FIG. 15: is a longitudinal cross-sectional view which shows the other example of the modification of 2nd Embodiment of the sliding bearing of this invention, and is a figure which shows the state at the time of the contact after the upper building lifts. In FIG. 14 and FIG. 15, the same reference numerals as those shown in FIG. 1 to FIG.
First, an example of a modification of the second embodiment of the sliding bearing and seismic isolation system of the present invention will be described with reference to FIG.

第2の実施の形態は、下側固定部材14Bの第1の円錐面19と上側固定部材15Bの第2の円錐面20とにより形成した円環状の収容部25Bに緩衝用リング30Bを収容するものである。それに対して、図14に示す本発明のすべり支承の第2の実施の形態の変形例の一例は、下側固定部材14Bの第1の円錐面19と上側固定部材15Cの下面の外周部とにより形成した円環状の収容部25Cに緩衝用リング30Cを収容するものである。つまり、上側固定部材15Cの下面の外周部には、円錐面が形成されていない。また、緩衝用リング30Cのばね本体部31Cは、テーパ面として、下側固定部材14Bの第1の円錐面19に当接する第1のテーパ面31aのみを有している。   In the second embodiment, the buffer ring 30B is accommodated in an annular accommodating portion 25B formed by the first conical surface 19 of the lower fixing member 14B and the second conical surface 20 of the upper fixing member 15B. Is. On the other hand, an example of a modification of the second embodiment of the sliding bearing of the present invention shown in FIG. 14 includes the first conical surface 19 of the lower fixing member 14B and the outer peripheral portion of the lower surface of the upper fixing member 15C. The buffer ring 30C is accommodated in the annular accommodating portion 25C formed by the above. That is, a conical surface is not formed on the outer peripheral portion of the lower surface of the upper fixing member 15C. Further, the spring main body 31C of the buffer ring 30C has only the first tapered surface 31a contacting the first conical surface 19 of the lower fixing member 14B as the tapered surface.

本実施の形態においては、地震動が作用して上部建屋4の浮上がりが発生した場合、第2の実施の形態と同様に、上側固定部材15Cの上方への移動に伴い、緩衝用リング30Cがその復元力により縮径する。これにより、緩衝用リング30Cは、その内周部の一部分が下側固定部材14Bの上面と上側固定部材15Cの下面の間の隙間に入り込んだ状態となる。その後、上側固定部材15Cによる緩衝用リング30Cの下方向への押し下げに伴い、緩衝用リング30Cは径方向外側に押し広げられる力を受ける。このとき、緩衝用リング30Cには、緩衝用リング30Cを押し広げる力に抗して緩衝用リング30Cの締付力に比例した反力(復元力)が生じ、上側固定部材15Cと下側固定部材14Bの接触による衝撃が緩和される。   In the present embodiment, when the seismic motion acts and the upper building 4 is lifted, the buffer ring 30C is moved along with the upward movement of the upper fixing member 15C as in the second embodiment. The diameter is reduced by the restoring force. As a result, the buffer ring 30C is in a state in which a part of its inner peripheral portion enters a gap between the upper surface of the lower fixing member 14B and the lower surface of the upper fixing member 15C. Thereafter, as the upper fixing member 15C pushes down the buffer ring 30C in the downward direction, the buffer ring 30C receives a force that is pushed outward in the radial direction. At this time, a reaction force (restoring force) proportional to the tightening force of the buffer ring 30C is generated in the buffer ring 30C against the force of spreading the buffer ring 30C, and the upper fixing member 15C and the lower fixing member are fixed. The impact due to the contact of the member 14B is reduced.

次に、本発明のすべり支承及び免震システムの第2の実施の形態の変形例の他の例を図15を用いて説明する。
第2の実施の形態は、下側固定部材14Bの上面及び上側固定部材15Bの下面の外周部に亘って形成した円環状の収容部25Bに緩衝用リング30Bをその内周側が当接するように収容するものである。それに対して、図15に示す本発明のすべり支承の第2の実施の形態の変形例の他の例は、下側固定部材14Dの上面に設けた第1の収容溝部21と上側固定部材15Dの下面に設けた第2の収容溝部22とにより形成した円環状の収容部25Dに緩衝用リング30Dをその外周側が当接するように収容するものである。
Next, another example of the modification of the second embodiment of the sliding support and seismic isolation system of the present invention will be described with reference to FIG.
In the second embodiment, the buffer ring 30B is in contact with the annular housing portion 25B formed over the outer peripheral portion of the upper surface of the lower fixing member 14B and the lower surface of the upper fixing member 15B. It is something to house. On the other hand, another example of the modification of the second embodiment of the sliding bearing of the present invention shown in FIG. 15 is the first receiving groove portion 21 and the upper fixing member 15D provided on the upper surface of the lower fixing member 14D. The buffer ring 30D is accommodated in an annular accommodating portion 25D formed by the second accommodating groove portion 22 provided on the lower surface of the housing so that the outer peripheral side thereof abuts.

具体的には、下側固定部材14Dの第1の収容溝部21は、凹部16の外側に略円環状に形成され、その外周側に、上方向に向かって拡径する下側円錐面21aを有している。上側固定部材15Dの第2の収容溝部22は、突部17の外側に略円環状に形成され、その外周側に、下方向に拡径する上側円錐面22aを有している。   Specifically, the first receiving groove portion 21 of the lower fixing member 14D is formed in a substantially annular shape on the outer side of the concave portion 16, and a lower conical surface 21a whose diameter is increased upward is formed on the outer peripheral side thereof. Have. The second receiving groove portion 22 of the upper fixing member 15D is formed in a substantially annular shape on the outer side of the protrusion 17, and has an upper conical surface 22a that expands in the downward direction on the outer peripheral side thereof.

緩衝用リング30Dは、例えば、収容部25Dに収容された状態において、径方向内側に押し縮める力が作用するように形成された本体部31Dのみで構成されている。すなわち、緩衝用リング30Dの径は、収容部25Dに収容されている状態の方が無負荷の状態よりも小さい。ばね本体部31Dは、その外周側に、第1の収容溝部21の下側円錐面21aに当接する第1のテーパ面31cと、第2の収容溝部22の上側円錐面22aに当接する第2のテーパ面31dとを有している。   For example, the buffering ring 30 </ b> D includes only a main body 31 </ b> D that is formed so that a force to compress inward in the radial direction acts in the state of being accommodated in the accommodating portion 25 </ b> D. That is, the diameter of the buffer ring 30D is smaller in the state of being accommodated in the accommodating portion 25D than in the no-load state. The spring body portion 31D has a first tapered surface 31c that contacts the lower conical surface 21a of the first housing groove portion 21 and a second contact surface of the upper conical surface 22a of the second housing groove portion 22 on the outer peripheral side thereof. And a tapered surface 31d.

本実施の形態においては、地震動が作用して上部建屋4の浮上がりが発生した場合、上側固定部材15Dの上方への移動に伴い、緩衝用リング30Dは、その復元力により拡径する。これにより、緩衝用リング30Dは、その外周部の一部分が下側固定部材14Dの上面と上側固定部材15Dの下面の間の隙間に入り込んだ状態となる。その後、上側固定部材15Dによる緩衝用リング30Dの下方向への押し下げに伴い、緩衝用リング30Dは径方向内側に押し縮められる力を受ける。このとき、緩衝用リング30Dには、緩衝用リング30Dを押し縮める力に抗した反力(復元力)が生じ、上側固定部材15Dと下固定部材14Dの接触による衝撃が緩和される。   In the present embodiment, when the upper building 4 is lifted due to the seismic motion, the buffer ring 30D is expanded by its restoring force as the upper fixing member 15D moves upward. As a result, the buffer ring 30D is in a state in which a part of the outer peripheral portion enters a gap between the upper surface of the lower fixing member 14D and the lower surface of the upper fixing member 15D. Thereafter, the buffer ring 30D receives a force that is compressed inward in the radial direction as the buffer ring 30D is pushed downward by the upper fixing member 15D. At this time, a reaction force (restoring force) against the force that compresses and compresses the buffer ring 30D is generated in the buffer ring 30D, and the impact caused by the contact between the upper fixing member 15D and the lower fixing member 14D is reduced.

上述した本発明のすべり支承及び免震システムの第2の実施の形態の変形例によれば、前述した第2の実施の形態と同様な効果を得ることができる。   According to the above-described modification of the second embodiment of the sliding bearing and seismic isolation system of the present invention, the same effects as those of the second embodiment described above can be obtained.

また、第2の実施の形態の変形例の他の例によれば、下側固定部材及び上側固定部材が円柱状以外、例えば角柱状に形成されている場合でも、円環状の緩衝用リングを用いることができる。   According to another example of the modification of the second embodiment, even when the lower fixing member and the upper fixing member are formed in a shape other than a columnar shape, for example, a prismatic shape, Can be used.

[その他の実施の形態]
なお、上述した本発明の免震システムの第1乃至第2の実施の形態の変形例においては、免震システムを適用する構造物として免震建屋1を例に挙げて説明したが、免震建屋以外の工場設備や一般的な建築物等の構造物にも適用することができる。例えば、基礎上に設けた下部構造物としての下部建物と上部構造物としての上部建物で構成された建築物に適用することも可能である。また、下部構造物としての橋脚と上部構造物としての橋桁とで構成された橋梁等にも適用可能である。
[Other embodiments]
In the above-described modified examples of the first to second embodiments of the seismic isolation system of the present invention, the seismic isolation building 1 has been described as an example of a structure to which the seismic isolation system is applied. It can also be applied to structures other than buildings, such as factory equipment and general buildings. For example, the present invention can be applied to a building composed of a lower building as a lower structure and an upper building as an upper structure provided on the foundation. Further, the present invention can be applied to a bridge composed of a bridge pier as a lower structure and a bridge girder as an upper structure.

また、上述した実施の形態においては、すべり支承10と積層ゴム支承5とで構成した免震システムの例を示したが、複数のすべり支承10のみで構成する免震システムも可能である。この場合も、地震動の入力により生じる上部建屋4の浮上がり後の衝撃を緩和することができる。   In the above-described embodiment, the example of the seismic isolation system constituted by the sliding bearing 10 and the laminated rubber bearing 5 is shown, but the seismic isolation system constituted only by the plurality of sliding bearings 10 is also possible. Also in this case, it is possible to mitigate the impact after the upper building 4 is lifted due to the input of the earthquake motion.

なお、上述した実施の形態においては、上側固定部材15の突部17及び下側固定部材14の凹部16の断面形状を円形に、その設置位置を中央部にする例を示したが、突部及び凹部の断面形状や設置位置は、上部建屋4の浮上がりの際に生じる上側固定部材の下側固定部材からの脱落を防止可能であれば、任意である。   In the above-described embodiment, the example in which the cross-sectional shape of the protrusion 17 of the upper fixing member 15 and the recess 16 of the lower fixing member 14 is circular and the installation position is the center is shown. And the cross-sectional shape and installation position of a recessed part are arbitrary if it can prevent the drop-off from the lower side fixing member which arises when the upper building 4 floats.

また、上述した実施の形態においては、上側固定部材15Dに設けた突部17を下側固定部材14Dに設けた凹部16に嵌合させる構造の例を示したが、上側固定部材に凹部を設けると共に下側固定部材に突部を設けて、上側固定部材の凹部に下側固定部材の突部を嵌合させる構造も可能である。   In the above-described embodiment, the example in which the protrusion 17 provided on the upper fixing member 15D is fitted into the recess 16 provided on the lower fixing member 14D has been described. However, the upper fixing member is provided with the recess. A structure in which a protrusion is provided on the lower fixing member and the protrusion of the lower fixing member is fitted in the recess of the upper fixing member is also possible.

なお、上述した第1の実施の形態及びその変形例においては、上側固定部材15に設けた収容溝部18と収容溝部18の開口部を閉塞する下側固定部材14の上面とにより収容部25を形成した例を示したが、下側固定部材に設けた収容溝部とその収容溝部の開口部を閉塞する上側固定部材の下面とにより収容部を形成することも可能である。更には、上側固定部材に設けた収容溝部とその収容溝部の開口部を閉塞する下側固定部材の上面とにより第1の収容部を形成すると共に、下側固定部材に設けた収容溝部とその収容溝部の開口部を閉塞する上側固定部材の下面とにより第2の収容部を形成することも可能である。この場合、2つの緩衝部材により、上部建屋4の浮上がり後の接触時の衝撃を緩和することができる。   In the first embodiment described above and the modifications thereof, the accommodating portion 25 is formed by the accommodating groove portion 18 provided in the upper fixing member 15 and the upper surface of the lower fixing member 14 that closes the opening of the accommodating groove portion 18. Although the formed example is shown, it is also possible to form the accommodating portion by the accommodating groove portion provided in the lower fixing member and the lower surface of the upper fixing member that closes the opening of the accommodating groove portion. Furthermore, the first housing portion is formed by the housing groove portion provided in the upper fixing member and the upper surface of the lower fixing member that closes the opening of the housing groove portion, and the housing groove portion provided in the lower fixing member and the It is also possible to form the second accommodating portion by the lower surface of the upper fixing member that closes the opening of the accommodating groove. In this case, the impact at the time of contact after the upper building 4 is lifted can be reduced by the two buffer members.

また、上述した第1の実施の形態及びその変形例においては、緩衝部材としての弾性体30や弾塑性体30Aを円環状に形成した例を示したが、上部建屋4の浮上がり後の接触時の衝撃を緩和することが可能であれば、緩衝部材(弾性体や弾塑性体等)の形状や配置は任意である。例えば、三角形や四角形等の多角形環状に形成することも可能である。また、棒状の複数の緩衝部材を放射状に配置する構成も可能である。この場合、緩衝部材を収容する収容部を、緩衝部材の形状や配置に対応して形成する。   In the above-described first embodiment and its modification, the example in which the elastic body 30 or the elastic-plastic body 30A as the buffer member is formed in an annular shape is shown, but the contact after the upper building 4 is lifted is shown. If it is possible to mitigate the impact at the time, the shape and arrangement of the buffer member (elastic body, elastic-plastic body, etc.) are arbitrary. For example, it is possible to form a polygonal ring such as a triangle or a quadrangle. Moreover, the structure which arrange | positions several rod-shaped buffer members radially is also possible. In this case, the accommodating part which accommodates a buffer member is formed corresponding to the shape and arrangement | positioning of a buffer member.

また、上述した第1の実施の形態及びその変形例においては、固定部材13を円柱状に形成した例を示したが、固定部材の形状は、上部建屋4を支持可能であれば、任意である。   Further, in the above-described first embodiment and the modifications thereof, the example in which the fixing member 13 is formed in a columnar shape is shown. However, the shape of the fixing member is arbitrary as long as the upper building 4 can be supported. is there.

なお、上述した第1の実施の形態においては、緩衝部材として、弾性体30を用いた例を示したが、緩衝部材として、弾塑性体や粘弾性体を用いることも可能である。緩衝部材として弾塑性体を用いた場合、塑性変形によるエネルギー吸収分、弾性体30を用いる場合よりも上部建屋4の浮上がり後の接触時の衝撃の緩和を図ることができる。   In the above-described first embodiment, an example in which the elastic body 30 is used as the buffer member has been described. However, an elastic-plastic body or a viscoelastic body may be used as the buffer member. When an elastic-plastic body is used as the buffer member, energy absorption due to plastic deformation, and impact at the time of contact after the upper building 4 is lifted can be reduced compared to the case where the elastic body 30 is used.

また、上述した第2の実施の形態の変形例の一例においては、下側固定部材14Bの第1の円錐面19と上側固定部材15Cの下面の外周部とにより形成した収容部25Cに緩衝用リング30Cを収容する構成の例を示したが、上側固定部材の下面の外周部に設けた円錐面と下側固定部材の上面の外周部とにより形成した収容部に緩衝用リングを収容することも可能である。   Further, in an example of the modification of the second embodiment described above, the accommodating portion 25C formed by the first conical surface 19 of the lower fixing member 14B and the outer peripheral portion of the lower surface of the upper fixing member 15C is used for buffering. Although the example of the structure which accommodates the ring 30C was shown, accommodating a buffering ring in the accommodating part formed by the conical surface provided in the outer peripheral part of the lower surface of an upper side fixing member, and the outer peripheral part of the upper surface of a lower side fixing member Is also possible.

なお、上述した第2の実施の形態の変形例の他の例においては、下側固定部材14D及び上側固定部材15Dに設けた第1及び第2の収容溝部21a、22aにより収容部25Dを形成した構成の例を示したが、下側固定部材及び上側固定部材のいずれか一方に収容溝部を設け、その収容溝部とその収容溝部の開口部を閉塞する下側固定部材の上面又は上側固定部材の下面とにより収容部を形成することも可能である。更には、下側固定部材に設けた収容溝部とその収容溝部の開口部を閉塞する上側固定部材の下面とにより第1の収容部を形成すると共に、上側固定部材に設けた収容溝部とその収容溝部の開口部を閉塞する下側固定部材の上面とにより第2の収容部を形成することも可能である。この場合、2つの緩衝用リングにより、上部建屋4の浮上がり後の接触時の衝撃を緩和することができる。   In another example of the modification of the second embodiment described above, the accommodating portion 25D is formed by the first and second accommodating groove portions 21a and 22a provided in the lower fixing member 14D and the upper fixing member 15D. Although the example of the structure which showed was shown, the upper surface or upper side fixing member of the lower side fixing member which provides an accommodation groove part in any one of a lower side fixing member and an upper side fixing member, and obstruct | occludes the accommodation groove part and the opening part of the accommodation groove part It is also possible to form the accommodating portion with the lower surface of the. Further, the first receiving portion is formed by the receiving groove portion provided in the lower fixing member and the lower surface of the upper fixing member that closes the opening of the receiving groove portion, and the receiving groove portion provided in the upper fixing member and its receiving portion. It is also possible to form the second accommodating portion by the upper surface of the lower fixing member that closes the opening of the groove. In this case, the impact at the time of contact after the upper building 4 is lifted can be reduced by the two buffering rings.

また、上述した第2の実施の形態の変形例の他の例においては、第1及び第2の収容溝部21a、22aの外周側にそれぞれ下側及び上側円錐面21a、22aを設けた構成の例を示したが、第1及び第2の収容溝部の内周側にそれぞれ下側及び上側円錐面を設けることも可能である。この場合、緩衝用リングは、その内周部に、第1及び第2のテーパ面を有し、収容部に収容された状態において、径方向外側に押し広げる力が作用するように形成される必要がある。   Further, in another example of the modification of the second embodiment described above, the lower and upper conical surfaces 21a and 22a are provided on the outer peripheral sides of the first and second receiving groove portions 21a and 22a, respectively. Although an example is shown, it is also possible to provide a lower side and an upper side conical surface on the inner peripheral side of the first and second accommodation grooves, respectively. In this case, the shock-absorbing ring has first and second tapered surfaces on the inner peripheral portion thereof, and is formed such that a force that spreads radially outward acts in a state of being accommodated in the accommodating portion. There is a need.

なお、本発明は上述した第1乃至第2の実施の形態の変形例に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   The present invention is not limited to the modified examples of the first to second embodiments described above, and includes various modified examples. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace another configuration for a part of the configuration of each embodiment.

1…免震建屋(構造物)、 2…下部基礎版(下部構造物)、 3…免震層(免震システム)、 4…上部建屋(上部構造物)、 5…積層ゴム支承、 10、10A、10B、10C、10D…すべり支承、 11…下側すべり部材、 12…上側すべり部材、 14、14B、14D…下側固定部材、 15、15B、15C、15D…上側固定部材、 16…凹部、 17…突部、 18…収容溝部、 19…第1の円錐面(円錐面)、 20…第2の円錐面(円錐面)、 21…第1の収容溝部(収容溝部)、 21a…下側円錐面(円錐面)、 22…第2の収容溝部(収容溝部)、 22a…上側円錐面(円錐面)、 25、25B、25C、25D…収容部、 30…弾性体(緩衝部材)、 30A…弾塑性体(緩衝部材)、 30B、30C、30D…緩衝用リング(緩衝部材)、 31、31C、31D…ばね本体部、 31a、31c…第1のテーパ面、 31b、31d…第2のテーパ面、 32…締付力調整機構、 DESCRIPTION OF SYMBOLS 1 ... Base isolation building (structure), 2 ... Lower base version (lower structure), 3 ... Base isolation layer (base isolation system), 4 ... Upper building (upper structure), 5 ... Laminated rubber bearing, 10, 10A, 10B, 10C, 10D ... Slide bearing, 11 ... Lower sliding member, 12 ... Upper sliding member, 14,14B, 14D ... Lower fixing member, 15,15B, 15C, 15D ... Upper fixing member, 16 ... Recess 17 ... Projection, 18 ... Housing groove, 19 ... First conical surface (conical surface), 20 ... Second conical surface (conical surface), 21 ... First housing groove (housing groove), 21a ... Bottom Side conical surface (conical surface), 22 ... second accommodation groove (accommodation groove), 22a ... upper conical surface (conical surface), 25, 25B, 25C, 25D ... accommodation portion, 30 ... elastic body (buffer member), 30A: Elasto-plastic body (buffer member), 30B, 30 , 30D ... buffer ring (cushioning member), 31,31C, 31D ... spring body portion, 31a, 31c ... first tapered surface, 31b, 31d ... second tapered surface, 32 ... clamping force adjusting mechanism,

Claims (11)

構造物の下部構造物と上部構造物との間に設置されるすべり支承であって、
前記下部構造物上に固定される下側すべり部材と、
前記下側すべり部材上に配置され、前記下側すべり部材に対して相対的に摺動可能な上側すべり部材と、
前記上側すべり部材の上側に配置され、前記上側すべり部材が固定された下側固定部材と、
下面が前記下側固定部材の上面に当接すると共に上端部が前記上部構造物に固定される上側固定部材と、
前記下側固定部材と前記上側固定部材との間に形成された収容部と、
前記収容部内に配置され、前記上部構造物の浮上がり後の接触時の衝撃を復元力により緩和する緩衝部材とを備える
ことを特徴とするすべり支承。
A sliding bearing installed between the lower structure and the upper structure of the structure,
A lower sliding member fixed on the lower structure;
An upper sliding member disposed on the lower sliding member and slidable relative to the lower sliding member;
A lower fixing member that is disposed on the upper side of the upper sliding member and to which the upper sliding member is fixed;
An upper fixing member whose lower surface is in contact with the upper surface of the lower fixing member and whose upper end is fixed to the upper structure;
An accommodating portion formed between the lower fixing member and the upper fixing member;
A sliding bearing, comprising: a cushioning member disposed within the housing portion and for mitigating an impact at the time of contact after the upper structure is lifted by a restoring force.
請求項1に記載のすべり支承において、
前記下側固定部材の上面及び前記上側固定部材の下面の少なくとも一方に、収容溝部が設けられ、
前記収容部は、前記収容溝部と、前記収容溝部の開口部を閉塞する前記上側固定部材の下面又は前記下側固定部材の上面とにより形成される
ことを特徴とするすべり支承。
In the sliding support according to claim 1,
A housing groove is provided on at least one of the upper surface of the lower fixing member and the lower surface of the upper fixing member,
The sliding support, wherein the housing portion is formed by the housing groove portion and a lower surface of the upper fixing member or an upper surface of the lower fixing member that closes an opening of the housing groove portion.
請求項2に記載のすべり支承において、
前記緩衝部材は、その全体が圧縮状態で前記収容部に収容される
ことを特徴とするすべり支承。
In the sliding support according to claim 2,
The sliding support, wherein the cushioning member is entirely accommodated in the accommodating portion in a compressed state.
請求項2に記載のすべり支承において、
前記緩衝部材は、弾塑性体であり、
前記弾塑性体は、その上端部及び下端部がそれぞれ前記上側固定部材及び前記下側固定部材に固定された状態で、その全体が前記収容部に収容される
ことを特徴とするすべり支承。
In the sliding support according to claim 2,
The buffer member is an elastic-plastic body,
The elasto-plastic body is housed in the housing portion in a state where the upper end portion and the lower end portion thereof are fixed to the upper fixing member and the lower fixing member, respectively.
請求項1に記載のすべり支承において、
前記収容部は、円環状に形成されると共に円錐面を有し、
前記緩衝部材は、前記収容部の前記円錐面に当接するテーパ面を有し、軸方向の圧縮荷重により復元力が生じる緩衝用リングである
ことを特徴とするすべり支承。
In the sliding support according to claim 1,
The accommodating portion is formed in an annular shape and has a conical surface,
The sliding support according to claim 1, wherein the buffer member is a buffer ring having a tapered surface that abuts on the conical surface of the housing portion and generating a restoring force by an axial compressive load.
請求項5に記載のすべり支承において、
前記下側固定部材及び上側固定部材は、円柱状に形成され、
前記収納部は、前記下側固定部材及び前記上側固定部材の外周部により形成され、
前記緩衝用リングは、C形に形成されると共に、その内周側に前記テーパ面を有するばね本体部を備える
ことを特徴とするすべり支承。
In the sliding support according to claim 5,
The lower fixing member and the upper fixing member are formed in a columnar shape,
The storage portion is formed by outer peripheral portions of the lower fixing member and the upper fixing member,
The shock-absorbing ring is formed in a C shape and includes a spring body portion having the tapered surface on the inner peripheral side thereof.
請求項6に記載のすべり支承において、
前記緩衝用リングは、前記ばね本体部に設けられ、前記ばね本体部の締付力を調整可能な締付力調整機構を更に備える
ことを特徴とするすべり支承。
In the sliding support according to claim 6,
The sliding support according to claim 1, wherein the buffer ring further includes a tightening force adjusting mechanism that is provided on the spring main body and is capable of adjusting a tightening force of the spring main body.
請求項5に記載のすべり支承において、
前記下側固定部材の上面及び前記上側固定部材の下面の少なくとも一方に、前記円錐面を有する円環状の収容溝部が設けられ、
前記収納部は、少なくともその一部が前記収容溝部により形成され、
前記緩衝用リングは、C形に形成されると共に、前記テーパ面を有するばね本体部を備える
ことを特徴とするすべり支承。
In the sliding support according to claim 5,
At least one of the upper surface of the lower fixing member and the lower surface of the upper fixing member is provided with an annular housing groove having the conical surface,
At least a part of the storage part is formed by the storage groove part,
The shock-absorbing ring is formed in a C shape and includes a spring main body portion having the tapered surface.
請求項1乃至8のいずれか1項に記載のすべり支承において、
前記下側固定部材は、その上面に、凹部又は突部を有し、
前記上側固定部材は、その下面に、前記下側固定部材の前記凹部又は前記突部に嵌合する突部又は凹部を有する
ことを特徴とするすべり支承。
In the sliding support of any one of Claims 1 thru | or 8,
The lower fixing member has a recess or a protrusion on its upper surface,
The upper support member has, on its lower surface, a protrusion or a recess that fits into the recess or the protrusion of the lower fixing member.
構造物の下部構造物と上部構造物との間に介在し、上部構造物に入力される地震動荷重を低減する免震システムであって、
少なくとも複数のすべり支承を備え、
前記複数のすべり支承の各々は、
前記下部構造物上に固定される下側すべり部材と、
前記下側すべり部材上に配置され、前記下側すべり部材に対して相対的に摺動可能な上側すべり部材と、
前記上側すべり部材の上側に配置され、前記上側すべり部材が固定された下側固定部材と、
下面が前記下側固定部材の上面に当接すると共に上端部が前記上部構造物に固定される上側固定部材と、
前記下側固定部材と前記上側固定部材との間に形成された収容部と、
前記収容部内に配置され、前記上部構造物の浮上がり後の接触時の衝撃を復元力により緩和する緩衝部材とを備える
ことを特徴とする免震システム。
A seismic isolation system that is interposed between the lower structure and the upper structure of the structure and reduces the seismic load input to the upper structure,
With at least several sliding supports,
Each of the plurality of sliding bearings is
A lower sliding member fixed on the lower structure;
An upper sliding member disposed on the lower sliding member and slidable relative to the lower sliding member;
A lower fixing member that is disposed on the upper side of the upper sliding member and to which the upper sliding member is fixed;
An upper fixing member whose lower surface is in contact with the upper surface of the lower fixing member and whose upper end is fixed to the upper structure;
An accommodating portion formed between the lower fixing member and the upper fixing member;
A seismic isolation system, comprising: a shock absorbing member disposed in the housing portion and relieving an impact at the time of contact after the upper structure is lifted by a restoring force.
請求項10に記載の免震システムにおいて、
複数の積層ゴム支承を更に備え、
前記複数のすべり支承は、前記下部構造物の外周側に配置され、
前記複数の積層ゴム支承は、前記複数のすべり支承の内側に配置される
ことを特徴とする免震システム。
The seismic isolation system according to claim 10,
Further provided with a plurality of laminated rubber bearings,
The plurality of sliding bearings are arranged on the outer peripheral side of the lower structure,
The seismic isolation system, wherein the plurality of laminated rubber bearings are disposed inside the plurality of sliding bearings.
JP2015047443A 2015-03-10 2015-03-10 Sliding support and seismic isolation system Active JP6475520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047443A JP6475520B2 (en) 2015-03-10 2015-03-10 Sliding support and seismic isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047443A JP6475520B2 (en) 2015-03-10 2015-03-10 Sliding support and seismic isolation system

Publications (3)

Publication Number Publication Date
JP2016166502A true JP2016166502A (en) 2016-09-15
JP2016166502A5 JP2016166502A5 (en) 2017-11-09
JP6475520B2 JP6475520B2 (en) 2019-02-27

Family

ID=56898180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047443A Active JP6475520B2 (en) 2015-03-10 2015-03-10 Sliding support and seismic isolation system

Country Status (1)

Country Link
JP (1) JP6475520B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257303A (en) * 1999-03-08 2000-09-19 Bando Chem Ind Ltd Base isolation device and base isolation structure
JP2001329716A (en) * 2000-05-23 2001-11-30 Takenaka Komuten Co Ltd Method and structure of base isolation of multistory building
JP3156990U (en) * 2009-11-09 2010-01-28 藤岡企画株式会社 Seismic isolation device for lightweight building and seismic isolation structure for lightweight building
JP2010276186A (en) * 2009-06-01 2010-12-09 Takenaka Komuten Co Ltd Sliding bearing structure of structure
JP2010276185A (en) * 2009-06-01 2010-12-09 Takenaka Komuten Co Ltd Sliding bearing structure of structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257303A (en) * 1999-03-08 2000-09-19 Bando Chem Ind Ltd Base isolation device and base isolation structure
JP2001329716A (en) * 2000-05-23 2001-11-30 Takenaka Komuten Co Ltd Method and structure of base isolation of multistory building
JP2010276186A (en) * 2009-06-01 2010-12-09 Takenaka Komuten Co Ltd Sliding bearing structure of structure
JP2010276185A (en) * 2009-06-01 2010-12-09 Takenaka Komuten Co Ltd Sliding bearing structure of structure
JP3156990U (en) * 2009-11-09 2010-01-28 藤岡企画株式会社 Seismic isolation device for lightweight building and seismic isolation structure for lightweight building

Also Published As

Publication number Publication date
JP6475520B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JPH0358009B2 (en)
US20210123257A1 (en) Structural connector
KR101162687B1 (en) Isolator
JP6717817B2 (en) Seismic support for warehouses and load-bearing structure with such support
KR20150047754A (en) polyurethane friction surface seismic isolation bearing using spring and rubber damper
JP2009068556A (en) Base isolation device
CN111936714A (en) Seismic Isolators and Damping Devices
JP7102249B2 (en) Multi-sided slide bearing device for structures
KR100731210B1 (en) Base isolation bridge device for bridge using shape memory alloy
JP7213766B2 (en) Fixed structure of seismic isolation device
KR100283782B1 (en) Friction dampening rubber feet for seismic isolation of structures
JP5513956B2 (en) Sliding bearing device
JP6475520B2 (en) Sliding support and seismic isolation system
JP6651933B2 (en) Vibration isolation device and method for adjusting deformation of laminated rubber bearing
JP5462059B2 (en) Foundation structure
JP7487065B2 (en) Friction dampers and seismic isolation buildings
JP6340278B2 (en) Seismic isolation mechanism and method of forming seismic isolation mechanism
KR101479282B1 (en) Vertical direction vibration reducing device
JP6591310B2 (en) Spent fuel storage rack
JP2010230057A (en) Base isolation device having damping device and base isolation structure with damping device
US20200332852A1 (en) Shock and Vibration Isolator/Absorber/Suspension/Mount Utilizing as a Resilient Element a Closed Loop Resilient Element
JP6846313B2 (en) Superstructure bearing structure
JP7284684B2 (en) seismic isolation system
JP4953713B2 (en) Seismic isolation system
JP7558836B2 (en) Slip-absorbing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150