JP2016159199A - Sloshing suppression structure in settling pond - Google Patents

Sloshing suppression structure in settling pond Download PDF

Info

Publication number
JP2016159199A
JP2016159199A JP2015038044A JP2015038044A JP2016159199A JP 2016159199 A JP2016159199 A JP 2016159199A JP 2015038044 A JP2015038044 A JP 2015038044A JP 2015038044 A JP2015038044 A JP 2015038044A JP 2016159199 A JP2016159199 A JP 2016159199A
Authority
JP
Japan
Prior art keywords
sedimentation
settling
water
sedimentation basin
sloshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015038044A
Other languages
Japanese (ja)
Other versions
JP6315479B2 (en
Inventor
藤田 聡
Satoshi Fujita
聡 藤田
小見 俊夫
Toshio Komi
俊夫 小見
正裕 平井
Masahiro Hirai
正裕 平井
朋之 西谷
Tomoyuki Nishitani
朋之 西谷
晋哉 立園
Shinya Tatsuzono
晋哉 立園
応人 鳥居
Kazuto Torii
応人 鳥居
健太 山崎
Kenta Yamazaki
健太 山崎
渡辺 治
Osamu Watanabe
治 渡辺
秀身 根岸
Hidemi Negishi
秀身 根岸
博和 金子
Hirokazu Kaneko
博和 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Takiron Engineering Co Ltd
Original Assignee
Tokyo Denki University
Takiron Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University, Takiron Engineering Co Ltd filed Critical Tokyo Denki University
Priority to JP2015038044A priority Critical patent/JP6315479B2/en
Publication of JP2016159199A publication Critical patent/JP2016159199A/en
Application granted granted Critical
Publication of JP6315479B2 publication Critical patent/JP6315479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sloshing suppressing structure in a settling pond, in which a sedimentation apparatus is caused to fluctuate together with water by the sloshing of water in a settling pond at the time of a large-scale earthquake so that the sedimentation apparatus can be prevented from any damage.SOLUTION: In a settling pond 1 having a rectangle planar shape, there is suspended a sedimentation apparatus 2 constituted by holding a number of sedimentation ramps 22 in parallel in a rectangular parallelepiped frame 21, and a shock absorber 3 is interposed between the frame 21 positioned at the end part in the parallel direction of the sedimentation ramp 22 of that sedimentation apparatus 2 and the side wall of the settling pond 1.SELECTED DRAWING: Figure 1

Description

本発明は、浄水場等における沈殿池の改良に関するもので、特に、沈降傾斜板を用いた沈降装置を吊り下げて設置した沈殿池におけるスロッシング抑制構造に関するものである。   The present invention relates to an improvement of a sedimentation basin in a water purification plant or the like, and more particularly to a sloshing suppression structure in a sedimentation basin installed by suspending a sedimentation device using a sedimentation inclined plate.

従来、浄水場等における沈殿池には、流入する水に含まれる固形物の沈降効率を向上するために沈降傾斜板を用いた沈降装置を吊り下げて設置するようにしている(例えば、特許文献1参照)。   Conventionally, in a sedimentation basin in a water purification plant or the like, a sedimentation device using a sedimentation inclined plate is suspended and installed in order to improve the sedimentation efficiency of solids contained in the inflowing water (for example, patent document) 1).

この沈降傾斜板を用いた沈降装置は、図3に示すように、平面形状が矩形をした沈殿池1に、沈降装置2の端面部を構成する縦支持材21a及び横支持材21b並びに沈降装置2の長手方向の横支持材21cで直方体形状の格子状のフレーム21を形成し、このフレーム21に多数の沈降傾斜板22を平行に並列するように保持して構成されており、このように構成した沈降装置2を、沈殿池1の上方に架け渡した桁材23に、吊部材24を介して、吊り下げて設置するようにしている。
そして、沈殿池1の長手方向に水流方向が設定され、水流方向に対して沈降傾斜板22の面が平行になるように沈降装置2を、沈殿池1の長手方向に沈降装置2のユニットを複数並べて設置されるようにしている。
ここで、フレーム21を構成する縦支持材21a、横支持材21b及び横支持材21c並びに吊部材24は、ステンレス鋼等の耐腐食性を有する金属材料で、沈降傾斜板22は、ポリ塩化ビニル樹脂等の合成樹脂材料で構成するようにしている。
また、沈降装置2の端面部には、沈降装置2と沈殿池1の側壁との隙間から水が短絡して流れないようにするために、当該隙間を塞ぐゴム製のシート部材からなる側部阻流板25を配設するようにしている。
As shown in FIG. 3, the settling device using the settling inclined plate includes a settling basin 1 having a rectangular planar shape, a vertical support material 21 a and a horizontal support material 21 b that constitute an end surface portion of the settling device 2, and a settling device. A rectangular parallelepiped lattice-like frame 21 is formed by two horizontal support members 21c in the longitudinal direction, and a large number of settling inclined plates 22 are held in parallel in this frame 21 in this way. The constructed sedimentation device 2 is suspended and installed via a suspension member 24 on a girder 23 that extends over the sedimentation basin 1.
Then, the water flow direction is set in the longitudinal direction of the settling basin 1, the settling device 2 is set so that the surface of the settling inclined plate 22 is parallel to the water flow direction, and the unit of the settling device 2 is set in the longitudinal direction of the settling basin 1. A plurality of them are installed side by side.
Here, the vertical support member 21a, the horizontal support member 21b, the horizontal support member 21c, and the suspension member 24 constituting the frame 21 are made of a metal material having corrosion resistance such as stainless steel, and the settling inclined plate 22 is made of polyvinyl chloride. It is made of a synthetic resin material such as resin.
Moreover, in order to prevent water from short-circuiting from the gap between the settling device 2 and the side wall of the settling basin 1 on the end surface portion of the settling device 2, a side portion made of a rubber sheet member that closes the gap. A baffle plate 25 is provided.

特開2001−321607号公報JP 2001-321607 A

ところで、上記従来の沈降傾斜板22を用いた沈降装置2は、沈殿池1の上方に架け渡した桁材23に、吊部材24を介して、吊り下げて設置するようにしているのみで、水中で拘束されていないため、大規模地震時に、沈殿池1内の水のスロッシング(sloshing。液体が外部からの比較的長周期な振動によって揺動することをいい、この揺動により、構造物が破壊されたり、液体が容器から溢れ出る被害等が問題となる。)により、沈降装置2が水と共に揺動し、沈降傾斜板22がフレーム21から落下して損傷したり、フレーム21が損傷を受ける事故が発生した。
そして、この場合、ライフラインとして最も重要な浄水場の浄水処理能力が低下したり、補修作業のために、浄水処理を停止する必要があり、復旧に多大な時間とコストがかかるという問題があった。
By the way, the sedimentation device 2 using the above-described conventional sedimentation inclined plate 22 is simply suspended and installed on the girders 23 spanned above the sedimentation basin 1 via the suspension members 24. Since it is not constrained in water, it means that the water in the sedimentation basin 1 is sloshing during large-scale earthquakes. Or the liquid overflows from the container, etc.), the sedimentation device 2 swings with water, the sedimentation inclined plate 22 falls from the frame 21 and is damaged, or the frame 21 is damaged. An accident occurred.
In this case, the water treatment capacity of the most important water treatment plant as a lifeline is reduced, or it is necessary to stop the water treatment treatment for repair work. It was.

本発明は、上記従来の沈降傾斜板を用いた沈降装置の有する問題点に鑑み、大規模地震時に沈殿池内の水のスロッシングにより沈降装置が水と共に揺動して、沈降装置が損傷することを防止することができるようにした沈殿池におけるスロッシング抑制構造を提供することを目的とする。   In view of the problems of the settling device using the above-described conventional settling inclined plate, the present invention shows that the settling device swings with the water due to the sloshing of the water in the settling pond during a large-scale earthquake, and the settling device is damaged. An object of the present invention is to provide a sloshing suppression structure in a sedimentation basin that can be prevented.

上記目的を達成するため、本発明の沈殿池におけるスロッシング抑制構造は、平面形状が矩形をした沈殿池に、直方体形状のフレームに多数の沈降傾斜板を平行に並列するように保持して構成した沈降装置を、吊り下げて設置するとともに、該沈降装置の沈降傾斜板の並列方向の端部に位置するフレームと沈殿池の側壁との間に緩衝装置を介在させるようにしたことを特徴とする。   In order to achieve the above object, the sloshing suppression structure in the sedimentation basin of the present invention is configured by holding a large number of sedimentation inclined plates in parallel with a rectangular parallelepiped frame in a rectangular sedimentation basin. The settling device is suspended and installed, and a shock absorber is interposed between the frame located at the end in the parallel direction of the settling inclined plate of the settling device and the side wall of the settling basin. .

この場合において、前記緩衝装置を、コイルばね部材やゴム状弾性部材からなるようにすることができる。   In this case, the shock absorber can be made of a coil spring member or a rubber-like elastic member.

また、前記コイルばね部材を、弾塑性特性をもつ低降伏点鋼製のコイルばね部材からなるようにすることができる。   Further, the coil spring member may be made of a coil spring member made of low yield point steel having elastic-plastic characteristics.

前記沈殿池が、沈殿池の長手方向に水流方向が設定され、該水流方向に対して沈降傾斜板の面が平行になるように沈降装置が設置されるようにすることができる。   In the settling basin, the water flow direction is set in the longitudinal direction of the settling basin, and the settling device can be installed so that the surface of the settling inclined plate is parallel to the water flow direction.

本発明の沈殿池におけるスロッシング抑制構造は、平面形状が矩形をした沈殿池に吊り下げて設置した直方体形状のフレームに多数の沈降傾斜板を平行に並列するように保持して構成した沈降装置の沈降傾斜板の並列方向の端部に位置するフレームと沈殿池の側壁との間に緩衝装置を介在させるようにすることにより、緩衝装置が、大規模地震時に沈殿池内の水のスロッシングにより沈降装置が水と共に揺動する際に緩衝作用を及ぼす(沈降装置の沈降傾斜板を介して抵抗力を与える)ことによって、沈殿池内の水がスロッシングを起こすことを抑制することができる。
これにより、大規模地震時に沈殿池内の水のスロッシングにより沈降装置が水と共に揺動して、沈降装置が損傷することを防止することができ、ライフラインとして最も重要な浄水場の浄水処理能力が低下したり、補修作業のために、浄水処理を停止することをなくすことができる。
The sloshing suppression structure in the sedimentation basin of the present invention is a sedimentation device constructed by holding a number of sedimentation inclined plates in parallel in parallel with a rectangular parallelepiped frame suspended from a rectangular sedimentation basin. By installing a shock absorber between the frame located at the end in the parallel direction of the sloping inclined plate and the side wall of the sedimentation basin, the shock absorber is settling by the sloshing of water in the sedimentation basin during a large earthquake. When rocking with water, it exerts a buffering action (provides a resistance through the sedimentation inclined plate of the sedimentation device), so that the water in the sedimentation basin can be prevented from sloshing.
This prevents the settling device from swaying with the water due to the sloshing of the water in the settling pond during a large-scale earthquake, preventing the settling device from being damaged, and the water treatment capacity of the most important water purification plant as a lifeline. It is possible to prevent the water purification treatment from being stopped due to a decrease or repair work.

また、前記緩衝装置を、コイルばね部材やゴム状弾性部材からなるようにすることにより、緩衝装置を、簡易な構造の装置で構成することができ、新設、既設の設備に容易に対応することができる。   In addition, the shock absorber can be configured with a device having a simple structure by being made of a coil spring member or a rubber-like elastic member, and can easily cope with newly installed and existing facilities. Can do.

また、前記コイルばね部材を、弾塑性特性をもつ低降伏点鋼製のコイルばね部材からなるようにすることにより、緩衝装置によるエネルギ吸収性能を高めることができ、沈殿池内の水がスロッシングを起こすことをより確実に抑制することができる。   Further, by making the coil spring member a coil spring member made of low yield point steel having elasto-plastic characteristics, the energy absorption performance by the shock absorber can be improved, and the water in the settling basin causes sloshing. This can be suppressed more reliably.

また、前記沈殿池が、沈殿池の長手方向に水流方向が設定され、該水流方向に対して沈降傾斜板の面が平行になるように沈降装置が設置されるようにすることにより、現在汎用されている設備に容易に対応することができる。   In addition, the sedimentation basin has a water flow direction in the longitudinal direction of the sedimentation basin, and the sedimentation device is installed so that the surface of the sedimentation inclined plate is parallel to the water flow direction. It is possible to easily cope with existing facilities.

本発明の沈殿池におけるスロッシング抑制構造の試験装置を示し、(a)は斜視図、(b)は緩衝装置としてのコイルばね部材の説明図、(c)は緩衝装置としてのゴム状弾性部材の説明図である。The test apparatus of the sloshing suppression structure in the sedimentation basin of this invention is shown, (a) is a perspective view, (b) is explanatory drawing of the coil spring member as a buffering device, (c) is the rubber-like elastic member as a buffering device. It is explanatory drawing. 同試験装置の(a)は正面断面図、(b)は平面図である。(A) of the test apparatus is a front sectional view, and (b) is a plan view. 従来の沈降傾斜板を用いた沈降装置を吊り下げて設置した沈殿池の説明図である。It is explanatory drawing of the sedimentation basin which suspended and installed the sedimentation apparatus using the conventional sedimentation inclination board. 弾塑性特性をもつ低降伏点鋼製のコイルばね部材の復元力特性を示すグラフである。It is a graph which shows the restoring force characteristic of the coil spring member made from the low yield point steel which has an elastoplastic property.

以下、本発明の沈殿池におけるスロッシング抑制構造の実施の形態を、図面に基づいて説明する。   Hereinafter, an embodiment of a sloshing suppression structure in a sedimentation basin of the present invention will be described based on the drawings.

図1〜図2に、本発明の沈殿池におけるスロッシング抑制構造の試験装置を示す。
この試験装置は、図3に示す、従来の沈降傾斜板22を用いた沈降装置2を吊り下げて設置した沈殿池1の一部(沈降装置2の1ユニット)を切り出すようにして構成したもので、図3に示す、沈殿池1の長手方向に水流方向が設定され、水流方向に対して沈降傾斜板22の面が平行になるように沈降装置2を、沈殿池1の長手方向に沈降装置2のユニットを複数並べて設置されるようにした従来の沈殿池1に、そのまま適用できるものである。
1-2, the test apparatus of the sloshing suppression structure in the sedimentation basin of this invention is shown.
This test apparatus is configured to cut out a part of the settling basin 1 (one unit of the settling apparatus 2) installed by suspending the settling apparatus 2 using the conventional settling inclined plate 22 shown in FIG. 3, the water flow direction is set in the longitudinal direction of the settling tank 1, and the settling device 2 is set in the longitudinal direction of the settling tank 1 so that the surface of the settling inclined plate 22 is parallel to the water flow direction. The present invention can be applied as it is to the conventional sedimentation basin 1 in which a plurality of units of the apparatus 2 are installed side by side.

そして、この沈殿池におけるスロッシング抑制構造は、平面形状が矩形をした沈殿池1に、直方体形状のフレーム21に多数の沈降傾斜板22を平行に並列するように保持して構成した沈降装置2を、吊り下げて設置するとともに、この沈降装置2の沈降傾斜板22の並列方向の端部に位置するフレーム21と沈殿池1の側壁との間に緩衝装置3を介在させるようにしている。   The sloshing suppression structure in the settling basin includes a settling device 2 configured by holding a large number of settling inclined plates 22 in parallel with a rectangular parallelepiped frame 21 in a rectangular settling pond 1. The shock absorber 3 is interposed between the frame 21 located at the end in the parallel direction of the sedimentation inclined plate 22 of the sedimentation device 2 and the side wall of the sedimentation basin 1.

この場合において、緩衝装置3には、図1(b)に示すような、コイルばね部材31、より具体的には、弾塑性特性をもつ低降伏点鋼製のコイルばね部材31や、図1(c)に示すような、ゴム状弾性部材33を用いることができる。
特に、コイルばね部材31に、弾塑性特性をもつ低降伏点鋼である軟鋼(SWRM)線材製のコイルばね部材を用いることにより、緩衝装置によるエネルギ吸収性能を高めることができる。
ここで、弾塑性特性をもつ低降伏点鋼である軟鋼(SWRM)線材製のコイルばね部材は、例えば、図4の復元力特性を示すグラフに示すように、弾性特性域(変位が10mm以下)と塑性特性域(変位が10〜30mm)を有するもので、弾性特性域では、主に、緩衝作用を奏し、塑性特性域では、主に、エネルギ吸収作用を奏する。
In this case, the shock absorber 3 includes a coil spring member 31 as shown in FIG. 1B, more specifically, a coil spring member 31 made of low yield point steel having elastic-plastic characteristics, and FIG. A rubber-like elastic member 33 as shown in (c) can be used.
In particular, by using a coil spring member made of a mild steel (SWRM) wire, which is a low yield point steel having elasto-plastic characteristics, as the coil spring member 31, energy absorption performance by the shock absorber can be enhanced.
Here, a coil spring member made of a mild steel (SWRM) wire, which is a low yield point steel having elastoplastic properties, has an elastic characteristic range (displacement of 10 mm or less) as shown in the graph showing the restoring force characteristics in FIG. ) And a plastic characteristic region (displacement is 10 to 30 mm). In the elastic property region, mainly, a buffering effect is exhibited, and in the plastic property region, mainly an energy absorbing effect is exhibited.

そして、緩衝装置3としてのコイルばね部材31やゴム状弾性部材33は、沈殿池1の側壁に対向する沈降装置2の端面部を構成するフレーム21の4隅に取り付けるようにする。
また、コイルばね部材31やゴム状弾性部材33の取付方法は、基端側を、端板32や取付部34を介して、沈降装置2のフレーム21に取り付けるようにし、先端側を、端板32を介して又は直接、沈殿池1の側壁に当接又は近接させる(沈殿池内の水がスロッシングを起こしたときに、沈殿池1の側壁に当接する位置関係にする。)ようにするか、端板32を介して、沈殿池1の側壁に取り付けるようにする。
なお、緩衝装置3の取付位置や個数、その取付方法は、これに限定されず、例えば、緩衝装置3を、沈殿池1の側壁に対向する沈降装置2の端面部を構成するフレーム21の4隅に加え、その中間位置に取り付けるようにすることもできる。
Then, the coil spring member 31 and the rubber-like elastic member 33 as the shock absorber 3 are attached to the four corners of the frame 21 constituting the end surface portion of the settling device 2 facing the side wall of the settling basin 1.
Moreover, the attachment method of the coil spring member 31 or the rubber-like elastic member 33 is such that the base end side is attached to the frame 21 of the settling device 2 via the end plate 32 or the attachment portion 34, and the distal end side is attached to the end plate. 32 or directly or in close contact with the side wall of the settling basin 1 (when the water in the settling basin causes sloshing, the position is in contact with the side wall of the settling basin 1). It is attached to the side wall of the sedimentation basin 1 through the end plate 32.
The mounting position and number of the shock absorbers 3 and the mounting method thereof are not limited to this. For example, the shock absorbers 3 are arranged on the frame 21 4 constituting the end surface portion of the settling device 2 facing the side wall of the settling basin 1. In addition to the corner, it can also be attached at an intermediate position.

この沈殿池におけるスロッシング抑制構造は、平面形状が矩形をした沈殿池1に吊り下げて設置した直方体形状のフレーム21に多数の沈降傾斜板22を平行に並列するように保持して構成した沈降装置2の沈降傾斜板22の並列方向の端部に位置するフレーム21と沈殿池1の側壁との間に緩衝装置3を介在させるようにすることにより、緩衝装置3が、大規模地震時に沈殿池1内の水のスロッシングにより沈降装置2が水と共に揺動する際に緩衝作用を及ぼす(沈降装置2の沈降傾斜板22を介して抵抗力を与える)ことによって、沈殿池1内の水がスロッシングを起こすことを抑制することができる。
これにより、大規模地震時に沈殿池1内の水のスロッシングにより沈降装置2が水と共に揺動して、沈降装置2が損傷することを防止することができ、ライフラインとして最も重要な浄水場の浄水処理能力が低下したり、補修作業のために、浄水処理を停止することをなくすことができる。
The sloshing suppression structure in the sedimentation basin is a sedimentation device constructed by holding a large number of sedimentation inclined plates 22 in parallel in a rectangular parallelepiped frame 21 suspended from the sedimentation basin 1 having a rectangular planar shape. When the shock absorber 3 is interposed between the frame 21 located at the end in the parallel direction of the two sloping inclined plates 22 and the side wall of the sedimentation basin 1, the shock absorber 3 can be used in the case of a large-scale earthquake. When the settling device 2 swings together with the water due to the sloshing of the water in 1, a buffering action is exerted (a resistance force is applied via the settling inclined plate 22 of the settling device 2), so that the water in the settling basin 1 is sloshing. Can be suppressed.
As a result, it is possible to prevent the sedimentation device 2 from oscillating together with the water due to the sloshing of the water in the sedimentation basin 1 during a large-scale earthquake, and to prevent the sedimentation device 2 from being damaged. It is possible to eliminate the need to stop the water purification treatment due to a decrease in the water treatment capacity or for repair work.

次に、図1〜図2に示す、沈殿池におけるスロッシング抑制構造の試験装置を用いて行った試験結果を説明する。   Next, a description will be given of the results of tests performed using the test apparatus for the sloshing suppression structure in the sedimentation basin shown in FIGS.

[実験条件]
沈殿池1に相当する試験装置の水槽1は、幅:2.10m、奥行き:1.4m、高さ:1.4mの平面形状が矩形をしたもので、水深は1.0mに設定した。
加振に使用した振動台4は、加速度制御方式の振動台(台寸法:3m×2m、振動数範囲:0.5Hz〜30Hz、搭載重量:4000kg)である。
[Experimental conditions]
The water tank 1 of the test apparatus corresponding to the sedimentation basin 1 was a rectangular planar shape having a width of 2.10 m, a depth of 1.4 m, and a height of 1.4 m, and the water depth was set to 1.0 m.
The shaking table 4 used for excitation is an acceleration control type shaking table (table size: 3 m × 2 m, frequency range: 0.5 Hz to 30 Hz, mounting weight: 4000 kg).

本実験では、水槽1に水だけを入れた場合(Case1)、水槽1に沈降装置2を設置した場合(Case2)、水槽1に沈降装置2を設置し、沈降装置2に緩衝装置3としてのコイルばね部材31を取り付けた場合(Case3及びCase4)、同ゴム状弾性部材33を取り付けた場合(Case5)の5ケースで実験を行った。
ここで、コイルばね部材31には、表1に示す、弾塑性特性をもつ低降伏点鋼である軟鋼(SWRM)線材製のコイルばね部材を使用し、ゴム状弾性部材33には、防振ゴム(倉敷加工社製、型番:RI−25HD、最大ストローク:11mm、最大吸収エネルギ:8.8J)を使用した。
In this experiment, when only water is put in the water tank 1 (Case 1), when the sedimentation device 2 is installed in the water tank 1 (Case 2), the sedimentation device 2 is installed in the water tank 1, and the buffer device 3 is installed in the sedimentation device 2. Experiments were conducted in five cases where the coil spring member 31 was attached (Case 3 and Case 4) and when the rubber-like elastic member 33 was attached (Case 5).
Here, the coil spring member 31 is a coil spring member made of mild steel (SWRM) wire, which is a low yield point steel having elasto-plastic characteristics, as shown in Table 1. Rubber (manufactured by Kurashiki Processing Co., Ltd., model number: RI-25HD, maximum stroke: 11 mm, maximum absorbed energy: 8.8 J) was used.

Figure 2016159199
Figure 2016159199

緩衝装置3としてのコイルばね部材31及びゴム状弾性部材33は、水槽1の側壁に対向する沈降装置2の端面部を構成するフレーム21の両面の4隅に取り付けるようにした。
コイルばね部材31の取付方法は、基端側を、端板32を介して、沈降装置2のフレーム21に取り付けるようにし、先端側を、端板32を介して、水槽1の側壁に取り付けるようにした。
ゴム状弾性部材33の取付方法は、基端側を、取付部34を介して、沈降装置2のフレーム21に取り付けるようにし、先端側を、直接、水槽1の側壁に当接するようにした。
The coil spring member 31 and the rubber-like elastic member 33 as the shock absorber 3 are attached to the four corners on both sides of the frame 21 constituting the end surface portion of the settling device 2 facing the side wall of the water tank 1.
The attachment method of the coil spring member 31 is such that the base end side is attached to the frame 21 of the settling device 2 via the end plate 32 and the tip end side is attached to the side wall of the water tank 1 via the end plate 32. I made it.
The attaching method of the rubber-like elastic member 33 is such that the base end side is attached to the frame 21 of the sedimentation device 2 via the attaching portion 34, and the tip end side is in direct contact with the side wall of the water tank 1.

[実験方法]
振動台4を加振させることにより水槽1の水にスロッシングを起こさせ、その波高、動水圧及び沈降装置2のフレーム21の変位を計測し、その結果からスロッシングの抑制効果を測定した。
ここで、波高の測定にはフロート式の液面計を用い、フロートの上下方向の変位を波高の変位とする。フロートの変位には、ポテンショメータ式変位変換器(定格容量:0−500mm)を用いる。
動水圧の測定には、小型間隙圧力水圧計(定格容量:50kPa)を用い、測定位置は、それぞれ水深0.12m、0.32m、0.52mとし、上から最大圧力1、2、3として水が入った加振前を動水圧0kPaとした。
沈降装置2のフレーム21の変位の測定は、水槽1側にポテンショメータ式変位変換器(定格容量:0−500mm)のワイヤーを取り付けて計測を行った。
[experimental method]
The shaking of the shaking table 4 caused sloshing in the water in the water tank 1, and the wave height, hydrodynamic pressure, and displacement of the frame 21 of the settling device 2 were measured, and the effect of suppressing sloshing was measured from the results.
Here, a float-type liquid level gauge is used for measuring the wave height, and the displacement in the vertical direction of the float is defined as the displacement of the wave height. For the displacement of the float, a potentiometer type displacement transducer (rated capacity: 0 to 500 mm) is used.
For measurement of dynamic water pressure, a small pore pressure hydrometer (rated capacity: 50 kPa) is used, and the measurement positions are water depths of 0.12 m, 0.32 m, and 0.52 m, respectively. The dynamic water pressure was set to 0 kPa before vibration with water.
The displacement of the frame 21 of the settling device 2 was measured by attaching a potentiometer displacement transducer (rated capacity: 0-500 mm) to the water tank 1 side.

[実験方法]
本実験では、1次モードのスロッシングを対象とした。
実験モデルの1次モードのスロッシング固有振動数は、速度ポテンシャル理論から式(1)より0.58Hzである。式(1)における各変数は、fは1次モードのスロッシング固有振動数、gは重力加速度、hは水深、aはスロッシング方向の水槽1の幅の1/2である。
f=((1.58g/a)tanh(1.58g/a))1/2/2π・・・(1)
振動台4による加振は、正弦波加振とし、0.50〜2.00Hzの振動数で行った。
Case1では、0.50〜0.70Hzは0.01Hz刻み、0.70〜1.0Hzは0.05Hz刻み、1.0〜1.5Hzは0.1Hz刻みで加振を行った。Case2〜Case5では0.50〜0.60Hzは0.01Hz刻み、0.60〜0.70Hzは0.02Hz刻み、0.70〜0.80Hzは0.05Hz刻み、0.80〜1.00Hzは0.1Hz刻み、1.0〜2.0Hzは0.5Hz刻みで加振を行った。
目標入力加速度は、Case1及びCase2では、0.25m/s とし、Case3〜Case5では、0.25m/s及び0.5m/sとした。これは、スロッシングにより水槽1から水が溢れないよう考慮したためである。
[experimental method]
In this experiment, the sloshing of the primary mode was targeted.
The sloshing natural frequency of the first-order mode of the experimental model is 0.58 Hz from the equation (1) based on the velocity potential theory. In the equation (1), f is the natural frequency of the sloshing mode in the first-order mode, g is the gravitational acceleration, h is the water depth, and a is 1/2 the width of the water tank 1 in the sloshing direction.
f = ((1.58 g / a) tanh (1.58 g / a)) 1/2 / 2π (1)
Excitation by the vibration table 4 was sine wave excitation, and was performed at a frequency of 0.50 to 2.00 Hz.
In Case 1, excitation was performed in increments of 0.01 Hz for 0.50 to 0.70 Hz, in increments of 0.05 Hz for 0.70 to 1.0 Hz, and in increments of 0.1 Hz for 1.0 to 1.5 Hz. In Case 2 to Case 5, 0.50 to 0.60 Hz is incremented by 0.01 Hz, 0.60 to 0.70 Hz is incremented by 0.02 Hz, 0.70 to 0.80 Hz is incremented by 0.05 Hz, and 0.80 to 1.00 Hz. Was excited in increments of 0.1 Hz, and 1.0 to 2.0 Hz in steps of 0.5 Hz.
Target input acceleration, in Case1 and Case2, and 0.25 m / s 2, the Case3~Case5, was 0.25 m / s 2 and 0.5 m / s 2. This is because it is considered that water does not overflow from the water tank 1 due to sloshing.

[実験結果及び考察]
実験結果を、表2に示す。
[Experimental results and discussion]
The experimental results are shown in Table 2.

Figure 2016159199
Figure 2016159199

表2から明らかなとおり、最大液面変位、最大圧力、フレーム加速及びフレーム変位のいずれの値も、水槽1に水だけを入れた場合(Case1)及び水槽1に沈降装置2を設置した場合(Case2)よりも、水槽1に沈降装置2を設置し、沈降装置2に緩衝装置3としてのコイルばね部材31を取り付けた場合(Case3及びCase4)、同ゴム状弾性部材33を取り付けた場合(Case5)が、また、同じコイルばね部材31を取り付けた場合(Case3及びCase4)では、コイルばね部材31の線径が大きいCase4(線径φ4)が、スロッシングの抑制効果が大きいことを確認した。   As is clear from Table 2, all values of maximum liquid level displacement, maximum pressure, frame acceleration and frame displacement are obtained when water is added to the water tank 1 (Case 1) and when the sedimentation device 2 is installed in the water tank 1 ( More than Case 2), when the settling device 2 is installed in the water tank 1 and the coil spring member 31 as the buffer device 3 is attached to the settling device 2 (Case 3 and Case 4), when the rubber-like elastic member 33 is attached (Case 5) However, when the same coil spring member 31 was attached (Case 3 and Case 4), it was confirmed that Case 4 (wire diameter φ4) having a large wire diameter of the coil spring member 31 has a large effect of suppressing sloshing.

以上、本発明の沈殿池におけるスロッシング抑制構造について、その実施形態に基づいて説明したが、本発明は上記実施態に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the sloshing suppression structure in the sedimentation basin of this invention was demonstrated based on the embodiment, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning, the structure is changed suitably. It is something that can be done.

本発明の沈殿池におけるスロッシング抑制構造は、大規模地震時に沈殿池内の水のスロッシングにより沈降装置が水と共に揺動して、沈降装置が損傷することを防止することができることから、沈降傾斜板を用いた沈降装置を吊り下げて設置した浄水場等における沈殿池に好適に適用することができる。   The sloshing suppression structure in the settling basin of the present invention can prevent the settling device from being damaged by sloshing of the water in the settling basin due to the sloshing of the water in the settling basin, so that the settling device is damaged. It can be suitably applied to a settling basin in a water purification plant or the like installed by suspending the used settling device.

1 沈殿池(水槽)
2 沈降装置
21 フレーム
21a 縦支持材
21b 横支持材
21c 横支持材
22 沈降傾斜板
23 桁材
24 吊部材
3 緩衝装置
31 コイルばね部材
32 端板
33 ゴム状弾性部材
34 取付部
1 Sedimentation basin (water tank)
2 Sedimentation device 21 Frame 21a Vertical support material 21b Horizontal support material 21c Horizontal support material 22 Sinking inclined plate 23 Girder material 24 Suspension member 3 Shock absorber 31 Coil spring member 32 End plate 33 Rubber elastic member 34 Attachment

Claims (5)

平面形状が矩形をした沈殿池に、直方体形状のフレームに多数の沈降傾斜板を平行に並列するように保持して構成した沈降装置を、吊り下げて設置するとともに、該沈降装置の沈降傾斜板の並列方向の端部に位置するフレームと沈殿池の側壁との間に緩衝装置を介在させるようにしたことを特徴とする沈殿池におけるスロッシング抑制構造。   A settling device constructed by holding a large number of settling inclined plates parallel to a rectangular parallelepiped frame in a rectangular sedimentation basin is installed in a suspended manner. A sloshing suppression structure in a sedimentation basin, characterized in that a shock absorber is interposed between a frame located at an end in the parallel direction and a side wall of the sedimentation basin. 前記緩衝装置が、コイルばね部材からなることを特徴とする請求項1に記載の沈殿池におけるスロッシング抑制構造。   The sloshing suppression structure in a sedimentation basin according to claim 1, wherein the shock absorber is a coil spring member. 前記コイルばね部材が、弾塑性特性をもつ低降伏点鋼製のコイルばね部材からなることを特徴とする請求項2に記載の沈殿池におけるスロッシング抑制構造。   The sloshing suppression structure in a sedimentation basin according to claim 2, wherein the coil spring member is a coil spring member made of low yield point steel having elastic-plastic characteristics. 前記緩衝装置が、ゴム状弾性部材からなることを特徴とする請求項1に記載の沈殿池におけるスロッシング抑制構造。   The sloshing suppression structure in a sedimentation basin according to claim 1, wherein the shock absorber is made of a rubber-like elastic member. 前記沈殿池が、沈殿池の長手方向に水流方向が設定され、該水流方向に対して沈降傾斜板の面が平行になるように沈降装置が設置されることを特徴とする請求項1、2、3又は4に記載の沈殿池におけるスロッシング抑制構造。   The sedimentation basin has a water flow direction set in the longitudinal direction of the sedimentation basin, and the sedimentation device is installed so that the surface of the sedimentation inclined plate is parallel to the water flow direction. The sloshing suppression structure in the settling basin according to 3 or 4.
JP2015038044A 2015-02-27 2015-02-27 Sloshing suppression structure in sedimentation basin Active JP6315479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038044A JP6315479B2 (en) 2015-02-27 2015-02-27 Sloshing suppression structure in sedimentation basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038044A JP6315479B2 (en) 2015-02-27 2015-02-27 Sloshing suppression structure in sedimentation basin

Publications (2)

Publication Number Publication Date
JP2016159199A true JP2016159199A (en) 2016-09-05
JP6315479B2 JP6315479B2 (en) 2018-04-25

Family

ID=56845772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038044A Active JP6315479B2 (en) 2015-02-27 2015-02-27 Sloshing suppression structure in sedimentation basin

Country Status (1)

Country Link
JP (1) JP6315479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104025A (en) * 2018-12-26 2020-07-09 ワセダ技研株式会社 Movable type side flow prevention structure of inclination plate sedimentation device
JP2021171741A (en) * 2020-04-30 2021-11-01 ワセダ技研株式会社 Slant plate precipitation system
JP7220437B1 (en) 2021-10-13 2023-02-10 学校法人金沢工業大学 Inclined plate sedimentation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070966A (en) * 1973-07-09 1975-06-12
JPS5993707U (en) * 1982-12-13 1984-06-26 タキロン株式会社 Sedimentation slope plate processing equipment
JPS6279814A (en) * 1985-10-01 1987-04-13 Kawasaki Heavy Ind Ltd Method and device for washing inclined settler
JP2001190903A (en) * 2000-01-14 2001-07-17 Yoshitane Tamura Water purifying apparatus
JP3115869U (en) * 2005-08-18 2005-11-17 川崎重工業株式会社 Inclined pipe fall prevention device
JP2013024257A (en) * 2011-07-15 2013-02-04 Tokkyokiki Corp Vibration attenuation device
JP2014037287A (en) * 2012-08-13 2014-02-27 Mitsubishi Heavy Ind Ltd Crane apparatus and modification method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070966A (en) * 1973-07-09 1975-06-12
JPS5993707U (en) * 1982-12-13 1984-06-26 タキロン株式会社 Sedimentation slope plate processing equipment
JPS6279814A (en) * 1985-10-01 1987-04-13 Kawasaki Heavy Ind Ltd Method and device for washing inclined settler
JP2001190903A (en) * 2000-01-14 2001-07-17 Yoshitane Tamura Water purifying apparatus
JP3115869U (en) * 2005-08-18 2005-11-17 川崎重工業株式会社 Inclined pipe fall prevention device
JP2013024257A (en) * 2011-07-15 2013-02-04 Tokkyokiki Corp Vibration attenuation device
JP2014037287A (en) * 2012-08-13 2014-02-27 Mitsubishi Heavy Ind Ltd Crane apparatus and modification method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104025A (en) * 2018-12-26 2020-07-09 ワセダ技研株式会社 Movable type side flow prevention structure of inclination plate sedimentation device
JP2021171741A (en) * 2020-04-30 2021-11-01 ワセダ技研株式会社 Slant plate precipitation system
JP7090925B2 (en) 2020-04-30 2022-06-27 ワセダ技研株式会社 Inclined plate subsidence system
JP7220437B1 (en) 2021-10-13 2023-02-10 学校法人金沢工業大学 Inclined plate sedimentation system
JP2023058048A (en) * 2021-10-13 2023-04-25 学校法人金沢工業大学 Inclined plate sedimentation system

Also Published As

Publication number Publication date
JP6315479B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6315479B2 (en) Sloshing suppression structure in sedimentation basin
CN109377835B (en) Model test device for simulating submarine ice breaking
JPH01131768A (en) Vibration damper for structure
JP2018020622A (en) Oscillation reduction device for floating body structure and floating body structure
JP2007191183A (en) Sloshing inhibition device
JP6560860B2 (en) Piping damping system
JP2008213886A (en) Floating roof type liquid storage tank
JP2009143575A (en) Sloshing suppressing device
JP7090925B2 (en) Inclined plate subsidence system
KR20160023343A (en) Floating offshore structures
JP5138825B1 (en) Viscous damping wall
JP4277185B2 (en) Additional damping mechanism for floating base-isolated structures
JPH0756190B2 (en) Vibration suppression device for structures
JP2020117269A (en) Damping device
KR101301349B1 (en) Dynamic Absorber
JP2021037492A (en) Inclined plate sedimentation system
JP2020101245A (en) Piping support tool
Pardeshi et al. Experimental analysis of tuned liquid damper with baffle wall for controlling the earthquake vibrations
Bagheri et al. Seismic performance assessment of FPS isolated liquid storage tanks at various intensity levels
Yannawar et al. Response behaviour of a three storied framed structure with tuned liquid damper
JP2017031723A (en) Base-isolating device
CN220396729U (en) Anti-seismic bracket for electromechanical installation
CN210344745U (en) Damping mounting base for mining machinery
JP2007069920A (en) Rocking-reducing apparatus for floating roof
JP6884399B2 (en) How to attach damping members to tanks and tanks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6315479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250