JP2016155061A - High pressure filter device and hydrogen station using the same - Google Patents

High pressure filter device and hydrogen station using the same Download PDF

Info

Publication number
JP2016155061A
JP2016155061A JP2015033714A JP2015033714A JP2016155061A JP 2016155061 A JP2016155061 A JP 2016155061A JP 2015033714 A JP2015033714 A JP 2015033714A JP 2015033714 A JP2015033714 A JP 2015033714A JP 2016155061 A JP2016155061 A JP 2016155061A
Authority
JP
Japan
Prior art keywords
seal
cap
filter device
pressure
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033714A
Other languages
Japanese (ja)
Other versions
JP6517040B2 (en
Inventor
耕治郎 大谷地
Kojiro Oyaji
耕治郎 大谷地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz SCT Corp
Original Assignee
Kitz SCT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz SCT Corp filed Critical Kitz SCT Corp
Priority to JP2015033714A priority Critical patent/JP6517040B2/en
Publication of JP2016155061A publication Critical patent/JP2016155061A/en
Application granted granted Critical
Publication of JP6517040B2 publication Critical patent/JP6517040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-pressure filter device of high flow rate which can maintain a filtration function for impurities contained in high-pressure flowing water by preventing a slack of integration even when the flowing water flows to secure a high sealability, and a hydrogen station using the same.SOLUTION: A body 10 having a pipe junction 20 is coupled with a cap 11 having a pipe junction 30 by screwing via a counter seal part 16, where the counter seal part 16 forms obtuse-angled edge seal parts 26, 36 on seal faces 25, 35 of the body 10 with the cap 11, respectively, in an inner peripheral direction. A gasket 12 is clamped with both the edge seal parts 26, 36 to configure them, and a filter element 13 having a bottomed part 40 on the primary side, and an opening part 41 on the secondary side is stored in a cylindrical space part 22 provided in a channel 23 of the body 10. The filter element 13 keeps the bottomed part 40 pressed by a spring 14, and the opening part 41 hermetically sealed by a seal mechanism 15.SELECTED DRAWING: Figure 1

Description

本発明は、高圧用フィルタ装置に関し、特に、水素等の高圧流体が流れる水素ステーションなどの流路内の水素に含有されている不純物を除去する高圧用フィルタ装置とこれを用いた水素ステーションに関する。   The present invention relates to a high-pressure filter device, and more particularly to a high-pressure filter device for removing impurities contained in hydrogen in a flow path such as a hydrogen station through which a high-pressure fluid such as hydrogen flows, and a hydrogen station using the high-pressure filter device.

近年、自動車用燃料電池の水素ステーションの供給インフラが普及しつつある。水素ステーションで燃料電池用の水素を供給する場合には、水素に不純物が混入していると燃料電池の発電性能に悪影響を及ぼすおそれがあるため、水素内の不純物はできるだけ少ないほうが望ましい。そのため、水素ステーションの配管流路には、不純物を除去するためのフィルタ装置の設置が要求されてきており、この場合、水素ステーションでは、例えば、約99MPaの高圧の水素が流れることもあるため、フィルタ装置はこの高圧流体に耐えうる必要がある。   In recent years, the infrastructure for supplying hydrogen stations for automobile fuel cells has become widespread. When supplying hydrogen for a fuel cell at a hydrogen station, impurities in the hydrogen may adversely affect the power generation performance of the fuel cell, so it is desirable that the impurities in the hydrogen be as small as possible. Therefore, it has been required to install a filter device for removing impurities in the piping flow path of the hydrogen station. In this case, for example, high-pressure hydrogen of about 99 MPa may flow in the hydrogen station. The filter device must be able to withstand this high pressure fluid.

水素ガスから不純物を除去するフィルタ装置としては、例えば、特許文献1や特許文献2のフィルタ装置が開示されている。これらのフィルタ装置は、水素を貯蔵タンクに供給する流路に設けられ、内部には水素に含有される不純物を除去するためのフィルタ部材が設けられている。これらフィルタ装置にフィルタ部材を内装する場合、例えば、特許文献1の図3に示すように、一方側が開放したケーシング内にフィルタ部材が充填され、このケーシングにガスケットを介してキャップ部材が螺合されて一体化される。   As filter devices for removing impurities from hydrogen gas, for example, the filter devices of Patent Document 1 and Patent Document 2 are disclosed. These filter devices are provided in a flow path for supplying hydrogen to a storage tank, and a filter member for removing impurities contained in hydrogen is provided therein. When a filter member is installed in these filter devices, for example, as shown in FIG. 3 of Patent Document 1, a filter member is filled in a casing that is open on one side, and a cap member is screwed into the casing via a gasket. Integrated.

さらに、例えば、高圧水素を燃料自動車のタンクに供給する流路に設けられるフィルタ装置として、図5に示した高圧水素用フィルタ装置1が知られている。このフィルタ装置1では、ろ過用の有底円筒状フィルタ2がコイルスプリング3を介してボデー部材4とキャップ部材5内に弾発装着されている。ボデー部材4とキャップ部材5とは、シール用Oリング部材6を介して螺着により組み込まれ、このOリング部材6は、キャップ部材5の外周におけるボデー部材4の流路内周面7に接する位置に装着されている。   Furthermore, for example, a high pressure hydrogen filter device 1 shown in FIG. 5 is known as a filter device provided in a flow path for supplying high pressure hydrogen to a tank of a fuel vehicle. In the filter device 1, a bottomed cylindrical filter 2 for filtration is elastically mounted in a body member 4 and a cap member 5 via a coil spring 3. The body member 4 and the cap member 5 are assembled by screwing via a sealing O-ring member 6, and this O-ring member 6 is in contact with the flow passage inner peripheral surface 7 of the body member 4 on the outer periphery of the cap member 5. Mounted in position.

また、これら以外の高圧水素用フィルタ装置として、キャップ部材の先端部に内径側を頂部とした緩やかなテーパ面、ボデー部材側内周に平面部がそれぞれ形成され、キャップ部材と、フィルタを収納したボデー部材との螺着結合時に、テーパ面と平面部とが強い締付けトルクで圧接されて、外部への漏れを防止しようとするものが知られている。   In addition, as a high pressure hydrogen filter device other than these, a gently tapered surface with the inner diameter side at the top is formed at the tip of the cap member, and a flat portion is formed on the inner periphery on the body member side, and the cap member and the filter are accommodated. It is known that the taper surface and the flat portion are pressed against each other with a strong tightening torque at the time of screw connection with the body member to prevent leakage to the outside.

特開2002−54798号公報JP 2002-54798 A 特許第5026931号公報Japanese Patent No. 5026931

特許文献1や特許文献2のフィルタ装置は、水素を貯蔵タンクに供給する流路に設けられ、この流路は、例えば約1MPa程度の比較的低い圧力用として設定されている。そのため、これらのフィルタ装置は、約99MPaの高圧の水素の流路には適していない。   The filter devices of Patent Document 1 and Patent Document 2 are provided in a flow path for supplying hydrogen to a storage tank, and this flow path is set for a relatively low pressure of about 1 MPa, for example. Therefore, these filter devices are not suitable for a high-pressure hydrogen flow path of about 99 MPa.

一方、図5のフィルタ装置1においては、キャップ部材5の先方外周側に装着したOリング部材6を介してキャップ部材5の流路縁部側でボデー部材4と胴着シールしているため、キャップ部材5が緩み始めると、Oリング部材6によるシール性が直ちに失われて流体漏れを生じやすくなる。しかも、ボデー部材4とキャップ部材5との螺着でOリング部材6の締付けトルクを発生させていることから、締付けトルクが小さくなって高圧流体の圧力やコイルスプリング3の弾発力、外力などでキャップ部材5が緩みやすい。   On the other hand, in the filter device 1 of FIG. 5, since the body member 4 and the body member 4 are sealed on the edge side of the cap member 5 via the O-ring member 6 attached to the front outer peripheral side of the cap member 5, When the member 5 starts to loosen, the sealing performance by the O-ring member 6 is immediately lost, and fluid leakage tends to occur. In addition, since the tightening torque of the O-ring member 6 is generated by screwing the body member 4 and the cap member 5, the tightening torque is reduced and the pressure of the high-pressure fluid, the elastic force of the coil spring 3, the external force, etc. Therefore, the cap member 5 is easy to loosen.

キャップ部材5が緩むと、コイルスプリング3の弾発力が弱くなり、円筒状フィルタ2とボデー部材4側との間に隙間が生じてフィルタ装置1のろ過機能が不足するという問題も生じる。さらに、このフィルタ装置1では、コイルスプリング3で円筒状フィルタ2の有底面3aの中央付近を弾発することにより、ボデー部材4との間に設けた保持部材8をパッキン部材8aを介して円筒状フィルタ2全体で押圧し、保持部材8の背面側に設けたシール用Oリング9で保持部材8背面側からの漏れを防ぎ、パッキン部材8aで円筒状フィルタ2と保持部材8との間をシールしようとするものである。そのため、コイルスプリング3による弾発力の伝達効率が悪くなり、キャップ部材5の緩みによりパッキン部材8aによるシール性を維持できなくなり、円筒状フィルタ2と保持部材8との間から漏れを生じやすくなる。   When the cap member 5 is loosened, the elastic force of the coil spring 3 is weakened, and there is a problem that a gap is formed between the cylindrical filter 2 and the body member 4 side and the filtering function of the filter device 1 is insufficient. Further, in this filter device 1, the holding member 8 provided between the body member 4 and the body member 4 is formed in a cylindrical shape via the packing member 8 a by repelling the vicinity of the center of the bottomed surface 3 a of the cylindrical filter 2 with the coil spring 3. Pressing the filter 2 as a whole, the sealing O-ring 9 provided on the back side of the holding member 8 prevents leakage from the back side of the holding member 8, and the packing member 8a seals between the cylindrical filter 2 and the holding member 8 It is something to try. Therefore, the transmission efficiency of the elastic force by the coil spring 3 is deteriorated, the sealing performance by the packing member 8a cannot be maintained due to the looseness of the cap member 5, and leakage from between the cylindrical filter 2 and the holding member 8 is likely to occur. .

キャップ部材5の先方側をボデー部材4の流路4aに挿入して両者を接続していることで、キャップ部材5におけるコイルスプリング3装着部分の内径φdAがボデー部材4の内径(流路径)φdBに比して極端に小さくなる。そのため、キャップ部材5側の流量が少なくなり、圧力損失が大きくなるという問題もあった。これを回避するために、仮に、キャップ部材5の内径φdAを拡径しようとすると、その挿入側の肉厚が不足して高圧流体に対する強度を十分に確保することが難しくなる。
さらに、Oリング部材6が流路口径内の流路内周面7に位置しているため、高圧流体が流れるときにパーティクルが発生して悪影響を及ぼす可能性もある。
By inserting the front side of the cap member 5 into the flow path 4a of the body member 4 and connecting them together, the inner diameter φdA of the cap spring 5 mounting portion of the cap member 5 is equal to the inner diameter (flow path diameter) φdB of the body member 4. It becomes extremely smaller than Therefore, there is a problem that the flow rate on the cap member 5 side is reduced and the pressure loss is increased. In order to avoid this, if an attempt is made to increase the inner diameter φdA of the cap member 5, the thickness on the insertion side is insufficient, and it becomes difficult to ensure sufficient strength against the high-pressure fluid.
Furthermore, since the O-ring member 6 is located on the flow path inner peripheral surface 7 within the flow path diameter, there is a possibility that particles are generated when the high-pressure fluid flows and adversely affect it.

また、キャップ部材のテーパ面とボデー部材の平面部とを締付けて外部漏れを防ぐ構造の場合、金属製のボデー部材及びキャップ部材を直接圧接シールするための甚大な締付けトルクが必要になる。しかも、これらの圧接後には平面部が変形するため、メンテナンス等による分解後に再度締付けたときには、圧接シール部分に隙間が生じて高圧流体のシール性能を維持できなくなる可能性もある。   Further, in the case of a structure in which the taper surface of the cap member and the flat portion of the body member are tightened to prevent external leakage, a large tightening torque is required for directly pressing and sealing the metal body member and the cap member. In addition, since the flat surface portion is deformed after the press contact, there is a possibility that a gap is generated in the press contact seal portion when maintaining the sealing performance of the high pressure fluid when it is tightened again after disassembly by maintenance or the like.

本発明は、上記の課題点を解決するために開発したものであり、その目的とするところは、高圧流体が流れる場合にも組み込みの緩みを防止して高いシール性を確保し、流体に含まれる不純物の除去機能を維持できる大流量の高圧用フィルタ装置とこれを用いた水素ステーションを提供することにある。   The present invention has been developed to solve the above-described problems, and the object of the present invention is to prevent the looseness of the built-in even when a high-pressure fluid flows, to ensure high sealing performance, and to be included in the fluid. An object of the present invention is to provide a high-pressure filter device having a large flow rate capable of maintaining the function of removing impurities and a hydrogen station using the same.

上記目的を達成するため、請求項1に係る発明は、管接合部を有するボデーと管接合部を有するキャップとを対向シール部位を介して螺着結合し、対向シール部位は、ボデーとキャップとのシール面の内周方向に鈍角のエッジシール部をそれぞれ形成し、この両者のエッジシール部でガスケットを挟圧して構成すると共に、ボデーの流路に設けた円筒空間部内に、一次側に有底部を有し、かつ二次側に開口部を有するフィルタエレメントを収納し、このフィルタエレメントは、有底部をスプリングで押圧し、かつ開口部をシール機構で密封シールした高圧用フィルタ装置である。   In order to achieve the above object, the invention according to claim 1 is characterized in that a body having a pipe joint portion and a cap having a pipe joint portion are screwed together via an opposing seal portion, and the opposing seal portion is formed by the body and the cap. An obtuse edge seal portion is formed in the inner circumferential direction of the seal surface, and a gasket is sandwiched between the two edge seal portions, and is provided on the primary side in a cylindrical space provided in the body flow path. A filter element having a bottom and having an opening on the secondary side is housed. This filter element is a high-pressure filter device in which a bottomed portion is pressed by a spring and the opening is hermetically sealed by a seal mechanism.

請求項2に係る発明は、スプリングの一端をキャップの流路径より拡径した段部に係合し、他端をフィルタエレメントの有底部の外周側位置に弾発接触させた高圧用フィルタ装置である。   The invention according to claim 2 is a high pressure filter device in which one end of the spring is engaged with a stepped portion having a diameter larger than the flow path diameter of the cap, and the other end is elastically contacted with the outer peripheral side position of the bottomed portion of the filter element. is there.

請求項3に係る発明は、シール機構は、フィルタエレメントの開口部に設けたパッキンとこれを挟圧する流路孔を有するホルダで保持し、スプリングの弾発力で密封シールした機構である高圧用フィルタ装置である。   According to a third aspect of the present invention, the sealing mechanism is a mechanism that is held by a holder having a packing provided in the opening of the filter element and a flow path hole that sandwiches the packing, and is hermetically sealed by the spring force of the spring. It is a filter device.

請求項4に係る発明は、フィルタエレメントは、ステンレス又はステンレス合金製の焼結体である高圧用フィルタ装置である。   The invention according to claim 4 is the high pressure filter device in which the filter element is a sintered body made of stainless steel or stainless steel alloy.

請求項5に係る発明は、鈍角のエッジシール部は、断面が160〜178度の山状であり、この山状の間にガスケットを挟圧させた高圧用フィルタ装置である。   The invention according to claim 5 is the high-pressure filter device in which the obtuse edge seal portion has a mountain shape with a cross section of 160 to 178 degrees, and a gasket is sandwiched between the mountain shapes.

請求項6に係る発明は、高圧水素の供給ラインに高圧用フィルタを用いた水素ステーションである。   The invention according to claim 6 is a hydrogen station using a high-pressure filter in a high-pressure hydrogen supply line.

請求項1に係る発明によると、ボデーとキャップとを、鈍角のエッジシール部でガスケットを挟圧しながら対向シール部位を介して螺着結合していることで締付けトルクを増大し、高圧流体が流れる場合にもボデーとキャップとの組み込みの緩みを防止でき、ガスケットの挟圧状態を維持して高いシール性と耐久性とを確保できる。特に、対向シール部位のシール面に鈍角エッジシール部を設けていることで、シール面がフラットである場合に比べて、小さいトルクでもシール面の内周側で高い面圧が得られるようになり、高いシール性を確保することが可能となる。仮にボデーとキャップとの間に緩みが生じた場合にも直ちにシール性が損なわれることがなく、これらを増し締めすることでシール性も回復できる。このようなキャップの緩み防止機能により、スプリングの弾発力の低下を阻止し、フィルタエレメントとシール機構との密封シール状態を保持して、不純物の除去機能を確実に維持できる。対向シール部位を流路の外側に設けていることにより、流体のガスケットへの接触によるパーティクルの発生を抑えて流体の純度を維持しつつ、流路を大口径化して圧力損失を抑えながら大流量の流体の不純物を除去処理できる。   According to the first aspect of the present invention, the tightening torque is increased and the high-pressure fluid flows by screwing the body and the cap through the opposing seal portion while sandwiching the gasket with the obtuse angle edge seal portion. Even in this case, loosening of the body and the cap can be prevented, and a high pressure-sealing property and durability can be secured by maintaining the pressure-tight state of the gasket. In particular, by providing an obtuse edge seal portion on the seal surface of the opposed seal portion, a higher surface pressure can be obtained on the inner peripheral side of the seal surface even when the torque is smaller than when the seal surface is flat. It is possible to ensure high sealing performance. Even if looseness occurs between the body and the cap, the sealing performance is not immediately lost, and the sealing performance can be recovered by tightening them. By such a function of preventing the cap from loosening, it is possible to prevent a decrease in the elastic force of the spring and to maintain the hermetically sealed state between the filter element and the seal mechanism and to reliably maintain the impurity removal function. By providing the opposing seal part outside the flow path, the generation of particles due to the contact of the fluid with the gasket is suppressed to maintain the purity of the fluid, while the flow path is increased in diameter to suppress pressure loss and a large flow rate. The impurities in the fluid can be removed.

請求項2に係る発明によると、スプリングの一端をキャップの流路径よりも拡径した段部に係合することで、高圧流体によるスプリングへの影響を抑えつつ、流路を大きく確保して大流量の高圧流体の不純物を除去できる。スプリングの他端をフィルタエレメントの有底部の外周側位置に弾発接触させていることにより、スプリングの弾発力の伝達効率を高めながらシール機構に伝達させ、シール機構による密封シール性が高まる。   According to the second aspect of the invention, by engaging one end of the spring with the stepped portion having a diameter larger than the flow path diameter of the cap, a large flow path can be secured while suppressing the influence of the high pressure fluid on the spring. Impurities in high-pressure fluid at a flow rate can be removed. By making the other end of the spring elastically contact with the outer peripheral side position of the bottomed portion of the filter element, it is transmitted to the seal mechanism while enhancing the transmission efficiency of the elastic force of the spring, and the sealing and sealing performance by the seal mechanism is enhanced.

請求項3に係る発明によると、フィルタエレメントをホルダにより安定状態で保持しつつ、パッキンによりフィルタエレメント開口側のシール性を確保して密封シール状態を維持できる。   According to the invention which concerns on Claim 3, while sealing a filter element with a holder in the stable state, the sealing performance of the filter element opening side is ensured with packing, and a hermetically sealed state can be maintained.

請求項4に係る発明によると、ろ過精度を高めて水素に含有される不純物を確実に除去でき、高精度のフィルタエレメントを容易に形成できるため、流路径に合わせて既存のフィルタエレメントを用いることができ、その交換も容易になる。   According to the invention of claim 4, it is possible to reliably remove impurities contained in hydrogen by increasing filtration accuracy, and to easily form a high-accuracy filter element, so that an existing filter element is used according to the flow path diameter. Can be exchanged easily.

請求項5に係る発明によると、鈍角のエッジシール部でガスケットを挟着することにより、ボデーとキャップとを緩み難くしながらこれらの間からの外部漏れを防止し、シール機能を有効に発揮して高圧流体の漏れを防止する。   According to the invention of claim 5, by sandwiching the gasket with an obtuse edge seal portion, it is difficult to loosen the body and the cap while preventing external leakage from between them, and effectively exerting the sealing function. Prevent high pressure fluid leakage.

請求項6に係る発明によると、外部漏れを防ぐことにより高圧流体の圧力を確保しつつ、この高圧流体内の不純物を除去して二次側に供給する水素ステーションを提供できる。   According to the sixth aspect of the present invention, it is possible to provide a hydrogen station that removes impurities in the high-pressure fluid and supplies it to the secondary side while ensuring the pressure of the high-pressure fluid by preventing external leakage.

本発明における高圧用フィルタ装置の実施形態を示す縦断面図である。It is a longitudinal section showing an embodiment of a high pressure filter device in the present invention. 図1の高圧用フィルタ装置の分離斜視図である。FIG. 2 is an exploded perspective view of the high pressure filter device of FIG. 1. 図1の一部省略拡大縦断面図である。FIG. 2 is a partially omitted enlarged longitudinal sectional view of FIG. 1. 水素ステーションを示したブロック図である。It is the block diagram which showed the hydrogen station. 従来の高圧用フィルタ装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the conventional high pressure filter apparatus.

以下に、本発明における高圧用フィルタの実施形態を図面に基づいて詳細に説明する。図1、図2においては、本発明の高圧用フィルタ装置の実施形態を示しており、図3においては図1の一部拡大断面図を示している。
図1、図2に示すように、本発明における高圧用フィルタ装置は、ボデー10、キャップ11、ガスケット12、フィルタエレメント13、コイルスプリングからなるスプリング14、シール機構15を有し、ボデー10とキャップ11とは、対向シール部位16を介して螺着結合される。
Hereinafter, embodiments of a high-pressure filter according to the present invention will be described in detail with reference to the drawings. 1 and 2 show an embodiment of the high-pressure filter device of the present invention, and FIG. 3 shows a partially enlarged sectional view of FIG.
As shown in FIGS. 1 and 2, the high-pressure filter device according to the present invention includes a body 10, a cap 11, a gasket 12, a filter element 13, a spring 14 including a coil spring, and a seal mechanism 15. 11 is screwed and connected via an opposing seal portion 16.

ボデー10は金属材料により設けられ、例えば、ステンレス合金(SUS316)によって略筒状に形成される。ボデー10の一端側、図において右側には雌螺子からなる管接合部20が形成され、この管接合部20には図示しない外部継手の雄螺子が螺合可能に設けられる。この管接合部20に続けて縮径穴21が形成され、この縮径穴21と連通して、拡径した円筒空間部22がボデー内流路23に設けられる。更に、円筒空間部22に続いて雌ねじ部24が形成される。   The body 10 is made of a metal material, and is formed in a substantially cylindrical shape by, for example, a stainless alloy (SUS316). A tube joint portion 20 made of a female screw is formed on one end side of the body 10, and on the right side in the drawing, and a male screw of an external joint (not shown) is provided in the tube joint portion 20 so as to be screwed. A diameter-reduced hole 21 is formed following the pipe joint portion 20, and a cylindrical space portion 22 having an enlarged diameter is provided in the in-body flow path 23 in communication with the diameter-reduced hole 21. Further, an internal thread portion 24 is formed following the cylindrical space portion 22.

図3に示すように、ボデー10の円筒空間部22よりも開口側にはシール面25が形成され、このシール面25の内周方向に鈍角のエッジシール部26が形成される。エッジシール部26の断面の角度α1は、160〜178度の山状であり、本実施形態では170度の鈍角に設けられる。なお、管接合部20と縮径穴21との間には、気密検査用の検査孔27が設けられる。   As shown in FIG. 3, a seal surface 25 is formed on the opening side of the cylindrical space portion 22 of the body 10, and an obtuse edge seal portion 26 is formed in the inner peripheral direction of the seal surface 25. An angle α1 of the cross section of the edge seal portion 26 is a mountain shape of 160 to 178 degrees, and is provided at an obtuse angle of 170 degrees in this embodiment. Note that an inspection hole 27 for an airtight inspection is provided between the pipe joint portion 20 and the reduced diameter hole 21.

図1において、キャップ11はボデー10と同様に金属材料により設けられ、例えば、ボデー10と同材料のステンレス合金(SUS316)により形成される。キャップ11の内部には、ボデー10の流路23と連通する流路28が設けられ、この流路28に続けて雌螺子部からなる管接合部30が形成される。管接合部30には、ボデー10の雌螺子20と同様に、図示しない外部継手の雄螺子部が螺合可能に設けられる。   In FIG. 1, a cap 11 is made of a metal material similarly to the body 10, and is made of, for example, a stainless alloy (SUS316) made of the same material as the body 10. Inside the cap 11, a flow path 28 that communicates with the flow path 23 of the body 10 is provided, and a tube joint portion 30 including a female screw portion is formed following the flow path 28. Similar to the female screw 20 of the body 10, a male screw portion of an external joint (not shown) is provided in the pipe joint portion 30 so as to be screwable.

図3に示すように、キャップ11におけるボデー10のシール面25との対向側にはシール面35が設けられ、このシール面35の内周方向にボデー10側と同様に鈍角のエッジシール部36が形成される。エッジシール部36の断面の角度α2は、例えば、ボデー10側と同様に160〜178度の山状であり、本実施形態では、角度α1と同じ170度の鈍角に設けられる。キャップ11のボデー10取付け側には、雌ねじ部24に螺合可能な雄ねじ部34が形成され、この雄ねじ部34を介してキャップ11がボデー10に螺合される。なお、管接合部30と流路28との間には、気密検査用の検査孔37が設けられる。
キャップ11の流路口側には、その流路径よりも拡径され、スプリング14を係合可能な段部38が内径φD1により形成される。
As shown in FIG. 3, a seal surface 35 is provided on the side of the cap 11 facing the seal surface 25 of the body 10, and an obtuse angle edge seal portion 36 is formed in the inner circumferential direction of the seal surface 35 in the same manner as the body 10 side. Is formed. The angle α2 of the cross section of the edge seal portion 36 is, for example, a mountain shape of 160 to 178 degrees similarly to the body 10 side, and is provided at an obtuse angle of 170 degrees that is the same as the angle α1 in the present embodiment. A male screw portion 34 that can be screwed into the female screw portion 24 is formed on the body 10 mounting side of the cap 11, and the cap 11 is screwed into the body 10 via the male screw portion 34. An inspection hole 37 for an airtight inspection is provided between the pipe joint 30 and the flow path 28.
On the channel opening side of the cap 11, a step portion 38 having a diameter larger than the channel diameter and capable of engaging with the spring 14 is formed with an inner diameter φD 1.

上記ボデー10とキャップ11とのシール面25、35と、これらシール面25、35に形成されたエッジシール部26、36とは、対向シール部位16にそれぞれ形成され、この対向シール部位16の両者のエッジシール部26、36でガスケット12が挟圧されるように構成されている。   The sealing surfaces 25 and 35 of the body 10 and the cap 11 and the edge seal portions 26 and 36 formed on the sealing surfaces 25 and 35 are formed on the opposing seal portion 16, respectively. The gasket 12 is configured to be sandwiched between the edge seal portions 26 and 36.

図1において、ガスケット12は、平型の穴あき円板状に形成され、雌ねじ部24と雄ねじ部34との螺着時に、エッジシール部26、36の断面山状の間に挟圧可能な状態に装着され、このガスケット12によりボデー10とキャップ11との間がシールされる。ガスケット12は、ボデー10、キャップ11よりも硬度の小さい材質で形成され、具体的には、ボデー10、キャップ11がSUS316であれば、ガスケット12が銅又は銅合金で形成されていることが望ましい。   In FIG. 1, the gasket 12 is formed in a flat perforated disk shape, and can be clamped between the cross-sections of the edge seal portions 26 and 36 when the female screw portion 24 and the male screw portion 34 are screwed together. The gasket 10 seals between the body 10 and the cap 11. The gasket 12 is formed of a material having a hardness lower than that of the body 10 and the cap 11. Specifically, if the body 10 and the cap 11 are SUS316, the gasket 12 is preferably formed of copper or a copper alloy. .

フィルタエレメント13は、ステンレス又はステンレス合金製の焼結体により設けられ、高圧水素の不純物を除去する場合、公称ろ過精度5〜20μmの焼結体とすることが望ましい。フィルタエレメント13は、一次側に有底部40を有し、かつ二次側に開口部41を有する有底円筒形状に形成され、ボデー10の流路23に設けた円筒空間部22内に収納される。   The filter element 13 is provided by a sintered body made of stainless steel or stainless steel alloy, and when removing high-pressure hydrogen impurities, it is desirable to use a sintered body with a nominal filtration accuracy of 5 to 20 μm. The filter element 13 is formed in a bottomed cylindrical shape having a bottomed portion 40 on the primary side and an opening 41 on the secondary side, and is housed in a cylindrical space portion 22 provided in the flow path 23 of the body 10. The

この場合、スプリング14の一端がキャップ11の段部38に係合され、他端がフィルタエレメント13の有底部40の外周側位置に弾発接触される。これにより、有底部40がスプリング14で押圧され、かつ開口部41がシール機構15で密封シールされる。   In this case, one end of the spring 14 is engaged with the step portion 38 of the cap 11, and the other end is elastically contacted with the outer peripheral side position of the bottomed portion 40 of the filter element 13. As a result, the bottomed portion 40 is pressed by the spring 14 and the opening 41 is hermetically sealed by the seal mechanism 15.

シール機構15は、パッキン42、ホルダ43を有し、ボデー側流路23の二次側に設けられる。パッキン42は、例えば、PTFE(ポリテトラフルオロエチレン)等の樹脂により穴あき円板状に形成され、フィルタエレメント13の開口部41側に設けられる。   The seal mechanism 15 includes a packing 42 and a holder 43 and is provided on the secondary side of the body side flow path 23. The packing 42 is formed in a perforated disk shape with a resin such as PTFE (polytetrafluoroethylene), and is provided on the opening 41 side of the filter element 13.

ホルダ43は、パッキン42を保持して挟圧可能にこのパッキン42の背面側に装着され、例えば、ステンレス等の金属により略筒状に設けられる。ホルダ43の中央位置には流路孔44が形成され、この流路孔44を介してフィルタエレメント13を通過してろ過された流体が二次側に送られる。ホルダ43の背面側には、Oリングからなるシール部材45が装着され、このシール部材45によりホルダ43の裏漏れが防がれる。   The holder 43 is attached to the back side of the packing 42 so as to hold and hold the packing 42 and is provided in a substantially cylindrical shape with a metal such as stainless steel, for example. A flow path hole 44 is formed at the center position of the holder 43, and the filtered fluid passing through the filter element 13 through the flow path hole 44 is sent to the secondary side. A seal member 45 made of an O-ring is mounted on the back side of the holder 43, and the back leakage of the holder 43 is prevented by this seal member 45.

ホルダ43の背面側中央には突起部46が形成され、この突起部46を縮径穴21に嵌合しながらホルダ43をボデー10に装着することで、ホルダ43が流路23の中央に位置決め状態で固定される。ホルダ43のフィルタエレメント13側には、パッキン42装着用の凸状部47が形成されている。
このような構成により、シール機構15は、スプリング14の弾発力でフィルタエレメント13の開口部41がパッキン42を押圧して密封シールする機構となっている。
A protrusion 46 is formed in the center of the back side of the holder 43, and the holder 43 is positioned at the center of the flow path 23 by fitting the holder 43 to the body 10 while fitting the protrusion 46 in the reduced diameter hole 21. Fixed in state. On the filter element 13 side of the holder 43, a convex portion 47 for mounting the packing 42 is formed.
With such a configuration, the sealing mechanism 15 is a mechanism that seals and seals the opening 42 of the filter element 13 by pressing the packing 42 by the elastic force of the spring 14.

上述した高圧用フィルタ装置を組み込む場合、ボデー10内にパッキン42とシール部材45とを装着したホルダ43を突起部46を縮径穴21に嵌合させるように装着し、次いで、パッキン42側に開口部41を向けてフィルタエレメント13を円筒空間部22に収納する。この状態で、シール面25とシール面35との間にガスケット12、フィルタエレメント13の有底部40の外周側位置と段部38との間にスプリング14をそれぞれ介在させつつ、雄ねじ部24と雌ねじ部34とを螺着して締め込むことにより、ボデー10とキャップ11とを一体化する。これにより、ガスケット12をエッジシール部26、36の間に挟着し、スプリング14の押圧により開口部41をシール機構15で密封シールした状態で、フィルタエレメント13を円筒空間部22内に位置決め保持状態で一体化できる。   When the above-described high-pressure filter device is assembled, the holder 43 in which the packing 42 and the seal member 45 are mounted in the body 10 is mounted so that the protruding portion 46 is fitted in the reduced diameter hole 21, and then the packing 42 side. The filter element 13 is accommodated in the cylindrical space 22 with the opening 41 directed. In this state, the male screw portion 24 and the female screw are respectively inserted between the seal surface 25 and the seal surface 35 while the spring 14 is interposed between the outer peripheral side position of the bottomed portion 40 of the gasket 12 and the filter element 13 and the step portion 38. The body 10 and the cap 11 are integrated by screwing and tightening the portion 34. As a result, the gasket 12 is sandwiched between the edge seal portions 26 and 36, and the filter element 13 is positioned and held in the cylindrical space portion 22 in a state where the opening portion 41 is hermetically sealed by the seal mechanism 15 by pressing of the spring 14. Can be integrated in the state.

次いで、本発明の高圧用フィルタ装置の上記実施形態における作用を説明する。
図1に示した本発明の高圧用フィルタ装置において、ボデー10とキャップ11とを螺着結合する際には、対向シール部位16の鈍角のエッジシール部26、36でガスケット12を挟圧していることにより、このガスケット12がエッジシール部26、36に沿うように変形しながら高いシール面圧によりシール面25、35と密着シールする。
Next, the operation of the high-pressure filter device of the present invention in the above embodiment will be described.
In the high-pressure filter device of the present invention shown in FIG. 1, when the body 10 and the cap 11 are screwed together, the gasket 12 is clamped by the obtuse edge seal portions 26 and 36 of the opposed seal portion 16. Thus, the gasket 12 is tightly sealed with the seal surfaces 25 and 35 by a high seal surface pressure while being deformed along the edge seal portions 26 and 36.

このように、雌ねじ部24側のボデー10と雄ねじ部34側のキャップ11とをメタルガスケット構造によりシールし、これらの螺着時に適切な締付けにより締付けトルクを大きく確保しながらガスケット12を圧着することにより、緩みの発生を防止して高シール性を維持し、外部漏れを確実に防止できる。仮に、緩みが生じた場合でも、直ちにシール性が失われることがなく、しかも、増し締めによりガスケット12を挟圧することでシール性を回復して確実に漏れを防止できる。配管施工時にも、逆トルクによるボデー10とキャップ11との緩みを防止可能になる。   In this way, the body 10 on the female screw portion 24 side and the cap 11 on the male screw portion 34 side are sealed with a metal gasket structure, and the gasket 12 is pressure-bonded while securing a large tightening torque by proper tightening at the time of screwing. Therefore, it is possible to prevent the occurrence of loosening, maintain high sealing performance, and reliably prevent external leakage. Even if loosening occurs, the sealing performance is not immediately lost, and the gasket 12 is clamped by retightening to restore the sealing performance and prevent leakage. Also during the piping construction, loosening of the body 10 and the cap 11 due to the reverse torque can be prevented.

上記構成により、図3におけるキャップ11の内径(流路径)φD3を大径化した場合にも、このキャップ11の肉厚を十分に確保して強度を向上できるため、ボデー10の内径(流路径)φD2を大径にしたときの大流量化の要求に応じて、この内径φD2に比して径の減少を抑えて内径φD3を大きく形成できる。この場合、流路23の外側の対向シール部位16でガスケット12を挟圧していることで、このガスケット12が内径φD2よりも外側に外れるため、パーティクルの発生を抑えながら大流量の流体の不純物を除去処理できる。   With the above configuration, even when the inner diameter (flow path diameter) φD3 of the cap 11 in FIG. 3 is increased, the thickness of the cap 11 can be sufficiently secured to improve the strength. ) According to the demand for a large flow rate when φD2 is increased in diameter, the inner diameter φD3 can be made larger while suppressing a decrease in diameter compared to the inner diameter φD2. In this case, since the gasket 12 is clamped by the opposing seal portion 16 outside the flow path 23, the gasket 12 is disengaged outside the inner diameter φD2, so that impurities of a large flow rate of fluid are suppressed while suppressing generation of particles. Can be removed.

ボデー10に対するキャップ11の緩みを防止したことにより、装着後のスプリング14の余分な伸長を抑えてこのスプリング14の弾発力の低下を阻止できる。これにより、フィルタエレメント13とシール機構15とのシール力を維持し、開口部41とパッキン42との間の隙間の発生を防止して密封シール状態を確保し、例えば、約99MPaの超高圧水素等の流体が流れる場合であっても、安定確実なフィルタ性能を保持することができる。   By preventing the cap 11 from loosening with respect to the body 10, excessive extension of the spring 14 after being mounted can be suppressed, and a decrease in the resilience of the spring 14 can be prevented. As a result, the sealing force between the filter element 13 and the sealing mechanism 15 is maintained, the generation of a gap between the opening 41 and the packing 42 is prevented, and a hermetically sealed state is ensured. Even when a fluid such as a fluid flows, stable and reliable filter performance can be maintained.

ガスケット12をボデー10、キャップ11よりも硬度の小さい材質にした場合には、メンテナンス等でこれらボデー10とキャップ11との螺着を外す際に、シール面25、35がガスケット12との面接触により損傷するおそれがないため、ガスケット12を交換することでシール性能を回復できる。   When the gasket 12 is made of a material having a hardness lower than that of the body 10 and the cap 11, the seal surfaces 25 and 35 are in surface contact with the gasket 12 when the body 10 and the cap 11 are unscrewed for maintenance or the like. Therefore, the sealing performance can be recovered by replacing the gasket 12.

スプリング14を介したフィルタエレメント13の装着構造により、このフィルタエレメント13の着脱が容易になり、交換や清掃等の保守も簡単になる。
スプリング14の一端をキャップ11の流路径φD3よりも拡径した段部38に係合させていることで、高圧流体の圧力が直接スプリング14の弾発方向に伝わることを防ぎつつ、流路径φD3を大きく確保して大流量化できる。スプリング14の他端をフィルタエレメント13の有底部40の外周側位置に弾発接触させていることで、スプリング14の弾発力をフィルタエレメント13の円筒部位に直接伝達させて、開口部41とシール機構15との圧接力を高めてパッキン42による密封シール性を向上できる。流路径φD2、φD3の設計自由度も高くなるため、全体のコンパクト性を維持しながら流路を大きく確保できる。
The mounting structure of the filter element 13 via the spring 14 makes it easy to attach and detach the filter element 13, and also facilitates maintenance such as replacement and cleaning.
By engaging one end of the spring 14 with the stepped portion 38 having a diameter larger than the flow path diameter φD3 of the cap 11, the pressure of the high-pressure fluid is prevented from being directly transmitted in the direction of springing of the spring 14, and the flow path diameter φD3. Can be secured with a large flow rate. Since the other end of the spring 14 is elastically contacted with the outer peripheral side position of the bottomed portion 40 of the filter element 13, the elastic force of the spring 14 is directly transmitted to the cylindrical portion of the filter element 13, and the opening 41 and The pressure-contact force with the seal mechanism 15 can be increased to improve the sealing performance by the packing 42. Since the degree of freedom in designing the flow path diameters φD2 and φD3 is increased, a large flow path can be secured while maintaining the overall compactness.

図4においては、本発明の高圧用フィルタ装置を用いた水素ステーションを示している。水素ステーションは、例えば、蓄圧器70、圧縮機71、ディスペンサ72、プレクール熱交換器73、迅速継手74、充填ホース75、充填ノズル76、車載タンク77、高圧用逆止め弁79を有し、これらは高圧水素の供給ライン78としてシステムを構成している。   FIG. 4 shows a hydrogen station using the high-pressure filter device of the present invention. The hydrogen station has, for example, a pressure accumulator 70, a compressor 71, a dispenser 72, a precool heat exchanger 73, a quick joint 74, a filling hose 75, a filling nozzle 76, an on-vehicle tank 77, and a high pressure check valve 79. Constitutes a system as a high-pressure hydrogen supply line 78.

本発明の高圧用フィルタ装置である装置本体90は、インライン型として、例えば、充填ノズル76の一次側に設けられるか、或は、供給ライン78のその他の箇所に設けられる。装置本体90を設けることで、超高圧流体が流れる場合にも外部漏れを防ぎ、優れたろ過性能を維持できる。   The apparatus main body 90 that is the high-pressure filter apparatus of the present invention is provided as an inline type, for example, on the primary side of the filling nozzle 76, or provided at other locations on the supply line 78. By providing the apparatus main body 90, external leakage can be prevented even when an ultrahigh pressure fluid flows, and excellent filtration performance can be maintained.

なお、水素ステーションの各ユニットの接続部位には手動弁81が設けられ、各ユニットの一次側又は二次側に適宜に自動弁80が設けられている。
蓄圧器70の内部は、複数のタンクに分かれており、それぞれのタンクと圧縮機71とを接続する自動弁80、及びそれぞれのタンクとディスペンサ72とを接続する自動弁80を適宜切り替えることにより、所定圧に至ったタンクから水素をディスペンサに供給する一方、所定の下限値圧を下回ったタンクには、圧縮機71から水素を前記所定圧に至るまで充填する。この水素ステーションに設けられた供給ライン78において、所定のプログラムによって水素供給が制御され、車両供給量に応じて適宜に水素を供給制御可能になる。
Note that a manual valve 81 is provided at a connection portion of each unit of the hydrogen station, and an automatic valve 80 is appropriately provided on the primary side or the secondary side of each unit.
The interior of the pressure accumulator 70 is divided into a plurality of tanks. By appropriately switching the automatic valve 80 that connects each tank and the compressor 71 and the automatic valve 80 that connects each tank and the dispenser 72, Hydrogen is supplied to the dispenser from a tank that has reached a predetermined pressure, while a tank that has fallen below a predetermined lower limit pressure is filled with hydrogen from the compressor 71 until the predetermined pressure is reached. In the supply line 78 provided in the hydrogen station, the hydrogen supply is controlled by a predetermined program, and the hydrogen supply can be appropriately controlled according to the vehicle supply amount.

10 ボデー
11 キャップ
12 ガスケット
13 フィルタエレメント
14 スプリング
15 シール機構
16 対向シール部位
20、30 管接合部
22 円筒空間部
23 流路
25、35 シール面
26、36 エッジシール部
38 段部
40 有底部
41 開口部
42 パッキン
43 ホルダ
44 流路孔
90 装置本体
φD3 キャップの流路径
DESCRIPTION OF SYMBOLS 10 Body 11 Cap 12 Gasket 13 Filter element 14 Spring 15 Seal mechanism 16 Opposing seal part 20, 30 Pipe joint part 22 Cylindrical space part 23 Flow path 25, 35 Seal surface 26, 36 Edge seal part 38 Step part 40 Bottomed part 41 Opening Portion 42 Packing 43 Holder 44 Channel hole 90 Device body φD3 Cap channel diameter

Claims (6)

管接合部を有するボデーと管接合部を有するキャップとを対向シール部位を介して螺着結合し、前記対向シール部位は、前記ボデーと前記キャップとのシール面の内周方向に鈍角のエッジシール部をそれぞれ形成し、この両者のエッジシール部でガスケットを挟圧して構成すると共に、前記ボデーの流路に設けた円筒空間部内に、一次側に有底部を有し、かつ二次側に開口部を有するフィルタエレメントを収納し、このフィルタエレメントは、前記有底部をスプリングで押圧し、かつ前記開口部をシール機構で密封シールしたことを特徴とする高圧用フィルタ装置。   A body having a pipe joint and a cap having a pipe joint are screwed together via an opposing seal part, and the opposing seal part is an edge seal having an obtuse angle in the inner circumferential direction of the seal surface between the body and the cap Each part is formed and a gasket is sandwiched between the two edge seal parts, and the cylindrical space provided in the flow passage of the body has a bottomed part on the primary side and an opening on the secondary side. A high pressure filter device comprising: a filter element having a portion, wherein the bottomed portion is pressed by a spring, and the opening is hermetically sealed by a seal mechanism. 前記スプリングの一端を前記キャップの流路径より拡径した段部に係合し、他端を前記フィルタエレメントの有底部の外周側位置に弾発接触させた請求項1に記載の高圧用フィルタ装置。   2. The high-pressure filter device according to claim 1, wherein one end of the spring is engaged with a stepped portion having a diameter larger than a flow path diameter of the cap, and the other end is elastically contacted with an outer peripheral side position of the bottomed portion of the filter element. . 前記シール機構は、前記フィルタエレメントの開口部に設けたパッキンとこれを挟圧する流路孔を有するホルダで保持し、前記スプリングの弾発力で密封シールした機構である請求項1又は2に記載の高圧用フィルタ装置。   3. The seal mechanism according to claim 1, wherein the seal mechanism is a mechanism that is held by a holder having a packing provided at an opening of the filter element and a flow path hole that sandwiches the seal, and is hermetically sealed by the elastic force of the spring. High pressure filter device. 前記フィルタエレメントは、ステンレス又はステンレス合金製の焼結体である請求項1乃至3の何れか1項に記載の高圧用フィルタ装置。   The high-pressure filter device according to any one of claims 1 to 3, wherein the filter element is a sintered body made of stainless steel or a stainless alloy. 前記鈍角のエッジシール部は、断面が160〜178度の山状であり、この山状の間に前記ガスケットを挟圧させた請求項1乃至4の何れか1項に記載の高圧用フィルタ装置。   The high-pressure filter device according to any one of claims 1 to 4, wherein the obtuse edge seal portion has a mountain shape with a cross section of 160 to 178 degrees, and the gasket is sandwiched between the mountain shapes. . 高圧水素の供給ラインに請求項1乃至5の何れか1項に記載の高圧用フィルタを用いたことを特徴とする水素ステーション。   A hydrogen station, wherein the high-pressure filter according to claim 1 is used in a high-pressure hydrogen supply line.
JP2015033714A 2015-02-24 2015-02-24 High pressure filter device and hydrogen station using the same Active JP6517040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033714A JP6517040B2 (en) 2015-02-24 2015-02-24 High pressure filter device and hydrogen station using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033714A JP6517040B2 (en) 2015-02-24 2015-02-24 High pressure filter device and hydrogen station using the same

Publications (2)

Publication Number Publication Date
JP2016155061A true JP2016155061A (en) 2016-09-01
JP6517040B2 JP6517040B2 (en) 2019-05-22

Family

ID=56824505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033714A Active JP6517040B2 (en) 2015-02-24 2015-02-24 High pressure filter device and hydrogen station using the same

Country Status (1)

Country Link
JP (1) JP6517040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582128A (en) * 2016-12-13 2017-04-26 四川航空工业川西机器有限责任公司 Ultrahigh-pressure gas filter
CN106949267A (en) * 2017-04-22 2017-07-14 张家港富瑞阀门有限公司 A new type of high pressure hydrogenation port
CN111886064A (en) * 2018-04-04 2020-11-03 曼·胡默尔有限公司 Filter device, connection interface element and filter interface unit
JP2021089004A (en) * 2019-12-03 2021-06-10 株式会社フジキン Filter-incorporated joint
WO2023037730A1 (en) * 2021-09-07 2023-03-16 株式会社フジキン Joint with built-in filter
WO2023127663A1 (en) * 2021-12-28 2023-07-06 川崎重工業株式会社 Filter device and valve device provided with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349912A (en) * 1991-05-28 1992-12-04 Kiyohara Masako Fully metallic filter
JPH11333228A (en) * 1998-05-25 1999-12-07 Mitsubishi Electric Corp Gasket filter and its manufacture, and gas treatment
WO2009093338A1 (en) * 2008-01-25 2009-07-30 Nitto Kohki Co., Ltd. Cylindrical filter element and high pressure fluid joint member having the same
WO2013115120A1 (en) * 2012-02-01 2013-08-08 本田技研工業株式会社 Filling port structure for pressure fluid
JP2014001765A (en) * 2012-06-15 2014-01-09 Kitz Sct:Kk High-pressure check valve and hydrogen station employing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349912A (en) * 1991-05-28 1992-12-04 Kiyohara Masako Fully metallic filter
JPH11333228A (en) * 1998-05-25 1999-12-07 Mitsubishi Electric Corp Gasket filter and its manufacture, and gas treatment
WO2009093338A1 (en) * 2008-01-25 2009-07-30 Nitto Kohki Co., Ltd. Cylindrical filter element and high pressure fluid joint member having the same
WO2013115120A1 (en) * 2012-02-01 2013-08-08 本田技研工業株式会社 Filling port structure for pressure fluid
JP2014001765A (en) * 2012-06-15 2014-01-09 Kitz Sct:Kk High-pressure check valve and hydrogen station employing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582128A (en) * 2016-12-13 2017-04-26 四川航空工业川西机器有限责任公司 Ultrahigh-pressure gas filter
CN106949267A (en) * 2017-04-22 2017-07-14 张家港富瑞阀门有限公司 A new type of high pressure hydrogenation port
CN111886064A (en) * 2018-04-04 2020-11-03 曼·胡默尔有限公司 Filter device, connection interface element and filter interface unit
JP2021089004A (en) * 2019-12-03 2021-06-10 株式会社フジキン Filter-incorporated joint
JP7357352B2 (en) 2019-12-03 2023-10-06 株式会社フジキン Fitting with built-in filter
WO2023037730A1 (en) * 2021-09-07 2023-03-16 株式会社フジキン Joint with built-in filter
KR20240027122A (en) 2021-09-07 2024-02-29 가부시키가이샤 후지킨 Joint with built-in filter
DE112022004278T5 (en) 2021-09-07 2024-08-14 Fujikin Incorporated Connection device with a built-in filter
JP7634298B2 (en) 2021-09-07 2025-02-21 株式会社フジキン Filter built-in fitting
WO2023127663A1 (en) * 2021-12-28 2023-07-06 川崎重工業株式会社 Filter device and valve device provided with same

Also Published As

Publication number Publication date
JP6517040B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6517040B2 (en) High pressure filter device and hydrogen station using the same
JP4926964B2 (en) Piping joint
JP5805220B2 (en) Pressure fluid filling port structure
JP2015031348A (en) Valve device
JP5973816B2 (en) High pressure gas container seal structure
JP6526473B2 (en) End seal structure of fuel rail for gasoline direct injection engine
JP5973247B2 (en) High pressure check valve and hydrogen station using the same
JP4465392B2 (en) Coupler and gas or liquid supply device
JP6778047B2 (en) High-pressure filter and hydrogen station using it
KR20170031785A (en) End-sealing structure for fuel rail for gasoline direct injection engine
JP6654420B2 (en) High pressure check valve and hydrogen station using it
KR20190105345A (en) Coupler apparatus for use with high pressure
JP2013029160A (en) Valve device
JP2016020678A (en) Terminal seal structure of direct gasoline-injection engine fuel rail
JP6406904B2 (en) Terminal seal structure of fuel rail for gasoline direct injection engine
JP2018009677A (en) Valve and seal component
CN216112692U (en) Welded pipe connector
CN214274604U (en) Pressure reducing valve sealing structure and pressure reducing valve
JPWO2018003982A1 (en) Check valve
US20210285577A1 (en) Detachable valve
JP2013024343A (en) Gasket and pipe coupling
JP7357352B2 (en) Fitting with built-in filter
CN110088524B (en) Valve block and accumulator device provided with same
JP2007333165A (en) Closing member of closing valve or branch joint
JP6139935B2 (en) Packing-integrated check valve and return water prevention method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250