JP2016143741A - Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member - Google Patents

Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member Download PDF

Info

Publication number
JP2016143741A
JP2016143741A JP2015017757A JP2015017757A JP2016143741A JP 2016143741 A JP2016143741 A JP 2016143741A JP 2015017757 A JP2015017757 A JP 2015017757A JP 2015017757 A JP2015017757 A JP 2015017757A JP 2016143741 A JP2016143741 A JP 2016143741A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
electronic component
solder powder
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015017757A
Other languages
Japanese (ja)
Inventor
藤本 公三
Kozo Fujimoto
公三 藤本
信次 福本
Shinji Fukumoto
信次 福本
道也 松嶋
Michiya Matsushima
道也 松嶋
浩平 山内
Kohei Yamauchi
浩平 山内
上島 稔
Minoru Uejima
稔 上島
健志 坂本
Kenji Sakamoto
健志 坂本
渡邉 聡
Satoshi Watanabe
聡 渡邉
菅 武
Takeshi Suga
武 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Osaka University NUC
Senju Metal Industry Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Osaka University NUC
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd, Osaka University NUC, Senju Metal Industry Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2015017757A priority Critical patent/JP2016143741A/en
Publication of JP2016143741A publication Critical patent/JP2016143741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83886Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for mounting an electronic component, capable of collectively performing electric joining with solder and sealing and joining with a resin, and capable of performing joining with solder more reliably even in the case of a multi-electrode electronic component.SOLUTION: In a method for mounting an electronic component, an electronic component 40 is joined to a board 10 by interposing a joining material layer 20 between the board 10 and the electronic component 40 to be melted, the joining material layer including: a solder powder-containing thermosetting resin layer (α) 24 including a thermosetting resin (a1), solder powder (a2) 28 and a reducing agent (a3); and a first thermoplastic resin layer (β) 22 and a second thermoplastic resin layer (β) 26 which include a thermoplastic resin (b1). The thermosetting resin (a1) has a viscosity allowing the solder powder (a2) to flow in the solder powder-containing thermosetting resin layer (α), at a temperature at which the solder powder (a2) is melted, and the thermoplastic resin (b1) has a viscosity of less than 10 Pa s at a temperature at which the solder powder (a2) is melted.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品の実装方法、電子部品付き基板およびその接合層、ならびに接合用材料層付き基板およびシート状接合用部材に関する。   The present invention relates to an electronic component mounting method, a substrate with an electronic component and a bonding layer thereof, a substrate with a bonding material layer, and a sheet-like bonding member.

近年、携帯電話、パーソナルコンピュータ等の情報機器の多機能化または小型軽量化に伴い、基板に実装される電子部品の高密度化が進んでいる。このため、電子部品の電極は狭ピッチ化し、基板の電極と電子部品の電極とを接合するための高密度実装技術の向上が求められている。   In recent years, with the increase in the number of functions or downsizing and weight reduction of information devices such as mobile phones and personal computers, the density of electronic components mounted on a substrate has been increased. For this reason, the pitch of the electrodes of the electronic component is narrowed, and improvement of high-density mounting technology for joining the electrode of the substrate and the electrode of the electronic component is required.

電子部品の実装は、例えば、下記の工程を経て行われる(例えば特許文献1の段落[0003]〜[0004]参照)。
(1)はんだマスクを用いたスクリーン印刷によって基板の電極上にはんだペーストを塗布する工程。
(2)はんだペースト上に電子部品を配置する工程。
(3)電子部品が配置された基板をリフロー炉に通し、基板の電極と電子部品の電極との間をはんだ付けで電気的に接合する工程。
(4)はんだ付け部分の保護および補強を目的に、基板と電子部品との隙間にアンダーフィル樹脂を注入する工程。
(5)アンダーフィル樹脂を硬化することにより、樹脂による封止および接合を行う工程。
For example, the mounting of the electronic component is performed through the following steps (see, for example, paragraphs [0003] to [0004] of Patent Document 1).
(1) A step of applying a solder paste onto the electrodes of the substrate by screen printing using a solder mask.
(2) A step of arranging electronic components on the solder paste.
(3) A step of passing the substrate on which the electronic component is arranged through a reflow furnace and electrically joining the electrode of the substrate and the electrode of the electronic component by soldering.
(4) A step of injecting an underfill resin into the gap between the substrate and the electronic component for the purpose of protecting and reinforcing the soldered portion.
(5) A step of sealing and joining with resin by curing the underfill resin.

しかし、従来の電子部品の実装方法では、はんだ付け後の工程数が多いという問題がある。そこで、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができる電子部品の実装方法として、下記の工程を有する方法が提案されている(特許文献2の特許請求の範囲、段落[0026]等)。
(i)熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む熱可塑性樹脂層(β)とを有する接合用材料層を、基板の電極側の表面に設ける工程。
(ii)接合用材料層上に電子部品を配置する工程。
(iii)接合用材料層を溶融させることにより、基板の電極と電子部品の電極との間にはんだ粉(a2)を集合、融着させてはんだ接合部で電極間を電気的に接合すると同時に、はんだ接合部の周囲に流れた熱硬化性樹脂(a1)および熱可塑性樹脂(b1)を含むハイブリッド樹脂を硬化させて樹脂接合部による封止および接合を行う工程。
However, the conventional electronic component mounting method has a problem that the number of processes after soldering is large. Therefore, as a method for mounting an electronic component capable of performing electrical bonding with solder and sealing and bonding with resin in a lump, a method having the following steps has been proposed (Patent Document 2, Claims, Paragraph). [0026] etc.).
(I) a thermosetting resin layer (α) containing a thermosetting resin (a1), a solder powder (a2) and a reducing agent (a3), and a thermoplastic resin layer containing a thermoplastic resin (b1) ( a step of providing a bonding material layer having β) on the electrode-side surface of the substrate.
(Ii) A step of arranging an electronic component on the bonding material layer.
(Iii) At the same time that the solder material (a2) is gathered and fused between the electrodes of the substrate and the electrodes of the electronic component by melting the joining material layer and electrically joining the electrodes at the solder joints And a step of curing and hybridizing the hybrid resin including the thermosetting resin (a1) and the thermoplastic resin (b1) that flowed around the solder joint portion by the resin joint portion.

特許文献2の電子部品の実装方法は、BGA(ボール・グリッド・アレイ)、LGA(ランド・グランド・アレイ)等の多電極電子部品に適用可能である(特許文献2の段落[0027])。多電極電子部品の実装においては、はんだによる接合をより確実に行えることが望まれている。   The electronic component mounting method of Patent Document 2 can be applied to multi-electrode electronic components such as BGA (Ball Grid Array) and LGA (Land Ground Array) (paragraph [0027] of Patent Document 2). In mounting multi-electrode electronic components, it is desired that soldering can be more reliably performed.

特開2001−239395号公報JP 2001-239395 A 特開2014−027237号公報JP 2014-027237 A

本発明は、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができ、かつ多電極電子部品であってもはんだによる接合をより確実に行うことができる電子部品の実装方法;基板と電子部品とのはんだによる接合がより確実に行われている電子部品付き基板;基板と電子部品とのはんだによる接合をより確実に行うことができる接合層;本発明の電子部品の実装方法に好適な接合用材料層付き基板およびシート状接合用部材を提供する。   The present invention provides an electronic component mounting method capable of performing electrical bonding with solder and sealing and bonding with resin all at once, and more reliably performing bonding with solder even for a multi-electrode electronic component; A substrate with an electronic component in which the bonding between the substrate and the electronic component is more reliably performed; a bonding layer capable of performing the bonding between the substrate and the electronic component with solder more reliably; and the mounting method of the electronic component according to the present invention The board | substrate with a material layer for joining suitable for and sheet-like joining member are provided.

多電極電子部品では、基板のランド面積が小さくなることにより、接合用材料の量も減少するため、セルフアライメントが生じにくくなる。さらに、通常のはんだペーストに含まれるフラックスよりも粘性の高い樹脂の場合には、さらにその傾向が顕著になる。本発明の目的は、そのようなより厳しい条件下においても、はんだ付け性を向上させることである。   In the multi-electrode electronic component, since the land area of the substrate is reduced, the amount of the bonding material is also reduced, so that self-alignment is less likely to occur. Further, in the case of a resin having a higher viscosity than the flux contained in a normal solder paste, the tendency becomes more remarkable. The object of the present invention is to improve solderability even under such more severe conditions.

本発明は、下記の態様を有する。
[1]熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む一層または二層の熱可塑性樹脂層(β)とを有する接合用材料層を、基板と電子部品との間に介在させた状態で、前記接合用材料層を溶融させることにより、前記基板と前記電子部品との接合を行う電子部品の実装方法であって、前記熱硬化性樹脂(a1)が、前記はんだ粉(a2)が溶融する温度において、前記はんだ粉(a2)が前記はんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度となる熱硬化性樹脂であり、前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、電子部品の実装方法。
[2]前記[1]の電子部品の実装方法で作製された、電子部品付き基板。
[3]前記[1]の電子部品の実装方法で形成された、はんだ粉(a2)が融着してなるはんだ接合部と、熱硬化性樹脂(a1)の硬化物および熱可塑性樹脂(b1)を含む樹脂接合部とを有する、電子部品付き基板の接合層。
[4]基板と、該基板の電極側の表面に設けられた接合用材料層とを備え、前記接合用材料層は、熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む一層または二層の熱可塑性樹脂層(β)とを有し、前記熱可塑性樹脂層(β)の一層が、前記はんだ粉含有熱硬化性樹脂層(α)の表面を被覆し、前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、接合用材料層付き基板。
[5]熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む二層の熱可塑性樹脂層(β)とを有し、前記二層の熱可塑性樹脂層(β)の間に前記はんだ粉含有熱硬化性樹脂層(α)が設けられ、前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、シート状接合用部材。
The present invention has the following aspects.
[1] One or two layers of a thermosetting resin (a1), a solder powder (a2) and a solder powder-containing thermosetting resin layer (α3) containing a reducing agent (a3) and a thermoplastic resin (b1) Joining the substrate and the electronic component by melting the joining material layer in a state where the joining material layer having the thermoplastic resin layer (β) is interposed between the substrate and the electronic component. In the electronic component mounting method, the thermosetting resin (a1) is heated at a temperature at which the solder powder (a2) is melted. α) is a thermosetting resin having a viscosity capable of flowing inside, and the thermoplastic resin (b1) is a thermoplastic resin having a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts. , Mounting method of electronic components.
[2] A substrate with electronic components produced by the electronic component mounting method of [1].
[3] A solder joint formed by fusing the solder powder (a2) formed by the electronic component mounting method of [1], a cured product of a thermosetting resin (a1), and a thermoplastic resin (b1 The bonding layer of the substrate with electronic components having a resin bonding portion including
[4] A substrate and a bonding material layer provided on the electrode-side surface of the substrate, the bonding material layer including a thermosetting resin (a1), solder powder (a2), and a reducing agent (a3). ) Containing a solder powder-containing thermosetting resin layer (α) and one or two thermoplastic resin layers (β) containing the thermoplastic resin (b1), and the thermoplastic resin layer (β) One layer covers the surface of the solder powder-containing thermosetting resin layer (α), and the thermoplastic resin (b1) has a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts. A substrate with a bonding material layer, which is a thermoplastic resin.
[5] Thermoplastic resin (a1), a solder powder-containing thermosetting resin layer (α) containing solder powder (a2) and a reducing agent (a3), and a two-layer thermoplastic resin containing a thermoplastic resin (b1) Resin layer (β), the solder powder-containing thermosetting resin layer (α) is provided between the two thermoplastic resin layers (β), the thermoplastic resin (b1), A sheet-like joining member, which is a thermoplastic resin having a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts.

本発明の電子部品の実装方法によれば、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができ、かつ多電極電子部品であってもはんだによる接合をより確実に行うことができる。
本発明の電子部品付き基板においては、基板と電子部品とのはんだによる接合がより確実に行われている。
本発明の接合層によれば、基板と電子部品とのはんだによる接合をより確実に行うことができる。
本発明の接合用材料層付き基板およびシート状接合用部材によれば、電子部品の実装に際し、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができ、かつ多電極電子部品であってもはんだによる接合をより確実に行うことができる。
According to the electronic component mounting method of the present invention, it is possible to perform electrical bonding using solder and sealing and bonding using resin all at once, and more reliably perform bonding using solder even for multi-electrode electronic components. Can do.
In the substrate with an electronic component of the present invention, the bonding between the substrate and the electronic component by solder is more reliably performed.
According to the bonding layer of the present invention, it is possible to more reliably perform bonding between the substrate and the electronic component by solder.
According to the substrate with a joining material layer and the sheet-like joining member of the present invention, when mounting electronic parts, electrical joining by solder and sealing and joining by resin can be performed at once, and a multi-electrode electronic part Even so, it is possible to more reliably perform soldering.

本発明の電子部品の実装方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the mounting method of the electronic component of this invention. 本発明の電子部品の実装方法の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the mounting method of the electronic component of this invention. 工程(II−6)におけるはんだ粉(a2)の移動の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of the movement of the solder powder (a2) in process (II-6). 実施例9の電子部品付き基板の断面の走査型電子顕微鏡写真である。10 is a scanning electron micrograph of a cross section of a substrate with electronic components of Example 9. FIG. 実施例9の電子部品付き基板の上面のX線透過写真である。10 is an X-ray transmission photograph of the upper surface of a substrate with electronic components of Example 9. FIG. 実施例10の電子部品付き基板の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the board | substrate with an electronic component of Example 10. FIG. 実施例10の電子部品付き基板の上面のX線透過写真である。10 is an X-ray transmission photograph of an upper surface of a substrate with an electronic component of Example 10. FIG. 実施例11の電子部品付き基板の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the board | substrate with an electronic component of Example 11. FIG. 実施例11の電子部品付き基板の上面のX線透過写真である。10 is an X-ray transmission photograph of an upper surface of a substrate with an electronic component of Example 11.

<電子部品の実装方法>
本発明の電子部品の実装方法は、はんだ粉含有熱硬化性樹脂層(α)と熱可塑性樹脂層(β)とを有する接合用材料層を、基板の電極と電子部品の電極との間に介在させた状態で、接合用材料層を溶融させることにより、基板と電子部品との間にはんだ接合部および樹脂接合部を形成し、はんだ接合部で電極間を電気的に接合するとともに、樹脂接合部で基板と電子部品との間の封止および接合を行う方法である。
<Electronic component mounting method>
In the electronic component mounting method of the present invention, a bonding material layer having a solder powder-containing thermosetting resin layer (α) and a thermoplastic resin layer (β) is disposed between an electrode of a substrate and an electrode of an electronic component. By melting the bonding material layer in an intervening state, a solder joint and a resin joint are formed between the substrate and the electronic component, and the electrodes are electrically joined between the electrodes and the resin. In this method, sealing and bonding are performed between the substrate and the electronic component at the bonding portion.

(はんだ粉含有熱硬化性樹脂層(α))
はんだ粉含有熱硬化性樹脂層(α)は、熱硬化性樹脂(a1)とはんだ粉(a2)と還元剤(a3)と必要に応じてその他の成分(a4)とを含むはんだ粉含有熱硬化性樹脂組成物から形成される層である。
はんだ粉含有熱硬化性樹脂組成物は、熱硬化性樹脂(a1)とはんだ粉(a2)と還元剤(a3)と必要に応じてその他の成分(a4)とを混練することにより調製できる。
(Solder powder-containing thermosetting resin layer (α))
The solder powder-containing thermosetting resin layer (α) includes a solder powder-containing heat containing a thermosetting resin (a1), a solder powder (a2), a reducing agent (a3), and other components (a4) as necessary. It is a layer formed from a curable resin composition.
The solder powder-containing thermosetting resin composition can be prepared by kneading the thermosetting resin (a1), the solder powder (a2), the reducing agent (a3), and other components (a4) as necessary.

はんだ粉含有熱硬化性樹脂層(α)の厚さは、10〜1000μmが好ましく、20〜350μmがより好ましい。はんだ粉含有熱硬化性樹脂層(α)の厚さが前記範囲の下限値以上であれば、はんだ量が充分になり、はんだ付け後の機械的強度がより高くなる。はんだ粉含有熱硬化性樹脂層(α)の厚さが前記範囲の上限値以下であれば、はんだ量が多くなりすぎず、ブリッジ等の不具合が発生しにくい。   10-1000 micrometers is preferable and, as for the thickness of a solder powder containing thermosetting resin layer ((alpha)), 20-350 micrometers is more preferable. If the thickness of the solder powder-containing thermosetting resin layer (α) is not less than the lower limit of the above range, the amount of solder will be sufficient, and the mechanical strength after soldering will be higher. If the thickness of the solder powder-containing thermosetting resin layer (α) is equal to or less than the upper limit of the above range, the amount of solder does not increase so much that defects such as bridges are unlikely to occur.

熱硬化性樹脂(a1):
熱硬化性樹脂(a1)としては、例えば、エポキシ樹脂(ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、1分子中に1個以上のグリシジル基を有する液状エポキシ化合物等)、オキセタン樹脂、ポリエステル樹脂(不飽和ポリエステル樹脂等)、ウレタン樹脂、フェノール樹脂(レゾール型フェノール樹脂、ノボラック型フェノール樹脂等)、イミド樹脂等が挙げられる。
熱硬化性樹脂(a1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Thermosetting resin (a1):
Examples of the thermosetting resin (a1) include epoxy resins (bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, liquid epoxy compound having one or more glycidyl groups in one molecule), Examples thereof include oxetane resins, polyester resins (such as unsaturated polyester resins), urethane resins, phenol resins (such as resol type phenol resins and novolac type phenol resins), and imide resins.
A thermosetting resin (a1) may be used individually by 1 type, and may use 2 or more types together.

熱硬化性樹脂(a1)は、はんだ粉(a2)が溶融する温度において、はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度となる熱硬化性樹脂である。
「はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を流動できる」とは、はんだ粉(a2)を溶融する温度に加熱することにより、はんだ粉含有熱硬化性樹脂層(α)を形成するはんだ粉含有熱硬化性樹脂組成物中を、はんだ粉(a2)が移動可能となることを意味する。
「はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度」とは、はんだ粉(a2)が溶融する温度における、熱硬化性樹脂(a1)と還元剤(a3)と必要に応じて配合されるその他成分(a4)との混合物の粘度を意味する。
熱硬化性樹脂(a1)と還元剤(a3)と必要に応じて配合されるその他成分(a4)との混合物の「粘度」は、REOLOGICA INSTRUMENTS社製のVISCOANALYSER VAR100によって測定した値である。
はんだ粉(a2)が溶融する温度は、通常、100〜380℃である。
はんだ粉(a2)が溶融する温度において、はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度は、0.01〜10Pa・sであり、0.01〜1Pa・sが好ましい。該粘度が前記範囲内であれば、基板と電子部品との接合状態がより良好となる。加えて、はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を容易に移動できるようになり、はんだ粉(a2)同士が融着しやすくなる。また、はんだ接合部と、これに隣接するように熱硬化性樹脂(a1)を含む樹脂接合部とが形成されやすくなり、基板と電子部品との密着性、はんだ接合部の耐環境性が高まる。
The thermosetting resin (a1) is a thermosetting resin having a viscosity at which the solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α) at a temperature at which the solder powder (a2) melts. .
“The solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α)” means that the solder powder (a2) is heated to a temperature at which the solder powder (a2) is melted. It means that the solder powder (a2) can move in the solder powder-containing thermosetting resin composition forming α).
“The viscosity at which the solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α)” means the thermosetting resin (a1) and the reducing agent (a3) at the temperature at which the solder powder (a2) melts. ) And the other component (a4) blended as necessary.
The “viscosity” of the mixture of the thermosetting resin (a1), the reducing agent (a3) and the other component (a4) blended as necessary is a value measured by VISCOANALYSER VAR100 manufactured by REOLOGICA INSTRUMENTS.
The temperature at which the solder powder (a2) melts is usually 100 to 380 ° C.
At the temperature at which the solder powder (a2) melts, the viscosity at which the solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α) is 0.01 to 10 Pa · s, and 0.01 to 1 Pa. -S is preferable. When the viscosity is within the above range, the bonding state between the substrate and the electronic component becomes better. In addition, the solder powder (a2) can easily move in the solder powder-containing thermosetting resin layer (α), and the solder powder (a2) is easily fused. Moreover, it becomes easy to form a solder joint part and the resin joint part containing a thermosetting resin (a1) so that it may adjoin this, and the adhesiveness of a board | substrate and an electronic component and the environmental resistance of a solder joint part increase. .

はんだ粉含有熱硬化性樹脂組成物中、熱硬化性樹脂(a1)の含有量は、40〜83体積%が好ましい。熱硬化性樹脂(a1)の含有量が前記範囲の下限値以上であれば、はんだ接合部の保護効果が得られやすい。熱硬化性樹脂(a1)の含有量が前記範囲の上限値以下であれば、はんだ量が少なくなりすぎず、基板と電子部品とが充分に接合される。   In the solder powder-containing thermosetting resin composition, the content of the thermosetting resin (a1) is preferably 40 to 83% by volume. If content of a thermosetting resin (a1) is more than the lower limit of the said range, the protective effect of a solder joint part will be easy to be acquired. If content of a thermosetting resin (a1) is below the upper limit of the said range, the amount of solder will not decrease too much and a board | substrate and an electronic component will fully be joined.

はんだ粉(a2):
はんだ粉(a2)を構成する材料としては、例えば、Sn、Pb、Cu、Zn、Ag、Sb、In、Bi、Ge等の金属、またはこれらの金属からなる合金が挙げられる。
はんだ粉(a2)の金属の種類や合金組成は、電子部品の実装に必要な仕様、または電子部品が実装された基板の使用環境等を考慮して適宜選択すればよい。合金であれば、JIS Z 3282:2006に記載のはんだ合金、具体的にはSn−5Pb、Sn−37Pb、Pb−5Sn、Pb−10Sn、Pb−40Sn、Sn−40Pb−3Bi、Sn−36Pb−2Ag、Sn−5Sb、Sn−0.7Cu、Sn−6Cu−2Ag、Sn−5Ag、Sn−3.5Ag、Sn−3Ag−0.5Cu、Sn−2.5Ag−1Bi−0.5Cu、Sn−4In−3.5Ag−0.5Bi、Sn−9Zn、Sn−8Zn−3Bi、Sn−58Bi、Sn−52In、Sn−3Ag−0.7Cu−5Bi−7In(いずれも質量比)等が挙げられる。これら合金組成に、例えば、合金の電極に対するぬれ性の向上や、合金によって形成されるはんだ接合部の機械的強度の向上等を目的として、必要に応じて添加元素を加えてもよい。添加元素としては、P、Ge,GaFe、Ni、Co、Mn、Cr、Mo、Pd、Al、Ti、Au、Pt等が挙げられる。
はんだ粉(a2)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Solder powder (a2):
Examples of the material constituting the solder powder (a2) include metals such as Sn, Pb, Cu, Zn, Ag, Sb, In, Bi, and Ge, or alloys made of these metals.
The metal type and alloy composition of the solder powder (a2) may be appropriately selected in consideration of the specifications necessary for mounting the electronic component or the usage environment of the substrate on which the electronic component is mounted. If it is an alloy, a solder alloy described in JIS Z 3282: 2006, specifically Sn-5Pb, Sn-37Pb, Pb-5Sn, Pb-10Sn, Pb-40Sn, Sn-40Pb-3Bi, Sn-36Pb- 2Ag, Sn-5Sb, Sn-0.7Cu, Sn-6Cu-2Ag, Sn-5Ag, Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-2.5Ag-1Bi-0.5Cu, Sn- 4In-3.5Ag-0.5Bi, Sn-9Zn, Sn-8Zn-3Bi, Sn-58Bi, Sn-52In, Sn-3Ag-0.7Cu-5Bi-7In (all are in mass ratio) and the like. For example, an additive element may be added to these alloy compositions as necessary for the purpose of improving the wettability of the alloy with respect to the electrode or the mechanical strength of the solder joint formed by the alloy. Examples of the additive element include P, Ge, GaFe, Ni, Co, Mn, Cr, Mo, Pd, Al, Ti, Au, and Pt.
A solder powder (a2) may be used individually by 1 type, and may use 2 or more types together.

はんだ粉含有熱硬化性樹脂組成物中、はんだ粉(a2)の含有量は、実装対象の電子部品における電極のサイズ、電極の間隔等により適宜決定され、15体積%以上が好ましく、15〜50体積%がより好ましい。はんだ粉(a2)の含有量が前記範囲の下限値以上であれば、基板と電子部品とが充分な強度で接合される。はんだ粉(a2)の含有量の上限値は、通常、球形はんだ粉の最大充填量で決定される。   In the solder powder-containing thermosetting resin composition, the content of the solder powder (a2) is appropriately determined depending on the size of the electrodes in the electronic component to be mounted, the distance between the electrodes, and the like, and preferably 15% by volume or more. Volume% is more preferable. When the content of the solder powder (a2) is not less than the lower limit of the above range, the substrate and the electronic component are bonded with sufficient strength. The upper limit of the content of the solder powder (a2) is usually determined by the maximum filling amount of the spherical solder powder.

還元剤(a3):
還元剤(a3)としては、例えば、カルボン酸、窒素化合物、フェノール系の水酸基を持つ化合物等が挙げられ、カルボン酸が好ましい。
Reducing agent (a3):
Examples of the reducing agent (a3) include carboxylic acids, nitrogen compounds, compounds having phenolic hydroxyl groups, and the like, and carboxylic acids are preferred.

カルボン酸としては、例えば、飽和脂肪酸(ギ酸、酢酸、プロピオン酸、酪酸、ラウリン酸、ステアリン酸等)、不飽和脂肪酸(オレイン酸等)、ジカルボン酸(グルタル酸、アジピン酸等)等が挙げられ、ジカルボン酸、飽和脂肪酸が好ましく、酸化被膜除去力の観点からグルタル酸、酢酸がより好ましい。   Examples of the carboxylic acid include saturated fatty acids (formic acid, acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, etc.), unsaturated fatty acids (oleic acid, etc.), dicarboxylic acids (glutaric acid, adipic acid, etc.), and the like. , Dicarboxylic acid and saturated fatty acid are preferable, and glutaric acid and acetic acid are more preferable from the viewpoint of the ability to remove oxide film.

窒素化合物としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
フェノール系の水酸基を持つ化合物としては、例えば、フェノール、メチルレンビスフェノール系化合物、アルキリデンビスフェノール系化合物等が挙げられる。
還元剤(a3)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the nitrogen compound include monoethanolamine, diethanolamine, and triethanolamine.
Examples of the compound having a phenolic hydroxyl group include phenol, a methyllene bisphenol compound, an alkylidene bisphenol compound, and the like.
A reducing agent (a3) may be used individually by 1 type, and may use 2 or more types together.

はんだ粉含有熱硬化性樹脂組成物中、還元剤(a3)の含有量は、はんだ粉(a2)100質量部に対して0.5〜5質量部が好ましく、1〜2.5質量部がより好ましい。還元剤(a3)の含有量が前記範囲の下限値以上であれば、はんだ粉(a2)の表面の酸化被膜を充分に除去でき、適切な融着状態を形成しやすい。還元剤(a3)の含有量が前記範囲の上限値以下であれば、リフロー時に熱分解しにくく、硬化物中にボイドとして残りにくい。   In the solder powder-containing thermosetting resin composition, the content of the reducing agent (a3) is preferably 0.5 to 5 parts by mass, and 1 to 2.5 parts by mass with respect to 100 parts by mass of the solder powder (a2). More preferred. When the content of the reducing agent (a3) is at least the lower limit of the above range, the oxide film on the surface of the solder powder (a2) can be sufficiently removed, and an appropriate fused state can be easily formed. If content of a reducing agent (a3) is below the upper limit of the said range, it will be hard to thermally decompose at the time of reflow, and it will not remain as a void in hardened | cured material.

その他成分(a4):
はんだ粉含有熱硬化性樹脂組成物は、本発明の効果を損なわない範囲内において、熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)以外のその他成分(a4)を含んでいてもよい。
Other components (a4):
The solder powder-containing thermosetting resin composition contains other components (a4) other than the thermosetting resin (a1), the solder powder (a2), and the reducing agent (a3) within the range not impairing the effects of the present invention. You may go out.

その他成分(a4)としては、例えば、熱硬化性樹脂(a1)を硬化するための硬化剤、粘度調整用添加剤(チキソトロピック付与剤等)、キレート剤、防錆剤、分散剤、消泡剤、有機溶剤(エチレングリコール系有機溶剤、プロピレングリコール系有機溶剤、ターピネオール等)が挙げられる。   As other components (a4), for example, a curing agent for curing the thermosetting resin (a1), an additive for adjusting viscosity (such as a thixotropic agent), a chelating agent, an antirust agent, a dispersant, an antifoaming agent Agent, organic solvent (ethylene glycol organic solvent, propylene glycol organic solvent, terpineol, etc.).

硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤、カチオン系硬化剤、イソシアネート系硬化剤、イミダゾール系硬化剤等が挙げられる。なかでも、はんだ粉(a2)が溶融する温度において、はんだ粉(a2)がはんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度となるように、熱硬化性樹脂(a1)を硬化できるもの、特にカチオン系硬化剤が好ましい。   Examples of the curing agent include an amine curing agent, an acid anhydride curing agent, a cationic curing agent, an isocyanate curing agent, and an imidazole curing agent. In particular, the thermosetting resin (a1) is cured so that the solder powder (a2) has a viscosity at which the solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α) at a temperature at which the solder powder (a2) melts. Preferred is a cationic curing agent.

(熱可塑性樹脂層(β))
熱可塑性樹脂層(β)は、熱可塑性樹脂(b1)と必要に応じてその他の成分(b2)とを含む熱可塑性樹脂組成物から形成される層である。
熱可塑性樹脂組成物は、熱可塑性樹脂(b1)と必要に応じてその他の成分(b2)とを混練することにより調製できる。
(Thermoplastic resin layer (β))
The thermoplastic resin layer (β) is a layer formed from a thermoplastic resin composition containing a thermoplastic resin (b1) and, if necessary, other components (b2).
The thermoplastic resin composition can be prepared by kneading the thermoplastic resin (b1) and other components (b2) as necessary.

熱可塑性樹脂層(β)は、一層であってもよく、二層であってもよい。はんだ粉含有熱硬化性樹脂層(α)を保護し、はんだ粉含有熱硬化性樹脂層(α)の保存性、形状安定性を改善する点から、熱可塑性樹脂層(β)は、はんだ粉含有熱硬化性樹脂層(α)の表面を被覆していることが好ましく、二層の熱可塑性樹脂層(β)ではんだ粉含有熱硬化性樹脂層(α)を挟んでいることがより好ましい。   The thermoplastic resin layer (β) may be a single layer or two layers. The thermoplastic resin layer (β) is solder powder because it protects the solder powder-containing thermosetting resin layer (α) and improves the storage stability and shape stability of the solder powder-containing thermosetting resin layer (α). It is preferable to cover the surface of the containing thermosetting resin layer (α), and it is more preferable that the two-layer thermoplastic resin layer (β) sandwich the solder powder-containing thermosetting resin layer (α). .

熱可塑性樹脂層(β)の厚さは、1〜100μmが好ましく、1〜40μmがより好ましい。熱可塑性樹脂層(β)の厚さが前記範囲の下限値以上であれば、電子部品の実装時に形成される樹脂接合部が薄くならず、はんだ接合部の保護効果が得られやすい。熱可塑性樹脂層(β)の厚さが前記範囲の上限値以下であれば、電子部品の実装の際、はんだ粉(a2)が基板の電極または電子部品の電極にぬれやすくなる。   1-100 micrometers is preferable and, as for the thickness of a thermoplastic resin layer ((beta)), 1-40 micrometers is more preferable. If the thickness of the thermoplastic resin layer (β) is equal to or greater than the lower limit of the above range, the resin joint formed at the time of mounting the electronic component will not be thin, and the protective effect of the solder joint will be easily obtained. When the thickness of the thermoplastic resin layer (β) is equal to or less than the upper limit of the above range, the solder powder (a2) is likely to wet the electrode of the substrate or the electronic component when mounting the electronic component.

熱可塑性樹脂(b1):
熱可塑性樹脂としては、電子部品の実装温度で溶融するものが挙げられ、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリカーボネート、フェノキシ樹脂、フェノール樹脂、ポリエステル樹脂、ポリフェニレンスルファイド、熱可塑性ポリイミド等が挙げられる。なかでも、電子部品の実装時にはんだ粉(a2)の融着性を阻害しない観点からフェノキシ樹脂、ポリエステル樹脂が好ましい。
熱可塑性樹脂(b1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Thermoplastic resin (b1):
Thermoplastic resins include those that melt at the mounting temperature of electronic components, such as acrylic resin, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, phenoxy resin, phenol resin, polyester resin, polyphenylene sulfide, thermoplastic polyimide. Etc. Among these, phenoxy resin and polyester resin are preferable from the viewpoint of not inhibiting the fusion property of the solder powder (a2) when mounting the electronic component.
A thermoplastic resin (b1) may be used individually by 1 type, and may use 2 or more types together.

熱可塑性樹脂(b1)は、はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である。
熱可塑性樹脂(b1)の「粘度」は、JIS Z 8803:2011における「落球粘度計による粘度測定方法」に基づいて測定した値である。
はんだ粉(a2)が溶融する温度において、熱硬化性樹脂(a1)が存在することによって、熱可塑性樹脂(b1)の特性が変化し、特に粘性が低下する。そのため、接合用材料層が溶融して形成される、熱硬化性樹脂(a1)および熱可塑性樹脂(b1)を含むハイブリッド樹脂内をはんだ粉(a2)が容易に移動できるようになり、溶融したはんだ粉(a2)の電極へのぬれ性が向上する。そして、はんだ粉(a2)が溶融する温度における熱可塑性樹脂(b1)の粘度が前記上限値以下であれば、このような作用効果が充分に発揮される。以上の結果、基板の電極と電子部品の電極とのはんだによる接合がより確実に行われる。
The thermoplastic resin (b1) is a thermoplastic resin having a viscosity of less than 10 Pa · s at the temperature at which the solder powder (a2) melts.
The “viscosity” of the thermoplastic resin (b1) is a value measured based on “viscosity measurement method with falling ball viscometer” in JIS Z 8803: 2011.
The presence of the thermosetting resin (a1) at the temperature at which the solder powder (a2) melts changes the properties of the thermoplastic resin (b1), and in particular the viscosity decreases. Therefore, the solder powder (a2) can be easily moved and melted in the hybrid resin including the thermosetting resin (a1) and the thermoplastic resin (b1) formed by melting the bonding material layer. The wettability of the solder powder (a2) to the electrode is improved. If the viscosity of the thermoplastic resin (b1) at the temperature at which the solder powder (a2) melts is not more than the above upper limit value, such an effect is sufficiently exhibited. As a result, the soldering of the electrode of the substrate and the electrode of the electronic component is more reliably performed.

その他成分(b2):
熱可塑性樹脂組成物は、本発明の効果を損なわない範囲内において、熱可塑性樹脂(b1)以外のその他成分(b2)を含んでいてもよい。
その他成分(b2)としては、公知の熱可塑性樹脂用の添加剤、熱硬化性樹脂等が挙げられる。
Other components (b2):
The thermoplastic resin composition may contain other components (b2) other than the thermoplastic resin (b1) as long as the effects of the present invention are not impaired.
Examples of the other component (b2) include known additives for thermoplastic resins, thermosetting resins, and the like.

(電子部品の実装方法の具体例)
電子部品の実装方法の具体例としては、例えば、下記の方法が挙げられる。
(I)基板(プリント配線板等)の電極側の表面に接合用材料層を直接設け、接合用材料層上に電子部品を配置した後、基板と電子部品とを接合する方法。
(II)はんだ粉含有熱硬化性樹脂層(α)が二層の熱可塑性樹脂層(β)の間に配置されたシート状接合用部材をあらかじめ作製し、シート状接合用部材を基板と電子部品との間に配置した後、基板と電子部品とを接合する方法。
(Specific examples of electronic component mounting methods)
Specific examples of the electronic component mounting method include the following methods.
(I) A method in which a bonding material layer is directly provided on the electrode-side surface of a substrate (printed wiring board or the like), an electronic component is disposed on the bonding material layer, and then the substrate and the electronic component are bonded.
(II) A sheet-like joining member in which the solder powder-containing thermosetting resin layer (α) is disposed between the two thermoplastic resin layers (β) is prepared in advance, and the sheet-like joining member is used as a substrate and an electronic device. A method in which a substrate and an electronic component are joined after being placed between the components.

((I)の方法)
(I)の方法としては、例えば、下記の工程(I−1)〜(I−5)を有する方法が挙げられる。以下、(I)の方法を図1を参照しながら説明する。
(I−1)基板10の電極12側の表面に、第一の熱可塑性樹脂層(β)22を形成する工程。
(I−2)第一の熱可塑性樹脂層(β)22の表面の電極12に対応する箇所に、はんだ粉含有熱硬化性樹脂層(α)24を形成する工程。
(I−3)はんだ粉含有熱硬化性樹脂層(α)24上に、第二の熱可塑性樹脂層(β)26を形成して、基板10の電極12側の表面に接合用材料層20を備えた接合用材料層付き基板30を得る工程。
(I−4)接合用材料層20上に電子部品40を配置する工程。
(I−5)基板10と電子部品40とを接合して、電子部品付き基板1を得る工程。
(Method (I))
Examples of the method (I) include a method having the following steps (I-1) to (I-5). Hereinafter, the method (I) will be described with reference to FIG.
(I-1) A step of forming a first thermoplastic resin layer (β) 22 on the surface of the substrate 10 on the electrode 12 side.
(I-2) A step of forming a solder powder-containing thermosetting resin layer (α) 24 at a location corresponding to the electrode 12 on the surface of the first thermoplastic resin layer (β) 22.
(I-3) A second thermoplastic resin layer (β) 26 is formed on the solder powder-containing thermosetting resin layer (α) 24, and the bonding material layer 20 is formed on the surface of the substrate 10 on the electrode 12 side. The process of obtaining the board | substrate 30 with a material layer for joining provided with.
(I-4) The process of arrange | positioning the electronic component 40 on the material layer 20 for joining.
(I-5) The process of joining the board | substrate 10 and the electronic component 40, and obtaining the board | substrate 1 with an electronic component.

工程(I−1):
基板10の電極12側の表面に、例えば、熱可塑性樹脂組成物を有機溶媒に溶解した樹脂溶液を塗布し、乾燥することによって、第一の熱可塑性樹脂層(β)22を形成する。
有機溶媒は、熱可塑性樹脂組成物を溶解できるものであればよい。
Step (I-1):
The first thermoplastic resin layer (β) 22 is formed on the surface of the substrate 10 on the electrode 12 side, for example, by applying a resin solution in which a thermoplastic resin composition is dissolved in an organic solvent and drying it.
The organic solvent should just be what can melt | dissolve a thermoplastic resin composition.

樹脂溶液の乾燥は、タックが残らない程度に行うことが好ましい。乾燥温度は、60〜160℃が好ましく、80〜150℃がより好ましい。乾燥時間は、5〜60分間が好ましく、10〜30分間がより好ましい。   The resin solution is preferably dried to such an extent that no tack remains. The drying temperature is preferably 60 to 160 ° C, more preferably 80 to 150 ° C. The drying time is preferably 5 to 60 minutes, and more preferably 10 to 30 minutes.

第一の熱可塑性樹脂層(β)22の厚さは、1〜100μmが好ましく、1〜40μmがより好ましい。
第一の熱可塑性樹脂層(β)22は、あらかじめ作製した熱可塑性樹脂(b1)を含む熱可塑性樹脂フィルムを、基板10の電極12側の表面に貼り合わせことによって設けてもよい。
1-100 micrometers is preferable and, as for the thickness of the 1st thermoplastic resin layer ((beta)) 22, 1-40 micrometers is more preferable.
The first thermoplastic resin layer (β) 22 may be provided by bonding a thermoplastic resin film containing a previously prepared thermoplastic resin (b1) to the surface of the substrate 10 on the electrode 12 side.

工程(I−2):
第一の熱可塑性樹脂層(β)22の表面の電極12に対応する箇所に、例えば、はんだマスク(図示略)を用いたスクリーン印刷によってはんだ粉含有熱硬化性樹脂組成物を塗布し、はんだ粉(a2)28を含むはんだ粉含有熱硬化性樹脂層(α)24を形成する。
はんだ粉含有熱硬化性樹脂層(α)24は、硬化させず、液状または半固形状とすることが好ましい。
Step (I-2):
A solder powder-containing thermosetting resin composition is applied to a portion corresponding to the electrode 12 on the surface of the first thermoplastic resin layer (β) 22 by, for example, screen printing using a solder mask (not shown), and solder A solder powder-containing thermosetting resin layer (α) 24 including the powder (a2) 28 is formed.
It is preferable that the solder powder-containing thermosetting resin layer (α) 24 is not cured and is in a liquid or semi-solid state.

工程(I−3):
はんだ粉含有熱硬化性樹脂層(α)24上に、例えば、あらかじめ作製した熱可塑性樹脂フィルムを被せ、第二の熱可塑性樹脂層(β)26を形成する。
このようにして、基板10の電極12側の表面に接合用材料層20を備えた接合用材料層付き基板30を得る。
Step (I-3):
On the solder powder-containing thermosetting resin layer (α) 24, for example, a thermoplastic resin film prepared in advance is covered to form the second thermoplastic resin layer (β) 26.
In this way, the substrate 30 with the bonding material layer provided with the bonding material layer 20 on the surface of the substrate 10 on the electrode 12 side is obtained.

第二の熱可塑性樹脂層(β)26の厚さは、1〜100μmが好ましく、1〜40μmがより好ましい。
第二の熱可塑性樹脂層(β)26は、はんだ粉含有熱硬化性樹脂層(α)24および第一の熱可塑性樹脂層(β)22の表面に、熱可塑性樹脂組成物を有機溶媒に溶解した樹脂溶液を塗布し、乾燥することによって形成してもよい。
The thickness of the second thermoplastic resin layer (β) 26 is preferably 1 to 100 μm, and more preferably 1 to 40 μm.
The second thermoplastic resin layer (β) 26 is formed on the surface of the solder powder-containing thermosetting resin layer (α) 24 and the first thermoplastic resin layer (β) 22, and the thermoplastic resin composition is used as an organic solvent. You may form by apply | coating the melted resin solution and drying.

工程(I−4):
基板10の電極12と電子部品40の電極42とが接合用材料層20を介して対向するように、接合用材料層付き基板30の接合用材料層20上に電子部品40を配置する。
Step (I-4):
The electronic component 40 is disposed on the bonding material layer 20 of the substrate 30 with the bonding material layer so that the electrode 12 of the substrate 10 and the electrode 42 of the electronic component 40 face each other with the bonding material layer 20 interposed therebetween.

工程(I−5):
電子部品40が配置された接合用材料層付き基板30を、例えば、リフロー炉に通し、接合用材料層20をはんだ粉(a2)28が溶融する温度以上に加熱することによって、接合用材料層20を溶融させる。これにより、基板10の電極12と電子部品40の電極42との間にはんだ粉(a2)28を集合させ、融着させてはんだ接合部52で電極間を電気的に接合する。これと同時に、はんだ接合部52の周囲に流れた熱硬化性樹脂(a1)および熱可塑性樹脂(b1)を含むハイブリッド樹脂を硬化させて樹脂接合部54による封止および接合を行う。これにより、はんだ接合部52と樹脂接合部54とを有する接合層50によって基板10と電子部品40とが接合された電子部品付き基板1を得る。
Step (I-5):
The substrate 30 with the bonding material layer on which the electronic component 40 is disposed is passed through, for example, a reflow furnace, and the bonding material layer 20 is heated to a temperature equal to or higher than the temperature at which the solder powder (a2) 28 is melted. 20 is melted. As a result, the solder powder (a2) 28 is gathered between the electrode 12 of the substrate 10 and the electrode 42 of the electronic component 40, and is fused and the electrodes are electrically joined by the solder joint portion 52. At the same time, the hybrid resin containing the thermosetting resin (a1) and the thermoplastic resin (b1) that flowed around the solder joint portion 52 is cured and sealed and joined by the resin joint portion 54. Thereby, the board | substrate 1 with an electronic component by which the board | substrate 10 and the electronic component 40 were joined by the joining layer 50 which has the solder joined part 52 and the resin joined part 54 is obtained.

このように(I)の方法においては、接合用材料層付き基板30に電子部品40を実装する。(I)の方法を適用することにより、実装メーカは、接合用材料層付き基板30に、電子部品40を配置するだけでよく、従来担っていた基板10にはんだペーストを印刷塗布する工程を実施する必要がない。また、基板10と電子部品40との隙間にアンダーフィル樹脂を注入し、硬化する工程を実施する必要がない。このように、実装メーカにおける工程数の大幅な低減を図れる。   As described above, in the method (I), the electronic component 40 is mounted on the substrate 30 with the bonding material layer. By applying the method (I), the mounting manufacturer only needs to place the electronic component 40 on the substrate 30 with the bonding material layer, and performs the process of printing and applying the solder paste to the substrate 10 that has been conventionally performed. There is no need to do. Moreover, it is not necessary to inject | pour underfill resin into the clearance gap between the board | substrate 10 and the electronic component 40, and to implement the process to harden | cure. In this way, the number of processes in the mounting manufacturer can be greatly reduced.

((II)の方法)
(II)の方法としては、例えば、下記の工程(II−1)〜(II−6)を有する方法が挙げられる。以下、(II)の方法を図2を参照しながら説明する。
(II−1)支持体60の表面に、第一の熱可塑性樹脂層(β)72を形成する工程。
(II−2)第一の熱可塑性樹脂層(β)72の表面に、はんだ粉含有熱硬化性樹脂層(α)74を形成する工程。
(II−3)はんだ粉含有熱硬化性樹脂層(α)74の表面に、第二の熱可塑性樹脂層(β)76を形成して、はんだ粉含有熱硬化性樹脂層(α)74が第一の熱可塑性樹脂層(β)72と第二の熱可塑性樹脂層(β)76との間に設けられたシート状接合用部材70を得る工程。
(II−4)シート状接合用部材70から支持体60を剥離する工程。
(II−5)シート状接合用部材70を基板10と電子部品40との間に配置する工程。
(II−6)基板10と電子部品40とを接合して、電子部品付き基板1を得る工程。
(Method (II))
Examples of the method (II) include a method having the following steps (II-1) to (II-6). Hereinafter, the method (II) will be described with reference to FIG.
(II-1) A step of forming a first thermoplastic resin layer (β) 72 on the surface of the support 60.
(II-2) A step of forming a solder powder-containing thermosetting resin layer (α) 74 on the surface of the first thermoplastic resin layer (β) 72.
(II-3) The second thermoplastic resin layer (β) 76 is formed on the surface of the solder powder-containing thermosetting resin layer (α) 74, and the solder powder-containing thermosetting resin layer (α) 74 is formed. A step of obtaining a sheet-like joining member 70 provided between the first thermoplastic resin layer (β) 72 and the second thermoplastic resin layer (β) 76.
(II-4) The process of peeling the support body 60 from the sheet-like joining member 70.
(II-5) The process of arrange | positioning the sheet-like joining member 70 between the board | substrate 10 and the electronic component 40. FIG.
(II-6) The process of joining the board | substrate 10 and the electronic component 40, and obtaining the board | substrate 1 with an electronic component.

工程(II−1):
離型処理を施した支持体60の表面に、例えば、熱可塑性樹脂組成物を有機溶媒に溶解した樹脂溶液を塗布し、乾燥することによって、第一の熱可塑性樹脂層(β)72を形成する。
有機溶媒は、熱可塑性樹脂組成物を溶解できるものであればよい。
Step (II-1):
For example, a first thermoplastic resin layer (β) 72 is formed by applying a resin solution in which a thermoplastic resin composition is dissolved in an organic solvent to the surface of the support 60 that has been subjected to the mold release treatment and drying the resin solution. To do.
The organic solvent should just be what can melt | dissolve a thermoplastic resin composition.

乾燥方法は、工程(I−1)における乾燥方法と同様である。
第一の熱可塑性樹脂層(β)72の厚さは、工程(I−1)における第一の熱可塑性樹脂層(β)22の厚さと同様である。
第一の熱可塑性樹脂層(β)72は、あらかじめ作製した熱可塑性樹脂(b1)を含む熱可塑性樹脂フィルムを、支持体60の表面に貼り合わせことによって設けてもよい。また、熱可塑性樹脂(b1)を含む熱可塑性樹脂フィルムを、支持体を兼ねた第一の熱可塑性樹脂層(β)72とし、工程(II−1)を省略してもよい。
The drying method is the same as the drying method in step (I-1).
The thickness of the first thermoplastic resin layer (β) 72 is the same as the thickness of the first thermoplastic resin layer (β) 22 in the step (I-1).
The first thermoplastic resin layer (β) 72 may be provided by bonding a thermoplastic resin film containing a previously prepared thermoplastic resin (b1) to the surface of the support 60. In addition, the thermoplastic resin film containing the thermoplastic resin (b1) may be used as the first thermoplastic resin layer (β) 72 that also serves as a support, and the step (II-1) may be omitted.

工程(II−2):
第一の熱可塑性樹脂層(β)72の表面に、例えば、はんだ粉含有熱硬化性樹脂組成物を塗布することによって、はんだ粉(a2)78を含むはんだ粉含有熱硬化性樹脂層(α)74を形成する。
はんだ粉含有熱硬化性樹脂層(α)74は、硬化させず、液状または半固形状とすることが好ましい。
Step (II-2):
For example, by applying a solder powder-containing thermosetting resin composition to the surface of the first thermoplastic resin layer (β) 72, the solder powder-containing thermosetting resin layer (α) containing the solder powder (a2) 78 is used. ) 74 is formed.
It is preferable that the solder powder-containing thermosetting resin layer (α) 74 is not cured and is liquid or semi-solid.

工程(II−3):
はんだ粉含有熱硬化性樹脂層(α)74の表面に、例えば、熱可塑性樹脂組成物が有機溶媒に溶解した樹脂溶液を塗布し、乾燥することによって、第二の熱可塑性樹脂層(β)76を形成する。
このようにして、はんだ粉含有熱硬化性樹脂層(α)74が第一の熱可塑性樹脂層(β)72と第二の熱可塑性樹脂層(β)76との間に配置されたシート状接合用部材70を得る。
有機溶媒は、熱可塑性樹脂組成物を溶解できるものであればよい。
Step (II-3):
The surface of the solder powder-containing thermosetting resin layer (α) 74 is coated with, for example, a resin solution in which the thermoplastic resin composition is dissolved in an organic solvent, and then dried, whereby the second thermoplastic resin layer (β). 76 is formed.
In this way, a sheet shape in which the solder powder-containing thermosetting resin layer (α) 74 is disposed between the first thermoplastic resin layer (β) 72 and the second thermoplastic resin layer (β) 76. The joining member 70 is obtained.
The organic solvent should just be what can melt | dissolve a thermoplastic resin composition.

乾燥方法は、工程(I−1)における乾燥方法と同様である。
第二の熱可塑性樹脂層(β)76の厚さは、工程(I−3)における第二の熱可塑性樹脂層(β)26の厚さと同様である。
第二の熱可塑性樹脂層(β)76は、あらかじめ作製した熱可塑性樹脂(b1)を含む熱可塑性樹脂フィルムを、はんだ粉含有熱硬化性樹脂層(α)74の表面に貼り合わせことによって設けてもよい。
The drying method is the same as the drying method in step (I-1).
The thickness of the second thermoplastic resin layer (β) 76 is the same as the thickness of the second thermoplastic resin layer (β) 26 in the step (I-3).
The second thermoplastic resin layer (β) 76 is provided by bonding a thermoplastic resin film containing the thermoplastic resin (b1) prepared in advance to the surface of the solder powder-containing thermosetting resin layer (α) 74. May be.

第二の熱可塑性樹脂層(β)76を構成する熱可塑性樹脂(b1)の種類は、第一の熱可塑性樹脂層(β)72を構成する熱可塑性樹脂(b1)の種類と同じであってもよく、異なっていてもよい。
シート状接合用部材70は、所定の大きさで作製したシートをそのまま用いることもでき、シートを必要な大きさに適宜裁断して用いることもできる。
The kind of the thermoplastic resin (b1) constituting the second thermoplastic resin layer (β) 76 was the same as the kind of the thermoplastic resin (b1) constituting the first thermoplastic resin layer (β) 72. It may be different.
As the sheet-like joining member 70, a sheet produced in a predetermined size can be used as it is, or the sheet can be appropriately cut into a necessary size and used.

工程(II−4):
シート状接合用部材70から支持体60を剥離する。
Step (II-4):
The support body 60 is peeled from the sheet-like joining member 70.

工程(II−5):
基板10の電極12と電子部品40の電極42とがシート状接合用部材70を介して対向するように、シート状接合用部材70を基板10と電子部品40との間に配置する。
Step (II-5):
The sheet-like bonding member 70 is disposed between the substrate 10 and the electronic component 40 so that the electrode 12 of the substrate 10 and the electrode 42 of the electronic component 40 face each other with the sheet-like bonding member 70 interposed therebetween.

工程(II−6):
基板10、電子部品40およびシート状接合用部材70を重ねたものを、例えば、リフロー炉に通し、はんだ粉(a2)78が溶融する温度以上にシート状接合用部材70を加熱することによって、シート状接合用部材70を溶融させる。これにより、基板10の電極12と電子部品40の電極42との間にはんだ粉(a2)78を集合させ、融着させてはんだ接合部52で電極間を電気的に接合する。これと同時に、はんだ接合部52の周囲に流れた熱硬化性樹脂(a1)および熱可塑性樹脂(b1)を含むハイブリッド樹脂を硬化させて樹脂接合部54による封止および接合を行う。これにより、はんだ接合部52と樹脂接合部54とを有する接合層50によって基板10と電子部品40とが接合された電子部品付き基板1を得る。
Step (II-6):
By superposing the substrate 10, the electronic component 40 and the sheet-like joining member 70, for example, through a reflow furnace and heating the sheet-like joining member 70 to a temperature higher than the temperature at which the solder powder (a2) 78 melts, The sheet-like joining member 70 is melted. As a result, the solder powder (a2) 78 is gathered between the electrode 12 of the substrate 10 and the electrode 42 of the electronic component 40, and is fused and the electrodes are electrically joined by the solder joint portion 52. At the same time, the hybrid resin containing the thermosetting resin (a1) and the thermoplastic resin (b1) that flowed around the solder joint portion 52 is cured and sealed and joined by the resin joint portion 54. Thereby, the board | substrate 1 with an electronic component by which the board | substrate 10 and the electronic component 40 were joined by the joining layer 50 which has the solder joined part 52 and the resin joined part 54 is obtained.

このように(II)の方法においては、基板10上に、接合用材料層としてシート状接合用部材70を配置して電子部品40を実装する。(II)の方法を適用することにより、実装メーカは、基板10に、シート状接合用部材70および電子部品40を配置するだけでよく、従来担っていた基板10にはんだペーストを印刷塗布する工程を実施する必要がない。また、基板10と電子部品40との隙間にアンダーフィル樹脂を注入し、硬化する工程を実施する必要がない。このように、実装メーカにおける工程数の大幅な低減を図れる。   As described above, in the method (II), the electronic component 40 is mounted on the substrate 10 by disposing the sheet-like joining member 70 as a joining material layer. By applying the method (II), the mounting manufacturer only has to arrange the sheet-like joining member 70 and the electronic component 40 on the substrate 10, and the step of printing and applying the solder paste to the substrate 10 that has been conventionally performed. There is no need to implement. Moreover, it is not necessary to inject | pour underfill resin into the clearance gap between the board | substrate 10 and the electronic component 40, and to implement the process to harden | cure. In this way, the number of processes in the mounting manufacturer can be greatly reduced.

(作用機序)
以上説明した本発明の電子部品の実装方法にあっては、以下に説明するように、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができる。
図3に示すように、電子部品40の実装の際、接合用材料層であるシート状接合用部材70が、はんだ粉(a2)78が溶融する温度以上に加熱されると、はんだ粉含有熱硬化性樹脂層(α)74内は、はんだ粉(a2)78が移動可能な粘度を有するような状態に変化し、はんだ粉(a2)78同士が融着し合う。はんだ粉(a2)78同士の融着が進むうち、溶融したはんだ粉(a2)78’はぬれやすい基板10の電極12および電子部品40の電極42に集まるようになり、最終的には、電極12と電極42とを接合するはんだ接合部52が形成される。また、電子部品40の実装の際、はんだ粉含有熱硬化性樹脂層(α)74内の熱硬化性樹脂(a1)と、第一の熱可塑性樹脂層(β)72および第二の熱可塑性樹脂層(β)76を構成する熱可塑性樹脂(b1)は、溶融状態となり、はんだ接合部52の周囲へと流れる。最終的には、熱硬化性樹脂(a1)および熱可塑性樹脂(b1)を含むハイブリッド樹脂80が硬化することにより、基板10と電子部品40とを接合する樹脂接合部54が形成される。
(Mechanism of action)
In the electronic component mounting method of the present invention described above, as described below, electrical bonding by solder and sealing and bonding by resin can be performed collectively.
As shown in FIG. 3, when the electronic component 40 is mounted, when the sheet-like joining member 70, which is a joining material layer, is heated to a temperature higher than the temperature at which the solder powder (a2) 78 melts, The inside of the curable resin layer (α) 74 changes to a state in which the solder powder (a2) 78 has a movable viscosity, and the solder powder (a2) 78 is fused. As the fusion of the solder powder (a2) 78 progresses, the molten solder powder (a2) 78 ′ gathers on the electrode 12 of the substrate 10 and the electrode 42 of the electronic component 40 that are likely to be wetted. A solder joint 52 for joining 12 and the electrode 42 is formed. When the electronic component 40 is mounted, the thermosetting resin (a1) in the solder powder-containing thermosetting resin layer (α) 74, the first thermoplastic resin layer (β) 72, and the second thermoplastic resin. The thermoplastic resin (b1) constituting the resin layer (β) 76 is in a molten state and flows around the solder joint portion 52. Eventually, the hybrid resin 80 including the thermosetting resin (a1) and the thermoplastic resin (b1) is cured, so that the resin joint portion 54 that joins the substrate 10 and the electronic component 40 is formed.

また、以上説明した本発明の電子部品の実装方法にあっては、以下に説明するように、多電極電子部品であってもはんだによる接合をより確実に行うことができる。
はんだ粉(a2)78が溶融する温度以上に加熱した際、はんだ粉含有熱硬化性樹脂層(α)内の熱硬化性樹脂(a1)および熱可塑性樹脂層(β)を構成する熱可塑性樹脂(b1)は、溶融状態となる。その際、熱硬化性樹脂(a1)が存在することによって、熱可塑性樹脂(b1)の粘性が低下する。そのため、ハイブリッド樹脂内をはんだ粉(a2)が容易に移動できるようになり、溶融したはんだ粉(a2)の電極へのぬれ性が向上する。そして、はんだ粉(a2)78が溶融する温度における熱可塑性樹脂(b1)の粘度が10Pa・s未満であれば、このような作用効果が充分に発揮される。以上の結果、基板の電極と電子部品の電極とのはんだによる接合がより確実に行われる。
Moreover, in the electronic component mounting method of the present invention described above, as described below, even a multi-electrode electronic component can be more reliably joined by solder.
The thermoplastic resin constituting the thermosetting resin (a1) and the thermoplastic resin layer (β) in the solder powder-containing thermosetting resin layer (α) when heated above the temperature at which the solder powder (a2) 78 melts (B1) is in a molten state. At that time, the presence of the thermosetting resin (a1) reduces the viscosity of the thermoplastic resin (b1). Therefore, the solder powder (a2) can easily move in the hybrid resin, and the wettability of the molten solder powder (a2) to the electrode is improved. If the viscosity of the thermoplastic resin (b1) at the temperature at which the solder powder (a2) 78 melts is less than 10 Pa · s, such an effect is sufficiently exhibited. As a result, the soldering of the electrode of the substrate and the electrode of the electronic component is more reliably performed.

さらに、以上説明した本発明の電子部品の実装方法にあっては、実装メーカにおける、基板にはんだペーストを印刷塗布する工程、基板と電子部品との隙間にアンダーフィル樹脂を注入し、硬化する工程を省略することができ、実装メーカにおける工程数の低減を図れる。
はんだペーストの印刷塗布を例えばスクリーン印刷により行う場合には、はんだマスクの選定、印刷プロセス条件の設定等によってコスト高となる。本発明の電子部品の実装方法を適用することにより、基板にはんだペーストを印刷塗布する工程を省略できるため、コスト低減となる。加えて、実装メーカにおいて、印刷プロセス条件の管理等が不要となる。
Furthermore, in the electronic component mounting method of the present invention described above, in the mounting manufacturer, a step of printing and applying a solder paste to the substrate, a step of injecting an underfill resin into the gap between the substrate and the electronic component, and curing Can be omitted, and the number of processes in the mounting manufacturer can be reduced.
When printing and applying solder paste by screen printing, for example, the cost increases due to selection of a solder mask, setting of printing process conditions, and the like. By applying the electronic component mounting method of the present invention, the step of printing and applying the solder paste to the substrate can be omitted, thereby reducing the cost. In addition, management of printing process conditions and the like are not required in the mounting manufacturer.

近年、情報機器の多機能化または小型軽量化に伴い、基板に実装される電子部品の高密度化が進み、ますます電子部品付き基板の高品質化、高信頼化が求められている。かかる要求に対して、本発明の接合用材料層付き基板、またはシート状接合用部材を適用することにより、電子部品付き基板の高品質化、高信頼化を図れる。加えて、本発明の電子部品の実装方法によれば、実装の低コスト化も図れる。   2. Description of the Related Art In recent years, with the increase in functionality and miniaturization and weight reduction of information equipment, the density of electronic components mounted on a substrate has increased, and higher quality and higher reliability of a substrate with electronic components has been increasingly demanded. In response to such a demand, by applying the substrate with bonding material layer or the sheet-like bonding member of the present invention, it is possible to improve the quality and reliability of the substrate with electronic components. In addition, according to the electronic component mounting method of the present invention, the cost of mounting can be reduced.

<電子部品付き基板>
本発明の電子部品付き基板は、本発明の電子部品の実装方法で作製されたものである。
本発明の電子部品付き基板は、基板と、電子部品と、基板と電子部品とを接合する接合層とを備える。
<Board with electronic components>
The board with an electronic component of the present invention is produced by the electronic component mounting method of the present invention.
The board | substrate with an electronic component of this invention is equipped with a board | substrate, an electronic component, and the joining layer which joins a board | substrate and an electronic component.

(基板)
基板は、電子部品が実装される電極を含む配線を有する。
基板としては、プリント配線板等が挙げられる。
基板は、電子部品が実装される電極を、片面のみに有するものであってもよく、両面に有するものであってもよい。
(substrate)
The substrate has wiring including electrodes on which electronic components are mounted.
A printed wiring board etc. are mentioned as a board | substrate.
The substrate may have an electrode on which electronic components are mounted only on one side, or may have both sides.

(電子部品)
電子部品としては、チップ抵抗、トランジスタ、チップコンデンサ、チップインダクタ等が挙げられる。本発明においては、多電極電子部品(BGA、LGA、QFP(クアッド・フラット・パッケージ)、CSP(チップ・スケール・パッケージ)アレイ等)が好適である。
(Electronic parts)
Examples of the electronic component include a chip resistor, a transistor, a chip capacitor, and a chip inductor. In the present invention, multi-electrode electronic components (BGA, LGA, QFP (quad flat package), CSP (chip scale package) array, etc.) are suitable.

(接合層)
接合層は、はんだ接合部と樹脂接合部とを有し、上述した接合用材料層が溶融することにより形成される。
はんだ接合部は、はんだ粉(a2)同士が融着し合うことにより形成される。
樹脂接合部は、熱硬化性樹脂(a1)の硬化物と熱可塑性樹脂(b1)とを主成分とする。
(Bonding layer)
The bonding layer has a solder bonding portion and a resin bonding portion, and is formed by melting the bonding material layer described above.
A solder joint part is formed when solder powder (a2) fuses together.
The resin bonded portion mainly includes a cured product of the thermosetting resin (a1) and the thermoplastic resin (b1).

(作用機序)
以上説明した本発明の電子部品付き基板にあっては、はんだ接合部に加えて、樹脂接合部によっても、基板と電子部品とが接合されるため、基板と電子部品との密着性が高い。また、はんだ接合部が樹脂接合部によって保護されているため、はんだ接合部の耐環境性も高い。さらに、本発明の電子部品の実装方法で作製されたものであるため、基板と電子部品とのはんだによる接合がより確実に行われている。
(Mechanism of action)
In the substrate with an electronic component of the present invention described above, since the substrate and the electronic component are bonded by the resin bonding portion in addition to the solder bonding portion, the adhesion between the substrate and the electronic component is high. Moreover, since the solder joint part is protected by the resin joint part, the environment resistance of the solder joint part is also high. Further, since the electronic component is produced by the electronic component mounting method of the present invention, the bonding of the substrate and the electronic component by solder is more reliably performed.

以下、実施例を挙げて本発明をより具体的に説明するが、これにより本発明は限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited by this.

(熱硬化性樹脂(a1)と還元剤(a3)とその他成分(a4)との混合物の粘度)
熱硬化性樹脂(a1)と還元剤(a3)とその他成分(a4)との混合物の粘度は、REOLOGICA INSTRUMENTS社製のVISCOANALYSER VAR100によって測定した。測定温度は、後述するはんだ粉(a2)が溶融する温度(200℃)とした。
(Viscosity of mixture of thermosetting resin (a1), reducing agent (a3) and other component (a4))
The viscosity of the mixture of the thermosetting resin (a1), the reducing agent (a3) and the other component (a4) was measured with a VISCOANALYSER VAR100 manufactured by REOLOGICA INSTRUMENTS. The measurement temperature was a temperature (200 ° C.) at which the solder powder (a2) described later melts.

(熱可塑性樹脂(b1)の粘度)
熱可塑性樹脂(b1)の粘度は、JIS Z 8803:2011における「落球粘度計による粘度測定方法」に基づいて測定した。測定サンプルは、ガラス製の円管(直径:2.4cm)にフレーク状の熱可塑性樹脂(b1)を充填し、気泡を除去するために高温で保持して作製した。落下させる球としては、SUS440cの鋼球(直径:0.4cmm、密度:7.78g/cm)を用いた。測定温度は、後述するはんだ粉(a2)が溶融する温度(200℃)とした。熱可塑性樹脂(b1)中を落下する球が推奨測定範囲の5cmを落下する時間を測定し、熱可塑性樹脂(b1)の粘度を算出した。粘度は、ストークスの式を応用した下記式により求めた。
(Viscosity of thermoplastic resin (b1))
The viscosity of the thermoplastic resin (b1) was measured based on “viscosity measurement method with falling ball viscometer” in JIS Z 8803: 2011. A measurement sample was prepared by filling a glass circular tube (diameter: 2.4 cm) with a flaky thermoplastic resin (b1) and holding at a high temperature in order to remove bubbles. As the sphere to be dropped, a steel ball of SUS440c (diameter: 0.4 cmm, density: 7.78 g / cm 3 ) was used. The measurement temperature was a temperature (200 ° C.) at which the solder powder (a2) described later melts. The time for the sphere falling in the thermoplastic resin (b1) to fall 5 cm in the recommended measurement range was measured, and the viscosity of the thermoplastic resin (b1) was calculated. The viscosity was determined by the following formula using the Stokes formula.

式中、ηは粘度(Pa・s/10)であり、ρは球の密度であり、ρは熱可塑性樹脂(b1)の密度(ポリエステル樹脂:1.2g/cm)であり、gは重力加速度(980cm/s)であり、tは落下時間であり、lは落下距離であり、Dは円管の直径であり、dは球の直径である。 In the formula, η is the viscosity (Pa · s / 10), ρ is the density of the sphere, ρ 0 is the density of the thermoplastic resin (b1) (polyester resin: 1.2 g / cm 3 ), g Is the gravitational acceleration (980 cm / s 2 ), t is the drop time, l is the drop distance, D is the diameter of the circular tube, and d is the diameter of the sphere.

(電極のぬれ性)
ホットプレートを用いて接合用材料層付き基板を昇温速度1℃/sで240℃まで加熱し、240℃で60秒間保持した。温度は、基板の表面の温度である。
加熱後の基板を上面から観察したときに電極とはんだとの位置が一致し、かつ電極の表面がはんだにぬれている電極の数を数え、全電極数(169個)に対するぬれた電極の数の割合(ぬれ率:%)を求め、下記の基準で評価した。
○:ぬれ率が100%である。
△:ぬれ率が80%以上100%未満である。
×:ぬれ率が80%未満である。
(Electrode wettability)
The board | substrate with a joining material layer was heated to 240 degreeC with the temperature increase rate of 1 degree-C / s using the hotplate, and was hold | maintained at 240 degreeC for 60 second. The temperature is the temperature of the surface of the substrate.
Counting the number of electrodes where the position of the electrode and the solder match when the substrate after heating is observed from the top and the surface of the electrode is wet with the solder, and the number of wet electrodes with respect to the total number of electrodes (169) The ratio (wetting rate:%) was obtained and evaluated according to the following criteria.
○: Wetting rate is 100%.
Δ: Wetting rate is 80% or more and less than 100%.
X: The wetting rate is less than 80%.

(走査型電子顕微鏡写真)
走査電子顕微鏡(SEM)(日本電子社製、JSM−6360LV)を用い、電子部品付き基板の断面を撮影した。
(Scanning electron micrograph)
The cross section of the board | substrate with an electronic component was image | photographed using the scanning electron microscope (SEM) (the JEOL Co., Ltd. make, JSM-6360LV).

(X線透過写真)
マイクロフォーカスX線透視装置(島津製作所社製、SMX−160E)を用い、電子部品付き基板の上面からその透過像を撮影した。
(X-ray transmission photograph)
Using a microfocus X-ray fluoroscope (SMX-160E, manufactured by Shimadzu Corporation), a transmission image was taken from the upper surface of the substrate with electronic components.

(はんだ粉含有熱硬化性樹脂組成物)
熱硬化性樹脂(a1)としてエポキシ樹脂(三菱化学社製、jER(登録商標) 834)の30質量部(13.3体積%)およびオキセタン樹脂(宇部興産社製、ETERNACOLL(登録商標) OXBP)の70質量部(31.1体積%)と、はんだ粉(a2)としてSn84.3%−Ag3%−Cu0.7%−Bi5%−In7%の5元系はんだ粉(粒径:20μm)の614質量部(50体積%)と、還元剤(a3)として2,4−ジエチルグルタル酸の10.5質量部と、その他成分(a4)として粘度調整用添加剤(楠本化成社製、ディスパロン(登録商標)6700)の7.0質量部と、を混練することにより、はんだ粉含有熱硬化性樹脂組成物を調製した。
熱硬化性樹脂(a1)と還元剤(a3)とその他成分(a4)との混合物の粘度は、はんだ粉(a2)が溶融する温度(200℃)において0.1Pa・sであった。
(Solder powder-containing thermosetting resin composition)
30 parts by mass (13.3% by volume) of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER (registered trademark) 834) and an oxetane resin (EteRNACOLL (registered trademark) OXBP, manufactured by Ube Industries, Ltd.) as the thermosetting resin (a1) 70 parts by mass (31.1% by volume) and Sn84.3% -Ag3% -Cu0.7% -Bi5% -In7% ternary solder powder (particle size: 20 μm) as solder powder (a2) 614 parts by mass (50% by volume), 10.5 parts by mass of 2,4-diethylglutaric acid as the reducing agent (a3), and viscosity adjusting additive (manufactured by Enomoto Kasei Co., Ltd. Solder powder-containing thermosetting resin composition was prepared by kneading 7.0 parts by mass of (registered trademark) 6700).
The viscosity of the mixture of the thermosetting resin (a1), the reducing agent (a3) and the other component (a4) was 0.1 Pa · s at the temperature (200 ° C.) at which the solder powder (a2) melts.

(熱可塑性樹脂)
熱可塑性樹脂A:飽和共重合ポリエステル樹脂(ユニチカ社製、エリーテル(登録商標)UE−3300、はんだ粉(a2)が溶融する温度(200℃)における粘度:3.7Pa・s、ガラス転移温度:45℃、数平均分子量:8000、軟化温度:80℃)。
熱可塑性樹脂B:飽和共重合ポリエステル樹脂(ユニチカ社製、エリーテル(登録商標)UE−3210、はんだ粉(a2)が溶融する温度(200℃)における粘度:16.4Pa・s、ガラス転移温度:45℃、数平均分子量:20000、軟化温度:80℃)。
熱可塑性樹脂C:飽和共重合ポリエステル樹脂(日本合成化学工業社製、ポリエスター(登録商標)TP−220、はんだ粉(a2)が溶融する温度(200℃)における粘度:5.3Pa・s、ガラス転移温度:70℃、数平均分子量:16000、軟化温度:122℃)。
熱可塑性樹脂D:飽和共重合ポリエステル樹脂(ユニチカ社製、エリーテル(登録商標)UE−9800、はんだ粉(a2)が溶融する温度(200℃)における粘度:9.9Pa・s、ガラス転移温度:85℃、数平均分子量:13000、軟化温度:122℃)。
(Thermoplastic resin)
Thermoplastic resin A: saturated copolyester resin (manufactured by Unitika Ltd., Elitel (registered trademark) UE-3300, viscosity at which solder powder (a2) melts (200 ° C.): 3.7 Pa · s, glass transition temperature: 45 ° C., number average molecular weight: 8000, softening temperature: 80 ° C.).
Thermoplastic resin B: saturated copolyester resin (manufactured by Unitika, Elitel (registered trademark) UE-3210, viscosity at which solder powder (a2) melts (200 ° C.): 16.4 Pa · s, glass transition temperature: 45 ° C., number average molecular weight: 20000, softening temperature: 80 ° C.).
Thermoplastic resin C: Saturated copolymer polyester resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., Polyester (registered trademark) TP-220, viscosity at which solder powder (a2) melts (200 ° C.): 5.3 Pa · s, Glass transition temperature: 70 ° C., number average molecular weight: 16000, softening temperature: 122 ° C.).
Thermoplastic resin D: Saturated copolymer polyester resin (manufactured by Unitika, Elitel (registered trademark) UE-9800, viscosity at temperature (200 ° C.) at which solder powder (a2) melts: 9.9 Pa · s, glass transition temperature: 85 ° C., number average molecular weight: 13000, softening temperature: 122 ° C.).

(樹脂溶液)
熱可塑性樹脂を酢酸ジエチレングリコールモノエチルエーテルに溶解した樹脂溶液(固形分濃度:36質量%)を調製した。
(Resin solution)
A resin solution (solid content concentration: 36% by mass) in which a thermoplastic resin was dissolved in diethylene glycol monoethyl ether acetate was prepared.

(熱可塑性樹脂フィルム)
熱可塑性樹脂の樹脂溶液を、アプリケータを用いてガラス板上に塗布し、100℃で30分間保持して有機溶媒を揮発させ、熱可塑性樹脂フィルム(厚さ:30μmまたは20μm)を作製した。
(Thermoplastic resin film)
A resin solution of a thermoplastic resin was applied onto a glass plate using an applicator, and kept at 100 ° C. for 30 minutes to evaporate the organic solvent, thereby producing a thermoplastic resin film (thickness: 30 μm or 20 μm).

(基板)
基板としては、169個(縦13個×横13個)の銅電極を有する基板を用意した。電極の直径および電極の間隔は、いずれも400μmである。
(substrate)
As a substrate, a substrate having 169 (13 vertical x 13 horizontal) copper electrodes was prepared. The electrode diameter and electrode spacing are both 400 μm.

(電子部品)
電子部品としては、169個(縦13個×横13個)の銅電極を有する電子部品を用意した。電極の直径および電極の間隔は、いずれも400μmである。
(Electronic parts)
As an electronic component, an electronic component having 169 (13 vertical x 13 horizontal) copper electrodes was prepared. The electrode diameter and electrode spacing are both 400 μm.

(実施例1)
工程(I−1):
基板を窒素雰囲気下、170℃で1時間保持し、プリベークした。
基板の電極側の表面に熱可塑性樹脂A溶液を塗布し、基板を窒素雰囲気下、120℃で1時間保持することによって、第一の熱可塑性樹脂層(β)(厚さ:10μm)を形成した。
Example 1
Step (I-1):
The substrate was kept at 170 ° C. for 1 hour in a nitrogen atmosphere and prebaked.
The first thermoplastic resin layer (β) (thickness: 10 μm) is formed by applying the thermoplastic resin A solution to the electrode side surface of the substrate and holding the substrate at 120 ° C. for 1 hour in a nitrogen atmosphere. did.

工程(I−2):
第一の熱可塑性樹脂層(β)の表面の電極に対応する箇所に、はんだマスクを用いたスクリーン印刷によってはんだ粉含有熱硬化性樹脂組成物を塗布し、はんだ粉含有熱硬化性樹脂層(α)(厚さ:150μm)を形成した。
Step (I-2):
A solder powder-containing thermosetting resin composition is applied to a portion corresponding to the electrode on the surface of the first thermoplastic resin layer (β) by screen printing using a solder mask, and a solder powder-containing thermosetting resin layer ( α) (thickness: 150 μm) was formed.

工程(I−3):
はんだ粉含有熱硬化性樹脂層(α)上に、熱可塑性樹脂Aフィルムを被せ、第二の熱可塑性樹脂層(β)(厚さ:30μm)を形成した。
このようにして、基板の電極側の表面に接合用材料層を備えた接合用材料層付き基板を得た。
接合用材料層付き基板の電極のぬれ性を評価した。結果を表1に示す。
Step (I-3):
A thermoplastic resin A film was placed on the solder powder-containing thermosetting resin layer (α) to form a second thermoplastic resin layer (β) (thickness: 30 μm).
Thus, the board | substrate with the material layer for joining provided with the material layer for joining on the surface by the side of the electrode of a board | substrate was obtained.
The wettability of the electrode of the substrate with the bonding material layer was evaluated. The results are shown in Table 1.

(比較例1、実施例2、3)
熱可塑性樹脂Aを熱可塑性樹脂B〜Dに変更した以外は、実施例1と同様にして接合用材料層付き基板を得た。
接合用材料層付き基板の電極のぬれ性を評価した。結果を表1に示す。
(Comparative Example 1, Examples 2 and 3)
A substrate with a bonding material layer was obtained in the same manner as in Example 1 except that the thermoplastic resin A was changed to the thermoplastic resins B to D.
The wettability of the electrode of the substrate with the bonding material layer was evaluated. The results are shown in Table 1.

(実施例4〜6)
第一の熱可塑性樹脂層(β)の厚さを20μm、30μm、40μmに変更した以外は、実施例1と同様にして接合用材料層付き基板を得た。
接合用材料層付き基板の電極のぬれ性を評価した。結果を表1に示す。
(Examples 4 to 6)
A substrate with a bonding material layer was obtained in the same manner as in Example 1 except that the thickness of the first thermoplastic resin layer (β) was changed to 20 μm, 30 μm, and 40 μm.
The wettability of the electrode of the substrate with the bonding material layer was evaluated. The results are shown in Table 1.

(実施例7、8)
熱可塑性樹脂Aを熱可塑性樹脂Cに変更し、第一の熱可塑性樹脂層(β)の厚さを20μm、30μmに変更した以外は、実施例1と同様にして接合用材料層付き基板を得た。
接合用材料層付き基板の電極のぬれ性を評価した。結果を表1に示す。
(Examples 7 and 8)
A substrate with a bonding material layer was prepared in the same manner as in Example 1 except that the thermoplastic resin A was changed to the thermoplastic resin C and the thickness of the first thermoplastic resin layer (β) was changed to 20 μm and 30 μm. Obtained.
The wettability of the electrode of the substrate with the bonding material layer was evaluated. The results are shown in Table 1.

はんだ粉(a2)が溶融する温度(200℃)における粘度が10Pa・s未満である熱可塑性樹脂(b1)を用いた実施例1〜8は、はんだ粉(a2)が溶融する温度以上に加熱した後の電極のぬれ率が100%であった。
はんだ粉(a2)が溶融する温度(200℃)における粘度が10Pa・s以上である熱可塑性樹脂を用いた比較例1は、はんだ粉(a2)が溶融する温度以上に加熱した後の電極のぬれ率が98.8%であった。
Examples 1 to 8 using the thermoplastic resin (b1) having a viscosity of less than 10 Pa · s at a temperature (200 ° C.) at which the solder powder (a2) melts are heated to a temperature higher than the temperature at which the solder powder (a2) melts. The wetting rate of the electrode after this was 100%.
In Comparative Example 1 using a thermoplastic resin having a viscosity of 10 Pa · s or higher at a temperature (200 ° C.) at which the solder powder (a2) melts, the electrode after heating to a temperature higher than the temperature at which the solder powder (a2) melts The wetting rate was 98.8%.

(実施例9)
工程(I−4):
基板の電極と電子部品の電極とが接合用材料層を介して対向するように、実施例1の接合用材料層付き基板の接合用材料層上に電子部品を配置した。
Example 9
Step (I-4):
The electronic component was disposed on the bonding material layer of the substrate with the bonding material layer of Example 1 so that the electrode of the substrate and the electrode of the electronic component were opposed to each other through the bonding material layer.

工程(I−5):
電子部品が配置された接合用材料層付き基板を、昇温速度1℃/秒で230℃まで加熱し、230℃で180秒間保持して、基板と電子部品とが接合された電子部品付き基板を得た。電子部品付き基板の断面のSEM写真を図4に示す。電子部品付き基板の上面のX線透過写真を図5に示す。はんだ接合部52および樹脂接合部54からなる接合層(厚さ:65μm)が形成されており、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができた。また、基板10のすべての電極と電子部品40のすべての電極とがはんだによって接合されていることが確認された。
Step (I-5):
A substrate with an electronic component on which the electronic component is placed is heated to 230 ° C. at a heating rate of 1 ° C./second and held at 230 ° C. for 180 seconds to bond the substrate to the electronic component. Got. A SEM photograph of a cross section of the substrate with electronic components is shown in FIG. An X-ray transmission photograph of the upper surface of the substrate with electronic components is shown in FIG. A joining layer (thickness: 65 μm) composed of the solder joint portion 52 and the resin joint portion 54 was formed, and electrical joining by solder and sealing and joining by resin could be performed collectively. Moreover, it was confirmed that all the electrodes of the board | substrate 10 and all the electrodes of the electronic component 40 were joined by the solder.

(実施例10)
第一の熱可塑性樹脂層(β)の厚さを20μmに変更し、第二の熱可塑性樹脂層(β)の厚さを20μmに変更した以外は、実施例1と同様にして接合用材料層付き基板を得た。
(Example 10)
A bonding material in the same manner as in Example 1 except that the thickness of the first thermoplastic resin layer (β) was changed to 20 μm and the thickness of the second thermoplastic resin layer (β) was changed to 20 μm. A layered substrate was obtained.

実施例10の接合用材料層付き基板を用いた以外は、実施例9と同様にして電子部品付き基板を得た。電子部品付き基板の断面のSEM写真を図6に示す。電子部品付き基板の上面のX線透過写真を図7に示す。はんだ接合部52および樹脂接合部54からなる接合層(厚さ:約50μm)が形成されており、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができた。また、基板10のすべての電極と電子部品40のすべての電極とがはんだによって接合されていることが確認された。   A substrate with an electronic component was obtained in the same manner as in Example 9 except that the substrate with a bonding material layer of Example 10 was used. An SEM photograph of a cross section of the substrate with electronic components is shown in FIG. An X-ray transmission photograph of the upper surface of the substrate with electronic components is shown in FIG. A joining layer (thickness: about 50 μm) composed of the solder joint portion 52 and the resin joint portion 54 was formed, and electrical joining by soldering and sealing and joining by resin could be performed collectively. Moreover, it was confirmed that all the electrodes of the board | substrate 10 and all the electrodes of the electronic component 40 were joined by the solder.

(実施例11)
接合層の厚さを一定にするために、第一の熱可塑性樹脂層(β)と第二の熱可塑性樹脂層(β)との間にスペーサ(粒径:50μm)を配置した以外は、実施例9と同様にして電子部品付き基板を得た。電子部品付き基板の断面のSEM写真を図8に示す。電子部品付き基板の上面のX線透過写真を図9に示す。はんだ接合部52および樹脂接合部54からなる接合層(厚さ:55μm)が形成されており、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができた。また、基板10のすべての電極と電子部品40のすべての電極とがはんだによって接合されていることが確認された。
(Example 11)
In order to make the thickness of the bonding layer constant, except that a spacer (particle size: 50 μm) is disposed between the first thermoplastic resin layer (β) and the second thermoplastic resin layer (β), A substrate with electronic components was obtained in the same manner as in Example 9. An SEM photograph of a cross section of the substrate with electronic components is shown in FIG. An X-ray transmission photograph of the upper surface of the substrate with electronic components is shown in FIG. A joining layer (thickness: 55 μm) composed of the solder joint portion 52 and the resin joint portion 54 was formed, and electrical joining by solder and sealing and joining by resin could be performed at once. Moreover, it was confirmed that all the electrodes of the board | substrate 10 and all the electrodes of the electronic component 40 were joined by the solder.

本発明の電子部品の実装方法は、BGA、LGA等の多電極電子部品の実装方法として有用である。   The electronic component mounting method of the present invention is useful as a mounting method for multi-electrode electronic components such as BGA and LGA.

1 電子部品付き基板、10 基板、12 電極、20 接合用材料層、22 第一の熱可塑性樹脂層(β)、24 はんだ粉含有熱硬化性樹脂層(α)、26 第二の熱可塑性樹脂層(β)、28 はんだ粉(a2)、30 接合用材料層付き基板、40 電子部品、42 電極、50 接合層、52 はんだ接合部、54 樹脂接合部、60 支持体、70 シート状接合用部材、72 第一の熱可塑性樹脂層(β)、74 はんだ粉含有熱硬化性樹脂層(α)、76 第二の熱可塑性樹脂層(β)、78 はんだ粉(a2)、78’ 溶融したはんだ粉(a2)、80 ハイブリッド樹脂   DESCRIPTION OF SYMBOLS 1 Board | substrate with an electronic component, 10 board | substrates, 12 electrodes, 20 joining material layer, 22 1st thermoplastic resin layer ((beta)), 24 solder powder containing thermosetting resin layer ((alpha)), 26 2nd thermoplastic resin Layer (β), 28 solder powder (a2), 30 substrate with bonding material layer, 40 electronic component, 42 electrode, 50 bonding layer, 52 solder bonding portion, 54 resin bonding portion, 60 support, 70 for sheet-like bonding Member, 72 first thermoplastic resin layer (β), 74 solder powder-containing thermosetting resin layer (α), 76 second thermoplastic resin layer (β), 78 solder powder (a2), 78 ′ melted Solder powder (a2), 80 hybrid resin

Claims (5)

熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む一層または二層の熱可塑性樹脂層(β)とを有する接合用材料層を、基板と電子部品との間に介在させた状態で、前記接合用材料層を溶融させることにより、前記基板と前記電子部品との接合を行う電子部品の実装方法であって、
前記熱硬化性樹脂(a1)が、前記はんだ粉(a2)が溶融する温度において、前記はんだ粉(a2)が前記はんだ粉含有熱硬化性樹脂層(α)内を流動できる粘度となる熱硬化性樹脂であり、
前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、電子部品の実装方法。
Thermosetting resin (a1), solder powder (a2), solder powder-containing thermosetting resin layer (α) containing reducing agent (a3), and one or two-layer thermoplastic resin containing thermoplastic resin (b1) An electron that bonds the substrate and the electronic component by melting the bonding material layer in a state where the bonding material layer having the layer (β) is interposed between the substrate and the electronic component. A component mounting method,
The thermosetting resin (a1) has a viscosity at which the solder powder (a2) can flow in the solder powder-containing thermosetting resin layer (α) at a temperature at which the solder powder (a2) melts. Resin,
The electronic component mounting method, wherein the thermoplastic resin (b1) is a thermoplastic resin having a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts.
請求項1に記載の電子部品の実装方法で作製された、電子部品付き基板。   A substrate with an electronic component produced by the electronic component mounting method according to claim 1. 請求項1に記載の電子部品の実装方法で形成された、はんだ粉(a2)が融着してなるはんだ接合部と、熱硬化性樹脂(a1)の硬化物および熱可塑性樹脂(b1)を含む樹脂接合部とを有する、電子部品付き基板の接合層。   A solder joint formed by fusing solder powder (a2), a cured product of a thermosetting resin (a1), and a thermoplastic resin (b1) formed by the electronic component mounting method according to claim 1. A bonding layer for a substrate with an electronic component, comprising: a resin bonding portion including: 基板と、該基板の電極側の表面に設けられた接合用材料層とを備え、
前記接合用材料層は、熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む一層または二層の熱可塑性樹脂層(β)とを有し、
前記熱可塑性樹脂層(β)の一層が、前記はんだ粉含有熱硬化性樹脂層(α)の表面を被覆し、
前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、接合用材料層付き基板。
A substrate, and a bonding material layer provided on the electrode-side surface of the substrate,
The bonding material layer includes a thermosetting resin (a1), a solder powder-containing thermosetting resin layer (α) containing solder powder (a2) and a reducing agent (a3), and a layer containing a thermoplastic resin (b1). Or having two thermoplastic resin layers (β),
One layer of the thermoplastic resin layer (β) covers the surface of the solder powder-containing thermosetting resin layer (α),
A substrate with a bonding material layer, wherein the thermoplastic resin (b1) is a thermoplastic resin having a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts.
熱硬化性樹脂(a1)、はんだ粉(a2)および還元剤(a3)を含むはんだ粉含有熱硬化性樹脂層(α)と、熱可塑性樹脂(b1)を含む二層の熱可塑性樹脂層(β)とを有し、
前記二層の熱可塑性樹脂層(β)の間に前記はんだ粉含有熱硬化性樹脂層(α)が設けられ、
前記熱可塑性樹脂(b1)が、前記はんだ粉(a2)が溶融する温度において、10Pa・s未満の粘度となる熱可塑性樹脂である、シート状接合用部材。
Thermoplastic resin (a1), solder powder-containing thermosetting resin layer (α) containing solder powder (a2) and reducing agent (a3), and two thermoplastic resin layers containing thermoplastic resin (b1) ( β)
The solder powder-containing thermosetting resin layer (α) is provided between the two thermoplastic resin layers (β),
A sheet-like joining member, wherein the thermoplastic resin (b1) is a thermoplastic resin having a viscosity of less than 10 Pa · s at a temperature at which the solder powder (a2) melts.
JP2015017757A 2015-01-30 2015-01-30 Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member Pending JP2016143741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017757A JP2016143741A (en) 2015-01-30 2015-01-30 Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017757A JP2016143741A (en) 2015-01-30 2015-01-30 Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member

Publications (1)

Publication Number Publication Date
JP2016143741A true JP2016143741A (en) 2016-08-08

Family

ID=56570699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017757A Pending JP2016143741A (en) 2015-01-30 2015-01-30 Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member

Country Status (1)

Country Link
JP (1) JP2016143741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534578A (en) * 2016-08-30 2019-11-28 アイピーアイ・テック・インコーポレイテッドIpi Tech Inc. Polyimide film for reflow process of semiconductor package and manufacturing method thereof
US11404607B2 (en) 2019-05-28 2022-08-02 Samsung Electronics Co.. Ltd. Display apparatus, source substrate structure, driving substrate structure, and method of manufacturing display apparatus
KR20230057466A (en) 2020-10-29 2023-04-28 데쿠세리아루즈 가부시키가이샤 Conductive adhesive, anisotropic conductive film, connected structure, and manufacturing method of connected structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100775A (en) * 2004-09-03 2006-04-13 Matsushita Electric Ind Co Ltd Bump forming method and solder bump
JP2014027237A (en) * 2012-07-30 2014-02-06 Osaka Univ Method for mounting electronic component, circuit board and solder joint part, and printed wiring board with connection layer and sheet-like junction member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100775A (en) * 2004-09-03 2006-04-13 Matsushita Electric Ind Co Ltd Bump forming method and solder bump
JP2014027237A (en) * 2012-07-30 2014-02-06 Osaka Univ Method for mounting electronic component, circuit board and solder joint part, and printed wiring board with connection layer and sheet-like junction member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534578A (en) * 2016-08-30 2019-11-28 アイピーアイ・テック・インコーポレイテッドIpi Tech Inc. Polyimide film for reflow process of semiconductor package and manufacturing method thereof
US11015089B2 (en) 2016-08-30 2021-05-25 Ipi Tech Inc. Polyimide film for semiconductor package reflow process, and manufacturing method therefor
US11404607B2 (en) 2019-05-28 2022-08-02 Samsung Electronics Co.. Ltd. Display apparatus, source substrate structure, driving substrate structure, and method of manufacturing display apparatus
KR20230057466A (en) 2020-10-29 2023-04-28 데쿠세리아루즈 가부시키가이샤 Conductive adhesive, anisotropic conductive film, connected structure, and manufacturing method of connected structure

Similar Documents

Publication Publication Date Title
US8227536B2 (en) Lead-free solder paste and its use
JP5342453B2 (en) Conductive paste and electrical and electronic equipment using the same
KR100977163B1 (en) Solder adhesive and the manufacturing method thereof and the electric device comprising thereof
US20060043597A1 (en) Solder composition, connecting process with soldering, and connection structure with soldering
US20060043543A1 (en) Solder composition, connecting process with soldering, and connection structure with soldering
JP5951339B2 (en) Solder paste using thermosetting resin composition
KR102095083B1 (en) Electrically conductive adhesive agent, joined body, and joint
KR101293914B1 (en) Conductive ink and device using the same
US10906137B2 (en) Solder composition and electronic board
JP5802081B2 (en) Anisotropic conductive paste
JP5242521B2 (en) Solder bonding composition
JP6402127B2 (en) Bonding method of electronic parts
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP2016143741A (en) Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
US9807889B2 (en) Method of mounting electronic component to circuit board
JP2006035259A (en) Solder paste
JP5560032B2 (en) Solder joint reinforcing agent composition and method for producing mounting board using the same
KR20150111403A (en) A Pb FREE SOLDERING FLUX AND PASTE FOR ELECTRONIC COMPONENT, AND A SOLDERING METHOD USING THE SAME MATERIALS
CN117715726A (en) Resin composition for soldering flux, solder paste, and mounting structure
JP2014038909A (en) Component mounting board and manufacturing method of the same
JP6130421B2 (en) Electronic component joining method, and solder composition and pretreatment agent used in the method
JP6130417B2 (en) Electronic component joining method, and solder composition and pretreatment agent used in the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190409