JP2016141233A - Vehicle driving support device - Google Patents

Vehicle driving support device Download PDF

Info

Publication number
JP2016141233A
JP2016141233A JP2015018067A JP2015018067A JP2016141233A JP 2016141233 A JP2016141233 A JP 2016141233A JP 2015018067 A JP2015018067 A JP 2015018067A JP 2015018067 A JP2015018067 A JP 2015018067A JP 2016141233 A JP2016141233 A JP 2016141233A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
wet
host vehicle
light pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018067A
Other languages
Japanese (ja)
Other versions
JP6376347B2 (en
Inventor
昌士 岡本
Masashi Okamoto
昌士 岡本
秀和 畑中
Hidekazu Hatanaka
秀和 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2015018067A priority Critical patent/JP6376347B2/en
Priority to US15/013,565 priority patent/US9592762B2/en
Publication of JP2016141233A publication Critical patent/JP2016141233A/en
Application granted granted Critical
Publication of JP6376347B2 publication Critical patent/JP6376347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/135Polarised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body

Abstract

PROBLEM TO BE SOLVED: To suppress that a regular reflection component of a laser beam which forms a light pattern projected on a road surface dazzles a driver of another vehicle when the road surface gets wet on rainy day.SOLUTION: A vehicle driving support device which is mounted on a vehicle and displays a prescribed light pattern for being recognized by a driver of the own vehicle or another vehicle, a pedestrian and an environmental circumstance detector on a road surface around the own vehicle includes: a road surface projection optical system which scans a light source beam with use of radiation light from a coherent light source, outputs a projection beam and projects the light pattern to the road surface around the own vehicle; a road surface wetting information retention means which retains information whether the road surface around the own vehicle gets wet or not; and a control circuit. Therein, during a period in which the road surface wetting information retention means retains such information that the road surface around the own vehicle gets wet, the control circuit controls such that an incident angle for the road surface is made shallow and the outputting of the projection beam for projecting the light pattern toward the neighborhood of boundary of a travelling zone on which the own vehicle travels is stopped.SELECTED DRAWING: Figure 1

Description

本発明は、半導体レーザ等のコヒーレント光源からの放射光を走査して、所定の光パターンを自車両周辺の路面上に描画し、それを自車両または他車両の運転者、歩行者、環境状況検出器に認識させることを可能ならしめ、交通安全に寄与することを目的とした車両運転支援装置に関する。   The present invention scans radiation emitted from a coherent light source such as a semiconductor laser, draws a predetermined light pattern on the road surface around the host vehicle, and draws it on the driver, pedestrian, and environmental conditions of the host vehicle or other vehicles. The present invention relates to a vehicle driving support device that enables a detector to recognize and contribute to traffic safety.

半導体レーザ等のレーザビームを用いて自車両周辺の路面に何らかの光パターンを表示し、自車両または他車両の運転者、歩行者、環境状況検出器に認識させる従来技術に関しては、例えば特開平05−238307号公報には、車両の前方の所定距離だけ離れた路面位置に、視認可能なスポットマーカ、あるいは2次元ガルバノメータを用いた走査による多角形等の図形を照射し、歩行者や他車両の運転車に対し、自車両の存在を認識させることができるようにするものが記載されている。   With respect to the prior art in which a light pattern is displayed on the road surface around the host vehicle using a laser beam such as a semiconductor laser and is recognized by a driver, a pedestrian, or an environmental condition detector of the host vehicle or another vehicle, for example, No. -238307 irradiates a road surface position that is a predetermined distance away from the front of the vehicle with a visible spot marker or a polygon such as a polygon by scanning using a two-dimensional galvanometer. It describes what allows the driver to recognize the presence of the host vehicle.

また、特開2003−231450号公報には、自車両および他車両が照射するレーザビームによって路面に形成される光パターンを撮像装置によって取得し、その情報に基づいて自車両の進行上注意すべき状態を判定するものが記載されている。
この技術においては、自車両の車速・運動状態量・舵角・操舵力に基づいて、自車両が走行すると推定される移動走行軌跡を算出し、その走行軌跡を走行したものとした場合に車体が通過する部分と通過しない部分との、左右それぞれの境界線を算出し、その境界線のうち、速度等に依存して安全上必要な部分を、レーザビームをスキャンアクチュエータによって走査して描画する。
Japanese Patent Laid-Open No. 2003-231450 should acquire a light pattern formed on a road surface by a laser beam emitted by the own vehicle and other vehicles by an imaging device and pay attention to the progress of the own vehicle based on the information. What determines the state is described.
In this technology, when the traveling track estimated to travel by the host vehicle is calculated based on the vehicle speed, the amount of motion state, the steering angle, and the steering force of the host vehicle, The left and right boundary lines between the part that passes through and the part that does not pass through are calculated, and the part of the boundary line that is necessary for safety depending on the speed is scanned by the laser actuator and drawn. .

さらに、特表2004−526612号公報には、自車両の後方の路面に、スペクタクル・ショーのための照明効果の分野で利用されている方法によって光パターンを表示し、事故や緊急停止の場合に、後続の車両に情報を提供するものが記載されている。   Furthermore, in Japanese Translation of PCT International Publication No. 2004-526612, a light pattern is displayed on the road surface behind the host vehicle by a method used in the field of lighting effects for a spectacle show, in case of an accident or emergency stop. , What provides information to subsequent vehicles is described.

いま述べた技術においては、路面に投射される光パターンを形成するレーザビームが路面で乱反射し、光の入射方向にあまり依存せずに、あらゆる方向に概ね均等に拡散されることを前提としている。
ところが、雨天で路面が濡れている場合、特に路面への入射角度が浅い(光線が路面と成す角度が小さい)光線については、このような前提は成り立たずに、正反射成分が卓越するため、もし路面に投射される光パターンを形成するレーザビームの正反射成分が、偶々対向車両の運転者の眼を直射した場合、その運転者が強く眩惑され、それを原因とした交通事故の発生が懸念される。
In the technique just described, it is assumed that the laser beam forming the light pattern projected on the road surface is diffusely reflected on the road surface and diffused almost uniformly in all directions without depending much on the incident direction of light. .
However, when the road surface is wet due to rain, especially for light rays with a small incident angle to the road surface (the angle at which the light beam forms with the road surface is small), this assumption does not hold, and the specular reflection component is dominant. If the specular reflection component of the laser beam that forms the light pattern projected on the road surface accidentally hits the driver's eyes directly on the oncoming vehicle, the driver will be strongly dazzled, causing a traffic accident. Concerned.

このような眩惑の問題に対処するため、例えば特開2003−231438号公報には、路面が濡れている場合に配慮して、路面に投射される光パターンを形成するレーザビームが照射された路面を撮像装置によって撮像された画像のコントラストに基づいて、障害物たる歩行者を検出した場合、これを避けて可視光ビームを照射するようにするものが記載されている。
しかしながら、この技術の場合、眩惑から保護されるのは歩行者のみで、対向車両などの他車両の運転者に対する眩惑の問題は、依然として解決されないままであった。
In order to deal with such a dazzling problem, for example, Japanese Patent Application Laid-Open No. 2003-231438 discloses a road surface irradiated with a laser beam that forms a light pattern projected on the road surface in consideration of a wet road surface. Is described in which, when a pedestrian that is an obstacle is detected based on the contrast of an image captured by the imaging device, a visible light beam is irradiated while avoiding this.
However, in the case of this technology, only pedestrians are protected from dazzling, and the problem of dazzling for drivers of other vehicles such as oncoming vehicles still remains unsolved.

また、特開2003−285685号公報には、路面が濡れている場合に配慮して、半導体レーザからのビームに対し、ブリュースター角を成すガラス板を挿入しておくことにより、路面に平行な偏光成分がガラス板で反射して取り除かれるため、路面に投射される光パターンを形成するレーザビームは、濡れた路面でも強い正反射が起こらず、歩行者や他車両の運転者への眩惑の問題を解決できると主張するものが記載されている。
しかしながら、ブリュースター角とはP偏波の光を100%透過させる角度であって、S偏波の光を100%反射する角度ではないし、また、例えば水のブリュースター角は約53度、すなわち光線が路面と成す角度は約37度であり、光線の角度がこれより浅くなるとP偏波であっても反射が急激に増加するし、また、雨で濡れた路面は平坦でないため、深い(光線が路面と成す角度が90度に近い)角度のレーザビームで投射する至近距離の光パターンを表示する場合を除き、比較的遠方の路面に投射される光パターンを形成するレーザビームは、少なくとも部分的に強い正反射を生じるため、他車両の運転者に眩惑を与える問題は、ビームをP偏波にしただけでは解決されない。
因みに、通常の半導体レーザは、元々直線偏波で発振するため、ガラス板を挿入せずとも、濡れた路面の水面に対してP偏波となるように半導体レーザを配置すれば済む。
In addition, in Japanese Patent Application Laid-Open No. 2003-285585, in consideration of the case where the road surface is wet, a glass plate forming a Brewster angle is inserted into the beam from the semiconductor laser so that the road surface is parallel to the road surface. Since the polarized light component is reflected and removed by the glass plate, the laser beam that forms the light pattern projected on the road surface does not cause strong regular reflection even on wet road surfaces, causing dazzling to pedestrians and drivers of other vehicles. It states what claims to be able to solve the problem.
However, the Brewster angle is an angle that allows 100% transmission of P-polarized light and is not an angle that reflects 100% of S-polarized light. For example, the Brewster angle of water is about 53 degrees, that is, The angle formed by the light beam with the road surface is about 37 degrees. When the light beam angle is shallower than this, the reflection increases rapidly even in the P-polarized wave, and the road surface wet with rain is not flat. Except when displaying a light pattern at a very close distance that is projected by a laser beam having an angle (nearly 90 degrees that the light beam forms with the road surface), the laser beam that forms the light pattern projected on a relatively far road surface is at least Since a strong specular reflection is partially generated, the problem of dazzling the driver of another vehicle cannot be solved only by making the beam P-polarized.
Incidentally, since a normal semiconductor laser originally oscillates with a linearly polarized wave, it is only necessary to arrange the semiconductor laser so as to be a P polarized wave with respect to the water surface of a wet road surface without inserting a glass plate.

本発明のような、所定の光パターンを自車両周辺の路面上に描画し、それを自車両または他車両の運転者、歩行者、環境状況検出器に認識させるための技術ではないが、特開2011−157022号公報には、半導体レーザのビームを強度変調しながら走査することにより、所望の配光パターンを動的に生成することが可能な車両用前照灯であって、雨天時用配光パターンとして、通常のロービーム配光パターンよりも近い領域を、減光または消灯するものが記載されている。
これは前照灯であり、広い範囲を走査するため、公報に記載されているように、レーザ光が人の眼に入射されたとしても時間が短く、眼に悪影響を及ぼす事は抑制される。
そのため、近い領域を減光するだけで構わないとすることは合理的である。
しかし、近い領域を消灯してしまうことは、自車両が歩行者や障害物と接触する事故を起こす危険性が増大する問題を孕んでおり、対向車両の運転者の眩惑への配慮に対する代償として、バランスを大いに逸しており、到底採用できる技術とは言えない。
Although it is not a technique for drawing a predetermined light pattern on the road surface around the host vehicle and causing it to be recognized by a driver, a pedestrian, or an environmental condition detector of the host vehicle or another vehicle, as in the present invention, Japanese Laid-Open Patent Publication No. 2011-157022 discloses a vehicle headlamp capable of dynamically generating a desired light distribution pattern by scanning a semiconductor laser beam while modulating the intensity thereof. As the light distribution pattern, a pattern that dimmes or extinguishes a region closer to the normal low beam light distribution pattern is described.
Since this is a headlamp and scans a wide range, as described in the publication, even if the laser light is incident on the human eye, the time is short and adverse effects on the eye are suppressed. .
For this reason, it is reasonable to simply dim the near area.
However, extinguishing a nearby area entails a problem that the risk of causing an accident in which the vehicle comes into contact with a pedestrian or an obstacle increases, and as a compensation for consideration of the dazzling of the driver of the oncoming vehicle. The balance is greatly diminished, and it cannot be said that this technology can be adopted.

特開平05−238307号JP 05-238307 A 特開2003−231450号JP 2003-231450 A 特表2004−526612号Special table 2004-526612 特開2003−231438号JP 2003-231438 A 特開2003−285685号JP 2003-285658 A 特開2011−157022号JP2011-157022

本発明が解決しようとする課題は、雨天で路面が濡れている場合に、路面に投射される光パターンを形成するレーザビームの正反射成分が、他車両の運転者に眩惑を与えることを抑制した車両運転支援装置を提供することにある。   The problem to be solved by the present invention is to suppress the specular reflection component of the laser beam that forms the light pattern projected on the road surface from dazzling other vehicle drivers when the road surface is wet in the rain. An object of the present invention is to provide a vehicle driving support device.

本発明における第1の発明の車両運転支援装置は、車両に搭載して、自車両または他車両の運転者、歩行者、環境状況検出器に認識させるための、所定の光パターン(Q)を自車両周辺の路面に表示する車両運転支援装置であって、コヒーレント光源(Ds)と、前記コヒーレント光源(Ds)からの放射光による光源ビーム(Fb)を走査して投射ビーム(Fo)を出力し、自車両周辺の路面に前記光パターン(Q)を投射する路面投射光学系(Up)と、自車両周辺の路面が濡れているか否かの情報を保持する路面濡水情報保持手段(Uw)と、前記コヒーレント光源(Ds)および前記路面投射光学系(Up)を制御する制御回路(Ec)とを具備し、前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れている旨の情報を保持する期間は、前記制御回路(Ec)は、路面に対する入射角が浅く、かつ自車両が走行する走行帯の境界近傍に向けた、前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止するよう制御することを特徴とするものである。   According to a first aspect of the present invention, there is provided a vehicle driving support apparatus that includes a predetermined light pattern (Q) that is mounted on a vehicle and is recognized by a driver, a pedestrian, or an environmental condition detector of the host vehicle or another vehicle. A vehicle driving support device for displaying on a road surface around a host vehicle, wherein a coherent light source (Ds) and a light source beam (Fb) emitted from the coherent light source (Ds) are scanned to output a projection beam (Fo) The road surface projection optical system (Up) that projects the light pattern (Q) onto the road surface around the host vehicle, and the road surface wet water information holding means (Uw) that holds information about whether or not the road surface around the host vehicle is wet. ) And a control circuit (Ec) for controlling the coherent light source (Ds) and the road surface projection optical system (Up), and the road surface wet water information holding means (Uw) wets the road surface around the host vehicle. Information to the effect During this period, the control circuit (Ec) has a small incident angle with respect to the road surface, and the projection beam (Fo) that projects the light pattern (Q) toward the vicinity of the boundary of the traveling zone where the host vehicle travels. Control is performed to stop the output.

本発明における第2の発明の車両運転支援装置は、前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れている旨の情報を保持する期間は、前記制御回路(Ec)は、自車両が走行する走行帯と同じ走行帯を走行する後続車両の前方の路面に前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止するよう制御することを特徴とするものである。   In the vehicle driving support apparatus according to the second aspect of the present invention, during the period in which the road surface wet water information holding means (Uw) holds information that the road surface around the host vehicle is wet, the control circuit (Ec) The output of the projection beam (Fo) for projecting the light pattern (Q) to the road surface ahead of the following vehicle traveling in the same traveling zone as the traveling zone of the host vehicle is controlled. Is.

本発明における第3の発明の車両運転支援装置は、前記路面濡水情報保持手段(Uw)は、自車両周辺の路面が濡れているか否かを検知して、前記した自車両周辺の路面が濡れているか否かの情報たる路面濡水検知信号(Sw)を生成する路面濡水検知器(Xw)を具備するものである。   In the vehicle driving support apparatus according to the third aspect of the present invention, the road surface wet water information holding means (Uw) detects whether the road surface around the own vehicle is wet, and the road surface around the own vehicle is A road surface wet water detector (Xw) for generating a road surface wet water detection signal (Sw), which is information on whether or not the vehicle is wet, is provided.

雨天で路面が濡れている場合に、路面に投射される光パターンを形成するレーザビームの正反射成分が、他車両の運転者に眩惑を与えることを抑制した車両運転支援装置を提供することができる。   To provide a vehicle driving support device that suppresses the specular reflection component of a laser beam that forms a light pattern projected on a road surface from being dazzling to a driver of another vehicle when the road surface is wet due to rain. it can.

本発明の車両運転支援装置を簡略化して示すブロック図を表す。The block diagram which simplifies and shows the vehicle driving assistance device of this invention is represented. 本発明の車両運転支援装置の実施例の一部の一形態を簡略化して示す模式図を表す。The schematic diagram which simplifies and shows one form of the one part of the Example of the vehicle driving assistance device of this invention is represented. 本発明の車両運転支援装置の技術に関連する概念の概略図を表す。The schematic of the concept relevant to the technique of the vehicle driving assistance device of this invention is represented.

先ず、本発明の車両運転支援装置を簡略化して示すブロック図である図1を参照して、その構成について説明する。
コヒーレント光源(Ds)からの放射光(Fs)は、コリメータレンズやビームエキスパンダ等の、必要に応じて挿入する変換光学系(Bc)によって、遠方に投射するに適する太さを有する光源ビーム(Fb)と成し、路面投射光学系(Up)に入力される。
なお、前記コヒーレント光源(Ds)については、例えば半導体レーザや、半導体レーザの放射光を、高調波発生・光パラメトリック効果などのような非線形光学現象を利用して波長変換する光源などを使用できる。
First, the configuration will be described with reference to FIG. 1, which is a simplified block diagram of the vehicle driving support device of the present invention.
Radiation light (Fs) from a coherent light source (Ds) is converted into a light source beam (thickness suitable for being projected far away by a conversion optical system (Bc) inserted as necessary, such as a collimator lens or a beam expander. Fb) and input to the road surface projection optical system (Up).
As the coherent light source (Ds), for example, a semiconductor laser or a light source that converts the wavelength of the emitted light of the semiconductor laser using a nonlinear optical phenomenon such as harmonic generation or optical parametric effect can be used.

前記路面投射光学系(Up)は、例えば音響光偏向素子(AOD)やガルバノメータミラー等の光偏向素子の2個を、その偏向方向が直交するように配置し、それぞれを独立に駆動制御することによって、入射されたビームを任意の方向に向けて射出することができる、2次元偏向器を備えている。
2個ある各光偏向素子の偏向角は、ガルバノメータミラーの場合は、コイルに流す駆動電流の大きさで規定され、音響光偏向素子の場合は、超音波トランスデューサに印加する高周波の駆動電圧の周波数で規定される。
該路面投射光学系(Up)に入力された前記光源ビーム(Fb)は、方位角 θ,ψ の方向に偏向されて本車両運転支援装置(Uf)の外部に放出される投射ビーム(Fo)となり、自車両周辺の路面に到達してビームスポット(P)を形成するが、方位角 θ,ψ を動的に変化することによって前記ビームスポット(P)が連続的に移動するから、直線や曲線、円、多角形、文字などの任意の光パターン(Q)を、自車両周辺の路面上に投射することができる。
In the road projection optical system (Up), for example, two optical deflection elements such as an acoustic light deflection element (AOD) and a galvanometer mirror are arranged so that their deflection directions are orthogonal to each other, and each is independently driven and controlled. Thus, a two-dimensional deflector that can emit an incident beam in an arbitrary direction is provided.
In the case of a galvanometer mirror, the deflection angle of each of the two optical deflection elements is defined by the magnitude of the drive current that flows through the coil. In the case of an acousto-optic deflection element, the frequency of the high-frequency drive voltage applied to the ultrasonic transducer. It is prescribed by.
The light source beam (Fb) input to the road surface projection optical system (Up) is deflected in the direction of azimuth angles θ and ψ and emitted to the outside of the vehicle driving support device (Uf). The beam spot (P) is formed by reaching the road surface around the host vehicle, but the beam spot (P) moves continuously by dynamically changing the azimuth angles θ and ψ. An arbitrary light pattern (Q) such as a curve, a circle, a polygon, or a character can be projected on the road surface around the host vehicle.

ここで、今後の説明の便宜のために、本明細書における前記した方位角 θ,ψ について定義しておく。
本車両運転支援装置が車両に搭載された状態で、直進時の車両の進行方向を向き、平坦な路面に平行な軸をz軸として、偏向後のビームについての垂直面内の角度である俯角、すなわち光線が路面と成す角度を θ 、水平面内の角度を ψ と書くこととし、また、θ,ψ の両方を方位角と呼ぶことにする。
Here, for convenience of future explanation, the azimuth angles θ and ψ described above in this specification are defined.
With this vehicle driving support device mounted on a vehicle, the vehicle is traveling in the straight direction and the depression angle is the angle in the vertical plane of the deflected beam with the axis parallel to the flat road surface as the z-axis That is, the angle formed by the light beam with the road surface is written as θ, the angle in the horizontal plane is written as ψ, and both θ and ψ are called azimuth angles.

制御回路(Ec)は、光源変調信号(Ss)を介して前記コヒーレント光源(Ds)に対する投入電力を変調し、点灯または消灯を制御し、また点灯時の明るさを制御する。
さらに、前記制御回路(Ec)は、方位角目標信号(Sp)を介して方位角 θ,ψ の目標値 θp,ψp を前記路面投射光学系(Up)に伝送し、該路面投射光学系(Up)が具備する駆動回路が、方位角目標値 θp,ψp が実現されるよう、各光偏向素子の前記した駆動電流や駆動電圧を制御する。
The control circuit (Ec) modulates the input power to the coherent light source (Ds) via the light source modulation signal (Ss), controls lighting or extinguishing, and controls the brightness at the time of lighting.
Furthermore, the control circuit (Ec) transmits the target values θp and ψp of the azimuth angles θ and ψ to the road surface projection optical system (Up) via the azimuth angle target signal (Sp), and the road surface projection optical system ( The drive circuit included in Up) controls the drive current and drive voltage of each optical deflection element so that the azimuth target values θp and ψp are realized.

一方、路面濡水情報保持手段(Uw)は、自車両周辺の路面が濡れている旨の情報である路面濡水検知信号(Sw)を出力する。
なお、前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れているか否かの情報を取得する方法については後述する。
前記制御回路(Ec)は、前記路面濡水検知信号(Sw)がアクティブである、すなわち自車両周辺の路面が濡れている旨の情報を得ている期間は、前記コヒーレント光源(Ds)または前記路面投射光学系(Up)、あるいは両方を制御して、路面に対する入射角が浅く、かつ自車両が走行する走行帯の境界近傍に向けた、前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止する。
On the other hand, the road surface wet water information holding means (Uw) outputs a road surface wet water detection signal (Sw) which is information indicating that the road surface around the host vehicle is wet.
Note that a method for acquiring information on whether the road surface around the own vehicle is wet by the road surface wet water information holding means (Uw) will be described later.
The control circuit (Ec) is in the period when the road surface wet water detection signal (Sw) is active, that is, when the road surface around the host vehicle is wet, the coherent light source (Ds) or the The projection beam that projects the light pattern (Q) by controlling the road surface projection optical system (Up) or both so that the incident angle with respect to the road surface is shallow and the vicinity of the boundary of the traveling zone in which the host vehicle travels. The output of Fo) is stopped.

ここで、路面に対する入射角が浅いと判断する基準としては、路面を平坦な水面であると単純化したモデルを考え、前記投射ビーム(Fo)が水面に対してP偏波となるように本車両運転支援装置を構成するとして、光線が路面と成す角度 θ の下限を、例えば、反射率が20%となる約11.2度、あるいは反射率が30%となる約8.5度とすることができる。
ただし、路面に溜まっている雨水は、純粋な水ではないし、油膜が浮いていることが多い上に、平坦でもないため、路面の反射率は、単純な θ のみの関数ではないことは明らかで、θ が同じであっても、路面の部分毎に異なる。
そのため、許容できる路面反射率を決めたとしても、路面に対する入射角が浅いと判断するための光線が路面と成す角度 θ の下限値は、理論的考察から一意的に求めることはできず、実験的に決めることが、より妥当である。
Here, as a reference for determining that the incident angle with respect to the road surface is shallow, a model in which the road surface is simplified to be a flat water surface is considered, and the projection beam (Fo) is P-polarized with respect to the water surface. When configuring the vehicle driving support device, the lower limit of the angle θ formed by the light beam with the road surface is, for example, about 11.2 degrees where the reflectance is 20%, or about 8.5 degrees where the reflectance is 30%. be able to.
However, since rainwater collected on the road surface is not pure water, oil films are often floating, and it is not flat, so it is clear that road surface reflectance is not a simple function of only θ. , Θ are the same, but differ for each part of the road surface.
Therefore, even if an acceptable road surface reflectance is determined, the lower limit value of the angle θ formed by the light beam to determine that the incident angle with respect to the road surface is shallow cannot be uniquely determined from theoretical considerations. It is more reasonable to make a decision.

因みに、先に述べた反射率の値は、よく知られているフレネル係数を求めることによって、簡単に計算することができる。
具体的には、水面の法線と光線とが成す角度、すなわち入射角 φ (ただし φ = 90−θ)を決めると、屈折角 χ は、水の屈折率 n の値1.333を介して、以下の式
sinχ = sinφ/n
により関係付けられているから、パワー反射率(振幅反射率であるフレネル係数の2乗)は、以下の式
R = { tan(φ−χ)/tan(φ+χ) }^2
で計算できる。
ただし、記号 ^2 は2乗を表す。
Incidentally, the reflectance value described above can be easily calculated by obtaining a well-known Fresnel coefficient.
Specifically, when the angle formed between the normal of the water surface and the light beam, that is, the incident angle φ (where φ = 90−θ) is determined, the refraction angle χ is obtained through the value 1.333 of the refractive index n of water. , The following formula
sinχ = sinφ / n
Therefore, the power reflectivity (the square of the Fresnel coefficient, which is the amplitude reflectivity) is expressed by the following formula: R = {tan (φ−χ) / tan (φ + χ)} ^ 2
It can be calculated with
However, the symbol ^ 2 represents the square.

前記制御回路(Ec)が前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止する制御の仕方として、例えば最も簡単には、自車両周辺の路面が濡れているか否かには無頓着に、前記路面投射光学系(Up)と前記コヒーレント光源(Ds)を制御しておき、投射内容が自車両が走行する走行帯の境界近傍に対する光パターンであり、かつ θ または θp がその下限値以下であり、さらに前記路面濡水検知信号(Sw)がアクティブであるときは、前記コヒーレント光源(Ds)を消灯するよう、追加制御すればよい。
ただし、このような単純な制御の場合は、追加制御によって前記コヒーレント光源(Ds)を消灯している期間も、前記路面投射光学系(Up)は無駄に動いていることになるから、θ または θp が下限値以下になってから、次に下限値を超えるまでの制御シーケンス部分を省略するように制御することにより、前記した無駄な動きを避けることができる。
As a control method in which the control circuit (Ec) stops the output of the projection beam (Fo) for projecting the light pattern (Q), for example, the simplest is whether or not the road surface around the host vehicle is wet. Is controllessly controlling the road surface projection optical system (Up) and the coherent light source (Ds), and the projection content is a light pattern for the vicinity of the boundary of the traveling zone in which the host vehicle travels, and θ or θp is When it is below the lower limit value and the road surface wet water detection signal (Sw) is active, additional control may be performed to turn off the coherent light source (Ds).
However, in the case of such a simple control, the road surface projection optical system (Up) moves wastefully even during a period when the coherent light source (Ds) is turned off by additional control. By performing control so as to omit the control sequence portion from when θp becomes equal to or lower than the lower limit value until the next lower limit value is exceeded, the above-mentioned useless movement can be avoided.

なお、前記した走行帯とは、ある瞬間の自車両の車体を路面に投影した領域を、車両の走行に伴って移動させ、和集合的・累積的に合成して形成される領域に対し、安全上必要な幅方向の余裕を付加した領域を指す。
したがって、例えば、車両通行帯に沿って通行している場合は、その車両通行帯の幅が過剰に広いものでない限り、走行帯と車両通行帯とは概ね同じものとなる。
しかし、車線変更や右左折を行う場合は、車両通行帯の境界を越えて行くため、それらの行為を開始してから完了するまでの期間においては、走行帯は車両通行帯とは相違し、いま説明した領域によって解釈する必要がある。
また、道路標示による車両通行帯が設定されていない場所においても同様に、いま説明した領域によって解釈する必要がある。
In addition, the above-mentioned traveling zone is a region where the vehicle body of the vehicle at a certain moment is projected on the road surface, is moved with the traveling of the vehicle, and is a region formed by summing and cumulatively combining, This refers to the area with a margin in the width direction necessary for safety.
Therefore, for example, when the vehicle travels along the vehicle traffic zone, the travel zone and the vehicle traffic zone are substantially the same unless the width of the vehicle traffic zone is excessively wide.
However, when changing lanes or turning left and right, the vehicle will cross the boundary of the vehicle lane, so in the period from the start to completion of those actions, the driving zone is different from the vehicle lane, It needs to be interpreted according to the area just described.
Similarly, in a place where a vehicle traffic zone based on road markings is not set, it is necessary to interpret it according to the area just described.

ここで、前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止する条件を、路面に対する入射角が浅いこと、および自車両が走行する走行帯の境界近傍に光パターンを投射する場合、とした理由について説明する。
先ず、路面に対する入射角が深い場合を考えると、反射率が低い上に、正反射成分は上空に逃げてしまうため、対向車両や、同じ方向に走行する先行車や後続車、左また右の前方または後方を走行する車両の運転者に眩惑を与えることが無く、よって、条件から外せることが理解できる。
Here, the conditions for stopping the output of the projection beam (Fo) that projects the light pattern (Q) are as follows: the incident angle with respect to the road surface is shallow, and the light pattern is projected in the vicinity of the boundary of the traveling zone where the host vehicle is traveling. The reason for the case will be described.
First, considering the case where the incident angle with respect to the road surface is deep, the reflectance is low and the specular reflection component escapes to the sky, so the oncoming vehicle, the preceding vehicle and the following vehicle traveling in the same direction, the left or right It can be understood that the driver of the vehicle traveling forward or backward is not dazzled and thus can be removed from the conditions.

次に、投射対象が自車両が走行する走行帯の境界近傍で無い場合、例えば直進走行中に、ψ = 0 の方向近傍に投射すべき光パターンが存在する場合を考えると、第1に、先行車両が近いときは、下向きの投射ビームが先行車両の車体に当たるだけであり、第2に、先行車両が少し離れていて、投射ビームが自車両の前方の濡れた路面で反射したときは、反射光がその車体に当たり、仮に後方窓から車内に入っても、光は上向きであるから、さらにそれがルームミラーに反射された場合も含め、天井に当たるだけであり、第3に、先行車両が遠方にあるときは、濡れた路面で反射した正反射光が、先行車両のルームミラーを介して運転者の眼に入る可能性があるが、距離が離れているため十分に弱まっており、何れにしても、先行車両の運転者に眩惑を与えることが無く、よって、条件から外せることが理解できる。   Next, when the projection target is not in the vicinity of the boundary of the traveling zone in which the host vehicle travels, for example, when there is a light pattern to be projected in the vicinity of the direction of ψ = 0 during straight traveling, firstly, When the preceding vehicle is close, the downward projection beam only hits the body of the preceding vehicle, and secondly, when the preceding vehicle is a little away and the projection beam is reflected by the wet road surface in front of the own vehicle, Even if the reflected light hits the vehicle body and enters the vehicle from the rear window, the light is upward, so it only hits the ceiling, including when it is reflected by the room mirror. Third, the preceding vehicle When far away, specularly reflected light reflected on a wet road surface may enter the driver's eyes via the rear-viewer's room mirror, but it is weak enough because it is far away. Even so, driving the preceding vehicle Without is possible to give a dazzling to, therefore, it can be seen that the Hazuseru from the condition.

なお、いま述べたような光パターンの投射は、環境状況検出器、すなわち、その反射散乱光を、例えば撮像素子を具備して画像として取得し、反射散乱体が路面なのか、あるいは先行車両や障害物なのかを識別し、自車両の前方環境の安全状況の情報を抽出する検出器とともに本車両運転支援装置を使用する場合には、安全を確保する上で必要な光パターンの投射である。
本発明によれば、雨天時であっても、前記環境状況検出器のための投射ビーム(Fo)の出力を停止する必要は無く、安全が確保される大きな利点がある。
In addition, the projection of the light pattern as just described is an environmental condition detector, that is, the reflected scattered light is acquired as an image with an imaging device, for example, and the reflected scatterer is a road surface or a preceding vehicle or When using this vehicle driving support device together with a detector that identifies whether it is an obstacle and extracts information on the safety status of the environment ahead of the host vehicle, it is a projection of a light pattern necessary to ensure safety .
According to the present invention, even when it is raining, there is no need to stop the output of the projection beam (Fo) for the environmental condition detector, and there is a great advantage that safety is ensured.

以上において述べたように、本発明の車両運転支援装置によれば、半導体レーザ等のコヒーレント光源からの放射光を走査して、所定の光パターンを自車両周辺の路面上に描画し、それを自車両または他車両の運転者、歩行者、環境状況検出器に認識させることを可能ならしめ、交通安全に寄与するとともに、雨天で路面が濡れている場合に、路面に投射される光パターンを形成するレーザビームの正反射成分が、他車両の運転者に眩惑を与えることを抑制できるため、眩惑を原因とした交通事故の発生を防止できる。   As described above, according to the vehicle driving support device of the present invention, the emitted light from the coherent light source such as a semiconductor laser is scanned, and a predetermined light pattern is drawn on the road surface around the own vehicle. Makes it possible for drivers, pedestrians, and environmental condition detectors of the vehicle or other vehicles to recognize and contribute to traffic safety, and the light pattern projected on the road surface when it is wet in the rain Since the specular reflection component of the laser beam to be formed can prevent the driver of another vehicle from being dazzled, the occurrence of a traffic accident caused by dazzling can be prevented.

ただし、投射対象が自車両が走行する走行帯の境界近傍で無い場合であっても、雨天時には、自車両が走行する走行帯と同じ走行帯を走行する後続車両の前方の路面に前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止することが望ましい。
その理由は、この状況での路面からの正反射光は、後続車両の運転者の眼を直射する可能性が高いからである。
因みに、いま述べたような光パターンの投射は、例えば、走行速度に応じた車間距離の限界位置を表すマークを路面に表示して、それを後続車両の運転者が認識できるようにし、追突事故の防止を図ろうとする用途などに有用性がある。
However, even when the projection target is not in the vicinity of the boundary of the traveling zone in which the host vehicle travels, in the rainy weather, the light pattern is formed on the road surface in front of the following vehicle traveling in the same traveling zone as the traveling zone in which the host vehicle travels. It is desirable to stop the output of the projection beam (Fo) that projects (Q).
The reason is that the specularly reflected light from the road surface in this situation is highly likely to directly hit the eyes of the driver of the following vehicle.
By the way, the projection of the light pattern as described above, for example, displays a mark indicating the limit position of the inter-vehicle distance according to the traveling speed on the road surface so that the driver of the following vehicle can recognize it, and the rear-end collision This is useful for applications that are intended to prevent this.

前記路面濡水情報保持手段(Uw)の実現に関しては、専用の路面濡水検知器(Xw)を備えることが最も確実である。
該路面濡水検知器(Xw)の具体的な構成の一例を述べると、例えば、適当な波長を有する強度が既知の光束を路面に対して斜めに照射して、その正反射成分光の強度を測定し、照射光束に対する正反射成分光の強度の比が規定値以上である場合に、自車両周辺の路面が濡れている旨の情報である路面濡水検知信号(Sw)を出力するように構成する。
いま述べた形式の路面濡水検知器(Xw)は、自車両の車体下面の、路面に面した箇所に設置すればよい。
また、濡れることによって導電率や静電容量などの電気的パラメータが変化する電気回路素子を、例えば自車両の屋根に設置して、前記電気的パラメータの値が規定の閾値を超えたか否かによって降水の有無を検知する、降水センサを用いて路面濡水検知信号(Sw)を生成するようにしてもよい。
Regarding the realization of the road surface wet water information holding means (Uw), it is most certain to provide a dedicated road surface wet water detector (Xw).
An example of a specific configuration of the road surface wet water detector (Xw) will be described. For example, a light beam having an appropriate wavelength is irradiated obliquely with respect to the road surface, and the intensity of the specular reflection component light. And the road surface wet water detection signal (Sw), which is information indicating that the road surface around the host vehicle is wet, is output when the ratio of the intensity of the specularly reflected component light to the irradiated light beam is equal to or greater than a specified value. Configure.
What is necessary is just to install the road surface wet water detector (Xw) of the form just described in the location which faces the road surface of the vehicle body lower surface of the own vehicle.
Further, an electrical circuit element whose electrical parameters such as conductivity and capacitance change when wet is installed on the roof of the host vehicle, for example, and whether the electrical parameter value exceeds a prescribed threshold value or not. You may make it generate | occur | produce a road surface wet water detection signal (Sw) using the precipitation sensor which detects the presence or absence of precipitation.

さらに、本車両運転支援装置の前記路面投射光学系(Up)によって自車両周辺の路面の特定の箇所に試験用光パターンを投射し、その反射散乱光を、例えば撮像素子を具備して画像として取得し、画像解析によって路面濡水検知信号(Sw)を生成するようにしてもよく、ここで、前記した特定の箇所としては、ψ = 0 の方向近傍で、路面に対する入射角が浅くない投射ビーム(Fo)で投射できる箇所とすることが、この試験用光パターンによる他車両運転者への眩惑の可能性を排除する上で好適である。
あるいは、後述するように、撮像素子を用いずに、前記投射ビーム(Fo)の路面における後方散乱光のうちの、前記路面投射光学系(Up)を逆に戻って来る成分を検出し、その強度によって路面濡水検知信号(Sw)を生成するように構成する方法もある。
Further, a test light pattern is projected onto a specific portion of the road surface around the host vehicle by the road surface projection optical system (Up) of the vehicle driving support device, and the reflected scattered light is provided as an image with an image sensor, for example. The road surface wet water detection signal (Sw) may be generated by image acquisition and image analysis. Here, as the specific portion described above, the projection with a shallow incident angle with respect to the road surface in the vicinity of the direction of ψ = 0. It is preferable to use a beam (Fo) for projecting a beam (Fo) in order to eliminate the possibility of dazzling other vehicle drivers due to the test light pattern.
Or, as will be described later, without using an image sensor, a component of the backscattered light on the road surface of the projection beam (Fo) returning to the road surface projection optical system (Up) is detected, There is also a method in which the road surface wet water detection signal (Sw) is generated according to the strength.

これまで述べたような、専用の前記路面濡水検知器(Xw)を具備することによって前記路面濡水情報保持手段(Uw)の実現する代わりに、より簡便な実現方法として、例えば、ワイパーを動作させるスイッチが入っている場合に前記路面濡水検知信号(Sw)を出力するようにしてもよい。
あるいは、自車両周辺の路面が濡れているか否かを運転者自身が判断し、濡れていると判断した場合には、前記路面濡水検知信号(Sw)を出力するスイッチを手動でオン状態にすることとしてもよい。
Instead of realizing the road surface wetting water information holding means (Uw) by providing the dedicated road surface wetting water detector (Xw) as described above, as a simpler realizing method, for example, a wiper is used. When the switch to be operated is turned on, the road surface wet water detection signal (Sw) may be output.
Alternatively, the driver himself determines whether or not the road surface around the vehicle is wet. If the driver determines that the road surface is wet, the switch for outputting the road wet water detection signal (Sw) is manually turned on. It is good to do.

ここで、根本的な事項につき、一点補足しておく。
雨天時に路面に浅い角度で投射する投射ビームが、対抗車両の運転者への眩惑という副作用を示す問題はあるとしても、安全の確保のため、その出力を停止しない方が良いのではないか、との疑問が生ずるかも知れないが、そのような条件の投射ビームは、路面に人間や環境状況検出器が有効に認識可能な光パターンを形成しない(レーザポインタを照射したときの照射点は、白い紙に当てれば見えるが、鏡面に当てても見えないという経験から容易に理解できる)ため、それを出力しても自車両に付与される安全は何も無く、単に空へ逃げたり他の車両に当たって無駄に終わるか、眩惑という副作用を与えて対向車両の事故リスクを高めるかの何れかしか無く、よって、前記した条件の投射ビームについては、出力を停止することが最善の策である、と言うことができる。
当然、雨天でなければ光パターン投射によって付与されたはずの安全性が、雨天時は付与されなくなる訳であるから、このために低下した安全性を補いたい場合は、本発明とは別に、有効な方策を講じる必要がある。
Here, one point is supplemented about the fundamental matter.
Even if there is a problem that the projection beam that projects at a shallow angle on the road surface in rainy weather has the side effect of dazzling the driver of the opposing vehicle, it may be better not to stop the output to ensure safety, However, the projection beam under such conditions does not form a light pattern that can be effectively recognized by humans and environmental condition detectors on the road surface (the irradiation point when the laser pointer is irradiated is It can be easily understood from the experience that it can be seen by hitting it on white paper, but it can not be seen by hitting it on a mirror surface), so there is no safety given to the vehicle even if it is output, simply escaping to the sky or other Either hitting the vehicle ends up unnecessarily or increasing the risk of oncoming vehicle accidents with the side effect of dazzling, so it is best to stop the output for the projection beam under the above conditions. In it, it can be said that.
Naturally, the safety that would have been imparted by light pattern projection if it was not raining would not be imparted when it was raining. Therefore, if you want to compensate for the reduced safety, it is effective separately from the present invention. It is necessary to take appropriate measures.

以降においては、本発明の実施例について説明する。
先ず、本発明の車両運転支援装置の実施例の一部の一形態を簡略化して示す模式図である図2を参照して、ガルバノメータミラーを用いて構成した、前記コヒーレント光源(Ds)と前記路面投射光学系(Up)とを合わせた光学系について説明する。
半導体レーザによるコヒーレント光源(Ds)からの放射光は、非球面レンズを用いたコリメータとしての変換光学系(Bc)を介して、並行光束の光源ビーム(Fb)に変換され、後述する偏光ビームスプリッタ(Bs)を介し、θ偏向ガルバノメータミラー(G1)の回転鏡(Gr1)に入射される。
該回転鏡(Gr1)は、アクチュエータ(Ga)の駆動によって往復回転するアクチュエータ軸(Gz)に固定されており、前記制御回路(Ec)の制御に基づいて駆動回路(図示を省略)から前記アクチュエータ(Ga)に流される駆動電流によって、偏向後の方位角 θ が制御される。
In the following, embodiments of the present invention will be described.
First, referring to FIG. 2 which is a schematic diagram showing a part of an embodiment of the vehicle driving support apparatus of the present invention in a simplified manner, the coherent light source (Ds) configured using a galvanometer mirror and the above-mentioned The optical system combined with the road surface projection optical system (Up) will be described.
Radiated light from a coherent light source (Ds) by a semiconductor laser is converted into a parallel light source beam (Fb) via a conversion optical system (Bc) as a collimator using an aspheric lens, and a polarization beam splitter, which will be described later. Via (Bs), it is incident on the rotating mirror (Gr1) of the θ deflection galvanometer mirror (G1).
The rotary mirror (Gr1) is fixed to an actuator shaft (Gz) that reciprocally rotates by driving of the actuator (Ga), and is driven from the drive circuit (not shown) to the actuator based on the control of the control circuit (Ec). The azimuth angle θ after deflection is controlled by the drive current that flows through (Ga).

前記回転鏡(Gr1)で反射されたビームは、前記θ偏向ガルバノメータミラー(G1)と同様の構造を有し、ただし前記アクチュエータ軸(Gz)と直交するアクチュエータ軸を有するψ偏向ガルバノメータミラー(G2)に入射され、同様に偏向後の方位角 ψ が制御される。
前記ψ偏向ガルバノメータミラー(G2)の回転鏡(Gr2)で反射されたビームは、前記投射ビーム(Fo)として前記路面投射光学系(Up)から射出され、立体角領域(A)内の任意の方向に2次元偏向され、自車両周辺の路面に前記光パターン(Q)を投射することができる。
なお、本図の光学系を車両に設置する場所として、運転室内のフロントガラスの上辺の左と右の端部であって前方路面を見通せる2箇所が好適であるが、フロントガラスの上辺の中央部、すなわちフロントガラスとルームミラーの間隙部の1箇所でもよい。
The beam reflected by the rotating mirror (Gr1) has the same structure as the θ-deflection galvanometer mirror (G1), except that the ψ-deflection galvanometer mirror (G2) has an actuator axis orthogonal to the actuator axis (Gz). Similarly, the azimuth angle ψ after deflection is controlled.
The beam reflected by the rotating mirror (Gr2) of the ψ deflection galvanometer mirror (G2) is emitted from the road surface projection optical system (Up) as the projection beam (Fo), and is arbitrary in the solid angle region (A). The light pattern (Q) can be projected on the road surface around the host vehicle by being two-dimensionally deflected in the direction.
In addition, as the place where the optical system of this figure is installed in the vehicle, it is preferable to have two places on the left and right ends of the upper side of the windshield in the cab and see through the front road surface. This may be one part of the gap between the windshield and the rear mirror.

因みに、ガルバノメータミラーの場合、ミラーを含む磁気的可動部には回転に対する慣性モーメントがあるため、例えば方位角座標 θ,ψ を跳躍移動させるために、駆動電流をステップ的に変化させたときは、電流値と方位角 θ,ψ とが瞬時に対応する訳ではなく、θ,ψ は有限の速度でしか立上がらないし、リンギング(減衰振動)しながら定常値に漸近する挙動を示す。
そのため、θ,ψ を検出し、PIDフィードバック制御を行って応答速度を改善したり、リンギングやオーバーシュートが発生している期間は、前記光源変調信号(Ss)を介して前記コヒーレント光源(Ds)を消灯し、前記ビームスポット(P)の不要な軌跡を見えなくするなどの工夫を行う。
このように方位角座標 θ,ψ を跳躍移動させるのではなく、直線や曲線を投射するために、方位角 θ,ψ を徐々に変化させるように駆動する場合は、前記したリンギングは発生し難いが、動作遅れに起因する方位角目標値 θp,ψp と方位角 θ,ψ との誤差が生じ、結果として前記光パターン(Q)の位置や形状の誤差が生ずるため、補正処理が必要である。
Incidentally, in the case of a galvanometer mirror, since the magnetic movable part including the mirror has a moment of inertia with respect to rotation, for example, when the drive current is changed stepwise in order to jump the azimuth coordinates θ, ψ, The current value and the azimuth angles θ and ψ do not correspond instantaneously, and θ and ψ rise only at a finite speed and show a behavior that gradually approaches a steady value while ringing (damped oscillation).
Therefore, θ, ψ is detected and PID feedback control is performed to improve the response speed, or during the period when ringing or overshoot occurs, the coherent light source (Ds) is transmitted via the light source modulation signal (Ss). Is turned off to make the unnecessary locus of the beam spot (P) invisible.
In this way, when the azimuth angles θ, ψ are driven to be gradually changed in order to project straight lines or curves instead of jumping and moving the azimuth coordinates θ, ψ, the ringing described above is unlikely to occur. However, an error occurs between the azimuth target values θp, ψp and the azimuth angles θ, ψ due to the operation delay, and as a result, errors in the position and shape of the light pattern (Q) occur, and thus correction processing is necessary. .

先に、自車両周辺の路面が濡れているか否かの情報を生成する路面濡水検知器(Xw)の構成方法の複数例を説明したが、図2には、前記投射ビーム(Fo)の路面における後方散乱光のうちの、前記路面投射光学系(Up)を逆に戻って来る成分を検出することにより路面濡水検知器を実現するための構成を含めて描いてある。
先述のように前記投射ビーム(Fo)が水面に対してP偏波となるように本車両運転支援装置を構成することが好適であるから、図において前記投射ビーム(Fo)の偏波が θ 方向と平行になるよう、前記コヒーレント光源(Ds)を配置し、また前記偏光ビームスプリッタ(Bs)を、これに適合するように配置すれば、理想的には前記光源ビーム(Fb)のほぼ100%が前記回転鏡(Gr1)に向けて反射される。
前記投射ビーム(Fo)が路面に当たって後方散乱光を生ずる際は、一般に偏波面の回転が起こるから、この散乱光が路面から前記回転鏡(Gr2)、前記回転鏡(Gr1)を経て戻って来た際は、路面に対してS偏波となった成分が前記偏光ビームスプリッタ(Bs)を透過するため、光センサ(Bx)によってそれを検出することができる。
Previously, a plurality of examples of the configuration method of the road surface wetting water detector (Xw) that generates information on whether or not the road surface around the host vehicle is wet have been described, but FIG. 2 illustrates the projection beam (Fo). A configuration for realizing a road surface wetting water detector by detecting a component of the back scattered light on the road surface returning to the road surface projection optical system (Up) is depicted.
As described above, since it is preferable to configure the vehicle driving support apparatus so that the projection beam (Fo) is P-polarized with respect to the water surface, the polarization of the projection beam (Fo) is θ in the figure. If the coherent light source (Ds) is arranged so as to be parallel to the direction, and the polarizing beam splitter (Bs) is arranged so as to be adapted thereto, ideally approximately 100 of the light source beam (Fb). % Is reflected toward the rotating mirror (Gr1).
When the projection beam (Fo) hits the road surface to generate backscattered light, the polarization plane generally rotates, so this scattered light returns from the road surface via the rotary mirror (Gr2) and the rotary mirror (Gr1). In this case, the component that has become S-polarized light with respect to the road surface is transmitted through the polarization beam splitter (Bs), and can be detected by the optical sensor (Bx).

例えば、前記偏光ビームスプリッタ(Bs)における前記光源ビーム(Fb)の微弱な透過光を、光センサ(図示を省略)によって検出できるようにしておけば、光源ビーム強度を常時モニタすることができる。
実験的を通じて、路面が乾燥している場合と濡れている場合とを見分けるための、光源ビーム強度に対する前記光センサ(Bx)での検出量の比の閾値を決定しておけば、この構成を路面濡水検知器として機能させることができ、前記路面濡水検知信号(Sw)を生成することができる。
For example, if the weak transmitted light of the light source beam (Fb) in the polarization beam splitter (Bs) can be detected by an optical sensor (not shown), the light source beam intensity can be monitored constantly.
By experimentally determining the threshold value of the ratio of the detection amount of the light sensor (Bx) to the light source beam intensity for distinguishing between the case where the road surface is dry and the case where the road surface is wet, this configuration is determined. It can function as a road surface wet water detector, and the road surface wet water detection signal (Sw) can be generated.

なお、太陽光や街燈などの道路照明光、他車両が発した光などの外乱光の影響を回避するため、例えば干渉フィルタ等を利用した狭帯域フィルタ(Bf)を、前記光センサ(Bx)に前置することが好適である。
さらに外乱光の影響の回避能力を高めるため、前記コヒーレント光源(Ds)の駆動電流に対し、適当な周波数の振幅変調を加えておき、前記光センサ(Bx)の検出信号のうち、前記振幅変調周波数に合致する電気的な狭帯域フィルタを通過した信号に基づいて、前記路面濡水検知信号(Sw)を生成するようにしたり、さらに同期検波やロックイン増幅回路の技術を用いて、検知確度を高めた前記路面濡水検知信号(Sw)を生成するよう、工夫することができる。
さらに、検出信号が正常に取得できた場合に、変調信号に対する検出信号の位相遅れを測定できるようにしておけば、前記投射ビーム(Fo)が路面に当たった地点と自車両の距離を推定することが可能となる。
In order to avoid the influence of disturbance light such as road illumination light such as sunlight or street light or light emitted from other vehicles, a narrow band filter (Bf) using an interference filter or the like is used as the optical sensor (Bx). It is preferable to put it in front.
Further, in order to enhance the ability to avoid the influence of disturbance light, amplitude modulation of an appropriate frequency is added to the driving current of the coherent light source (Ds), and the amplitude modulation among the detection signals of the photosensor (Bx) is added. Based on the signal that has passed through the electrical narrow band filter that matches the frequency, the road surface wet water detection signal (Sw) is generated, and further using the technique of synchronous detection and lock-in amplification circuit, the detection accuracy It is possible to devise so as to generate the road surface wet water detection signal (Sw) with an increased height.
Further, if the detection signal can be acquired normally and the phase delay of the detection signal with respect to the modulation signal can be measured, the distance between the point where the projection beam (Fo) hits the road surface and the own vehicle is estimated. It becomes possible.

次に、本発明の車両運転支援装置の技術に関連する概念の概略図である図3を参照して、本発明の実施形態について説明する。
図は、車両の現在位置(Y)と未来位置(Y’)、さらに先の未来位置(Y”)を示したものであり、2本の2点鎖線で挟まれた領域は、ある瞬間の自車両の車体を路面に投影した領域を、車両の走行に伴って移動させ、和集合的・累積的に合成して形成される領域で、言うなれば自車両占有路面軌跡を表し、また2本の破線で挟まれた領域は、前記した自車両占有路面軌跡に対し、安全上必要な幅方向の余裕を付加した領域、すなわち走行帯を表す。
ただし、図の(a)は直進する場合、(b)は左へ進路を曲げる場合を描いてある。
なお、(a)のみには、参考のために車両通行帯境界道路標示(L)も描いてある。 (b)については、左へカーブする車両通行帯境界道路標示に沿って進行する場合と、車両通行帯境界道路標示を横切って車線変更する場合とがあり、図が煩雑になることを避けるため、車両通行帯境界道路標示の描画を省略してある。
Next, an embodiment of the present invention will be described with reference to FIG. 3 which is a schematic diagram of a concept related to the technology of the vehicle driving support apparatus of the present invention.
The figure shows the current position (Y) and future position (Y ') of the vehicle, and the future position (Y ") ahead. The area between two two-dot chain lines is the moment An area formed by moving the vehicle body of the host vehicle on the road surface as the vehicle travels and combining and accumulatively combining, that is, representing the own vehicle occupied road surface locus, and 2 The area between the broken lines of the book represents an area where a margin in the width direction necessary for safety is added to the above-described own vehicle occupied road surface trajectory, that is, a traveling zone.
However, (a) in the figure depicts a case where the vehicle travels straight, and (b) depicts a case where the course is bent to the left.
For reference only, (a) also shows a vehicle lane boundary road marking (L). For (b), there is a case where the vehicle travels along a vehicle traffic zone boundary road marking that curves to the left, and a case where a lane is changed across the vehicle traffic zone boundary road marking, in order to avoid making the figure complicated. The drawing of road markings for vehicle lanes is omitted.

車両に搭載された車両運転支援システムは、運転者による現在の舵角やハンドル操作による舵角の変化速度、現在の車両の速度やアクセル操作による加速度、さらには撮像素子を用いて取得した前方の道路状況への分析を援用して、近い未来までの自車両の時々刻々の路面上の位置と向きをシミュレートすることにより、走行帯の形状を決定することができ、自車両または他車両の運転者、歩行者、環境状況検出器に認識させるための、自車両が走行する走行帯の境界近傍に投射すべき光パターンの形状を決定する。
ここで、投射すべき光パターンを、走行帯の境界線そのものとする場合もある。
ただし、どれだけ遠方の光パターンまで投射しなければならないかについては、自車両の速度に依存し、この速度が速いほど、投射すべき光パターンの重点は遠方に移る。
The vehicle driving support system installed in the vehicle includes the current steering angle by the driver and the change speed of the steering angle by the steering wheel operation, the acceleration of the current vehicle speed and the accelerator operation, and the front of the vehicle obtained using the image sensor. By simulating the position and orientation of the vehicle on the road surface every moment to the near future with the aid of analysis on the road conditions, the shape of the traveling zone can be determined, and the vehicle or other vehicle The shape of the light pattern to be projected in the vicinity of the boundary of the travel zone in which the host vehicle travels is determined so as to be recognized by the driver, the pedestrian, and the environmental condition detector.
Here, the light pattern to be projected may be the boundary line of the traveling zone itself.
However, how far the light pattern should be projected depends on the speed of the host vehicle. The higher the speed, the farther the focus of the light pattern to be projected is.

車両運転支援システムは、投射光パターンの形状を表す情報を、路面上の平面座標から方位角座標 θ,ψ に変換し、本発明の車両運転支援装置の前記制御回路(Ec)に対し、例えば方位角目標値 θp,ψp の配列としてデータを送信する。
前記制御回路(Ec)は、受信した方位角目標値 θp,ψp の配列を繰り返し読み出して、前記光源変調信号(Ss)および前記方位角目標信号(Sp)を生成して前記コヒーレント光源(Ds)および前記路面投射光学系(Up)を制御する。
The vehicle driving support system converts the information representing the shape of the projected light pattern from the plane coordinates on the road surface to the azimuth coordinates θ, ψ, for example, to the control circuit (Ec) of the vehicle driving support device of the present invention. Data is transmitted as an array of azimuth target values θp, ψp.
The control circuit (Ec) repeatedly reads out the received array of azimuth target values θp and ψp, generates the light source modulation signal (Ss) and the azimuth target signal (Sp), and generates the coherent light source (Ds). And the road surface projection optical system (Up).

ただし、前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れている旨の情報を保持しているとき、すなわち前記路面濡水検知信号(Sw)がアクティブであるときは、前記した路面に対する入射角が浅いと判断するための光線が路面と成す角度 θ の下限値に対し、これを下回る θp を有する前記した θp,ψp の配列の部分を、前記路面投射光学系(Up)が指している期間は、前記制御回路(Ec)は、前記コヒーレント光源(Ds)が消灯するよう前記光源変調信号(Ss)を制御することにより、路面に対する入射角が浅く、かつ自車両が走行する走行帯の境界近傍に向けた、前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止する。   However, when the road surface wet water information holding means (Uw) holds information that the road surface around the host vehicle is wet, that is, when the road surface wet water detection signal (Sw) is active, The portion of the array of θp and ψp having θp lower than the lower limit of the angle θ formed by the light beam for determining that the incident angle with respect to the road surface is shallow is the road surface projection optical system (Up). In the period indicated by, the control circuit (Ec) controls the light source modulation signal (Ss) so that the coherent light source (Ds) is turned off, so that the incident angle with respect to the road surface is shallow and the host vehicle is traveling. The output of the projection beam (Fo) for projecting the light pattern (Q) toward the vicinity of the boundary of the traveling zone to be stopped is stopped.

ここで、路面が濡れていて、θ が下限値を下回り、かつ自車両が走行する走行帯の境界近傍に位置する光パターンのうち、左右何れのものの投射ビームを停止すべきかについては、状況に応じて決める必要がある。
車両が左側通行である場合、走行帯の左側の境界の外側は、車道の端(歩道または路側帯)、あるいは同一方向に進行する車両通行帯であって対向車両の車両通行帯ではないから、直進、もしくは左へ進路を曲げているときは、路面が濡れていて、θ が下限値を下回っていても、走行帯の左側の境界近傍の光パターンを投射する投射ビームを停止する必要は無い。
(ただし、歩行者への眩惑も回避すべきと判断する場合は、この条件でも投射ビームを停止する。)
Here, whether the projected beam of the left or right of the light pattern located near the boundary of the traveling zone in which the vehicle is traveling and the vehicle is wet and θ is below the lower limit should be stopped depends on the situation. It is necessary to decide accordingly.
If the vehicle is left-hand traffic, the outside of the left boundary of the driving zone is the end of the roadway (sidewalk or roadside belt), or the vehicle traffic zone traveling in the same direction, not the vehicle traffic zone of the oncoming vehicle, When the track is straight or bent to the left, it is not necessary to stop the projection beam that projects the light pattern near the boundary on the left side of the traveling zone even if the road surface is wet and θ is below the lower limit. .
(However, if it is determined that dazzling to pedestrians should be avoided, the projection beam is also stopped under this condition.)

しかし、右へ進路を曲げているときは、濡れた路面での正反射光が対向車両の運転者の眼を直射する可能性があるため、走行帯の左側の境界近傍の光パターンを投射する投射ビームを停止する必要がある。
一方、走行帯の右側の境界の外側は、対向車の車両通行帯である可能性があるため、直進、もしくは左または右へ進路を曲げているときの何れであっても、路面が濡れていて、θ が下限値を下回っているときは、走行帯の右側の境界近傍の光パターンを投射する投射ビームを停止する必要がある。
However, when the path is bent to the right, the specular reflection light on the wet road surface may directly hit the eyes of the driver of the oncoming vehicle, so a light pattern near the boundary on the left side of the traveling zone is projected. The projection beam needs to be stopped.
On the other hand, since the outside of the right boundary of the traveling zone may be a vehicle traffic zone of an oncoming vehicle, the road surface is wet regardless of whether the vehicle is going straight or bent to the left or right. When θ is below the lower limit, it is necessary to stop the projection beam that projects the light pattern near the right boundary of the traveling zone.

本発明は、半導体レーザ等のコヒーレント光源からの放射光を走査して、所定の光パターンを自車両周辺の路面上に描画し、それを自車両または他車両の運転者、歩行者、環境状況検出器に認識させることを可能ならしめ、交通安全に寄与することを目的とした車両運転支援装置を設計・製造する産業において利用可能である。   The present invention scans radiation emitted from a coherent light source such as a semiconductor laser, draws a predetermined light pattern on the road surface around the host vehicle, and draws it on the driver, pedestrian, and environmental conditions of the host vehicle or other vehicles. The present invention can be used in an industry that designs and manufactures a vehicle driving support device that aims to make a detector recognize and contribute to traffic safety.

A 立体角領域
Bc 変換光学系
Bf 狭帯域フィルタ
Bs 偏光ビームスプリッタ
Bx 光センサ
Ds コヒーレント光源
Ec 制御回路
Fb 光源ビーム
Fo 投射ビーム
Fs 放射光
G1 θ偏向ガルバノメータミラー
G2 ψ偏向ガルバノメータミラー
Ga アクチュエータ
Gr1 回転鏡
Gr2 回転鏡
Gz アクチュエータ軸
L 車両通行帯境界道路標示
P ビームスポット
Q 光パターン
Sp 方位角目標信号
Ss 光源変調信号
Sw 路面濡水検知信号
Uf 本車両運転支援装置
Up 路面投射光学系
Uw 路面濡水情報保持手段
Xw 路面濡水検知器
Y 現在位置
Y’ 未来位置
Y” 未来位置
A Solid angle region Bc Conversion optical system Bf Narrow band filter Bs Polarization beam splitter Bx Optical sensor Ds Coherent light source Ec Control circuit Fb Light source beam Fo Projection beam Fs Radiation light G1 θ deflection galvanometer mirror G2 ψ deflection galvanometer mirror Ga actuator Gr1 Rotating mirror Gr2 Rotating mirror Gz Actuator axis L Vehicle traffic zone boundary road marking P Beam spot Q Light pattern Sp Azimuth angle target signal Ss Light source modulation signal Sw Road surface wet water detection signal Uf This vehicle driving support device Up Road surface projection optical system Uw Road surface wet water information holding Means Xw Road surface wet water detector Y Current position Y 'Future position Y "Future position

Claims (3)

車両に搭載して、自車両または他車両の運転者、歩行者、環境状況検出器に認識させるための、所定の光パターン(Q)を自車両周辺の路面に表示する車両運転支援装置であって、コヒーレント光源(Ds)と、前記コヒーレント光源(Ds)からの放射光による光源ビーム(Fb)を走査して投射ビーム(Fo)を出力し、自車両周辺の路面に前記光パターン(Q)を投射する路面投射光学系(Up)と、自車両周辺の路面が濡れているか否かの情報を保持する路面濡水情報保持手段(Uw)と、前記コヒーレント光源(Ds)および前記路面投射光学系(Up)を制御する制御回路(Ec)とを具備し、前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れている旨の情報を保持する期間は、前記制御回路(Ec)は、路面に対する入射角が浅く、かつ自車両が走行する走行帯の境界近傍に向けた、前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止するよう制御することを特徴とする車両運転支援装置。 A vehicle driving support apparatus that displays a predetermined light pattern (Q) on a road surface around a host vehicle, which is mounted on a vehicle and is recognized by a driver, a pedestrian, or an environmental condition detector of the host vehicle or another vehicle. The coherent light source (Ds) and the light source beam (Fb) by the radiated light from the coherent light source (Ds) are scanned to output a projection beam (Fo), and the light pattern (Q) on the road surface around the host vehicle. Road surface projection optical system (Up), road surface wet water information holding means (Uw) for holding information on whether or not the road surface around the host vehicle is wet, the coherent light source (Ds) and the road surface projection optics A control circuit (Ec) that controls the system (Up), and the road surface wet water information holding means (Uw) holds information indicating that the road surface around the host vehicle is wet. Ec) The vehicle is controlled so as to stop the output of the projection beam (Fo) for projecting the light pattern (Q) toward the vicinity of the boundary of the traveling zone where the vehicle travels. Driving assistance device. 前記路面濡水情報保持手段(Uw)が自車両周辺の路面が濡れている旨の情報を保持する期間は、前記制御回路(Ec)は、自車両が走行する走行帯と同じ走行帯を走行する後続車両の前方の路面に前記光パターン(Q)を投射する前記投射ビーム(Fo)の出力を停止するよう制御することを特徴とする請求項1に記載の車両運転支援装置。 During the period when the road surface wet water information holding means (Uw) holds information that the road surface around the host vehicle is wet, the control circuit (Ec) travels in the same traveling zone as the traveling zone where the host vehicle travels. 2. The vehicle driving support device according to claim 1, wherein control is performed to stop the output of the projection beam (Fo) that projects the light pattern (Q) onto a road surface in front of the following vehicle. 前記路面濡水情報保持手段(Uw)は、自車両周辺の路面が濡れているか否かを検知して、前記した自車両周辺の路面が濡れているか否かの情報たる路面濡水検知信号(Sw)を生成する路面濡水検知器(Xw)を具備する請求項1に記載の車両運転支援装置。 The road surface wet water information holding means (Uw) detects whether or not the road surface around the host vehicle is wet, and detects the road surface wet water detection signal (information on whether or not the road surface around the host vehicle is wet). The vehicle driving support device according to claim 1, further comprising a road surface wet water detector (Xw) that generates Sw).
JP2015018067A 2015-02-02 2015-02-02 Vehicle driving support device Active JP6376347B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015018067A JP6376347B2 (en) 2015-02-02 2015-02-02 Vehicle driving support device
US15/013,565 US9592762B2 (en) 2015-02-02 2016-02-02 Vehicle driving assistance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018067A JP6376347B2 (en) 2015-02-02 2015-02-02 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2016141233A true JP2016141233A (en) 2016-08-08
JP6376347B2 JP6376347B2 (en) 2018-08-22

Family

ID=56553820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018067A Active JP6376347B2 (en) 2015-02-02 2015-02-02 Vehicle driving support device

Country Status (2)

Country Link
US (1) US9592762B2 (en)
JP (1) JP6376347B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630422B (en) * 2017-10-20 2018-07-21 城市學校財團法人臺北城市科技大學 Speed ​​guidance system
CN112305839A (en) * 2020-10-21 2021-02-02 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle
JP2021157501A (en) * 2020-03-27 2021-10-07 いすゞ自動車株式会社 Vehicle position drawing system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761162B2 (en) * 2012-11-30 2015-08-12 トヨタ自動車株式会社 Vehicle position estimation device
WO2016089926A1 (en) * 2014-12-01 2016-06-09 Ihedinmah Chukwudi Vehicle digital message display
JP6688008B2 (en) * 2015-04-07 2020-04-28 株式会社小糸製作所 Vehicle lighting
CN111491416B (en) * 2019-01-25 2022-04-19 光宝电子(广州)有限公司 Lighting apparatus and control method thereof
CN110708841B (en) * 2019-08-15 2021-11-30 安徽文康科技有限公司 Intelligent street lamp self-adaptive energy-saving control method
CN110789941A (en) * 2019-11-01 2020-02-14 浙江中力机械有限公司 Method for indicating obstacle avoidance area of logistics carrying robot by using straight warning lamp
KR20210100241A (en) * 2020-02-05 2021-08-17 현대모비스 주식회사 Lamp system for traffic lane indication using navigation link and method for traffic lane indication thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231450A (en) * 2002-02-07 2003-08-19 Toyota Motor Corp Safety device for movable body
JP2003231438A (en) * 2002-02-07 2003-08-19 Toyota Motor Corp Vehicle operation support device and vehicle operation support system
JP2003285685A (en) * 2002-03-27 2003-10-07 Toyota Motor Corp Vehicle operation-supporting system
US20060187010A1 (en) * 2005-02-18 2006-08-24 Herbert Berman Vehicle motion warning device
JP2008213618A (en) * 2007-03-02 2008-09-18 Denso Corp Fog lamp device
JP2010026759A (en) * 2008-07-18 2010-02-04 Mazda Motor Corp Driving support device for vehicle
US20140049405A1 (en) * 2010-06-30 2014-02-20 Wabco Gmbh Device and Method for Outputting a Signal When There is a Hazardous Underlying Surface Under a Vehicle
JP2014227086A (en) * 2013-05-23 2014-12-08 株式会社小糸製作所 Rear fog lamp control device and rear fog lamp system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238307A (en) 1992-02-26 1993-09-17 Yukitaka Nakazato Vehicle forward visual confirmation device
DE69535394T2 (en) * 1994-12-28 2007-10-31 Omron Corp. Traffic Information System
FR2816264B1 (en) 2000-11-09 2003-02-21 Thomas Bleiner VISUAL SIGNALING DEVICE ADAPTABLE TO A VEHICLE
US7287884B2 (en) 2002-02-07 2007-10-30 Toyota Jidosha Kabushiki Kaisha Vehicle operation supporting device and vehicle operation supporting system
JP2011157022A (en) 2010-02-03 2011-08-18 Sharp Corp Headlamp and moving body
US20110301813A1 (en) * 2010-06-07 2011-12-08 Denso International America, Inc. Customizable virtual lane mark display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231450A (en) * 2002-02-07 2003-08-19 Toyota Motor Corp Safety device for movable body
JP2003231438A (en) * 2002-02-07 2003-08-19 Toyota Motor Corp Vehicle operation support device and vehicle operation support system
JP2003285685A (en) * 2002-03-27 2003-10-07 Toyota Motor Corp Vehicle operation-supporting system
US20060187010A1 (en) * 2005-02-18 2006-08-24 Herbert Berman Vehicle motion warning device
JP2008213618A (en) * 2007-03-02 2008-09-18 Denso Corp Fog lamp device
JP2010026759A (en) * 2008-07-18 2010-02-04 Mazda Motor Corp Driving support device for vehicle
US20140049405A1 (en) * 2010-06-30 2014-02-20 Wabco Gmbh Device and Method for Outputting a Signal When There is a Hazardous Underlying Surface Under a Vehicle
JP2014227086A (en) * 2013-05-23 2014-12-08 株式会社小糸製作所 Rear fog lamp control device and rear fog lamp system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630422B (en) * 2017-10-20 2018-07-21 城市學校財團法人臺北城市科技大學 Speed ​​guidance system
JP2021157501A (en) * 2020-03-27 2021-10-07 いすゞ自動車株式会社 Vehicle position drawing system
CN112305839A (en) * 2020-10-21 2021-02-02 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle
CN112305839B (en) * 2020-10-21 2022-02-15 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle

Also Published As

Publication number Publication date
US20160221493A1 (en) 2016-08-04
US9592762B2 (en) 2017-03-14
JP6376347B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6376347B2 (en) Vehicle driving support device
JP6376348B2 (en) Vehicle driving support device
JP6665381B2 (en) Flash rider with adaptive illumination
US10464470B2 (en) Vehicle lamp
JP4123787B2 (en) Vehicle driving support device and vehicle driving support system
JP6144682B2 (en) Vehicle lighting
EP2808700B1 (en) Drive assist device, and vehicle using drive assist device
US11555990B2 (en) Laser radar
CN111796255A (en) Laser radar system, method for detecting object by using laser radar system and vehicle
JP2008286565A (en) Body detector
CN107914634B (en) Lighting device for vehicle
KR20030067549A (en) Vehicle operation supporting device and vehicle operation supporting system
US20180361912A1 (en) Scanning headlight, control method and program thereof
JP4342144B2 (en) Vehicle driving support system
JP2019077204A (en) Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting
US11624809B2 (en) Laser radar
JP5505651B2 (en) Detection device
JP2008096112A (en) Radar system
JP4438716B2 (en) Irradiation device
JP6127870B2 (en) Driving support device and driving support method
JP2017007583A (en) Vehicular safe control apparatus
JPH09243729A (en) On-vehicle optical measuring device and optical measuring method
JP5533763B2 (en) In-vehicle radar system
JP2014052277A (en) Position measurement apparatus and method
JP2014025708A (en) Target detection device and target display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6376347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250