JP2016140136A - Secondary battery charge control circuit - Google Patents

Secondary battery charge control circuit Download PDF

Info

Publication number
JP2016140136A
JP2016140136A JP2015012225A JP2015012225A JP2016140136A JP 2016140136 A JP2016140136 A JP 2016140136A JP 2015012225 A JP2015012225 A JP 2015012225A JP 2015012225 A JP2015012225 A JP 2015012225A JP 2016140136 A JP2016140136 A JP 2016140136A
Authority
JP
Japan
Prior art keywords
secondary battery
circuit
voltage
current
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015012225A
Other languages
Japanese (ja)
Other versions
JP6387498B2 (en
JP2016140136A5 (en
Inventor
周平 木村
Shuhei Kimura
周平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroi Electric Co Ltd
Original Assignee
Kuroi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroi Electric Co Ltd filed Critical Kuroi Electric Co Ltd
Priority to JP2015012225A priority Critical patent/JP6387498B2/en
Publication of JP2016140136A publication Critical patent/JP2016140136A/en
Publication of JP2016140136A5 publication Critical patent/JP2016140136A5/ja
Application granted granted Critical
Publication of JP6387498B2 publication Critical patent/JP6387498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge control circuit which can perform trickle charge with a simple configuration and automatically change a power source to a secondary battery in an emergency.SOLUTION: A secondary battery charge control circuit includes: a current restriction resistor; a power supply unit; a secondary battery charge circuit including a first diode connected in series to the current restriction resistor; a secondary battery connected to the secondary battery charge circuit; and a secondary battery discharge circuit including a second diode connected between the secondary battery and the output terminal. Further, the secondary battery charge control circuit includes a photocoupler circuit, which is connected between a connection terminal for connecting the current restriction resistor to the secondary battery charge circuit and the output terminal, for externally outputting a signal indicative of full charge when the secondary battery is in a full charge state.SELECTED DRAWING: Figure 1

Description

この発明は、二次電池の充電制御回路に関する。   The present invention relates to a charge control circuit for a secondary battery.

電子機器や電力機器に電力を供給するバックアップ電源としては二次電池を使用することが一般的であり、その場合の二次電池としては常に満充電であることが要求されることがある。例えば、停電等の非常時に動作する機器では、停電発生が予測不明であるため、どのような状況であっても負荷に対して一定の時間の電力供給を保障出来るようにしておくことが必要である。このため、このような機器に採用される二次電池の充電制御回路では、二次電池は常に満充電状態に維持されていなければならない。   In general, a secondary battery is used as a backup power source for supplying power to an electronic device or an electric power device. In such a case, the secondary battery may be required to be always fully charged. For example, in the case of equipment that operates in an emergency such as a power outage, the occurrence of a power outage is unknown, so it is necessary to ensure that the power supply for a certain time can be guaranteed for the load regardless of the situation. is there. For this reason, in the charge control circuit for a secondary battery employed in such a device, the secondary battery must always be maintained in a fully charged state.

そこで、二次電池の自然放電を補い、常に満充電状態を保持するために満充電付近で微少電流を一定電圧で流し続けるトリクル充電方法が採用される。   Therefore, a trickle charging method is adopted in which a small current is kept flowing at a constant voltage in the vicinity of full charge in order to compensate for the spontaneous discharge of the secondary battery and always maintain the full charge state.

このトリクル充電方法を採用する従来の充電制御回路では、二次電池電圧を監視し、同電圧に基づいて充電電流を制御している(特許文献1)。   In a conventional charging control circuit employing this trickle charging method, the secondary battery voltage is monitored and the charging current is controlled based on the voltage (Patent Document 1).

特開平5−219655号公報JP-A-5-219655

しかし、上記のトリクル充電を行う充電制御回路では、電池電圧の監視回路や充電電流の制御回路が必要であり、回路が複雑化することを避けられない。また、通常時は二次電池を負荷から切り離し、停電発生時等の非常時に二次電池を負荷に接続する切り替え回路なども必要であり、全体の構成が相当に複雑化していた。   However, in the charge control circuit that performs trickle charging, a battery voltage monitoring circuit and a charging current control circuit are necessary, and it is inevitable that the circuit becomes complicated. In addition, a switching circuit for disconnecting the secondary battery from the load at normal times and connecting the secondary battery to the load in the event of an emergency such as a power failure is necessary, and the overall configuration is considerably complicated.

この発明の目的は、上記の電池電圧の監視回路、充電電流の制御回路、および切り替え回路等が不要であり、簡易な構成でトリクル充電と非常時に自動的に電源を二次電池に切り替えることが可能な充電制御回路を提供することにある。 The object of the present invention is that the above battery voltage monitoring circuit, charging current control circuit, switching circuit and the like are unnecessary, and the power supply is automatically switched to a secondary battery in trickle charging and in an emergency with a simple configuration. The object is to provide a possible charge control circuit.

この発明の二次電池の充電制御回路は、直流定電圧源からの定電圧が入力される電流制限抵抗と、
前記定電圧源で駆動され、出力側に負荷が接続される出力端子が設けられた電源部と、
前記電流制限抵抗に流れる電流に対して順方向に直列接続される第1のダイオードを含む二次電池充電回路と、
前記二次電池充電回路に接続される二次電池と、
前記二次電池と前記出力端子間に、前記二次電池からの放電電流に対して順方向に接続される第2のダイオードを含む二次電池放電回路と、
前記電流制限抵抗が前記二次電池充電回路に接続される接続端子と、前記負荷端子間に、前記電流制限抵抗に流れる電流に対して順方向に接続され、前記二次電池が満充電状態で前記接続端子から電流が流れるフォトカプラ回路と、
前記フォトカプラ回路のオン時に、満充電であることを示す信号を外部出力する満充電信号出力端子と、を備えている。
The secondary battery charge control circuit of the present invention includes a current limiting resistor to which a constant voltage from a DC constant voltage source is input,
A power supply unit driven by the constant voltage source and provided with an output terminal to which a load is connected on the output side;
A secondary battery charging circuit including a first diode connected in series in a forward direction with respect to a current flowing through the current limiting resistor;
A secondary battery connected to the secondary battery charging circuit;
A secondary battery discharge circuit including a second diode connected between the secondary battery and the output terminal in a forward direction with respect to a discharge current from the secondary battery;
The current limiting resistor is connected in a forward direction with respect to the current flowing through the current limiting resistor between the connection terminal connected to the secondary battery charging circuit and the load terminal, and the secondary battery is in a fully charged state. A photocoupler circuit in which a current flows from the connection terminal;
A full charge signal output terminal for externally outputting a signal indicating full charge when the photocoupler circuit is on.

通常時に二次電池の充電電圧が低い時は、直流定電圧源からの定電圧で二次電池が充電される。このとき、充電電流は電流制限抵抗と二次電池充電回路を流れる。電源部は負荷に対して電力供給している。二次電池が満充電になると、充電電流が流れなくなるが、自然放電して充電電圧が低下し始めると再び充電が開始される。こうしてトリクル充電が行われる。満充電状態では、フォトカプラ回路に電流が流れて、満充電であることを示す信号が外部に出力される。この信号は、例えば、制御部において二次電池が満充電状態であることを示すためのLED点灯に利用される。   When the charging voltage of the secondary battery is low during normal operation, the secondary battery is charged with a constant voltage from a DC constant voltage source. At this time, the charging current flows through the current limiting resistor and the secondary battery charging circuit. The power supply unit supplies power to the load. When the secondary battery is fully charged, the charging current stops flowing. However, when the secondary battery is spontaneously discharged and the charging voltage starts to decrease, charging starts again. In this way, trickle charging is performed. In the fully charged state, a current flows through the photocoupler circuit, and a signal indicating that the battery is fully charged is output to the outside. This signal is used, for example, to turn on the LED for indicating that the secondary battery is fully charged in the control unit.

停電等の非常時になると、電源部の動作は停止するが、二次電池放電回路を介して、二次電池から負荷に電力が供給される。   When an emergency such as a power failure occurs, the operation of the power supply unit stops, but power is supplied from the secondary battery to the load via the secondary battery discharge circuit.

この発明では、二次電池監視回路、充電電流制御回路、切り替え回路がなくても、トリクル充電と異常時での二次電池への自動切り替えが行われる。   In this invention, even if there is no secondary battery monitoring circuit, charging current control circuit, and switching circuit, trickle charging and automatic switching to the secondary battery at the time of abnormality are performed.

この発明の実施形態の充電制御回路の回路図である。It is a circuit diagram of the charge control circuit of the embodiment of the present invention.

図1は、この発明の実施形態の充電制御回路の回路図である。この充電制御回路は図示しない非常照明装置等に設けられている。   FIG. 1 is a circuit diagram of a charge control circuit according to an embodiment of the present invention. This charging control circuit is provided in an emergency lighting device or the like (not shown).

電源端子Vccには、図示しない電源回路から24VのDC定電圧Vccが印加されている。定電圧Vccは、電源部であるDC/DC回路1に入力電圧として入力され、同回路1においてDC/DC変換された12Vが出力される。DC/DC回路1の出力端子OUTは、図示しない装置回路の電源端子に接続されている。   A DC constant voltage Vcc of 24 V is applied to the power supply terminal Vcc from a power supply circuit (not shown). The constant voltage Vcc is input as an input voltage to the DC / DC circuit 1 which is a power supply unit, and 12V DC / DC converted in the circuit 1 is output. The output terminal OUT of the DC / DC circuit 1 is connected to a power supply terminal of a device circuit (not shown).

電源端子Vccには、さらに電流制限抵抗R1が接続され、電流制限抵抗R1には第1のダイオードD1を含む二次電池充電回路2が接続されている。二次電池充電回路2は二次電池のバッテリー3の+端子が接続されている。第1のダイオードD1は、電流制限抵抗R1に流れる電流に対して順方向に直列接続される。二次電池充電回路2の順方向降下電圧は、ここでは、概ね1Vとなるように設定されている。   A current limiting resistor R1 is further connected to the power supply terminal Vcc, and a secondary battery charging circuit 2 including a first diode D1 is connected to the current limiting resistor R1. The secondary battery charging circuit 2 is connected to a positive terminal of a secondary battery 3. The first diode D1 is connected in series in the forward direction with respect to the current flowing through the current limiting resistor R1. Here, the forward drop voltage of the secondary battery charging circuit 2 is set to be approximately 1 V here.

バッテリー3は、本例では定格端子電圧が13.6Vである。また、このバッテリーは鉛蓄電池で構成されているが、これ以外の二次電池であっても良い。   The battery 3 has a rated terminal voltage of 13.6 V in this example. Moreover, although this battery is comprised with the lead acid battery, secondary batteries other than this may be sufficient.

前記バッテリー3の+端子と前記出力端子OUT間には、バッテリー3からの放電電流に対して順方向に接続される第2のダイオードD2を含む二次電池放電回路4が接続されている。二次電池放電回路4の順方向降下電圧は、ここでは、概ね1.6Vとなるように設定されている。   Between the positive terminal of the battery 3 and the output terminal OUT, a secondary battery discharge circuit 4 including a second diode D2 connected in the forward direction with respect to the discharge current from the battery 3 is connected. Here, the forward drop voltage of the secondary battery discharge circuit 4 is set to be approximately 1.6 V here.

また、前記電流制限抵抗R1が前記二次電池充電回路2に接続される接続端子Pと、前記出力端子OUT間に、電流制限抵抗R1に流れる電流に対して順方向に接続され、バッテリー3が満充電状態のときに前記接続端子Pから電流が流れるフォトカプラ回路5が接続されている。また、フォトカプラ回路5の受光トランジスタはオン時に満充電信号を出力する制御出力端子COUTに接続されている。満充電信号は、装置回路内のLED発光回路等に接続され、点灯することで外部に対しバッテリー3が満充電であることを示す。なお、フォトカプラ回路5は、ここでは、接続端子Pの電圧Vpが概ね14.6Vになるとオンして内部の発光ダイオードが点灯するように設定されている。   Further, the current limiting resistor R1 is connected in a forward direction with respect to the current flowing through the current limiting resistor R1 between the connection terminal P connected to the secondary battery charging circuit 2 and the output terminal OUT, and the battery 3 is A photocoupler circuit 5 through which a current flows from the connection terminal P in a fully charged state is connected. The light receiving transistor of the photocoupler circuit 5 is connected to a control output terminal COUT that outputs a full charge signal when the photocoupler circuit 5 is on. The full charge signal is connected to an LED light emitting circuit or the like in the device circuit and is lit to indicate that the battery 3 is fully charged to the outside. Here, the photocoupler circuit 5 is set to turn on when the voltage Vp of the connection terminal P is approximately 14.6 V, and the internal light emitting diode is lit.

以上の構成で、24VのDC定電圧Vccが充電制御回路に供給されているときは、バッテリー3に対してトリクル充電が行われ、且つ、出力端子OUTに出力電圧12Vが出力され、停電等で定電圧Vccが供給されなくなると、出力端子OUTにバッテリー3から12Vが供給される。以下、詳細な動作について説明する。   With the above configuration, when the DC constant voltage Vcc of 24V is supplied to the charge control circuit, trickle charging is performed on the battery 3, and the output voltage 12V is output to the output terminal OUT. When the constant voltage Vcc is not supplied, 12V is supplied from the battery 3 to the output terminal OUT. The detailed operation will be described below.

24VのDC定電圧Vccが充電制御回路に供給されている通常状態で、バッテリー3が充電されていない状態のときは、定電圧VccがDC/DC回路1に供給されることにより、ここでDC12Vに変換され出力端子OUTに出力される。また、このとき、二次電池充電回路2の出力電圧V1(=バッテリ充電電圧)は、DC/DC回路1の出力電圧V2(=12V)よりも低いため、二次電池放電回路4に電流が流れない。これにより、電圧Vccに基づいて電流制限抵抗R1と二次電池充電回路2を介して、バッテリー3に充電電流が流れ続ける。なお、バッテリー3への充電電流の大きさは、電流制限抵抗R1の値を調整することで任意に設定することが出来る。   In the normal state where the DC constant voltage Vcc of 24V is supplied to the charge control circuit and the battery 3 is not charged, the constant voltage Vcc is supplied to the DC / DC circuit 1 so that the DC And output to the output terminal OUT. At this time, since the output voltage V1 (= battery charge voltage) of the secondary battery charging circuit 2 is lower than the output voltage V2 (= 12V) of the DC / DC circuit 1, a current flows in the secondary battery discharge circuit 4. Not flowing. Thereby, the charging current continues to flow to the battery 3 via the current limiting resistor R1 and the secondary battery charging circuit 2 based on the voltage Vcc. The magnitude of the charging current to the battery 3 can be arbitrarily set by adjusting the value of the current limiting resistor R1.

次に、充電が進み、バッテリーの充電電圧が上昇していくに応じて、接続点Pの電圧Vpも上昇していく(Vp=V1+二次電池充電回路2の降下電圧1V)。電圧Vpが14.6Vになるとフォトカプラ回路5がオンし、それによって、電圧Vpが低下し二次電池充電回路2に流れる充電電流が停止する。また、フォトカプラ回路5がオンすることで、制御出力端子COUTに満充電信号が出力される。   Next, as the charging progresses and the charging voltage of the battery increases, the voltage Vp at the connection point P also increases (Vp = V1 + the voltage drop of the secondary battery charging circuit 2 is 1V). When the voltage Vp becomes 14.6V, the photocoupler circuit 5 is turned on, whereby the voltage Vp is lowered and the charging current flowing through the secondary battery charging circuit 2 is stopped. Further, when the photocoupler circuit 5 is turned on, a full charge signal is output to the control output terminal COUT.

バッテリー3が満充電状態から自然放電が進むと電圧V1が低下し、それにより再び二次電池充電回路2に電流が流れ始めてバッテリー3の充電が再開される。このとき、接続点Pの電圧Vpが(V1+二次電池充電回路2の降下電圧1V)に低下するためフォトカプラ回路5がオフする。   When the battery 3 is spontaneously discharged from the fully charged state, the voltage V1 is decreased, whereby a current starts to flow again in the secondary battery charging circuit 2 and the charging of the battery 3 is resumed. At this time, since the voltage Vp at the connection point P is reduced to (V1 + the voltage drop of the secondary battery charging circuit 2), the photocoupler circuit 5 is turned off.

以上の動作が繰り返されることで、トリクル充電が実現され、バッテリー3は常に満充電状態に保持され、また、満充電信号は制御出力端子COUTに出力される
一方、停電等により、24VのDC定電圧Vccがゼロとなる非常時になると、DC/DC回路1の動作が停止するため、バッテリーから、二次電池放電回路4に放電電流が流れ、出力端子OUTから回路に電流が供給される。このときの出力電圧は、バッテリー3の充電電圧13.6V−二次電池放電回路4の順方向降下電圧1.6V=12Vである。したがって、通常状態時と同じ12Vが電源電圧として回路に印加される。
By repeating the above operation, trickle charging is realized, the battery 3 is always kept in a fully charged state, and a full charge signal is output to the control output terminal COUT. In an emergency when the voltage Vcc becomes zero, the operation of the DC / DC circuit 1 is stopped, so that a discharge current flows from the battery to the secondary battery discharge circuit 4 and a current is supplied from the output terminal OUT to the circuit. The output voltage at this time is a charging voltage of the battery 3 of 13.6 V−a forward voltage drop of the secondary battery discharging circuit 4 of 1.6 V = 12 V. Accordingly, the same 12 V as in the normal state is applied to the circuit as a power supply voltage.

以上のように、この実施形態の充電制御回路は、電池電圧の測定部や充電電流制御部がなくても、自動的にトリクル充電が可能である。また、通常時から非常時に切り替わる時や、非常時から通常時に復帰する時に、出力をDC/DC回路1とバッテリー3間で切り替えるスイッチ制御回路も不要である。   As described above, the charge control circuit of this embodiment can automatically perform trickle charging without a battery voltage measurement unit or a charge current control unit. Further, there is no need for a switch control circuit for switching the output between the DC / DC circuit 1 and the battery 3 when switching from the normal time to the emergency time or when returning from the emergency time to the normal time.

1−DC/DC回路
2−二次電池充電回路
3−バッテリー
4−二次電池放電回路
5−フォトカプラ回路
1-DC / DC circuit 2-secondary battery charging circuit 3-battery 4-secondary battery discharging circuit 5-photocoupler circuit

Claims (3)

直流定電圧源からの定電圧が入力される電流制限抵抗と、
前記定電圧源で駆動され、出力側に負荷が接続される出力端子が設けられた電源部と、
前記電流制限抵抗に流れる電流に対して順方向に直列接続される第1のダイオードを含む二次電池充電回路と、
前記二次電池充電回路に接続される二次電池と、
前記二次電池と前記出力端子間に、前記二次電池からの放電電流に対して順方向に接続される第2のダイオードを含む二次電池放電回路と、
前記電流制限抵抗が前記二次電池充電回路に接続される接続端子と、前記出力端子間に、前記電流制限抵抗に流れる電流に対して順方向に接続され、前記二次電池が満充電状態で前記接続端子から電流が流れるフォトカプラ回路と、
前記フォトカプラ回路のオン時に、満充電であることを示す信号を外部出力する満充電信号出力端子と、を備える二次電池の充電制御回路。
A current limiting resistor to which a constant voltage from a DC constant voltage source is input;
A power supply unit driven by the constant voltage source and provided with an output terminal to which a load is connected on the output side;
A secondary battery charging circuit including a first diode connected in series in a forward direction with respect to a current flowing through the current limiting resistor;
A secondary battery connected to the secondary battery charging circuit;
A secondary battery discharge circuit including a second diode connected between the secondary battery and the output terminal in a forward direction with respect to a discharge current from the secondary battery;
The current limiting resistor is connected in a forward direction with respect to a current flowing through the current limiting resistor between a connection terminal connected to the secondary battery charging circuit and the output terminal, and the secondary battery is in a fully charged state. A photocoupler circuit in which a current flows from the connection terminal;
A charge control circuit for a secondary battery, comprising: a full charge signal output terminal for externally outputting a signal indicating full charge when the photocoupler circuit is on.
前記フォトカプラ回路は、前記接続端子の電圧が、前記二次電池の満充電電圧に前記二次電池充電回路の順方向降下電圧を加えた電圧に上昇したときにオンするように設定されている、請求項1記載の二次電池の充電制御回路。   The photocoupler circuit is set to turn on when the voltage at the connection terminal rises to a voltage obtained by adding a forward drop voltage of the secondary battery charging circuit to a full charge voltage of the secondary battery. A charge control circuit for a secondary battery according to claim 1. 前記二次電池放電回路は、前記二次電池から放電電流が流れているときの該回路の出力電圧が、前記電源部の出力電圧と等しくなるように設定されている、請求項1又は2記載の二次電池の充電制御回路。   The said secondary battery discharge circuit is set so that the output voltage of this circuit when the discharge current is flowing from the said secondary battery may become equal to the output voltage of the said power supply part. Secondary battery charge control circuit.
JP2015012225A 2015-01-26 2015-01-26 Secondary battery charge control circuit Active JP6387498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015012225A JP6387498B2 (en) 2015-01-26 2015-01-26 Secondary battery charge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015012225A JP6387498B2 (en) 2015-01-26 2015-01-26 Secondary battery charge control circuit

Publications (3)

Publication Number Publication Date
JP2016140136A true JP2016140136A (en) 2016-08-04
JP2016140136A5 JP2016140136A5 (en) 2017-11-09
JP6387498B2 JP6387498B2 (en) 2018-09-12

Family

ID=56560609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012225A Active JP6387498B2 (en) 2015-01-26 2015-01-26 Secondary battery charge control circuit

Country Status (1)

Country Link
JP (1) JP6387498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336800A (en) * 2018-04-23 2018-07-27 长沙优力电驱动系统有限公司 Charge-discharge control circuit and battery management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168192A (en) * 1994-12-14 1996-06-25 Fujitsu Ltd Charge control device
JP2000324714A (en) * 1999-05-14 2000-11-24 Murata Mfg Co Ltd Charging controller
JP2002125303A (en) * 2000-10-16 2002-04-26 Okamura Kenkyusho:Kk Power supply for vehicle
JP2002247779A (en) * 1994-12-26 2002-08-30 Fujitsu Ltd Charge control device, electronic device, charging device, and charge control circuit
JP2003289632A (en) * 2002-03-27 2003-10-10 Casio Comput Co Ltd Power system for electronic apparatus
JP2006050898A (en) * 1999-04-09 2006-02-16 Fujitsu Ltd Charging control circuit, charging device, and charging control method
JP2006223050A (en) * 2005-02-10 2006-08-24 Ntt Facilities Inc Power supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168192A (en) * 1994-12-14 1996-06-25 Fujitsu Ltd Charge control device
JP2002247779A (en) * 1994-12-26 2002-08-30 Fujitsu Ltd Charge control device, electronic device, charging device, and charge control circuit
JP2006050898A (en) * 1999-04-09 2006-02-16 Fujitsu Ltd Charging control circuit, charging device, and charging control method
JP2000324714A (en) * 1999-05-14 2000-11-24 Murata Mfg Co Ltd Charging controller
JP2002125303A (en) * 2000-10-16 2002-04-26 Okamura Kenkyusho:Kk Power supply for vehicle
JP2003289632A (en) * 2002-03-27 2003-10-10 Casio Comput Co Ltd Power system for electronic apparatus
JP2006223050A (en) * 2005-02-10 2006-08-24 Ntt Facilities Inc Power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336800A (en) * 2018-04-23 2018-07-27 长沙优力电驱动系统有限公司 Charge-discharge control circuit and battery management system
CN108336800B (en) * 2018-04-23 2024-04-09 长沙优力电驱动系统有限公司 Charge-discharge control circuit and battery management system

Also Published As

Publication number Publication date
JP6387498B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US20190173274A1 (en) Power supply device
US20170063150A1 (en) Uninterruptible power supply unit
US10017138B2 (en) Power supply management system and power supply management method
JP6296608B2 (en) Uninterruptible power system
US11101684B2 (en) Dual input power supply with shortened switching
US10097036B2 (en) Uninterruptible power source device
CN111095722B (en) Battery cell and control method for battery cell
KR20140143711A (en) Charge/discharge control circuit and battery device
US20160049808A1 (en) Battery charging and discharging of single switch and control method therefor
KR20140104378A (en) Switch circuit, semiconductor device, and battery device
JP2009148110A (en) Charger/discharger and power supply device using the same
JP6387498B2 (en) Secondary battery charge control circuit
JP2009095107A (en) Uninterruptible backup power supply device
KR101610869B1 (en) Power supply apparatus, driving method thereof, and security system incluing the same
JP2015080375A (en) Power conversion device
KR20190093405A (en) Battery control unit compatible for lithium ion battery, and control method thereof
JP2009171724A (en) Bidirectional converter
JP2010178500A (en) Discharging device, method of discharging, and dc power supply system
KR20110106741A (en) Charge / discharge system of secondary battery
JP2010022086A (en) Dc power system
JP2016140136A5 (en)
US20200185927A1 (en) Charging method and power supply device
JP2016005362A (en) Secondary battery system and control method for secondary battery system
JP5419551B2 (en) Charging device and lighting device
JP5932465B2 (en) Secondary battery device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180628

R150 Certificate of patent or registration of utility model

Ref document number: 6387498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250