JP2016130202A - Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat - Google Patents

Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat Download PDF

Info

Publication number
JP2016130202A
JP2016130202A JP2015005320A JP2015005320A JP2016130202A JP 2016130202 A JP2016130202 A JP 2016130202A JP 2015005320 A JP2015005320 A JP 2015005320A JP 2015005320 A JP2015005320 A JP 2015005320A JP 2016130202 A JP2016130202 A JP 2016130202A
Authority
JP
Japan
Prior art keywords
ceramic semiconductor
superoxide anion
ceramic
peripheral
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015005320A
Other languages
Japanese (ja)
Inventor
崇泰 張
Sutai Cho
崇泰 張
家豪 張
Kago Cho
家豪 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015005320A priority Critical patent/JP2016130202A/en
Publication of JP2016130202A publication Critical patent/JP2016130202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic semiconductor capable of increasing a peripheral superoxide anion (O) concentration through heat generation after electrification, and passing of air.SOLUTION: A ceramic semiconductor 10 is a ceramic semiconductor in which an oxide material capable of reinforcing an electric charge effect in molding is doped, and which includes a plurality of penetrating penetration holes 11. The ceramic semi-conductor 10 is configured such that the oxide material is TiO, Zn, WO, FeOor SrTiO, and the bore diameter of the penetration hole 11 is 1-2 mm.EFFECT: In the ceramic semiconductor 10 generating electric current and heat after electrification, external layer electrons of the ceramic semiconductor are separated to stay in the penetration holes 11 of the ceramic semiconductor 10, and are accumulated in the penetration holes 11 so as to form an electron cloud, and after air passes the penetration holes 11, oxygen and electrons in air are recombined after collision to form superoxide anion (O) and increase an amount of Oin the periphery, and by the high concentration O, effects of sterilization, cell activation and wound accretion assistance are formed.SELECTED DRAWING: Figure 1

Description

本発明は一種の、発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体に係り、特に一種の、セラミック半導体成形時に空間電荷効果を増強可能な酸化物材料がドープされ、該セラミック半導体は複数の貫通する貫通孔を具え、該セラミック半導体は通電後に電流と熱を発生し、該セラミック半導体の外層電子が離脱して該セラミック半導体の貫通孔に留まり、該貫通孔部分に累積して電子雲を形成し、空気が該貫通孔を通過することで、空気中の酸素と電子が衝突した後に再結合し、スーパーオキシドアニオンを形成し、これにより、周辺スーパーオキシドアニオン濃度をアップするものに関する。   The present invention relates to a kind of ceramic semiconductor capable of increasing the concentration of peripheral superoxide anion after heat generation, and in particular, a kind of oxide material capable of enhancing the space charge effect at the time of forming the ceramic semiconductor is doped. The ceramic semiconductor generates a current and heat after energization, and the outer layer electrons of the ceramic semiconductor are detached and stay in the through hole of the ceramic semiconductor, and accumulate in the through hole portion to form an electron cloud. The present invention relates to a structure in which oxygen passes through the through-hole and recombines after collision of oxygen and electrons in the air to form a superoxide anion, thereby increasing the peripheral superoxide anion concentration.

我々が呼吸する空気中の、酸素の占める体積は21%であり、該酸素はO2 The volume of oxygen in the air we breathe is 21%, which is O 2

Figure 2016130202
分子の遊離状態(free state)で存在する。この酸素分子は二つの酸素原子が一対の電子を共有し、そのうち一つの酸素原子は対を成していない一つの電子を有し、ゆえに、電子に対して非常に大きな親和力を有する。該O2と電子(e)が衝突後に再結合し、すなわち、O2+e→O2 - 或いはO2+e→O+O- でスーパーオキシドアニオンが発生する。該スーパーオキシドアニオンは、そのイオン解離及びイオン化に必要なエネルギーが、1.62〜22.9ev(電子ボルト)であり、化学活性は極めて高く、殺菌、細胞活性化及び傷口癒着補助等の効果を具える。本発明者の前には特許文献1、2、3等のPTC発熱器に関係する発明があり、スーパーオキシドアニオンに上述の作用効果があることを鑑み、すなわち、PTC発熱器(すなわちセラミック半導体)に通電後に熱を発生する特性に対してさらに発明をなし、これによりセラミック半導体は発熱できるのみならず、さらにスーパーオキシドアニオンを発生できるものとなる。
Figure 2016130202
It exists in the free state of the molecule. In this oxygen molecule, two oxygen atoms share a pair of electrons, of which one oxygen atom has one unpaired electron, and therefore has a very large affinity for the electron. The O 2 and the electron (e) are recombined after collision, that is, a superoxide anion is generated by O 2 + e → O 2 or O 2 + e → O + O . The superoxide anion has an energy required for its ion dissociation and ionization of 1.62 to 22.9 ev (electron volts), and has extremely high chemical activity, and has effects such as sterilization, cell activation, and wound adhesion support. Have. Prior to the present inventors, there are inventions related to PTC heat generators such as Patent Documents 1, 2, and 3 in view of the fact that the superoxide anion has the above-described effects, that is, a PTC heat generator (ie, a ceramic semiconductor). In addition, the invention further invents the property of generating heat after energization, whereby the ceramic semiconductor can not only generate heat but also generate superoxide anions.

台湾特許第I337507号明細書Taiwan Patent No. I337507 Specification 台湾実用新案第041331号及びその追加一Taiwan Utility Model No. 041331 and its addition 台湾実用新案第053055号及びその追加二Taiwan Utility Model No. 053055 and its addition 2

本発明の目的は、周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体を提供することにある。   An object of the present invention is to provide a ceramic semiconductor capable of increasing the concentration of peripheral superoxide anion.

上述の目的を達成するため、該セラミック半導体は成形時に、空間電荷効果を増強可能な酸化物材料がドープされ、該セラミック半導体は複数の貫通する貫通孔を具える。該セラミック半導体は通電後に電流と熱を発生し、該セラミック半導体の外層電子を離脱させ離脱した電子がセラミック半導体の貫通孔に留まり、該貫通孔にて累積して電子雲を形成し、空気が該貫通孔を通過した後、空気中の酸素と電子が衝突後に再結合し、スーパーオキシドアニオンを形成し、これにより、周辺スーパーオキシドアニオン濃度を増加する。   To achieve the above object, the ceramic semiconductor is doped with an oxide material capable of enhancing the space charge effect when formed, and the ceramic semiconductor includes a plurality of through-holes. The ceramic semiconductor generates an electric current and heat after being energized, and the outer layer electrons of the ceramic semiconductor are separated and the separated electrons stay in the through holes of the ceramic semiconductor, accumulate in the through holes to form an electron cloud, After passing through the through hole, oxygen and electrons in the air recombine after collision to form a superoxide anion, thereby increasing the peripheral superoxide anion concentration.

本発明によると、該セラミック半導体は通電されて発熱する以外に、同時にスーパーオキシドアニオンを釈放する(O2+e→O2 - 或いはO2+e→O+O- )。該セラミック半導体は通電後にスーパーオキシドアニオンを釈放し、該スーパーオキシドアニオンは化学活性が極めて高く、殺菌、細胞活性化及び傷口癒着幇助等の効果を有し、これにより該セラミック半導体を通電して使用すると、殺菌、細胞活性化、傷口癒着幇助等の作用効果を有する。 According to the present invention, the ceramic semiconductor emits heat when energized, and at the same time releases the superoxide anion (O 2 + e → O 2 or O 2 + e → O + O ). The ceramic semiconductor releases superoxide anion after energization, and the superoxide anion has extremely high chemical activity and has effects such as sterilization, cell activation and wound adhesion assistance, and thus the ceramic semiconductor is energized for use. Then, it has effects such as sterilization, cell activation, and wound adhesion assistance.

本発明の実施例の単一セラミック半導体の立体図である。It is a three-dimensional view of the single ceramic semiconductor of the Example of this invention. 本発明の実施例の複数のセラミック半導体の組合せ立体図である。It is the combination solid figure of the some ceramic semiconductor of the Example of this invention. 本発明の実施例の使用表示図である。It is a usage display figure of the Example of this invention.

以下に本発明の技術内容、構造特徴、達成する目的及び作用効果について、以下に例を挙げ並びに図面を組み合わせて詳細に説明する。   The technical contents, structural features, objects to be achieved, and operational effects of the present invention will be described in detail below with reference to examples and drawings.

図1、2に示されるように、該セラミック半導体10は成形時に、空間電荷効果を増強可能な酸化物材料がドープされ、該酸化物材料は、原子最外層の電子を容易に移動させ、たとえば、二酸化チタン(TiO2)、酸化亜鉛(ZnO)、三酸化タングステン(WO3)、三酸化二鉄(Fe23)、チタン酸ストロンチウム(SrTiO3)とされる。該セラミック半導体10は複数の貫通する貫通孔11を具える。各貫通孔11の孔径はΦ1mm〜2mmがよい。 As shown in FIGS. 1 and 2, when the ceramic semiconductor 10 is molded, it is doped with an oxide material capable of enhancing the space charge effect, and the oxide material easily moves electrons in the outermost layer of the atom, for example, Titanium dioxide (TiO 2 ), zinc oxide (ZnO), tungsten trioxide (WO 3 ), ferric trioxide (Fe 2 O 3 ), and strontium titanate (SrTiO 3 ). The ceramic semiconductor 10 includes a plurality of through holes 11 penetrating therethrough. The diameter of each through hole 11 is preferably Φ1 mm to 2 mm.

該セラミック半導体10は通電後、該空間電荷効果を増強可能な酸化物材料が電流と熱を受けて、電子離脱を形成し得て、離脱した電子は貫通孔11に留まり、該電子の累積量は密度の高い電子雲を形成することができるほど多い。図3に示されるように、該セラミック半導体10外に設置されたファン20が該セラミック半導体10に送風し、空気が貫通孔11を通過すると、空気中の酸素(O2)が該セラミック半導体10より離脱した電子と衝突して再結合し、こうしてスーパーオキシドアニオンを形成し、これにより、該セラミック半導体10は通電されて発熱する以外に、同時にスーパーオキシドアニオンを釈放する(O2+e→O2 - 或いはO2+e→O+O-)。該セラミック半導体10は通電によりスーパーオキシドアニオンを釈放し、該スーパーオキシドアニオンは化学活性が極めて高く、殺菌、細胞活性化及び傷口癒着幇助等の効果を有し、これにより該セラミック半導体10に通電して使用しても、殺菌、細胞活性化、傷口癒着幇助等の作用効果を有する。 When the ceramic semiconductor 10 is energized, the oxide material capable of enhancing the space charge effect is subjected to current and heat to form electron detachment, and the detached electrons remain in the through holes 11 and the accumulated amount of the electrons There are so many that a dense electron cloud can be formed. As shown in FIG. 3, when a fan 20 installed outside the ceramic semiconductor 10 blows air to the ceramic semiconductor 10 and air passes through the through holes 11, oxygen (O 2 ) in the air is converted into the ceramic semiconductor 10. By colliding with the more dissociated electrons and recombining, thus forming a superoxide anion, the ceramic semiconductor 10 is not only energized and generates heat, but at the same time releases the superoxide anion (O 2 + e → O 2 - or O 2 + e → O + O -). The ceramic semiconductor 10 releases the superoxide anion when energized, and the superoxide anion has extremely high chemical activity and has effects such as sterilization, cell activation, and wound adhesion assistance, thereby energizing the ceramic semiconductor 10. Even if used, it has effects such as sterilization, cell activation, and wound adhesion assistance.

次に、本発明はまた、ファン20を設置しないでもよく、駆動機構で該セラミック半導体10を駆動して移動させることで、空気に急速に貫通孔11を通過させ、空気中の酸素(O2)を迅速に電子(e)と衝突再結合させて、ずっと急速にスーパーオキシドアニオンを釈放させることができる。 Next, according to the present invention, the fan 20 may not be installed, and the ceramic semiconductor 10 is driven and moved by a driving mechanism, so that the air can rapidly pass through the through-hole 11 and oxygen in the air (O 2). ) Can be rapidly recombined with electrons (e) to release the superoxide anion much more rapidly.

以上は本発明の好ましい実施例の説明に過ぎず、並びに本発明を限定するものではなく、本発明に提示の精神より逸脱せずに完成されるその他の同等の効果の修飾或いは置換は、いずれも本発明の権利請求範囲内に属する。   The foregoing is only a description of the preferred embodiment of the present invention, and is not intended to limit the present invention. Other equivalent effect modifications or substitutions that may be accomplished without departing from the spirit of the present invention are not Are also within the scope of the claims of the present invention.

10 セラミック半導体
11 貫通孔
20 ファン
10 Ceramic semiconductor 11 Through hole 20 Fan

Claims (9)

成形時に空間電荷効果を増強可能な酸化物材料がドープされ、複数の貫通する貫通孔を具える該セラミック半導体が、通電により電流と熱を発生して外層電子を離脱させ、離脱した電子が該貫通孔に留まり、該貫通孔に累積して電子雲を形成し、該貫通孔を通過する空気中の酸素と電子が衝突して結合し、スーパーオキシドアニオンを形成し、該スーパーオキシドアニオンを釈放することを特徴とする、発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。   The ceramic semiconductor, which is doped with an oxide material capable of enhancing the space charge effect at the time of molding and has a plurality of through-holes, generates current and heat by energization to release outer layer electrons, and the released electrons are Remains in the through-hole, accumulates in the through-hole to form an electron cloud, and oxygen and electrons in the air passing through the through-hole collide and combine to form a superoxide anion, releasing the superoxide anion. A ceramic semiconductor capable of increasing peripheral superoxide anion concentration after heat generation. 該空間電荷効果を増強可能な酸化物材料は、二酸化チタン(TiO2)とされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。 2. The ceramic semiconductor according to claim 1, wherein the oxide material capable of enhancing the space charge effect is titanium dioxide (TiO2). 該空間電荷効果を増強可能な酸化物材料は、酸化亜鉛(ZnO)とされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。   2. The ceramic semiconductor according to claim 1, wherein the oxide material capable of enhancing the space charge effect is zinc oxide (ZnO). 該空間電荷効果を増強可能な酸化物材料は、三酸化タングステン(WO3)とされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。 Oxide materials capable enhance the charge effects said space is a three being a ratio of tungsten oxide (WO 3), characterized in, capable of increasing ceramic semiconductor peripheral superoxide anion concentration after heating of claim 1, wherein. 該空間電荷効果を増強可能な酸化物材料は、三酸化二鉄(Fe23)とされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。 Oxide materials capable enhance the charge effects the space is characterized by being a diiron trioxide (Fe 2 O 3), according to claim 1 capable of ceramic semiconductor increases near superoxide anion concentration after heating according . 該空間電荷効果を増強可能な酸化物材料は、チタン酸ストロンチウム(SrTiO3)とされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。 2. The ceramic semiconductor according to claim 1, wherein the oxide material capable of enhancing the space charge effect is strontium titanate (SrTiO 3 ). 該貫通孔の孔径はΦ1mm〜2mmとされることを特徴とする、請求項1記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。   2. The ceramic semiconductor capable of increasing the concentration of peripheral superoxide anion after heat generation according to claim 1, wherein the through hole has a diameter of Φ1 mm to 2 mm. 該セラミック半導体の外側にファンが設置され、該ファンが該セラミック半導体の貫通孔に向けて送風することを特徴とする、請求項1乃至7のいずれか記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。   The peripheral superoxide anion concentration is increased after heat generation according to any one of claims 1 to 7, wherein a fan is installed outside the ceramic semiconductor, and the fan blows air toward the through hole of the ceramic semiconductor. Possible ceramic semiconductor. 該セラミック半導体は駆動機構により駆動されて移動することを特徴とする、請求項1乃至7のいずれか記載の発熱後に周辺スーパーオキシドアニオン濃度を増加可能なセラミック半導体。   The ceramic semiconductor according to claim 1, wherein the ceramic semiconductor moves by being driven by a driving mechanism, and the peripheral superoxide anion concentration can be increased after heat generation.
JP2015005320A 2015-01-14 2015-01-14 Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat Pending JP2016130202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005320A JP2016130202A (en) 2015-01-14 2015-01-14 Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005320A JP2016130202A (en) 2015-01-14 2015-01-14 Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat

Publications (1)

Publication Number Publication Date
JP2016130202A true JP2016130202A (en) 2016-07-21

Family

ID=56415246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005320A Pending JP2016130202A (en) 2015-01-14 2015-01-14 Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat

Country Status (1)

Country Link
JP (1) JP2016130202A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105076A (en) * 1976-02-27 1977-09-03 Matsushita Electric Works Ltd Odor generating element
JPS54105113A (en) * 1978-02-06 1979-08-17 Ngk Insulators Ltd Barium titanate base positive characteristic porcelain
JPS561489A (en) * 1979-06-19 1981-01-09 Nichicon Capacitor Ltd Heating device
JPH0210684A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Fan forced heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105076A (en) * 1976-02-27 1977-09-03 Matsushita Electric Works Ltd Odor generating element
JPS54105113A (en) * 1978-02-06 1979-08-17 Ngk Insulators Ltd Barium titanate base positive characteristic porcelain
JPS561489A (en) * 1979-06-19 1981-01-09 Nichicon Capacitor Ltd Heating device
JPH0210684A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Fan forced heater

Similar Documents

Publication Publication Date Title
Cavaglia et al. Will we observe black holes at the LHC?
Wu et al. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors
CN1994960A (en) Energy-containing particle excitated type highly efficient air negative ion material and its preparation method
JP2016130202A (en) Ceramic semiconductor capable of increasing peripheral superoxide anion concentration after generating heat
JP5344353B2 (en) Electrode material manufacturing method and ozone ion generator
KR102243748B1 (en) Multipurpose reactor with quantum energy irradiation
JP3133388U (en) Pneumatic electronic equipment
Pishahang et al. DFT-study of the energetics of perovskite-type oxides La MO 3 (M= Sc–Cu)
JP6514884B2 (en) CO2 reduction device and reduction method
TW201505476A (en) Ceramics semiconductor capable of increasing peripheral superoxide ions after heating
US20150041798A1 (en) Ceramic semiconductor capable of increasing the density of surrounding superoxide ions after being heated
Zhu et al. Synergistic modification of electronic and photocatalytic properties of TiO2 nanotubes by implantation of Au and N Atoms
JP6326623B2 (en) Ceiling fan
US20130313941A1 (en) System and method for generating electricity from radioactive isotopes
CN104418590B (en) The ceramic semiconductors of peripheral superoxipe ion concentration can be increased after heating
Flambaum et al. Chaotic compound states in atomic processes: electron, photon and atom scattering, recombination, photoionization and radiation
Vlahos Particle acceleration in solar active regions being in the state of self-organized criticality.
JP2019187162A (en) PROOF THAT GRAVITATION IS PRODUCED BY MAGNETIC PHOTONS, AND NUMBER OF ATOMS IN 1000 g
JP2015155879A (en) β-RAY RELEASING COATING
Li et al. Screening in Non-Equilibrium Dissipative System
Dahlin Electron heating and acceleration during magnetic reconnection
Streletskii et al. MECHANICALLY ACTIVATED COMPOSITES BASED ON TRANSITION METAL OXIDES: DEFECT STRUCTURE, REACTIVITY, APPLICATION POSSIBILITIES
JP2017005856A (en) Matter observed by high energy accelerator 8
JP2011075269A (en) Humidifier with negative charge oxygen atom generating function
Razmi et al. Spin Quantum Number or Rest Angular Momentum

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628