JP2016107509A - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
JP2016107509A
JP2016107509A JP2014247169A JP2014247169A JP2016107509A JP 2016107509 A JP2016107509 A JP 2016107509A JP 2014247169 A JP2014247169 A JP 2014247169A JP 2014247169 A JP2014247169 A JP 2014247169A JP 2016107509 A JP2016107509 A JP 2016107509A
Authority
JP
Japan
Prior art keywords
region
raw material
spiral groove
groove
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014247169A
Other languages
Japanese (ja)
Other versions
JP6469430B2 (en
Inventor
井上 玲
Rei Inoue
玲 井上
憲亮 守谷
Norisuke Moriya
憲亮 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP2014247169A priority Critical patent/JP6469430B2/en
Publication of JP2016107509A publication Critical patent/JP2016107509A/en
Application granted granted Critical
Publication of JP6469430B2 publication Critical patent/JP6469430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an injection molding machine that can plasticize a thermosetting resin without changing the properties of the resin and can stably manufacture a high quality thermosetting resin molding.SOLUTION: A spiral groove 15 that continues from a position corresponding to a raw material introduction hole 14 formed in a heating cylinder 5 to a tip portion thereof is formed in an outer surface of a screw 11A. A formation range of the spiral groove 15 is composed of a transfer area A, an aggregation area B, and a plasticization area C, arranged in this order from the raw material introduction hole 14 side. A spiral groove 15a formed in the transfer area A has a shape capable of transferring a raw material, supplied from a hopper, to the aggregation area B without compression. A spiral groove 15b formed in the aggregation area B has a shape capable of suppressing a pressure acting on the raw material in comparison with the case where a lead pitch, a groove width, and a groove depth are set constant. A spiral groove 15c formed in the plasticization area C has a shape capable of suppressing shearing heat generation and friction heat generation in comparison with the case where a lead pitch, a groove width, and a groove depth are set constant.SELECTED DRAWING: Figure 2

Description

本発明は、射出成形機に係り、特に、熱硬化性樹脂を加熱シリンダ内で可塑化するスクリュの構造に関する。   The present invention relates to an injection molding machine, and more particularly to a screw structure for plasticizing a thermosetting resin in a heating cylinder.

射出成形機に備えられるスクリュ式射出装置は、金型のキャビティ内に所定量の可塑化樹脂を射出・充填するもので、一端がヘッドストックに固定された加熱シリンダと、加熱シリンダ内に回転可能及び前後進可能に配設されたスクリュと、所要の動力伝達機構を介してスクリュを回転駆動する計量用モータと、所要の動力伝達機構を介してスクリュを前後進駆動する射出用モータを有している。   The screw-type injection device provided in the injection molding machine injects and fills a predetermined amount of plasticizing resin into the mold cavity, and is heated inside the heating cylinder with one end fixed to the headstock. And a screw arranged to be able to move forward and backward, a metering motor that rotationally drives the screw via a required power transmission mechanism, and an injection motor that drives the screw forward and backward via the required power transmission mechanism ing.

加熱シリンダの基端側には、ホッパから落下してくる原料樹脂を加熱シリンダ内に導入するための原料導入孔が開設されており、スクリュには、加熱シリンダに開設された原料導入孔と対向する位置から先端部まで延びる螺旋溝が形成されている。したがって、計量用モータを用いて加熱シリンダ内でスクリュを回転駆動すると、原料導入孔を通して加熱シリンダ内に供給された原料樹脂が、加熱シリンダの内面と螺旋溝の表面とで形成される空間内に受け入れられ、スクリュの回転に伴い、螺旋溝に沿って、順次スクリュの先端側に移送される。この過程において、原料樹脂は加熱シリンダからの加熱並びにスクリュの回転に伴う剪断発熱及び摩擦発熱によって溶融され、必要な混練及び可塑化が行われる。また、所定の混練及び可塑化が完了した可塑化樹脂は、加熱シリンダの先端部に所定量に達するまで蓄えられ、金型のキャビティ内に射出すべき可塑化樹脂量が計量される。計量工程が完了した後は、計量用モータの回転駆動が停止され、射出用モータが所定の方向に回転駆動される。これにより、スクリュが前進駆動され、加熱シリンダ内の可塑化樹脂が、加熱シリンダの先端部に取り付けられた射出ノズルから射出されて、金型のキャビティ内に射出・充填される。   On the base end side of the heating cylinder, there is a raw material introduction hole for introducing the raw material resin falling from the hopper into the heating cylinder. The screw faces the raw material introduction hole opened in the heating cylinder. A spiral groove extending from the position to the tip is formed. Therefore, when the screw is rotationally driven in the heating cylinder using the metering motor, the raw material resin supplied into the heating cylinder through the raw material introduction hole is in a space formed by the inner surface of the heating cylinder and the surface of the spiral groove. The screw is received and sequentially transferred to the tip side of the screw along the spiral groove as the screw rotates. In this process, the raw material resin is melted by heating from the heating cylinder and shearing heat generation and frictional heat generation accompanying the rotation of the screw, and necessary kneading and plasticization are performed. The plasticized resin that has been subjected to predetermined kneading and plasticization is stored at the tip of the heating cylinder until a predetermined amount is reached, and the amount of plasticized resin to be injected into the cavity of the mold is measured. After the weighing process is completed, the rotation drive of the weighing motor is stopped and the injection motor is driven to rotate in a predetermined direction. As a result, the screw is driven forward, and the plasticizing resin in the heating cylinder is injected from the injection nozzle attached to the tip of the heating cylinder, and is injected and filled into the cavity of the mold.

上述したように、スクリュは、原料樹脂の受け入れと、受け入れられた原料樹脂の移送と、移送中の原料樹脂の混練及び可塑化を行うものであるので、スクリュに形成される螺旋の形状は、可塑化樹脂ひいては成形品の品質に大きな影響を及ぼす。加熱シリンダ内で熱硬化性樹脂の混練及び可塑化を行う熱硬化性樹脂用スクリュについて言えば、熱硬化性樹脂の硬化反応を抑制して成形性への悪影響を避けるため、加熱シリンダ内で必要以上の熱が熱硬化性樹脂に加わらないようにする必要がある。   As described above, since the screw is used to receive the raw material resin, transfer the received raw material resin, and knead and plasticize the raw material resin being transferred, the shape of the spiral formed on the screw is: This greatly affects the quality of the plasticized resin and the molded product. Speaking of a thermosetting resin screw that kneads and plasticizes the thermosetting resin in the heating cylinder, it is necessary in the heating cylinder to suppress the curing reaction of the thermosetting resin and avoid adverse effects on moldability. It is necessary to prevent the above heat from being applied to the thermosetting resin.

このため、従来においては、図2(a)に示すように、原料樹脂の受け入れ側から先端まで、螺旋溝15のリードピッチp、溝幅w1(山幅w2)、溝深さd及び溝容積vが一定で、体積圧縮費(p/d)が1のスクリュ11が用いられている(例えば、特許文献1の図4及び図5参照。)。   For this reason, conventionally, as shown in FIG. 2A, the lead pitch p, groove width w1 (crest width w2), groove depth d, and groove volume of the spiral groove 15 from the receiving side of the raw material resin to the tip. A screw 11 having a constant v and a volume compression cost (p / d) of 1 is used (see, for example, FIGS. 4 and 5 of Patent Document 1).

特開2011−224801号公報JP 2011-224801 A

しかしながら、図2(a)に示す熱硬化性樹脂用スクリュを粉状の熱硬化性樹脂の可塑化に適用すると、加熱シリンダ内に取り込まれた原料樹脂が凝集された後に可塑化されるため、可塑化時における樹脂の体積圧縮により加熱シリンダ内に大きな圧力が発生する。その結果、スクリュの回転に伴う剪断発熱や摩擦発熱が大きくなるので、スクリュの先端側では可塑化樹脂が必要以上に加熱されやすく、可塑化樹脂ひいては製品である熱硬化性樹脂成形品に焼けや変色による物性変化をはじめ、過熱により樹脂の硬化反応が進むことによる流動性への影響が生じやすくなる。   However, when the thermosetting resin screw shown in FIG. 2 (a) is applied to plasticize a powdered thermosetting resin, the raw material resin taken into the heating cylinder is aggregated and then plasticized. A large pressure is generated in the heating cylinder by volume compression of the resin during plasticization. As a result, shear heat generation and frictional heat generation associated with the rotation of the screw increase, so that the plasticizing resin is likely to be heated more than necessary on the tip end side of the screw, and the plasticizing resin and thus the thermosetting resin molded product, which is the product, are burned. In addition to changes in physical properties due to discoloration, fluidity tends to be affected by the progress of the resin curing reaction due to overheating.

本発明は、このような従来技術の問題を解消するためになされたものであり、その目的は、熱硬化性樹脂を必要以上に加熱することなく混練及び可塑化可能な熱硬化性樹脂用スクリュを備えた射出成形機を提供することにある。   The present invention has been made to solve such problems of the prior art, and an object of the present invention is to provide a screw for a thermosetting resin that can be kneaded and plasticized without heating the thermosetting resin more than necessary. It is providing the injection molding machine provided with.

本発明は、前記課題を解決するため、加熱シリンダと、前記加熱シリンダ内に回転可能かつ前後進可能に収納されたスクリュとを有し、前記スクリュを前記加熱シリンダ内で回転駆動することにより、熱硬化性樹脂の混練及び可塑化を行う射出装置を備えた射出成形機において、前記スクリュには、前記加熱シリンダに形成された原料導入孔と対応する位置から先端部までの螺旋溝形成部に螺旋溝が連続的に形成されており、前記螺旋溝形成部は、前記原料導入孔側から前記先端部側に向けて、前記原料導入孔を通じて前記加熱シリンダ内に供給された原料樹脂を前記先端部側に移送する移送領域と、前記移送領域を通過した原料樹脂を凝集させる凝集領域と、前記凝集領域にて凝集された原料樹脂を可塑化する可塑化領域を有し、前記凝集領域は、前記原料導入孔側から前記先端部側に至るほど体積圧縮比が低下するように、前記螺旋溝を形成したことを特徴とする。   In order to solve the above problems, the present invention has a heating cylinder and a screw housed in the heating cylinder so as to be rotatable and capable of moving back and forth, and by rotating the screw in the heating cylinder, In an injection molding machine equipped with an injection device for kneading and plasticizing a thermosetting resin, the screw has a spiral groove forming portion from a position corresponding to a raw material introduction hole formed in the heating cylinder to a tip portion. Spiral grooves are continuously formed, and the spiral groove forming portion feeds the raw material resin supplied into the heating cylinder through the raw material introduction holes from the raw material introduction hole side toward the distal end portion side. A transfer region that transfers to the part side, an aggregation region that aggregates the raw material resin that has passed through the transfer region, and a plasticization region that plasticizes the raw material resin aggregated in the aggregation region, Pass, as the more volume compression ratio ranging from the raw material introduction hole side to the tip side is lowered, characterized in that the formation of the spiral groove.

また本発明は、前記構成の射出成形機において、前記凝集領域に形成される螺旋溝は、リードピッチ及び溝深さが一定で、溝幅が前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする。   In the injection molding machine having the above-described configuration, the helical groove formed in the aggregation region has a constant lead pitch and groove depth, and the groove width extends from the raw material introduction hole side to the tip end side. Therefore, it is characterized by increasing sequentially.

また本発明は、前記構成の射出成形機において、前記可塑化領域に形成される螺旋溝は、リードピッチ及び溝深さが前記凝集領域に形成される螺旋溝と同じで、溝幅が前記凝集領域に形成される螺旋溝のうちの最大のものより大きく、かつ前記可塑化領域内において一定であることを特徴とする。   In the injection molding machine having the above-described configuration, the spiral groove formed in the plasticized region may have the same lead pitch and groove depth as the spiral groove formed in the aggregate region, and the groove width may be the aggregate. It is larger than the largest of the spiral grooves formed in the region and is constant in the plasticized region.

また本発明は、前記構成の射出成形機において、前記凝集領域に形成される螺旋溝は、山幅及び溝深さが一定で、リードピッチが前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする。   In the injection molding machine having the above-described configuration, the spiral groove formed in the aggregation region has a constant peak width and groove depth, and the lead pitch extends from the raw material introduction hole side to the tip end side. Therefore, it is characterized by increasing sequentially.

また本発明は、前記構成の射出成形機において、前記可塑化領域に形成される螺旋溝は、山幅及び溝深さが前記凝集領域に形成される螺旋溝と同じで、リードピッチが前記凝集領域に形成される螺旋溝のうちの最大のものと同じであり、かつ前記可塑化領域内において一定であることを特徴とする。   In the injection molding machine having the above-described configuration, the spiral groove formed in the plasticized region has the same peak width and groove depth as the spiral groove formed in the aggregation region, and the lead pitch is the aggregation pitch. It is the same as the largest one of the spiral grooves formed in the region, and is constant in the plasticized region.

また本発明は、前記構成の射出成形機において、前記凝集領域に形成される螺旋溝は、リードピッチ及び溝幅が一定で、溝深さが前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする。   In the injection molding machine having the above-described configuration, the helical groove formed in the aggregation region has a constant lead pitch and groove width, and the groove depth extends from the raw material introduction hole side to the tip end side. Therefore, it is characterized by increasing sequentially.

また本発明は、前記構成の射出成形機において、前記可塑化領域に形成される螺旋溝は、リードピッチ及び溝幅が前記凝集領域に形成される螺旋溝と同じで、溝深さが前記凝集領域に形成される螺旋溝の溝深さと同じ割合で順次大きくなることを特徴とする。   In the injection molding machine having the above-described configuration, the spiral groove formed in the plasticized region may have the same lead pitch and groove width as the spiral groove formed in the aggregate region, and the groove depth may be the aggregate. It is characterized in that it increases sequentially at the same rate as the depth of the spiral groove formed in the region.

前記移送領域は、前記螺旋溝のリードピッチ、溝幅及び溝深さが一定に形成されていることを特徴とする。   The transfer region is characterized in that the lead pitch, groove width and groove depth of the spiral groove are formed constant.

本発明は、凝集領域に形成される螺旋溝を、原料導入孔側から先端部側に至るほど体積圧縮比が低下するように形成したので、凝集領域における原料樹脂の凝集を抑制でき、可塑化領域で可塑化される可塑化樹脂の体積圧縮を抑制できて、可塑化樹脂の剪断発熱及び摩擦発熱を低下できる。よって、加熱シリンダ内で凝集されやすく、かつ熱による分解や劣化が生じやすい熱硬化性樹脂材料の焼けや変色を防止でき、高品質の成形品を高能率に製造できる。   In the present invention, since the spiral groove formed in the aggregation region is formed so that the volume compression ratio decreases from the raw material introduction hole side to the tip side, the aggregation of the raw material resin in the aggregation region can be suppressed and plasticized. Volumetric compression of the plasticized resin plasticized in the region can be suppressed, and shear heat generation and frictional heat generation of the plasticized resin can be reduced. Therefore, it is possible to prevent the thermosetting resin material from being easily agglomerated in the heating cylinder and to be easily decomposed or deteriorated by heat, and to produce a high-quality molded product with high efficiency.

実施形態に係る射出成形機の要部構成図である。It is a principal part block diagram of the injection molding machine which concerns on embodiment. 実施形態に係る3種類の熱硬化性樹脂用スクリュを、従来例に係る熱硬化性樹脂用スクリュと比較して示す図である。It is a figure which compares and compares the screw for three types of thermosetting resins which concerns on embodiment with the screw for thermosetting resins which concerns on a prior art example.

実施形態に係る射出成形機は、図1に示すように、図示しない射出ユニットベース盤上に固定されたヘッドストック1と、ヘッドストック1にボルト2を用いて取り付けられた連結部材3と、連結部材3にボルト4を用いて一端が連結された中空の加熱シリンダ5と、加熱シリンダ5の先端に取り付けられた射出ノズル6と、加熱シリンダ5の外周に巻装された4つのバンドヒータ7、8、9、10と、加熱シリンダ5内に回転可能かつ前後進可能に収納されたスクリュ11を含んで構成される。   As shown in FIG. 1, the injection molding machine according to the embodiment includes a head stock 1 fixed on an injection unit base board (not shown), a connecting member 3 attached to the head stock 1 using bolts 2, and a connection A hollow heating cylinder 5 whose one end is connected to the member 3 using a bolt 4, an injection nozzle 6 attached to the tip of the heating cylinder 5, and four band heaters 7 wound around the outer periphery of the heating cylinder 5; 8, 9, and 10 and a screw 11 housed in the heating cylinder 5 so as to be rotatable and capable of moving forward and backward.

連結部材3は、加熱シリンダ5と図示しないホッパとを連結する部材であって、水平方向に加熱シリンダ取付孔12が開設されると共に、上面から加熱シリンダ取付孔12に貫通する垂直方向に原料供給孔13が開設されている。加熱シリンダ5は、一端が加熱シリンダ取付孔12に挿入され、ボルト4を用いて連結部材3に固定される。ホッパは、連結部材3の上面にボルトなどを用いて取り付けられ、その下面に開口された図示しない原料排出口が原料供給孔13に連通される。また、加熱シリンダ5の原料供給孔13と対向する部分には、原料導入孔14が開設される。従って、ホッパに貯えられた原料樹脂は、原料排出口、原料供給孔13及び原料導入孔14を通って加熱シリンダ5内に供給される。   The connecting member 3 is a member that connects the heating cylinder 5 and a hopper (not shown). The heating cylinder mounting hole 12 is opened in the horizontal direction and the raw material is supplied in the vertical direction penetrating from the upper surface to the heating cylinder mounting hole 12. A hole 13 is opened. One end of the heating cylinder 5 is inserted into the heating cylinder mounting hole 12 and is fixed to the connecting member 3 using a bolt 4. The hopper is attached to the upper surface of the connecting member 3 using a bolt or the like, and a raw material discharge port (not shown) opened on the lower surface thereof is communicated with the raw material supply hole 13. Further, a raw material introduction hole 14 is opened in a portion of the heating cylinder 5 facing the raw material supply hole 13. Accordingly, the raw material resin stored in the hopper is supplied into the heating cylinder 5 through the raw material discharge port, the raw material supply hole 13 and the raw material introduction hole 14.

バンドヒータ7、8、9、10は、加熱シリンダ5内を移動する樹脂材料を加熱するものであって、加熱シリンダ5の内面先端部とスクリュ11の外面先端部との間の樹脂溜め部に焼けや変色等の変質がない所定粘度の可塑化樹脂が貯えられるように、通電率が制御される。通電率の制御は、図示しない制御装置によりバンドヒータ毎に行われる。これら4つのバンドヒータのうち、バンドヒータ7、8は、後に説明するスクリュ11の移送領域Aに対応する位置に巻装され、バンドヒータ9は、後に説明するスクリュ11の凝集領域Bに対応する位置に巻装され、バンドヒータ10は、後に説明するスクリュ11の可塑化領域Cに対応する位置に巻装される。原料樹脂として粉状の熱硬化性樹脂を用いる場合、バンドヒータ10の通電率は、可塑化領域Cの樹脂温度が80℃前後になるように制御される。なお、加熱シリンダ5に複数のバンドヒータを巻装するのは、加熱シリンダ5内を移動する原料樹脂の状態に応じて、加熱シリンダ5の各部を適温に加熱するためである。従って、バンドヒータの数は4つに限定されるものではなく、必要に応じて1以上の適宜の数のバンドヒータが巻装される。さらに、加熱だけでなく、冷却機能を備えたバンドヒータとしても良い。   The band heaters 7, 8, 9, and 10 heat the resin material that moves in the heating cylinder 5, and serve as a resin reservoir between the inner surface tip of the heating cylinder 5 and the outer surface tip of the screw 11. The energization rate is controlled so that a plasticized resin having a predetermined viscosity without any deterioration such as burning or discoloration is stored. The power supply rate is controlled for each band heater by a control device (not shown). Among these four band heaters, the band heaters 7 and 8 are wound at positions corresponding to the transfer area A of the screw 11 described later, and the band heater 9 corresponds to the aggregation area B of the screw 11 described later. The band heater 10 is wound at a position corresponding to a plasticized region C of the screw 11 described later. When a powdery thermosetting resin is used as the raw material resin, the energization rate of the band heater 10 is controlled so that the resin temperature in the plasticized region C is around 80 ° C. The reason why the plurality of band heaters are wound around the heating cylinder 5 is to heat each part of the heating cylinder 5 to an appropriate temperature according to the state of the raw material resin moving in the heating cylinder 5. Accordingly, the number of band heaters is not limited to four, and an appropriate number of one or more band heaters are wound as necessary. Furthermore, it is good also as a band heater provided with not only heating but a cooling function.

スクリュ11は、図示しない所要の動力伝達機構を介して、図示しない可塑化・計量用モータにより回転駆動される。また、スクリュ11は、図示しない所要の動力伝達機構を介して、図示しない射出用モータにより前後進駆動される。射出装置に備えられるその他の部分の構成及び射出成形機に備えられるその他の部分の構成については、周知に属する事項であり、かつ本発明の要旨でもないので省略する。   The screw 11 is rotationally driven by a plasticizing / metering motor (not shown) through a required power transmission mechanism (not shown). Further, the screw 11 is driven forward and backward by an injection motor (not shown) through a required power transmission mechanism (not shown). About the structure of the other part with which an injection apparatus is equipped, and the structure of the other part with which an injection molding machine is equipped are a well-known matter and are not the summary of this invention, it abbreviate | omits.

可塑化・計量用サーボモータ及び射出用サーボモータの駆動及び停止は、可塑化・計量工程の開始タイミング及び停止タイミング、並びに、射出工程の開始タイミング及び停止タイミングを記憶した図示しない制御装置により制御される。   The drive and stop of the plasticizing / metering servomotor and injection servomotor are controlled by a control device (not shown) that stores the start timing and stop timing of the plasticizing / metering process and the start timing and stop timing of the injection process. The

即ち、可塑化・計量工程の開始タイミングに至ると、制御装置からの指令に基づいて可塑化・計量用サーボモータが所定方向に回転駆動され、所要の動力伝達機構を介してスクリュ11が所定方向に回転駆動される。スクリュ11が回転すると、ホッパ内に蓄えられた原料樹脂が、自重により、原料排出口、原料供給孔13及び原料導入孔14を通して、加熱シリンダ5の内面とスクリュに形成された螺旋溝15とによって形成される空間内に連続的に受け入れられる。加熱シリンダ5内に受け入れられた原料樹脂は、スクリュ11のネジ送り作用によって連続的に前方に移送され、その過程でバンドヒータ7、8、9、10から与えられる熱及びスクリュ11の回転に伴って発生する剪断発熱や摩擦発熱により可塑化され、樹脂溜め部に貯えられる。この際、樹脂溜め部に可塑化樹脂が送り込まれるにつれ、その圧力によりスクリュ11が後退するので、制御装置からの指令に基づいて射出用サーボモータを圧力フィードバック制御し、スクリュ11の直線移動位置を制御することで、樹脂溜め部に1ショット分の可塑化樹脂が貯えられる。これにより可塑化・計量工程が終了し、可塑化・計量用サーボモータによるスクリュ11の回転駆動が停止される。   That is, when the start timing of the plasticizing / metering process is reached, the plasticizing / metering servomotor is rotationally driven in a predetermined direction based on a command from the control device, and the screw 11 is moved in the predetermined direction via a required power transmission mechanism. Is driven to rotate. When the screw 11 rotates, the raw material resin stored in the hopper passes through the raw material discharge port, the raw material supply hole 13 and the raw material introduction hole 14 due to its own weight, by the inner surface of the heating cylinder 5 and the spiral groove 15 formed in the screw. It is continuously accepted in the space formed. The raw material resin received in the heating cylinder 5 is continuously transferred forward by the screw feeding action of the screw 11, and the heat supplied from the band heaters 7, 8, 9, 10 in the process and the rotation of the screw 11. It is plasticized by shearing heat and frictional heat generated and stored in the resin reservoir. At this time, as the plasticized resin is fed into the resin reservoir, the screw 11 moves backward due to the pressure. Therefore, the injection servomotor is pressure-feedback controlled based on a command from the control device, and the linear movement position of the screw 11 is determined. By controlling, one shot of plasticized resin is stored in the resin reservoir. As a result, the plasticizing / metering step is completed, and the rotational drive of the screw 11 by the plasticizing / metering servomotor is stopped.

次いで、射出工程の開始タイミングに至ると、制御装置からの指令に基づいて射出用サーボモータが所定方向に回転駆動され、所要の動力伝達機構を介してスクリュ11が前進駆動される。これにより、樹脂溜め部に貯えられた1ショット分の可塑化樹脂が、射出ノズル6を通って型締状態にある金型のキャビティ内に射出充填され、一次射出工程が実行される。一次射出工程に引き続く保圧工程では、図示しない制御装置からの指令に基づいて、射出用サーボモータが圧力フィードバック制御で駆動制御され、これにより設定された保圧力がスクリュ11から金型内に充填された樹脂に付加される。   Next, when the start timing of the injection process is reached, the injection servo motor is rotationally driven in a predetermined direction based on a command from the control device, and the screw 11 is driven forward via a required power transmission mechanism. As a result, one shot of the plasticized resin stored in the resin reservoir is injected and filled into the mold cavity in the mold-clamped state through the injection nozzle 6, and the primary injection process is executed. In the pressure-holding process following the primary injection process, the injection servomotor is driven and controlled by pressure feedback control based on a command from a control device (not shown), and the set pressure is filled into the mold from the screw 11. Added to the finished resin.

以下、上述の射出装置に備えられるスクリュ11の構成を、実施例毎に説明する。   Hereinafter, the structure of the screw 11 provided in the above-mentioned injection apparatus is demonstrated for every Example.

〈実施例1〉
実施例1に係るスクリュ11Aは、図2(b)に示すように、加熱シリンダ5に形成された原料導入孔14と対向する位置から先端部に至る部分に、螺旋溝15が連続的に形成されている。なお、スクリュ11Aの他端は、図示しない動力伝達機構が連結されるシャンク部になっている。本例のスクリュ11Aは、図2(a)に示す従来例に係るスクリュ11とは異なり、螺旋溝15のリードピッチp、溝幅w1(山幅w2)及び溝深さdが原料導入孔14側から先端部まで一定に形成されておらず、リードピッチp、溝幅w1(山幅w2)及び溝深さdが異なる3つの領域、即ち、移送領域A、凝集領域B及び可塑化領域Cを有している。移送領域Aは、ホッパから供給される原料樹脂を圧縮することなく先端部に向けて移送する領域である。また、凝集領域Bは、原料樹脂として粉状の熱硬化性樹脂を供給した場合に、移送領域Aを通って移送されてきた原料樹脂が圧力を受けて凝集する領域である。さらに、可塑化領域Cは、原料樹脂である熱硬化性樹脂が可塑化されて、粘土状の粘動体になる領域である。
<Example 1>
In the screw 11A according to the first embodiment, as shown in FIG. 2 (b), the spiral groove 15 is continuously formed in the portion from the position facing the material introduction hole 14 formed in the heating cylinder 5 to the tip portion. Has been. The other end of the screw 11A is a shank portion to which a power transmission mechanism (not shown) is coupled. Unlike the screw 11 according to the conventional example shown in FIG. 2A, the screw 11A of this example has a lead pitch p, a groove width w1 (mountain width w2), and a groove depth d of the raw material introduction holes 14 unlike the conventional screw 11 shown in FIG. Three regions that are not formed uniformly from the side to the tip, but have different lead pitch p, groove width w1 (mount width w2), and groove depth d, namely, transfer region A, agglomeration region B, and plasticization region C have. The transfer area A is an area where the raw material resin supplied from the hopper is transferred toward the tip without being compressed. In addition, the aggregation region B is a region where the raw material resin transferred through the transfer region A is aggregated by receiving pressure when a powdery thermosetting resin is supplied as the raw material resin. Further, the plasticized region C is a region in which a thermosetting resin that is a raw material resin is plasticized to become a clay-like viscous body.

移送領域Aに形成される螺旋溝15aは、リードピッチp、溝幅w1(山幅w2)及び溝深さdが一定に形成される。これに対して、凝集領域Bに形成される螺旋溝15bは、リードピッチp及び溝深さdが一定かつ移送領域Aに形成される螺旋溝15aと同じで、溝幅w1が移送領域Aに形成される螺旋溝15aよりも大きく、しかも先端部側に至るに従って順次大きくなるように形成される。よって、凝集領域Bでは、山幅w2が先端部側に至るにしたがって順次小さくなる。さらに、可塑化領域Cに形成される螺旋溝15cは、リードピッチp及び溝深さdが移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じで、溝幅w1が凝集領域Bに形成される螺旋溝15bのうちの最大のものより大きく形成される。可塑化領域C内における溝幅w1(山幅w2)は一定である。なお、本例のスクリュ11Aは、原料導入孔14側から先端部までの体積圧縮率(p/d)が1に調整される。   The spiral groove 15a formed in the transfer region A is formed with a constant lead pitch p, groove width w1 (mountain width w2), and groove depth d. In contrast, the spiral groove 15b formed in the aggregation region B has the same lead pitch p and groove depth d as the spiral groove 15a formed in the transfer region A, and the groove width w1 in the transfer region A. It is larger than the spiral groove 15a to be formed, and is formed so as to increase sequentially toward the tip end side. Therefore, in the aggregation region B, the peak width w2 gradually decreases as it reaches the tip end side. Furthermore, the spiral groove 15c formed in the plasticizing region C has the same lead pitch p and groove depth d as the spiral groove 15a formed in the transfer region A and the spiral groove 15b formed in the aggregation region B. The width w1 is formed larger than the largest one of the spiral grooves 15b formed in the aggregation region B. The groove width w1 (mountain width w2) in the plasticized region C is constant. In the screw 11A of this example, the volume compressibility (p / d) from the raw material introduction hole 14 side to the tip is adjusted to 1.

ホッパから加熱シリンダ5内に取り込まれた原料樹脂は、スクリュ11Aのネジ送り作用によって、移送領域A、凝集領域B及び可塑化領域Cの順に加熱されながら移動する。上述したように、移送領域Aの螺旋溝15aは、リードピッチp、溝幅w1(又は山幅w2)及び溝深さdが一定に形成されているので、該領域A内を移動する原料樹脂には大きな圧力が作用しないので、発生する剪断発熱及び摩擦発熱も小さい。これに対して、凝集領域B内においては、原料樹脂として粉状の熱硬化性樹脂を用いた場合、移送領域Aを通過することによってある程度加熱された原料樹脂が凝集する。そして、凝集領域Bを通過した凝集状態の原料樹脂は、可塑化領域Cに至って可塑化され粘土状の粘動体となるが、従来例に係るスクリュ11のように、移送領域から可塑化領域まで、螺旋溝15のリードピッチp、溝幅w1(又は山幅w2)及び溝深さdが一定に形成されていると、可塑化される際の体積圧縮が大きく、加熱シリンダ5内に大きな圧力が発生する。このため、スクリュ11の回転に伴う剪断発熱及び摩擦発熱が大きくなり、可塑化樹脂の温度が高くなって、焼けや変色、樹脂の流動性変化等を起こしやすくなる。   The raw material resin taken into the heating cylinder 5 from the hopper moves while being heated in the order of the transfer area A, the aggregation area B, and the plasticizing area C by the screw feeding action of the screw 11A. As described above, the spiral groove 15a in the transfer area A is formed with a constant lead pitch p, groove width w1 (or peak width w2), and groove depth d. Since no large pressure acts on the plate, the generated shear heat and frictional heat are small. On the other hand, in the aggregation region B, when a powdery thermosetting resin is used as the raw material resin, the raw material resin heated to some extent by passing through the transfer region A aggregates. And the raw material resin of the aggregation state which passed the aggregation area | region B reaches the plasticization area | region C, and is plasticized and becomes a clay-like viscous body, but like the screw 11 which concerns on a prior art example, from a transfer area | region to a plasticization area | region. When the lead pitch p, the groove width w1 (or the crest width w2) and the groove depth d of the spiral groove 15 are formed constant, the volume compression during plasticization is large, and a large pressure is generated in the heating cylinder 5. Will occur. For this reason, shear heat generation and frictional heat generation associated with the rotation of the screw 11 increase, and the temperature of the plasticized resin increases, which easily causes burning, discoloration, fluidity change of the resin, and the like.

これに対して、実施例1に係るスクリュ11Aは、凝集領域Bに形成される螺旋溝15bのリードピッチp及び溝深さdを移送領域Aに形成される螺旋溝15aと同じとし、溝幅w1を移送領域Aに形成される螺旋溝15aよりも大きくすると共に、移送領域A側から先端部に至るに従って順次大きくなるように形成したので、凝集領域Bにおける原料樹脂の凝集を抑制できる。従って、可塑化領域Cにおける体積圧縮を抑制又は防止でき、可塑化樹脂の加熱を防止できるので、可塑化樹脂の変質を防止できる。   In contrast, the screw 11A according to the first embodiment has the same lead pitch p and groove depth d of the spiral groove 15b formed in the aggregation region B as the spiral groove 15a formed in the transfer region A, and the groove width. Since w1 is made larger than the spiral groove 15a formed in the transfer region A and formed so as to increase sequentially from the transfer region A side to the tip portion, aggregation of the raw material resin in the aggregation region B can be suppressed. Therefore, volume compression in the plasticized region C can be suppressed or prevented, and heating of the plasticized resin can be prevented, so that the plasticized resin can be prevented from being deteriorated.

また、可塑化領域Cに形成される螺旋溝15cについては、リードピッチp及び溝深さdを移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じとし、溝幅w1を凝集領域Bに形成される螺旋溝15bのうちの最大のものより大きくしたので、可塑化領域Cにおける剪断発熱及び摩擦発熱を抑制できて、この点からも可塑化樹脂の変質を防止できる。   Further, for the spiral groove 15c formed in the plasticized region C, the lead pitch p and the groove depth d are the same as the spiral groove 15a formed in the transfer region A and the spiral groove 15b formed in the aggregation region B, Since the groove width w1 is made larger than the largest one of the spiral grooves 15b formed in the aggregation region B, shear heat generation and frictional heat generation in the plasticization region C can be suppressed. Can be prevented.

〈実施例2〉
実施例2に係るスクリュ11Bは、図2(c)に示すように、凝集領域B及び可塑化領域Cの構成が、実施例1に係るスクリュ11Aと異なっている。即ち、実施例2に係るスクリュ11Bは、凝集領域Bに形成される螺旋溝15bの山幅w2及び溝深さdが一定かつ移送領域Aに形成される螺旋溝15aと同じで、リードピッチpが移送領域Aに形成される螺旋溝15aよりも大きく、しかも移送領域A側から先端部側に至るに従って順次大きくなるように形成される。よって、凝集領域Bでは、溝幅w1が先端部側に至るにしたがって順次大きくなる。さらに、可塑化領域Cに形成される螺旋溝15cは、山幅w2及び溝深さdが移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じで、リードピッチpが凝集領域Bに形成される螺旋溝15のうちの最大のものより大きく形成される。可塑化領域C内における溝幅w1(山幅w2)は一定である。なお、本例のスクリュ11Bも、原料導入孔14側から先端部までの体積圧縮率(p/d)が1に調整される。移送領域Aの構成については、実施例1に係るスクリュ11Aと同じであるので、説明を省略する。
<Example 2>
As shown in FIG. 2C, the screw 11B according to the second embodiment is different from the screw 11A according to the first embodiment in the configuration of the aggregation region B and the plasticizing region C. That is, the screw 11B according to Example 2 is the same as the spiral groove 15a formed in the transfer region A with the crest width w2 and the groove depth d of the spiral groove 15b formed in the aggregation region B being constant, and the lead pitch p. Is larger than the spiral groove 15a formed in the transfer region A, and is gradually increased from the transfer region A side to the tip end side. Therefore, in the aggregation region B, the groove width w1 is gradually increased toward the tip end side. Further, the spiral groove 15c formed in the plasticizing region C is the same as the spiral groove 15a formed in the transfer region A and the spiral groove 15b formed in the aggregation region B in the crest width w2 and the groove depth d. The pitch p is formed larger than the largest one of the spiral grooves 15 formed in the aggregation region B. The groove width w1 (mountain width w2) in the plasticized region C is constant. In the screw 11B of this example, the volume compressibility (p / d) from the raw material introduction hole 14 side to the tip is adjusted to 1. About the structure of the transfer area | region A, since it is the same as the screw 11A which concerns on Example 1, description is abbreviate | omitted.

実施例2に係るスクリュ11Bは、凝集領域Bに形成される螺旋溝15bの山幅w2及び溝深さdを移送領域Aに形成される螺旋溝15aと同じとし、リードピッチpを移送領域Aに形成される螺旋溝15aよりも大きくすると共に、先端部側に至るに従って順次大きくなるように形成したので、凝集領域Bにおける原料樹脂の凝集が抑制され、原料樹脂として粉状の熱硬化性樹脂を用いた場合にも、可塑化樹脂の焼けや変色、樹脂の流動性変化等を防止できる。   In the screw 11B according to the second embodiment, the crest width w2 and the groove depth d of the spiral groove 15b formed in the aggregation region B are the same as the spiral groove 15a formed in the transfer region A, and the lead pitch p is set to the transfer region A. In addition to being larger than the spiral groove 15a formed at the end, and gradually increasing toward the tip, the aggregation of the raw material resin in the aggregation region B is suppressed, and a powdery thermosetting resin is used as the raw material resin. Even in the case of using, it is possible to prevent burning and discoloration of the plasticized resin, change in fluidity of the resin, and the like.

また、可塑化領域Cに形成される螺旋溝15cについては、山幅w2及び溝深さdを移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じとし、リードピッチpを凝集領域Bに形成される螺旋溝15のうちの最大のものより大きくしたので、この点からも可塑化領域Cにおける剪断発熱を抑制できて、可塑化樹脂の変質及び流動性変化を防止できる。   Further, for the spiral groove 15c formed in the plasticized region C, the peak width w2 and the groove depth d are the same as the spiral groove 15a formed in the transfer region A and the spiral groove 15b formed in the aggregation region B, Since the lead pitch p is larger than the largest one of the spiral grooves 15 formed in the agglomerated region B, the shear heat generation in the plasticized region C can be suppressed from this point as well, and the alteration and fluidity change of the plasticized resin can be suppressed. Can be prevented.

〈実施例3〉
実施例3に係るスクリュ11Cは、図2(d)に示すように、凝集領域B及び可塑化領域Cの構成が、実施例1に係るスクリュ11A及び実施例2に係るスクリュ11Bと異なっている。即ち、実施例3に係るスクリュ11Cは、凝集領域Bに形成される螺旋溝15bのリードピッチp及び溝幅w1(山幅w2)が一定かつ移送領域Aに形成される螺旋溝15aと同じで、溝深さdが移送領域Aに形成される螺旋溝15aよりも大きく、しかも移送領域A側から先端部側に至るに従って順次大きくなるように形成される。一方、可塑化領域Cに形成される螺旋溝15cは、リードピッチp及び溝幅w1(山幅w2)が移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じで、溝深さdを凝集領域Bに形成される螺旋溝15bと同じ割合で、移送領域A側から先端部側に至るにしたがって順次大きくなるように形成される。なお、本例のスクリュ11Cは、原料導入孔14側から先端部までの体積圧縮率(p/d)が1以下、好ましくは0.5〜0.8に調整される。移送領域Aの構成は、実施例1に係るスクリュ11A及び実施例2に係るスクリュ11Bと同じであるので、説明を省略する。
<Example 3>
As shown in FIG. 2D, the screw 11C according to the third embodiment is different from the screw 11A according to the first embodiment and the screw 11B according to the second embodiment in the configuration of the aggregation region B and the plasticizing region C. . That is, the screw 11C according to Example 3 is the same as the spiral groove 15a formed in the transfer region A with the lead pitch p and the groove width w1 (mountain width w2) of the spiral groove 15b formed in the aggregation region B being constant. The groove depth d is larger than that of the spiral groove 15a formed in the transfer region A, and is formed so as to increase sequentially from the transfer region A side to the tip end side. On the other hand, the spiral groove 15c formed in the plasticized region C includes a spiral groove 15a formed in the transfer region A and a spiral groove 15b formed in the aggregation region B in which the lead pitch p and the groove width w1 (crest width w2). In the same manner, the groove depth d is formed at the same rate as the spiral groove 15b formed in the aggregation region B so as to increase sequentially from the transfer region A side to the tip end side. In the screw 11C of this example, the volume compressibility (p / d) from the raw material introduction hole 14 side to the tip is adjusted to 1 or less, preferably 0.5 to 0.8. Since the configuration of the transfer region A is the same as the screw 11A according to the first embodiment and the screw 11B according to the second embodiment, the description thereof is omitted.

実施例3に係るスクリュ11Cは、凝集領域Bに形成される螺旋溝15bのリードピッチp及び溝幅w1(山幅w2)を一定かつ移送領域Aに形成される螺旋溝15aと同じとし、溝深さdを移送領域Aに形成される螺旋溝15aよりも大きくすると共に、原料導入孔14側から先端部側に至るに従って順次大きくなるように形成したので、凝集領域Bにおける原料樹脂の凝集を抑制できて、可塑化樹脂の焼けや変色、樹脂の流動性変化等を防止できる。   The screw 11C according to the third embodiment has the same lead pitch p and groove width w1 (mountain width w2) of the spiral groove 15b formed in the aggregation region B as the spiral groove 15a formed in the transfer region A. The depth d is made larger than the spiral groove 15a formed in the transfer region A and is formed so as to increase sequentially from the raw material introduction hole 14 side to the tip end side. It can suppress, and can prevent the plasticization resin from burning or discoloration, resin fluidity change, and the like.

また、可塑化領域Cに形成される螺旋溝15cのリードピッチp及び溝幅w1(山幅w2)を移送領域Aに形成される螺旋溝15a及び凝集領域Bに形成される螺旋溝15bと同じとし、溝深さdが凝集領域Bに形成される螺旋溝15bと同じ割合で順次大きくなるように形成したので、この点からも可塑化領域Cにおける剪断発熱を抑制できて、可塑化樹脂の変質を防止できる。   Further, the lead pitch p and the groove width w1 (mountain width w2) of the spiral groove 15c formed in the plasticizing region C are the same as the spiral groove 15a formed in the transfer region A and the spiral groove 15b formed in the aggregation region B. Since the groove depth d is formed so as to increase sequentially at the same rate as that of the spiral groove 15b formed in the aggregation region B, the shear heat generation in the plasticization region C can be suppressed from this point as well. Alteration can be prevented.

なお、前記実施形態においては、スクリュ式射出装置を備えた射出成形機を例にとって説明したが、スクリュプリプラ式射出装置を備えた射出成形機についても、同様に実施することができる。また、前記実施形態においては、粉体状の熱硬化性樹脂の可塑化に適用する場合を例にとって説明したが、粒状など他の形態の熱硬化性樹脂の可塑化にも適用できる。   In the above-described embodiment, the injection molding machine provided with the screw type injection device has been described as an example. However, the injection molding machine provided with the screw pre-pull type injection device can be similarly implemented. Moreover, although the case where it applied to the plasticization of a powdery thermosetting resin was demonstrated to the example in the said embodiment, it can apply also to the plasticization of thermosetting resins of other forms, such as a granular form.

1 ヘッドストック
3 連結部材
5 加熱シリンダ
6 射出ノズル
7、8、9、10 バンドヒータ
11、11A、11B、11C スクリュ
12 原料排出口
13 原料導入孔
14 原料導入孔
15、15a、15b、15c 螺旋溝
A 移送領域
B 凝集領域
C 可塑化領域
p リードピッチ
w1 溝幅
w2 山幅
d 溝深さ
v 溝容積
DESCRIPTION OF SYMBOLS 1 Headstock 3 Connecting member 5 Heating cylinder 6 Injection nozzle 7, 8, 9, 10 Band heater 11, 11A, 11B, 11C Screw 12 Raw material discharge port 13 Raw material introduction hole 14 Raw material introduction hole 15, 15a, 15b, 15c Spiral groove A transfer area B agglomeration area C plasticization area p lead pitch w1 groove width w2 peak width d groove depth v groove volume

Claims (8)

加熱シリンダと、前記加熱シリンダ内に回転可能かつ前後進可能に収納されたスクリュとを有し、前記スクリュを前記加熱シリンダ内で回転駆動することにより、熱硬化性樹脂の混練及び可塑化を行う射出装置を備えた射出成形機において、
前記スクリュには、前記加熱シリンダに形成された原料導入孔と対応する位置から先端部までの螺旋溝形成部に螺旋溝が連続的に形成されており、
前記螺旋溝形成部は、前記原料導入孔側から前記先端部側に向けて、前記原料導入孔を通じて前記加熱シリンダ内に供給された原料樹脂を前記先端部側に移送する移送領域と、前記移送領域を通過した原料樹脂を凝集させる凝集領域と、前記凝集領域にて凝集された原料樹脂を可塑化する可塑化領域を有し、
前記凝集領域は、前記原料導入孔側から前記先端部側に至るほど体積圧縮比が低下するように、前記螺旋溝を形成したことを特徴とする射出成形機。
A heating cylinder and a screw housed in the heating cylinder so as to be rotatable and capable of moving forward and backward, and kneading and plasticizing the thermosetting resin by rotationally driving the screw in the heating cylinder. In an injection molding machine equipped with an injection device,
In the screw, a spiral groove is continuously formed in a spiral groove forming portion from a position corresponding to the raw material introduction hole formed in the heating cylinder to the tip portion,
The spiral groove forming part includes a transfer region for transferring the raw material resin supplied into the heating cylinder through the raw material introduction hole from the raw material introduction hole side to the distal end side, and the transfer An aggregation region for aggregating the raw material resin that has passed through the region, and a plasticizing region for plasticizing the raw material resin aggregated in the aggregation region,
The injection molding machine according to claim 1, wherein the agglomeration region is formed with the spiral groove so that the volume compression ratio decreases from the raw material introduction hole side to the tip end side.
前記凝集領域に形成される螺旋溝は、リードピッチ及び溝深さが一定で、溝幅が前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする請求項1に記載の射出成形機。   The spiral groove formed in the aggregation region has a constant lead pitch and groove depth, and the groove width gradually increases from the raw material introduction hole side to the tip end side. The injection molding machine described. 前記可塑化領域に形成される螺旋溝は、リードピッチ及び溝深さが前記凝集領域に形成される螺旋溝と同じで、溝幅が前記凝集領域に形成される螺旋溝のうちの最大のものより大きく、かつ前記可塑化領域内において一定であることを特徴とする請求項2に記載の射出成形機。   The spiral groove formed in the plasticized region has the same lead pitch and groove depth as the spiral groove formed in the aggregated region, and the largest groove among the spiral grooves formed in the aggregated region. 3. The injection molding machine according to claim 2, wherein the injection molding machine is larger and constant in the plasticizing region. 前記凝集領域に形成される螺旋溝は、山幅及び溝深さが一定で、リードピッチが前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする請求項1に記載の射出成形機。   The spiral groove formed in the aggregation region has a constant crest width and groove depth, and the lead pitch gradually increases from the raw material introduction hole side to the tip end side. The injection molding machine described. 前記可塑化領域に形成される螺旋溝は、山幅及び溝深さが前記凝集領域に形成される螺旋溝と同じで、リードピッチが前記凝集領域に形成される螺旋溝のうちの最大のものと同じであり、かつ前記可塑化領域内において一定であることを特徴とする請求項4に記載の射出成形機。   The spiral groove formed in the plasticized region has the same peak width and groove depth as the spiral groove formed in the aggregated region, and has the largest lead pitch among the spiral grooves formed in the aggregated region. The injection molding machine according to claim 4, wherein the injection molding machine is the same as in the plasticizing region and is constant in the plasticizing region. 前記凝集領域に形成される螺旋溝は、リードピッチ及び溝幅が一定で、溝深さが前記原料導入孔側から前記先端部側に至るにしたがって順次大きくなることを特徴とする請求項1に記載の射出成形機。   The spiral groove formed in the aggregation region has a constant lead pitch and groove width, and the groove depth gradually increases from the raw material introduction hole side to the tip end side. The injection molding machine described. 前記可塑化領域に形成される螺旋溝は、リードピッチ及び溝幅が前記凝集領域に形成される螺旋溝と同じで、溝深さが前記凝集領域に形成される螺旋溝の溝深さと同じ割合で順次大きくなることを特徴とする請求項6に記載の射出成形機。   The spiral groove formed in the plasticized region has the same lead pitch and groove width as the spiral groove formed in the aggregation region, and the groove depth is the same as the groove depth of the spiral groove formed in the aggregation region. The injection molding machine according to claim 6, wherein the injection molding machine increases in size sequentially. 前記移送領域は、前記螺旋溝のリードピッチ、溝幅及び溝深さが一定に形成されていることを特徴とする請求項1に記載の射出成形機。   The injection molding machine according to claim 1, wherein the transfer region is formed such that the lead pitch, groove width, and groove depth of the spiral groove are constant.
JP2014247169A 2014-12-05 2014-12-05 Injection molding machine Active JP6469430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247169A JP6469430B2 (en) 2014-12-05 2014-12-05 Injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247169A JP6469430B2 (en) 2014-12-05 2014-12-05 Injection molding machine

Publications (2)

Publication Number Publication Date
JP2016107509A true JP2016107509A (en) 2016-06-20
JP6469430B2 JP6469430B2 (en) 2019-02-13

Family

ID=56122880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247169A Active JP6469430B2 (en) 2014-12-05 2014-12-05 Injection molding machine

Country Status (1)

Country Link
JP (1) JP6469430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155829A (en) * 2018-03-16 2019-09-19 東洋機械金属株式会社 Screw for thermosetting resin material, injection molding machine and molding system
JP2019162723A (en) * 2018-03-19 2019-09-26 東洋機械金属株式会社 Injection molding machine and molding system
US10624382B2 (en) 2017-06-01 2020-04-21 Wenger Manufacturing Inc. High specific mechanical energy extrusion screw assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084663A (en) * 1973-11-27 1975-07-08
JPH10193410A (en) * 1997-01-14 1998-07-28 Matsushita Electric Ind Co Ltd Injection molding machine for liquid crystal polymer
JP2007001122A (en) * 2005-06-23 2007-01-11 Meiki Co Ltd Plastication apparatus for vegetable raw material
JP2014004744A (en) * 2012-06-25 2014-01-16 Meiki Co Ltd Vertical injection unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084663A (en) * 1973-11-27 1975-07-08
JPH10193410A (en) * 1997-01-14 1998-07-28 Matsushita Electric Ind Co Ltd Injection molding machine for liquid crystal polymer
JP2007001122A (en) * 2005-06-23 2007-01-11 Meiki Co Ltd Plastication apparatus for vegetable raw material
JP2014004744A (en) * 2012-06-25 2014-01-16 Meiki Co Ltd Vertical injection unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624382B2 (en) 2017-06-01 2020-04-21 Wenger Manufacturing Inc. High specific mechanical energy extrusion screw assembly
US11254041B2 (en) 2017-06-01 2022-02-22 Wenger Manufacturing Inc. High specific mechanical energy extrusion screw assembly
JP2019155829A (en) * 2018-03-16 2019-09-19 東洋機械金属株式会社 Screw for thermosetting resin material, injection molding machine and molding system
JP7088504B2 (en) 2018-03-16 2022-06-21 東洋機械金属株式会社 Screws, injection molding machines and molding systems for thermosetting resin materials
JP2019162723A (en) * 2018-03-19 2019-09-26 東洋機械金属株式会社 Injection molding machine and molding system
JP7088505B2 (en) 2018-03-19 2022-06-21 東洋機械金属株式会社 Injection molding machine and molding system

Also Published As

Publication number Publication date
JP6469430B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
CN107107423B (en) Injection moulding method and injection (mo(u)lding) machine
JP6469430B2 (en) Injection molding machine
JP4955708B2 (en) Screw and injection device
CA2708891C (en) Injection apparatus
JP5781471B2 (en) Injection molding method
JP4100326B2 (en) Plasticizer for injection molding machine
CN209738220U (en) Improved generation plasticizing device in injection molding machine
US20170050359A1 (en) Injection molding apparatus
JP2008036881A (en) Integration apparatus having kneading part and injection part
JP4146509B1 (en) Injection molding machine and injection molding method using the same
TWI583528B (en) Injection molding machine
JP5601871B2 (en) Injection molding machine
JP5779697B2 (en) Injection molding machine
JP2018167518A (en) Screw for molding machine
KR101273164B1 (en) Control method for screw of injection molding machine
JP6940269B2 (en) Injection molding screw and injection molding machine
JP2017225984A (en) Metal melting screw, screw type metal melting machine and screw type metal injection forming machine
JP6054215B2 (en) Injection molding machine and setting support device for injection molding machine
JP6177586B2 (en) Injection molding machine
EP4049826A1 (en) Injection molding machine
US20210154901A1 (en) Plasticizing device, injection molding machine, and three-dimensional shaping apparatus
JP2678565B2 (en) Injection equipment
JP3301742B2 (en) Injection equipment
CN103770274B (en) Injection molding machine
JPH0531775A (en) Screw of injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150