JP2016079569A - Construction method for underground strut - Google Patents

Construction method for underground strut Download PDF

Info

Publication number
JP2016079569A
JP2016079569A JP2014208582A JP2014208582A JP2016079569A JP 2016079569 A JP2016079569 A JP 2016079569A JP 2014208582 A JP2014208582 A JP 2014208582A JP 2014208582 A JP2014208582 A JP 2014208582A JP 2016079569 A JP2016079569 A JP 2016079569A
Authority
JP
Japan
Prior art keywords
underground
columnar
construction
retaining
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208582A
Other languages
Japanese (ja)
Other versions
JP6460713B2 (en
Inventor
稔 岡橋
Minoru Okabashi
稔 岡橋
良 光枝
Ryo Mitsueda
良 光枝
貴士 桑原
Takashi Kuwabara
貴士 桑原
敏男 相樂
Toshio Sagara
敏男 相樂
誠 浦瀬
Makoto Urase
誠 浦瀬
貴穂 河野
Takao Kono
貴穂 河野
Original Assignee
株式会社竹中工務店
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店, Takenaka Komuten Co Ltd filed Critical 株式会社竹中工務店
Priority to JP2014208582A priority Critical patent/JP6460713B2/en
Publication of JP2016079569A publication Critical patent/JP2016079569A/en
Application granted granted Critical
Publication of JP6460713B2 publication Critical patent/JP6460713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a construction method for an underground strut, which can suppress the displacement and deformation of an earth retaining wall by stably and firmly supporting the earth retaining wall from the time point of the construction of the underground strut.SOLUTION: In a construction method for an underground strut, the underground strut 1 for supporting an earth retaining wall 4 in the ground is constructed. An expansion part 1b is formed in at least a part of the underground strut 1. A bracing force F is exerted toward the earth retaining wall 4 by expanding the expansion part 1b in the state of adjusting an attitude of the underground strut 1 to a predetermined attitude.SELECTED DRAWING: Figure 2

Description

本発明は、山留壁を地中で支保する地中切梁を構築する地中切梁の施工方法に関する。   The present invention relates to an underground beam construction method for constructing an underground beam that supports a mountain wall in the ground.
このような地中切梁の例としては、山留壁に相当する円筒形状の地中連続壁を地中で支保するため、円筒形状の地中連続壁の下方域に地中切梁として機能する改良底盤を構築するとともに、地中連続壁の中間域にも地中切梁として機能する改良中間盤を構築し、これら地中切梁としての改良底盤及び改良中間盤が、地中の土壌や土砂とセメントミルクとの混合物で構成されたものが知られている(例えば、特許文献1参照)。   As an example of such underground beam, it functions as an underground beam in the lower area of the cylindrical underground wall in order to support the cylindrical continuous wall corresponding to the mountain wall in the ground. In addition to building an improved bottom plate, an improved intermediate plate functioning as an underground beam is also constructed in the middle area of the underground continuous wall. What is comprised with the mixture of earth and sand and cement milk is known (for example, refer patent document 1).
特開平9−317373号公報JP 9-317373 A
しかしながら、上記特許文献に記載の従来技術では、山留壁の内側の掘削に伴い山留壁が地中切梁側に変位又は変形して地中切梁が押圧されることで、その反作用として地中切梁から山留壁に支持力(反力)が発生し、それにより山留壁が地中切梁により支保されることになる。即ち、山留壁の内側を掘削する前の地中切梁の構築時点では、地中切梁から山留壁に対する反力が発生していないため、かかる山留壁が変位又は変形しやすい状態となっており、山留壁の内側を掘削することで、山留壁が掘削側に変位又は変形し、山留め根入れ部の受働土圧とともに地中切梁による反力の合算で内外の力がバランスし、山留壁が安定良く支保されることになるが、この場合、山留壁の地中切梁側への変位又は変形によって、周辺地盤が緩み、周辺構造物に悪影響を与える可能性があった。   However, in the prior art described in the above-mentioned patent document, the excavation of the inside of the retaining wall is displaced or deformed to the underground cutting beam side and the underground cutting beam is pressed, and as a reaction thereof. A supporting force (reaction force) is generated from the underground beam to the retaining wall, whereby the retaining wall is supported by the underground beam. That is, at the time of construction of the underground beam before excavating the inside of the retaining wall, there is no reaction force from the underground beam to the retaining wall, so that the retaining wall is likely to be displaced or deformed By excavating the inside of the retaining wall, the retaining wall is displaced or deformed to the excavation side. Will be balanced and the retaining wall will be stably supported. In this case, the surrounding ground may loosen due to the displacement or deformation of the retaining wall to the underground beam side, and the surrounding structure may be adversely affected. There was sex.
本発明は、このような実情に鑑みたもので、その主たる課題は、地中切梁の構築時点から山留壁を安定よく強固に支保して、山留壁の変位や変形を抑制することのできる地中切梁の施工方法を提供する点にある。   The present invention has been made in view of such circumstances, and its main problem is to stably and firmly support the mountain retaining wall from the time of construction of the underground beam to suppress displacement and deformation of the mountain retaining wall. The point is to provide a construction method for underground beams.
本発明の第1特徴構成は、山留壁を地中で支保する地中切梁を構築する地中切梁の施工方法であって、
前記地中切梁の少なくとも一部に膨張部を形成し、当該地中切梁の姿勢が所定姿勢に整った状態で前記膨張部を膨張させることで、前記山留壁に向けて突っ張り力を発揮させる点にある。
The first characteristic configuration of the present invention is an underground beam construction method for constructing an underground beam that supports a mountain wall in the ground,
An inflating portion is formed on at least a part of the underground beam, and the inflating portion is inflated in a state where the posture of the underground beam is in a predetermined posture, so that a tensile force is applied toward the mountain retaining wall. It is in the point to be demonstrated.
本特徴構成によれば、地中切梁の姿勢が所定姿勢に整った状態で、地中切梁の少なくとも一部に形成された膨張部を膨張させることにより、山留壁に向けて突っ張り力を発揮させることができる。
すなわち、膨張部が膨張することによって、地中切梁が山留壁に向かって伸長し、山留壁を積極的に外方(掘削箇所の背面方向)へ押圧しようとする突っ張り力が生じることになる。したがって、地中切梁の構築時点から当該突っ張り力によって山留壁を安定よく強固に支保することができ、山留壁の変位や変形を確実に抑制することが可能となる。
なお、膨張部の膨張量に関しては、山留壁の規模や周辺土壌の状況などを考慮して、適切な突っ張り力を発揮させるに必要な量に設定するのが好ましい。例えば、突っ張り力が、地中切梁内に内部応力として残存する程度に設定することも可能であり、また、突っ張り力によって山留壁を予め外方(掘削箇所の背面方向)へ変位あるいは変形させておき、掘削に伴う山留壁の変位あるいは変形と相殺させるように設定することもできる。
According to this characteristic configuration, the tensile force toward the mountain retaining wall is obtained by inflating the inflated part formed in at least a part of the underground beam in a state where the underground beam is in a predetermined posture. Can be demonstrated.
That is, when the expansion part expands, the underground beam extends toward the mountain retaining wall, and a tensile force is generated to actively push the mountain retaining wall outward (backward direction of the excavation site). become. Therefore, the retaining wall can be stably and firmly supported by the tension force from the time of construction of the underground beam, and the displacement and deformation of the retaining wall can be reliably suppressed.
The expansion amount of the expansion portion is preferably set to an amount necessary for exerting an appropriate tension force in consideration of the scale of the mountain retaining wall and the surrounding soil conditions. For example, it is possible to set the tension force so that it remains as internal stress in the underground beam, and the retaining wall is displaced or deformed in advance (backward direction of the excavation site) by the tension force. In addition, it can be set so as to cancel the displacement or deformation of the retaining wall accompanying excavation.
本発明の第2特徴構成は、前記膨張部を、硬化に伴って膨張する膨張硬化性材料で構成する点にある。   The 2nd characteristic structure of this invention exists in the point which comprises the said expansion part with the expansion curable material which expands with hardening.
本特徴構成によれば、硬化に伴って膨張する膨張硬化性材料、例えば、膨張コンクリートなどにより膨張部を構成するので、地中切梁の少なくとも一部に膨張コンクリートなどを打設するだけの比較的簡単な施工により、山留壁に向けて所定の突っ張り力を合理的に発揮させて、山留壁の変位や変形を所望通りに抑制することができる。   According to this characteristic configuration, the expansion part is configured by an expansion curable material that expands as it hardens, for example, expanded concrete. Therefore, comparison is made only by placing expanded concrete or the like on at least a part of the underground beam. With simple construction, a predetermined tension force can be rationally exerted toward the retaining wall, and displacement and deformation of the retaining wall can be suppressed as desired.
本発明の第3特徴構成は、前記地中切梁を、硬化性材料からなる複数の柱状体を連設した地中連続壁として構築し、当該地中切梁の一部の柱状体を、前記膨張部としての前記膨張硬化性材料で構成する点にある。   In the third feature configuration of the present invention, the underground beam is constructed as an underground continuous wall in which a plurality of columnar bodies made of a curable material are connected, and a part of the columnar body of the underground beam is It exists in the point comprised with the said expansion | hardening curable material as the said expansion | swelling part.
本特徴構成によれば、地中切梁としての地中連続壁を構築する複数の柱状体のうち、一部の柱状体を膨張コンクリートなどの膨張硬化性材料で構成して、当該柱状体を膨張部として機能させるので、山留壁に向かう突っ張り力は、上下方向に長い柱状体の全長にわたって発揮される。
したがって、山留壁を積極的に外方へ押圧しようとする突っ張り力は、山留壁の上下方向にわたってほぼ均等に作用することになり、山留壁をより一層安定よく強固に支保することができ、山留壁の変位や変形をより確実に抑制することができる。
なお、地中切梁としての地中連続壁を多数の柱状体により構築する場合、突っ張り力を山留壁に対して確実に作用させるため、膨張硬化性材料で構成する膨張部としての柱状体は、地中連続壁の中間部よりも山留壁側の領域に配置するのが好ましい。
According to this characteristic configuration, among the plurality of columnar bodies constituting the underground continuous wall as the underground beam, a part of the columnar bodies is configured with an expansion curable material such as expanded concrete, and the columnar body is Since it functions as an inflating part, the tension force toward the mountain retaining wall is exhibited over the entire length of the columnar body that is long in the vertical direction.
Therefore, the tension force that actively presses the retaining wall outwardly acts almost evenly in the vertical direction of the retaining wall, so that the retaining wall can be supported more stably and firmly. It is possible to more reliably suppress displacement and deformation of the mountain retaining wall.
In addition, when constructing the underground continuous wall as an underground cutting beam with a large number of columnar bodies, the columnar body as an inflating part composed of an expansion curable material is used to ensure that the tensile force acts on the mountain retaining wall. Is preferably disposed in the region closer to the mountain retaining wall than the middle part of the underground continuous wall.
山留壁と地中切梁を示す平面図Plan view showing Yamato wall and underground beam 図1におけるA−A線断面図AA line sectional view in FIG. 図1におけるB−B線断面図BB sectional view in FIG. 地中切梁の施工方法を示す断面図Sectional view showing the construction method of underground beam 地中切梁の施工方法を示す断面図Sectional view showing the construction method of underground beam 地中切梁の施工方法を示す断面図Sectional view showing the construction method of underground beam 地中切梁の施工方法を示す断面図Sectional view showing the construction method of underground beam
本発明による地中切梁の施工方法の実施形態を図面に基づいて説明する。
本発明に係る地中切梁は、図1〜図3に示すように、例えば、第1地中切梁1、第2地中切梁2、及び、第3地中切梁3を備え、平面視でほぼL字状に構築された山留壁4を地中に埋設された状態で支保する。
本実施形態において、山留壁4は、時間の経過に伴って硬化する硬化性材料のうち、例えば、泥水や建設汚泥などにセメントなどの固化材を加えて混練した流動化処理土、特に、比較的流動性が高くて強度の低い流動化処理土からなる多数(複数)の第1柱状体4aと、鉄筋コンクリートからなる多数(複数)の第2柱状体4bが、交互にかつ隣接するものどうしが互いに重複する状態で一体化されて構築された柱列式の地中連続壁で構成される。
An embodiment of a construction method for underground beams according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the underground beam according to the present invention includes, for example, a first underground beam 1, a second underground beam 2, and a third underground beam 3, The mountain retaining wall 4 constructed in a substantially L shape in plan view is supported in a state of being buried in the ground.
In the present embodiment, the mountain retaining wall 4 is, for example, a fluidized soil that is kneaded by adding a solidifying material such as cement to muddy water or construction sludge among curable materials that harden over time. A large number (plural) of first columnar bodies 4a made of fluidized soil with relatively high fluidity and low strength and a plurality of (multiple) second columnar bodies 4b made of reinforced concrete are alternately and adjacent to each other. Are composed of a columnar underground continuous wall constructed by being integrated with each other overlapping each other.
第1〜第3地中切梁1、2、3は、基本的に、上述した硬化性材料のうち、比較的流動性が低くて強度の高い流動化処理土からなる多数(複数)の第1柱状体1a、2a、3aと、山留壁4に当接する2本で一対の端部柱状体1c、2c、3cによって、隣接するものどうしが互いに重複する状態で一体化されて構築された柱列式の地中連続壁で構成されており、山留壁4の完成後に施工される。
ただし、その地中連続壁の一部の柱状体、つまり、第2柱状体1b、2b、3bは、流動化処理土の硬化に伴って膨張する石灰やカルシウム・サルフォ・アルミネート鉱物などの膨張材を混入した膨張硬化性材料、例えば、膨張コンクリートで構成されていて、当該第2柱状体1b、2b、3bが、施工後期において山留壁4を支保可能な状態となった所定姿勢に整った状態で、山留壁4に向けて突っ張り力Fを発揮させる膨張部として機能するように構成される。
The first to third underground beams 1, 2, and 3 are basically a large number (a plurality of) of the above-described curable materials made of fluidized soil having relatively low fluidity and high strength. Constructed by one columnar body 1a, 2a, 3a and two pairs of end columnar bodies 1c, 2c, 3c in contact with the mountain retaining wall 4 so that adjacent ones overlap each other. It is composed of pillar-lined underground continuous walls and is constructed after the mountain retaining wall 4 is completed.
However, some columnar bodies of the underground continuous wall, that is, the second columnar bodies 1b, 2b, and 3b are expanded such as lime and calcium / sulfo / aluminate mineral that expand with hardening of the fluidized soil. The second columnar bodies 1b, 2b, 3b are arranged in a predetermined posture in which the retaining wall 4 can be supported in the later stage of construction. It is comprised so that it may function as an expansion | swelling part which exhibits the thrust F toward the mountain retaining wall 4 in the state.
すなわち、第1〜第3地中切梁1、2、3は、多数の第1柱状体1a、2a、3a、第2柱状体1b、2b、3b、及び、端部柱状体1c、2c、3cにより、山留壁4と既存地下躯体5との間にわたって地中連続壁として構築され、その地中連続壁のうち、端部柱状体1c、2c、3cに隣接する柱状体と、その柱状体からひとつ置いた柱状体とが膨張部としての第2柱状体1b、2b、3bにより構成される。
そして、第1〜第3地中切梁1、2、3の各端部柱状体1c、2c、3cは、山留壁4を構成する柱状体4a、4bのうち、強度的に強固な鉄筋コンクリート製の第2柱状体4bに当接するように構築される。
That is, the first to third underground beams 1, 2 and 3 include a plurality of first columnar bodies 1a, 2a and 3a, second columnar bodies 1b, 2b and 3b, and end columnar bodies 1c and 2c, 3c is constructed as an underground continuous wall between the mountain retaining wall 4 and the existing underground frame 5, and among the underground continuous walls, the columnar bodies adjacent to the end columnar bodies 1c, 2c, 3c, and the columnar shape thereof One columnar body placed from the body is constituted by the second columnar bodies 1b, 2b, 3b as the inflating portions.
The end columnar bodies 1c, 2c and 3c of the first to third underground beams 1, 2 and 3 are reinforced concrete which is strong in strength among the columnar bodies 4a and 4b constituting the mountain retaining wall 4. It is constructed so as to come into contact with the second columnar body 4b.
次に、本発明に係る山留壁4と地中切梁1、2、3の施工方法について説明する。
山留壁4は、既存の建物を解体した後、流動化処理土からなる多数の第1柱状体4aを打設し、その後、鉄筋コンクリートからなる多数の第2柱状体4bを打設して構築される。
第1柱状体4aは、例えば、掘削用ビットを備えたケーシングチューブやクレーン(図4及び図5の6、7を参照)などを使用して地中を掘削するとともに、ケーシングチューブ内に硬化性材料を充填しながらケーシングチューブを引き抜くことで構築され、第2柱状体4bは、ケーシングチューブ内に鉄筋とコンクリートを充填しながらケーシングチューブを引き抜くことで構築される。
第1柱状体4aと第2柱状体4bは、新たに構築する新規地下躯体8の地表面GLからの深さや遮水に必要な深さなどを考慮して、地表面GLから必要な深さにわたって、隣接する第1柱状体4aと第2柱状体4bとが、互いに重複する状態で一体化されて構築される。
Next, the construction method of the mountain retaining wall 4 and the underground beams 1, 2, and 3 according to the present invention will be described.
The Yamato wall 4 is constructed by dismantling an existing building, placing a number of first columnar bodies 4a made of fluidized soil, and then placing a number of second columnar bodies 4b made of reinforced concrete. Is done.
The first columnar body 4a is excavated in the ground using, for example, a casing tube or a crane (see FIGS. 4 and 5 in FIGS. 4 and 5) provided with an excavating bit, and hardened in the casing tube. The second columnar body 4b is constructed by pulling out the casing tube while filling the reinforcing tube and the concrete in the casing tube.
The first columnar body 4a and the second columnar body 4b are necessary depths from the ground surface GL in consideration of the depth from the ground surface GL of the newly constructed new underground skeleton 8 and the depth necessary for water shielding. The first columnar body 4a and the second columnar body 4b adjacent to each other are integrated and constructed so as to overlap each other.
当該山留壁4が構築された後、第1〜第3地中切梁1、2、3が構築される。
以下、第1地中切梁1の施工方法について説明するが、第2地中切梁2と第3地中切梁3に関しても、第1地中切梁1と同じ施工方法で構築される。
第1地中切梁1は、図4及び図5に示すように、山留壁4の場合と同様、例えば、掘削用ビットを備えたケーシングチューブ6やクレーン7などを使用して、まず、第1柱状体1aと端部柱状体1cが構築される。
すなわち、図4に示すように、第1柱状体1aが、ケーシングチューブ6により地中を掘削するとともに、ケーシングチューブ6内に流動化処理土を充填し、流動化処理土の硬化前にケーシングチューブ6を引き抜くことで構築され、端部柱状体1cも、同じ施工方法により構築される。
After the mountain retaining wall 4 is constructed, the first to third underground beams 1, 2, and 3 are constructed.
Hereinafter, although the construction method of the first underground beam 1 will be described, the second underground beam 2 and the third underground beam 3 are also constructed by the same construction method as the first underground beam 1. .
As shown in FIGS. 4 and 5, the first underground beam 1 is similar to the case of the retaining wall 4, for example, using a casing tube 6, a crane 7, and the like equipped with an excavation bit, The first columnar body 1a and the end columnar body 1c are constructed.
That is, as shown in FIG. 4, the first columnar body 1a excavates the ground with the casing tube 6, fills the casing tube 6 with fluidized soil, and before the fluidized soil is hardened, the casing tube It is constructed by pulling out 6, and the end columnar body 1c is also constructed by the same construction method.
したがって、第1柱状体1aと端部柱状体1cが構築された状態では、図5に示すように、第2柱状体1bの構築箇所、具体的には、端部柱状体1cに隣接する箇所とひとつ置いた箇所とが未構築の状態にあり、その未構築の箇所に第2柱状体1bが構築される。
この第2柱状体1bも、掘削用ビットを備えたケーシングチューブ6やクレーン7などを使用し、ケーシングチューブ6により地中を掘削するとともに、ケーシングチューブ6内に膨張コンクリートなどの膨張硬化性材料を充填しながらケーシングチューブ6を引き抜くことで構築される。
これら柱状体1a、1b、1cの構築に際し、図6に示すように、山留壁4に隣接する端部柱状体1cの高さを高くし、山留壁4から遠ざかるに連れて、その高さを階段状に低くするように構築することができ、それによって、硬化性材料の使用量を極力少なくしながら、山留壁4を上下方向の長い距離にわたって効果的に支保することができる。
Therefore, in the state where the first columnar body 1a and the end columnar body 1c are constructed, as shown in FIG. 5, the construction location of the second columnar body 1b, specifically, the location adjacent to the end columnar body 1c. And the place where one is placed is in an unstructured state, and the second columnar body 1b is constructed in the unconstructed place.
The second columnar body 1b also uses a casing tube 6 and a crane 7 equipped with excavation bits, excavates the ground with the casing tube 6, and expands and hardens material such as expanded concrete into the casing tube 6. It is constructed by pulling out the casing tube 6 while filling.
When constructing these columnar bodies 1a, 1b, and 1c, as shown in FIG. 6, the height of the end columnar body 1c adjacent to the mountain retaining wall 4 is increased, and as the distance from the mountain retaining wall 4 increases, its height increases. The height can be constructed to be lowered stepwise, whereby the mountain retaining wall 4 can be effectively supported over a long distance in the vertical direction while minimizing the amount of curable material used.
このようにして、第1地中切梁1と第2地中切梁2と第3地中切梁3が、山留壁4と既存地下躯体5との間にわたって構築される。
そして、各地中切梁1、2、3が打設されて所定姿勢に整った状態で、膨張部としての各第2柱状体1b、2b、3bが膨張することで、山留壁4に向けて突っ張り力Fを発揮して、山留壁4を確実に支保することになる。
その後、図7に示すように、山留壁4の内側の土壌などが取り除かれ、新たに新規地下躯体8が順次構築される。そして、各地中切梁1、2、3において、山留壁4に近接する階段状の柱状体部分が邪魔になる場合には、工事の進捗に伴って山留壁4を支保するに足る支保力が確保された時点で、階段状の柱状体部分やその一部を切除する。
In this way, the first underground beam 1, the second underground beam 2, and the third underground beam 3 are constructed between the mountain retaining wall 4 and the existing underground frame 5.
Then, in a state where the intermediate beams 1, 2, 3 are driven and are in a predetermined posture, each second columnar body 1 b, 2 b, 3 b as the inflating part expands toward the mountain retaining wall 4. As a result, the tension force F is exhibited and the mountain retaining wall 4 is securely supported.
Thereafter, as shown in FIG. 7, the soil and the like inside the mountain retaining wall 4 are removed, and new underground structures 8 are sequentially constructed. And, in each of the intermediate beams 1, 2, and 3 in each place, when the stepped columnar body part close to the mountain retaining wall 4 gets in the way, it is sufficient to support the mountain retaining wall 4 as the construction progresses. When the force is secured, the stepped columnar part or part thereof is excised.
〔別実施形態〕
(1)前述の実施形態では、各地中切梁1、2、3を複数の柱状体1a〜1c、2a〜2c、3a〜3cを連設した地中連続壁として構築した例を示したが、各地中切梁1、2、3の具体的な構成は任意であり、例えば、1枚の壁により構成することもでき、その場合には、コンクリート製の壁の一部に膨張材を注入したり、膨張コンクリートを打設したりして膨張部を形成すればよい。
また、各地中切梁1、2、3を複数の柱状体1a〜1c、2a〜2c、3a〜3cによる地中連続壁として構築する場合、膨張部としての第2柱状体1b、2b、3bの構築個所及び構築本数は、周囲の地盤などの状況に応じて自由に設定することができる。
ただし、膨張部としての第2柱状体1b、2b、3bは、膨張に伴う突っ張り力Fを山留壁4に対して確実かつ効果的に作用させるため、できるだけ山留壁4に近い箇所に構築するのが望ましい。
[Another embodiment]
(1) In the above-described embodiment, the example in which the intermediate beams 1, 2, and 3 are constructed as underground continuous walls in which a plurality of columnar bodies 1a to 1c, 2a to 2c, and 3a to 3c are connected is shown. The specific configuration of each of the intermediate beams 1, 2, and 3 is arbitrary. For example, it can be configured by a single wall, and in that case, an expansion material is injected into a part of the concrete wall. Or an expanded concrete may be placed to form the expanded portion.
Moreover, when constructing the various intermediate beams 1, 2 and 3 as underground continuous walls by a plurality of columnar bodies 1a to 1c, 2a to 2c and 3a to 3c, the second columnar bodies 1b, 2b and 3b as inflating portions are used. The construction location and the number of constructions can be freely set according to the situation such as the surrounding ground.
However, the second columnar bodies 1b, 2b, and 3b as the expanding portions are constructed as close to the retaining wall 4 as possible in order to cause the tension force F accompanying the expansion to act on the retaining wall 4 reliably and effectively. It is desirable to do.
(2)前述の実施形態では、平面視でほぼL字状の山留壁4に対して、第1〜第3までの合計3基の地中切梁1、2、3を構築した例を示したが、地中切梁の構築数は、当然のことながら山留壁4の規模などに応じて自由に設定可能である。
また、対象となる山留壁4は、既存の建物を解体した後の既存地下躯体5に沿って構築されるものに限らず、あらゆる種類の山留壁4が含まれ、したがって、本発明はあらゆる種類の山留壁4を対象として実施することができる。
(2) In the above-described embodiment, an example in which a total of three underground beams 1, 2, and 3 from the first to the third are constructed with respect to the mountain wall 4 that is substantially L-shaped in plan view. As shown, the number of underground beams can be set freely according to the scale of the mountain retaining wall 4.
In addition, the target mountain retaining wall 4 is not limited to the one constructed along the existing underground skeleton 5 after dismantling the existing building, but includes all kinds of mountain retaining walls 4. Any kind of mountain wall 4 can be implemented.
(3)前述の実施形態では、第1〜第3地中切梁1、2、3を、流動化処理土やコンクリートで構成したが、当然、ソイルセメント柱列工法や高圧噴射撹拌工法等の各種の地盤改良工法による改良体で構成しても構わない。 (3) In the above-described embodiment, the first to third underground beams 1, 2 and 3 are made of fluidized soil or concrete. Naturally, soil cement column method, high pressure jet agitation method, etc. You may comprise with the improvement body by various ground improvement construction methods.
(4)前述の実施形態では、山留壁4を、流動化処理土からなる第1柱状体4aと鉄筋コンクリートからなる第2柱状体4bを交互にかつ隣接するものどうしが互いに重複する状態で一体化した柱列式の地中連続壁で構成したが、当然、本実施形態の構成に限らず、全ての柱状体を同じ材料で構築したり、柱列式以外の構造で構築しても構わない。 (4) In the above-described embodiment, the mountain retaining wall 4 is integrated with the first columnar body 4a made of fluidized soil and the second columnar body 4b made of reinforced concrete alternately and adjacently overlapping each other. However, the present invention is not limited to the configuration of the present embodiment, and all the columnar bodies may be constructed of the same material or may be constructed of a structure other than the columnar type. Absent.
1、2、3 地中切梁
1a、1c、2a、2c、3a、3c 硬化性材料からなる柱状体
1b、2b、3b 膨張部としての膨張硬化性材料からなる柱状体
4 山留壁
F 突っ張り力
1, 2, 3 Underground beam 1a, 1c, 2a, 2c, 3a, 3c Columnar body 1b, 2b, 3b made of curable material Columnar body 4 made of inflatable curable material as inflatable portion 4 Yamato wall F Power

Claims (3)

  1. 山留壁を地中で支保する地中切梁を構築する地中切梁の施工方法であって、
    前記地中切梁の少なくとも一部に膨張部を形成し、当該地中切梁の姿勢が所定姿勢に整った状態で前記膨張部を膨張させることで、前記山留壁に向けて突っ張り力を発揮させる地中切梁の施工方法。
    An underground beam construction method for constructing an underground beam that supports a mountain wall underground,
    An inflating portion is formed on at least a part of the underground beam, and the inflating portion is inflated in a state where the posture of the underground beam is in a predetermined posture, so that a tensile force is applied toward the mountain retaining wall. Construction method of underground beams to be demonstrated.
  2. 前記膨張部を、硬化に伴って膨張する膨張硬化性材料で構成する請求項1に記載の地中切梁の施工方法。   The construction method of the underground cutting beam according to claim 1, wherein the inflatable portion is made of an inflatable curable material that expands with hardening.
  3. 前記地中切梁を、硬化性材料からなる複数の柱状体を連設した地中連続壁として構築し、当該地中切梁の一部の柱状体を、前記膨張部として前記膨張硬化性材料で構成する請求項2に記載の地中切梁の施工方法。   The underground beam is constructed as an underground continuous wall in which a plurality of columnar bodies made of a curable material are connected, and a part of the columnar body of the underground beam is used as the inflatable portion as the expansion curable material. The construction method of the underground beam of Claim 2 comprised by these.
JP2014208582A 2014-10-10 2014-10-10 Construction method of underground beam Active JP6460713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208582A JP6460713B2 (en) 2014-10-10 2014-10-10 Construction method of underground beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208582A JP6460713B2 (en) 2014-10-10 2014-10-10 Construction method of underground beam

Publications (2)

Publication Number Publication Date
JP2016079569A true JP2016079569A (en) 2016-05-16
JP6460713B2 JP6460713B2 (en) 2019-01-30

Family

ID=55957833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208582A Active JP6460713B2 (en) 2014-10-10 2014-10-10 Construction method of underground beam

Country Status (1)

Country Link
JP (1) JP6460713B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874498A (en) * 1981-10-26 1983-05-04 Takenaka Komuten Co Jack
JPS6013110A (en) * 1983-07-04 1985-01-23 Takenaka Komuten Co Ltd Soil strut preloading work
JPS6414425A (en) * 1987-07-07 1989-01-18 Shimizu Construction Co Ltd Landslide protection wall method
JPH02164918A (en) * 1988-12-19 1990-06-25 Fujita Corp Deformation preventing method for sheathing wall in sheathing
JPH09317373A (en) * 1996-05-24 1997-12-09 Toyo Constr Co Ltd Method of shaft construction
JP2001220745A (en) * 2000-02-10 2001-08-17 Yachiyo Engineering Co Ltd Strut in form of leading plate for earth retaining frame
JP2003090043A (en) * 2001-09-19 2003-03-28 Takenaka Komuten Co Ltd Construction method for earth retaining
US20110142550A1 (en) * 2008-08-14 2011-06-16 Jae Ho Lee Method for constructing a chair-type, self-supported earth retaining wall
JP2011132689A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structure of earth retaining wall serving also as footing and construction method of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874498A (en) * 1981-10-26 1983-05-04 Takenaka Komuten Co Jack
JPS6013110A (en) * 1983-07-04 1985-01-23 Takenaka Komuten Co Ltd Soil strut preloading work
JPS6414425A (en) * 1987-07-07 1989-01-18 Shimizu Construction Co Ltd Landslide protection wall method
JPH02164918A (en) * 1988-12-19 1990-06-25 Fujita Corp Deformation preventing method for sheathing wall in sheathing
JPH09317373A (en) * 1996-05-24 1997-12-09 Toyo Constr Co Ltd Method of shaft construction
JP2001220745A (en) * 2000-02-10 2001-08-17 Yachiyo Engineering Co Ltd Strut in form of leading plate for earth retaining frame
JP2003090043A (en) * 2001-09-19 2003-03-28 Takenaka Komuten Co Ltd Construction method for earth retaining
US20110142550A1 (en) * 2008-08-14 2011-06-16 Jae Ho Lee Method for constructing a chair-type, self-supported earth retaining wall
JP2011132689A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structure of earth retaining wall serving also as footing and construction method of the same

Also Published As

Publication number Publication date
JP6460713B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
KR20100068597A (en) A shoring method using arch plate pile and h-pile
KR101641293B1 (en) Double line retaining wall self-reliance composite wall construction method for reinforcement pile wall
JP2017096063A (en) Earth retaining excavation method and skeleton construction method
JP2015078499A (en) Retaining wall structure and retaining wall construction method
KR101479267B1 (en) Method for constructing tunnel by using pipe
JP2009235809A (en) Construction method for dismantlement and removal of underground structure having foundation pile
JP6460713B2 (en) Construction method of underground beam
JP6460712B2 (en) Construction method of underground continuous wall
KR101744378B1 (en) Method for Constructing Retaining Wall
JP2012087561A (en) Construction method of outer peripheral column in inverted construction
CN105421488A (en) Constriction method for changing support of foundation slab in underground composite enclosure system
KR101877369B1 (en) Structure and method of constructing turnel
KR100898969B1 (en) Tunnel Boring Method Using Sheet Pile and Tunnel Structure therof
JP2011246910A (en) Construction method of underground structure
KR101974183B1 (en) Construction methods of approaching dual tunnel
KR101612527B1 (en) Construction method for tunneling
JP2005307688A (en) Construction method for earth retaining wall for newly built underground skeleton and construction method for newly built skeleton by use of its method
KR101612522B1 (en) Construction method for tunneling
JP6220659B2 (en) Position adjustment method of reaction force receiving member and top of column
JP5055249B2 (en) Multiple tunnel construction method and multiple tunnel structure
JP2017119953A (en) Building method using reverse out method
JP2017166139A (en) Construction method of underground structure
KR20020036505A (en) Tunnel Construction Method for using Wave Profile Type Steel Plate
KR200241025Y1 (en) Tunnel Construction Structure for using Wave Profile Type Steel Plate
JP6827256B2 (en) How to rebuild the building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181225

R150 Certificate of patent or registration of utility model

Ref document number: 6460713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150