JP2016075833A - Fresnel-lens optical system and lighting system using the optical system - Google Patents

Fresnel-lens optical system and lighting system using the optical system Download PDF

Info

Publication number
JP2016075833A
JP2016075833A JP2014206854A JP2014206854A JP2016075833A JP 2016075833 A JP2016075833 A JP 2016075833A JP 2014206854 A JP2014206854 A JP 2014206854A JP 2014206854 A JP2014206854 A JP 2014206854A JP 2016075833 A JP2016075833 A JP 2016075833A
Authority
JP
Japan
Prior art keywords
optical element
light source
region
light
annular zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014206854A
Other languages
Japanese (ja)
Other versions
JP6591152B2 (en
Inventor
誠治 村田
Seiji Murata
誠治 村田
別井 圭一
Keiichi Betsui
圭一 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014206854A priority Critical patent/JP6591152B2/en
Publication of JP2016075833A publication Critical patent/JP2016075833A/en
Application granted granted Critical
Publication of JP6591152B2 publication Critical patent/JP6591152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system that offers a high efficiency and a high maximum luminous intensity while collecting luminous flux from a light source.SOLUTION: There is provided an optical element opposed to a light source and including a plurality of grooved ring bands, in which each ring band has an entrance surface, an exit surface, and a side surface substantially perpendicular to the exit surface, the optical element having a first region where a rise angle of the entrance surface is smaller in the ring band at the center and is larger in ring bands at the periphery, and the rise angle of the entrance surface of one of ring bands outside the first region which is the nearest to the center is smaller than the rise angle of the entrance surface of the outermost ring band in the first region.SELECTED DRAWING: Figure 3

Description

本発明は、光源の配光分布を変更するフレネルレンズ光学系に関するものである。   The present invention relates to a Fresnel lens optical system that changes a light distribution of a light source.

フレネルレンズに関する技術として、例えば、特許文献1に記載のものが知られている。   As a technology related to the Fresnel lens, for example, the one described in Patent Document 1 is known.

特開2013−190788号公報JP 2013-190788 A

シーリングライトやベース照明等の照明装置の光源として、環境への配慮や低消費電力化のために、従来の蛍光灯や白熱電球に代えてLED(Light Emitting Diode、発光ダイオード)が使用されつつある。LED光源は、従来の蛍光灯や白熱電球と異なる配光分布を有しており、光源の正面に向かって最も光度が高く、直交する方向、すなわち水平な方向に向かっては非常に暗い特徴がある。このように、LEDは指向性が高い光源であることから、従来の照明器具に搭載した際に、光り方が違うために、異なった照明環境になってしまう懸念がある。   As light sources for lighting devices such as ceiling lights and base lights, LEDs (Light Emitting Diodes) are being used in place of conventional fluorescent and incandescent bulbs for environmental considerations and low power consumption. . The LED light source has a light distribution different from that of conventional fluorescent lamps and incandescent lamps, has the highest luminous intensity toward the front of the light source, and is very dark in the orthogonal direction, that is, in the horizontal direction. is there. As described above, since the LED is a light source having high directivity, there is a concern that when it is mounted on a conventional lighting fixture, the lighting method is different, so that the lighting environment becomes different.

従来のスポットライトやビーム電球では、白熱電球のように、フィラメントが発光する光源と、発光光束を集光する鏡面ミラーとレンズを組み合わせて光学系が構成されていた。この光学系を用いて、光源をLEDに置き換えた場合、白熱電球とLED光源の指向性が異なることから、適切な配光分布が得られず、かつ効率も低くなる課題がある。この課題を解決するためには、新規に専用の光学系を開発する必要がある。   In conventional spotlights and beam bulbs, like an incandescent bulb, an optical system is configured by combining a light source that emits a filament, a mirror mirror that collects a luminous flux, and a lens. When the light source is replaced with an LED using this optical system, the directivity of the incandescent bulb and the LED light source is different, so that there is a problem that an appropriate light distribution cannot be obtained and the efficiency is lowered. In order to solve this problem, it is necessary to develop a new dedicated optical system.

たとえば、光源の発光光束を集光する方式として、フレネルレンズを利用した光学系がある。フレネルレンズは、レンズ表面を同心円上の輪帯で裁断し、略平面に落とし込んだ形状をしている。それぞれの輪帯で光線が屈折され、レンズ効果を得る仕組みになっている。   For example, there is an optical system using a Fresnel lens as a method of condensing the luminous flux of a light source. The Fresnel lens has a shape in which the lens surface is cut with a concentric annular zone and dropped into a substantially flat surface. Light rays are refracted in each ring zone to obtain a lens effect.

上記特許文献1では、光源からの光の方向を変える光学素子であって、該光学素子の中心の周りの屈折レンズ部とその外側の反射体部を備え、該屈折レンズ部は該光源からの光を屈折させて前方に照射し、該反射体部は、該光源からの光を全反射させて前方に照射させるように構成され、該光学素子の中心と該光源の中心を結ぶ線を光軸として、該屈折レンズ部の該中心付近の焦点距離は、該光源の中心位置までの光軸上の距離よりも小さく、該屈折レンズ部の周縁部分の焦点距離は、該光源の中心位置までの光軸上の距離よりも大きくなるように構成された光学素子を開示している。   In the above-mentioned Patent Document 1, an optical element that changes the direction of light from a light source, comprising a refractive lens part around the center of the optical element and a reflector part outside thereof, the refractive lens part being from the light source The light is refracted and irradiated forward, and the reflector portion is configured to totally reflect light from the light source and irradiate forward, and a line connecting the center of the optical element and the center of the light source is light. As the axis, the focal length near the center of the refractive lens portion is smaller than the distance on the optical axis to the center position of the light source, and the focal length of the peripheral portion of the refractive lens portion reaches the center position of the light source. An optical element configured to be larger than the distance on the optical axis is disclosed.

上記特許文献1に記載の構成では、屈折レンズ部の該中心付近の焦点距離は、該光源の中心位置までの光軸上の距離よりも小さく、該屈折レンズ部の周縁部分の焦点距離は、該光源の中心位置までの光軸上の距離よりも大きいため、出射光束は、屈折レンズ部の中心付近では集光し、周縁部では発散する分布になる。この構成では、中心付近の集光する光束は、出射面から十分に離れた位置では光源の結像位置を越えて発散光束となる。光線を集光する方向に屈折させる場合、屈折角度が大きいほど、入射面と入射光線の角度が浅くなり、フレネル反射が発生しやすく、透過率が低下するため最大光度が低下してしまう。つまり、屈折レンズ部の内側では屈折角度が大きいため、光学素子の入射面と入射光線の角度が浅くなり、フレネル反射が発生しやすく、透過率が低下するため最大光度が低下してしまう課題がある。また、屈折レンズ部の外側に集光機能を有する反射体部を設けることで最大光度を向上できるが、反射体部が追加される光学素子が大きくなってしまう課題がある。   In the configuration described in Patent Document 1, the focal length near the center of the refractive lens portion is smaller than the distance on the optical axis to the center position of the light source, and the focal length of the peripheral portion of the refractive lens portion is Since the distance is larger than the distance on the optical axis to the center position of the light source, the emitted light beam is condensed near the center of the refractive lens portion and diverges at the peripheral portion. In this configuration, the condensed light beam near the center becomes a divergent light beam beyond the imaging position of the light source at a position sufficiently away from the emission surface. When the light beam is refracted in the condensing direction, the larger the refraction angle, the shallower the angle between the incident surface and the incident light beam, the more likely Fresnel reflection occurs, and the lower the transmittance, resulting in a decrease in the maximum luminous intensity. In other words, since the angle of refraction is large inside the refractive lens part, the angle between the incident surface of the optical element and the incident light beam becomes shallow, Fresnel reflection is likely to occur, and the transmittance decreases, so that the maximum luminous intensity decreases. is there. Moreover, although the maximum luminous intensity can be improved by providing the reflector part which has a condensing function in the outer side of a refractive lens part, the subject that the optical element to which a reflector part is added becomes large occurs.

本発明は、上記従来技術の課題に鑑みて為されたものであり、その目的は、光源からの光束を集光させながら、高効率で最大光度が高い光学系を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an optical system having high efficiency and high maximum luminous intensity while condensing a light beam from a light source.

上記課題は、例えば、特許請求の範囲に記載の発明により解決される。   The above problem is solved by, for example, the invention described in the claims.

より具体的には、本発明に係る光学系は、光源に対向するよう配置され、複数の溝状の輪帯を備えた光学素子において、
各輪帯は入射面と、出射面に対して略垂直な側面とで構成され、前記各輪帯の入射面の立ち上がり角度が、光学素子の中央の輪帯では小さく、外周側に存在する輪帯では大きくなるように変化する第一の領域を備え、該第一の領域の外側に存在する、最も中央側の輪帯の入射面の立ち上がり角度が、第一の領域の最外周の輪帯の入射面の立ち上がり角度よりも小さい光学素子である。
More specifically, an optical system according to the present invention is arranged to face a light source, and in an optical element including a plurality of groove-shaped annular zones,
Each annular zone is composed of an incident surface and a side surface substantially perpendicular to the exit surface, and the rising angle of the incident surface of each annular zone is small in the central annular zone of the optical element and exists on the outer peripheral side. The first zone has a first region that changes so as to increase, and the rising angle of the incident surface of the most central ring zone outside the first region is the outermost ring zone of the first region. The optical element is smaller than the rising angle of the incident surface.

本発明によれば、光源からの光束を集光させながら、高効率で最大光度が高い光学系を提供できる。   According to the present invention, it is possible to provide an optical system with high efficiency and high maximum luminous intensity while condensing a light beam from a light source.

本発明に係る光学素子を搭載した照明装置の一例を示す断面図。Sectional drawing which shows an example of the illuminating device carrying the optical element which concerns on this invention. 本発明に係る光学素子を示す俯瞰図。The bird's-eye view which shows the optical element which concerns on this invention. 本発明に係る光学素子の断面図。Sectional drawing of the optical element which concerns on this invention. 本発明に係る光学素子の輪帯の断面図。Sectional drawing of the ring zone of the optical element which concerns on this invention. 本発明に係る光学素子の輪帯と光路の一例。An example of the ring zone and optical path of the optical element according to the present invention. 本発明に係る光学素子の輪帯の断面図。Sectional drawing of the ring zone of the optical element which concerns on this invention. 第一の実施例に係る光学素子の輪帯の入射面の傾斜角度の分布の一例。An example of distribution of the inclination angle of the entrance plane of the annular zone of the optical element according to the first embodiment. 第二の実施例に係る光学素子の輪帯の入射面の傾斜角度の変化率分布の一例。An example of change rate distribution of the inclination-angle of the entrance plane of the annular zone of the optical element which concerns on a 2nd Example.

以下、本発明の実施の形態について、添付の図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

実施の形態では、光学素子の各輪帯の入射面の立ち上がり角度が、光学素子の中央側が小さく、外周側の方が大きくなるように変化する領域と、最外周に至るまでの間に、隣り合う輪帯であって、外周側の入射面の方が中央側の入射面よりも立ち上がり角度が小さくなる箇所が存在する構成によって、所望のビーム角度に狭めながら、最大光度が高い配光分布を得るために好適な技術について説明する。   In the embodiment, the rising angle of the incident surface of each annular zone of the optical element is adjacent between the region where the central side of the optical element changes so that the central side is small and the outer peripheral side is large, and the outermost circumference is reached. The distribution zone with a high maximum luminous intensity while narrowing to the desired beam angle by the configuration in which there is a portion where the rising angle is smaller on the outer peripheral incident surface than on the central incident surface. A technique suitable for obtaining will be described.

なお、以下の説明は、本発明の一実施形態を説明するためのものであり、本発明の範囲を制限するものではない。従って、当業者であればこれらの各要素若しくは全要素をこれと同等なものに置換した実施形態を採用することが可能であり、これらの実施形態も本発明の範囲に含まれる。   In addition, the following description is for describing one embodiment of the present invention, and does not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which each of these elements or all of the elements are replaced with equivalent ones, and these embodiments are also included in the scope of the present invention.

図1、図2、図3、図4、図5を用いて、第一の実施例を説明する。ここで、図1は、本発明に係る光学素子を搭載した照明装置の一例の断面図を示している。図1では、光源基板11、反射手段2、光学素子3、筐体4、ソケット5から構成された照明装置を示している。   The first embodiment will be described with reference to FIGS. 1, 2, 3, 4, and 5. Here, FIG. 1 shows a cross-sectional view of an example of a lighting device equipped with the optical element according to the present invention. In FIG. 1, an illumination device including a light source substrate 11, a reflection unit 2, an optical element 3, a housing 4, and a socket 5 is illustrated.

筐体4は、剛性が高い構造になっており、光源基板11、反射手段2、光学素子3を支持している。筐体4は、光源基板11に電力を供給するための電源回路を有しており、ソケット5に供給された電力を光源1に適切に配分するための回路を持つ。筐体4は、光源基板11、および電源からの熱を逃がす構成となっており、放熱性が高い素材で出来ている。場合によっては、放熱性の塗料を表面に塗布していても良い。   The housing 4 has a structure with high rigidity, and supports the light source substrate 11, the reflection means 2, and the optical element 3. The housing 4 has a power supply circuit for supplying power to the light source substrate 11, and has a circuit for appropriately distributing the power supplied to the socket 5 to the light source 1. The housing 4 is configured to release heat from the light source substrate 11 and the power source, and is made of a material with high heat dissipation. In some cases, a heat dissipating paint may be applied to the surface.

光源基板11は、少なくとも一つ以上の光源1を搭載している。光源1には、例えばLEDを用いることができ、光源1に対向するように配置される光学素子3に向けて光束を出射させる。光源1には様々な種類の光源を選ぶことができるが、例えば白色光を出射する白色LEDを用いることができる。   The light source substrate 11 has at least one light source 1 mounted thereon. For example, an LED can be used as the light source 1, and a light beam is emitted toward the optical element 3 arranged so as to face the light source 1. Various types of light sources can be selected as the light source 1, and for example, a white LED that emits white light can be used.

白色LEDの構成の一例を説明する。電力を受けて青色光を発光するLEDチップと、該LEDチップからの青色光のエネルギーを受けて励起され、緑色から赤色にかけた波長領域のスペクトルで発光する蛍光体から構成されている。蛍光体は、LEDチップを封止するための樹脂に混ぜられていても良い。また、蛍光体は、赤色と、緑色の光を発光するような、複数の蛍光体を混ぜ、それらが励起して発光した際に黄色に見える発光スペクトルを有するようにすることもできる。当然、蛍光体の発光スペクトルを変更して異なる色温度で発光するように調整されていても良い。さらに、1つのLEDにおいて、複数の発光チップを搭載した大光量タイプのLEDを利用してもよい。複数のLEDチップを搭載したLEDでは、LEDの発光面(光放出面)の中心を規準にして対称となるように、LEDチップを例えば矩形状、同心円状に配置することが好ましいが、配置はこれに限定されるものではない。   An example of the configuration of the white LED will be described. It is composed of an LED chip that emits blue light upon receiving electric power, and a phosphor that is excited by receiving the energy of blue light from the LED chip and emits light in a spectrum in a wavelength region from green to red. The phosphor may be mixed in a resin for sealing the LED chip. In addition, the phosphor may have a light emission spectrum that looks yellow when a plurality of phosphors that emit red and green light are mixed and excited to emit light. Of course, the emission spectrum of the phosphor may be changed so that light is emitted at different color temperatures. Further, in one LED, a large light amount type LED on which a plurality of light emitting chips are mounted may be used. In an LED equipped with a plurality of LED chips, it is preferable to arrange the LED chips in, for example, a rectangular shape or a concentric circle so as to be symmetrical with respect to the center of the light emitting surface (light emitting surface) of the LED. It is not limited to this.

また光源1には、配光の調整や光の取り出し効率を改善するためのレンズやリフレクタなどの光学部品が備えられていてもよい。かかる光学部品として、例えば、透過性を有する材質で成形された凸レンズや、金属蒸着されたミラー、あるいは全反射を利用したリフレクタをチップ周辺部に設けるなどの構成をとることができる。   The light source 1 may be provided with optical components such as a lens and a reflector for adjusting light distribution and improving light extraction efficiency. As such an optical component, for example, a convex lens formed of a transmissive material, a metal-deposited mirror, or a reflector using total reflection can be provided at the periphery of the chip.

光源1は光源基板11に実装される。図1では光源基板11上に、側面からは光源が3つ確認される構成を図示しているが、必要に応じて複数の光源1が実装されてよく、光源1の個数は制限されない。   The light source 1 is mounted on the light source substrate 11. Although FIG. 1 illustrates a configuration in which three light sources are confirmed from the side surface on the light source substrate 11, a plurality of light sources 1 may be mounted as necessary, and the number of light sources 1 is not limited.

また光源基板11は、光源1の他に、供給される電力を、所望の電力に調整して光源1に供給するための駆動回路(ドライバ)と配線、または光源1への電流量、あるいは電圧を制御するための制御回路などの電子部品や電気回路と接続されている。   In addition to the light source 1, the light source substrate 11 adjusts the supplied power to a desired power and supplies the light source 1 with a drive circuit (driver) and wiring, or a current amount or voltage to the light source 1. It is connected to an electronic component such as a control circuit for controlling the power and an electric circuit.

光源1は、異なる性能を有する光源1が複数配置されていても良い。例えば、発光色が異なる光源1を複数有し、それぞれの発光色で独立した系統の回路で駆動できる構成とすれば、それぞれの系統に入力する電力を制御することによって、それぞれの光源1から出射する発光色ごとに光量を調整することが出来るようになるので、出射光の発光色を調整可能な光学系、および照明装置を提供できる。
光源基板1の表面の光学特性は、吸収が少ないことが望ましい。
The light source 1 may include a plurality of light sources 1 having different performances. For example, if there are a plurality of light sources 1 having different emission colors, and each of the emission colors can be driven by a circuit of an independent system, the power inputted to each system is controlled to emit light from each light source 1. Since the amount of light can be adjusted for each emitted color, it is possible to provide an optical system and an illumination device that can adjust the emitted color of emitted light.
The optical characteristics of the surface of the light source substrate 1 are desirably less absorbed.

反射手段2は、光源1から光学素子3に直接到達しない光束を反射させ、光学素子3に到達させて出射させる機能を有する。反射手段2は、反射特性を持つ素材で構成されている。素材には、例えば、鏡面を持つ金属製、あるいは誘電体多層膜で構成されるミラーであってもよいし、白色の拡散特性を有する樹脂や、表面に微細な凹凸がある金属面であってもよい。反射手段2は、一般的にわずかではあるものの吸収特性を有するため、照明装置の出射効率を高めるためには、光源1から出射する光束は直接光学素子3に入射させることが望ましい。反射手段2の形状は、光源基板11側が小さく、光学素子3側に向かって広がっている形状であり、円錐面であっても良いし、曲面であってもよい。   The reflecting means 2 has a function of reflecting a light beam that does not directly reach the optical element 3 from the light source 1, and makes it reach the optical element 3 and emit it. The reflection means 2 is made of a material having reflection characteristics. The material may be, for example, a mirror made of metal having a mirror surface or a dielectric multilayer film, a resin having white diffusion characteristics, or a metal surface having fine irregularities on the surface. Also good. Since the reflecting means 2 generally has a slight absorption characteristic, it is desirable that the light beam emitted from the light source 1 is directly incident on the optical element 3 in order to increase the emission efficiency of the illumination device. The shape of the reflecting means 2 is a shape that is small on the light source substrate 11 side and spreads toward the optical element 3 side, and may be a conical surface or a curved surface.

このような形状であれば、反射手段2によって反射した光束は、光学素子3に向かう光束が増加するため、光源1から出射した光束を効果的に光学素子3に導くことができ、照明装置としての効率を高める効果を発揮する。   If it is such a shape, since the light beam reflected by the reflection means 2 will increase the light beam which goes to the optical element 3, the light beam radiate | emitted from the light source 1 can be guide | induced to the optical element 3 effectively, and is used as an illuminating device. The effect of improving the efficiency of.

図2、図3を用いて光学素子3について説明する。   The optical element 3 will be described with reference to FIGS.

図2は、光学素子3の俯瞰図、図3は光学素子3の断面図である。   FIG. 2 is an overhead view of the optical element 3, and FIG. 3 is a cross-sectional view of the optical element 3.

光学素子3は、中央にレンズ31が設けられ、少なくとも1つ以上の輪帯32を備える。光学素子3の材質は透明であり、例えば樹脂やガラスなどで成型される。成型方法には、金型を用いた射出成型を利用することが出来る。   The optical element 3 is provided with a lens 31 at the center and includes at least one or more annular zones 32. The material of the optical element 3 is transparent, and is molded from, for example, resin or glass. As the molding method, injection molding using a mold can be used.

輪帯32は略同心円上に配置され、溝状になっている。レンズ31と複数の輪帯32によって、光源1からの光束を屈折し、所望の配光で出射させる。   The annular zone 32 is arranged on a substantially concentric circle and has a groove shape. The lens 31 and the plurality of annular zones 32 refract the light beam from the light source 1 and emit it with a desired light distribution.

照明装置に使用する際には、メンテナンス性質の観点から、レンズ31、輪帯32の形状は光源1側に成型される。また光学素子3には、筐体と組み付けるための保持部、例えば爪や位置決めのダボを設けていても良い。   When used in the lighting device, the shape of the lens 31 and the annular zone 32 is formed on the light source 1 side from the viewpoint of maintenance properties. Further, the optical element 3 may be provided with a holding portion for assembling with the housing, for example, a claw or a positioning dowel.

図4は輪帯32の構成を示しており、入射面321、側面322から構成されている。   FIG. 4 shows the configuration of the annular zone 32, which includes an incident surface 321 and a side surface 322.

図5は、輪帯32に到達した、光源1からの光線6の光路を示している。入射面321に入射した光線6は、入射面321で屈折され、光学素子3の内部を透過して出射面33に導かれ、出射面33で再度屈折することによって、出射面33から出射する。   FIG. 5 shows the optical path of the light beam 6 from the light source 1 that has reached the annular zone 32. The light beam 6 incident on the incident surface 321 is refracted by the incident surface 321, passes through the inside of the optical element 3, is guided to the output surface 33, and is refracted again by the output surface 33, thereby exiting from the output surface 33.

この出射角度は、光源1から輪帯32に向かう光線6の出射角度と、輪帯32の入射面の傾斜角度αkによって決まる。ここで、αkは中央から数えてk番目(kは自然数)の輪帯32の入射面321の傾斜角度を示しており、光線6がk番目の輪帯32に入射した例として説明している。 The emission angle is determined by the emission angle of the light beam 6 from the light source 1 toward the annular zone 32 and the inclination angle α k of the incident surface of the annular zone 32. Here, α k indicates the inclination angle of the incident surface 321 of the k-th annular zone 32 counted from the center (k is a natural number), and an example in which the ray 6 is incident on the k-th annular zone 32 will be described. Yes.

側面322は傾斜が急であり、出射面33に対して略垂直になっている。出射面33の法線に対する傾斜角度をβkとしたとき、βkは大きければ成型時の金型から外れやすく、製造性が良好である。 The side surface 322 has a steep slope and is substantially perpendicular to the emission surface 33. When the inclination angle with respect to the normal line of the exit surface 33 was beta k, beta k is easily dislodged from the mold during molding larger, has good manufacturability.

入射面321、側面322の切り替わり部には、製造方法によってはRが付いてしまう。金型で成型する場合、金型の寿命を長くするためには、製造時に金型の欠けを防ぐためRを設けたほうが良く、光学性能を優先する場合には、光線が乱れる原因となるためRは極力小さくすることが望ましい。これは、製造能力、および光学素子3に求める光学特性によって適宜選択すればよい。   Depending on the manufacturing method, R is attached to the switching portion between the incident surface 321 and the side surface 322. When molding with a mold, in order to extend the life of the mold, it is better to provide R in order to prevent chipping of the mold at the time of manufacture. If priority is given to optical performance, it will cause the light beam to be disturbed. It is desirable to make R as small as possible. This may be appropriately selected depending on the manufacturing capability and the optical characteristics required for the optical element 3.

図6を用いて、第一の実施例について説明する。   The first embodiment will be described with reference to FIG.

本実施例は、図6に示すように、光源に対向するよう配置され、複数の溝状の輪帯32を備えた光学素子3において、各輪帯32は入射面321と、出射面33に対して略垂直な側面322とで構成され、前記各輪帯32の入射面321の立ち上がり角度が、光学素子3の中央の輪帯32では小さく、外周側に存在する輪帯32では大きくなるように変化する第一の領域71を備え、該第一の領域71の外側に存在する、最も中央側の輪帯32の入射面321の立ち上がり角度が、第一の領域71の最外周の輪帯32の入射面321の立ち上がり角度よりも小さい光学素子3を示している。   In this embodiment, as shown in FIG. 6, in the optical element 3 that is arranged to face the light source and includes a plurality of groove-like annular zones 32, each annular zone 32 has an incident surface 321 and an outgoing surface 33. The rising angle of the incident surface 321 of each annular zone 32 is small in the central annular zone 32 of the optical element 3 and large in the annular zone 32 existing on the outer peripheral side. The rising angle of the incident surface 321 of the most annular zone 32 existing outside the first region 71 is the outermost annular zone of the first region 71. An optical element 3 smaller than the rising angle of 32 incident surfaces 321 is shown.

図7に本実施例の各輪帯32の入射面の傾斜角度の分布を示す。横軸は、光学素子3上の位置で、光源から見込んだ方向である。本実施例では、第一の領域71では、輪帯32の傾斜角度が単調増加する構成になっており、中央側の第一の領域71では集光効果を持たせ、第一の領域71の外周側の輪帯32が存在する第二の領域72では、第一の領域よりも集光効果を弱め、入射面321の傾斜角度を、第一の領域71の最外周の輪帯32の入射面321の傾斜角度よりも小さくして、輪帯32の幅が小さくなることを防ぐ構成になっている。   FIG. 7 shows the distribution of the inclination angle of the incident surface of each annular zone 32 of the present embodiment. The horizontal axis is a position on the optical element 3 and a direction viewed from the light source. In the present embodiment, the first region 71 has a structure in which the inclination angle of the annular zone 32 monotonously increases, and the first region 71 on the center side has a light collecting effect, and In the second region 72 where the outer ring zone 32 is present, the light collection effect is weaker than in the first region, and the inclination angle of the incident surface 321 is set to the incidence of the outermost ring zone 32 of the first region 71. The angle of inclination of the surface 321 is made smaller to prevent the width of the annular zone 32 from being reduced.

光源1から第二の領域72のように比較的外周側の輪帯32に到達する入射光は、出射面33に対して比較的浅い角度で輪帯32に向かう。入射面321に対しても浅い角度で入射する位置関係である。入射角度が浅ければ、屈折率が異なる界面でフレネル反射が発生してしまうため、入射面321に透過できる光束が現象してしまう。その結果、光学素子3の出射効率が低下する。また、入射面321で屈折させ意図した方向に出射させようとした光束が減ってしまうため、光学素子3の配光を変換する効果が低下してしまう。   Incident light that reaches the annular zone 32 on the relatively outer peripheral side like the second region 72 from the light source 1 travels toward the annular zone 32 at a relatively shallow angle with respect to the emission surface 33. The positional relationship is also incident on the incident surface 321 at a shallow angle. If the incident angle is shallow, Fresnel reflection occurs at the interface having a different refractive index, so that a light beam that can be transmitted through the incident surface 321 occurs. As a result, the emission efficiency of the optical element 3 is reduced. In addition, since the light flux that is refracted by the incident surface 321 and is emitted in the intended direction is reduced, the effect of converting the light distribution of the optical element 3 is reduced.

また、光線の方向を変更する角度が大きいほど、入射面321の傾斜角度は大きくなる性質があるため、第二の領域72では出射角度を狭めて集光させようとすると、入射面321の傾斜角度が大きくなる。入射面321の傾斜角度が大きくなり立ち上がると輪帯32の幅が狭くなる、あるいは輪帯32の深さが深くなってしまうため、金型形状の転写性の低下などで、意図した形状に仕上げることが難しくなる。すなわち、第二の領域72では集光機能が強い輪帯32を成型しようとすると、製造が非常に難しい。   In addition, since the inclination angle of the incident surface 321 increases as the angle for changing the direction of the light beam increases, if the emission angle is narrowed in the second region 72 to collect light, the incident surface 321 is inclined. The angle increases. When the inclination angle of the incident surface 321 increases and rises, the width of the annular zone 32 becomes narrower or the depth of the annular zone 32 becomes deeper. It becomes difficult. That is, in the second region 72, if an annular zone 32 having a strong light collecting function is to be molded, it is very difficult to manufacture.

本実施例の構成であれば、上記の課題を解決できるため、出射効率が高い光学素子3を提供できる。   With the configuration of the present embodiment, the above-described problems can be solved, so that the optical element 3 having high emission efficiency can be provided.

図8を用いて、第二の実施例を説明する。   A second embodiment will be described with reference to FIG.

本実施例に係る光学素子3は、光源1に対向するよう配置され、複数の溝状の輪帯32を備えた光学素子3において、各輪帯32は入射面321と、出射面33に対して略垂直な側面322とで構成され、前記各輪帯32の入射面321の立ち上がり角度が、光学素子3の中央の輪帯32では小さく、外周側に存在する輪帯32では大きくなるように変化する第一の領域71を備え、該第一の領域71の外側に存在する、最も中央側の輪帯32の入射面321の立ち上がり角度が、第一の領域71の最外周の輪帯32の入射面321の立ち上がり角度よりも小さいことを特徴とする光学素子3であって、第一の領域71の内部において、隣り合う輪帯32の入射角度の変化率が正方向のピーク8を持つことを特徴とする光学素子である。   The optical element 3 according to the present embodiment is disposed so as to face the light source 1, and in the optical element 3 including a plurality of groove-shaped annular zones 32, each annular zone 32 is in relation to the incident surface 321 and the outgoing surface 33. The rising angle of the incident surface 321 of each annular zone 32 is small in the central annular zone 32 of the optical element 3 and large in the annular zone 32 existing on the outer peripheral side. The rising zone of the incident surface 321 of the most annular zone 32 that is provided outside the first zone 71 is provided with a first zone 71 that changes, and the outermost zone 32 of the first zone 71 In the optical element 3, which is smaller than the rising angle of the incident surface 321, the rate of change of the incident angle of the adjacent annular zone 32 has a peak 8 in the positive direction inside the first region 71. This is an optical element.

光学素子3の外側の領域で配光を広げようとすると、光源1から輪帯32に向かう光線が光学素子3の対称軸に対して角度がついているため、正面方向に向かう光束が少ない。そのため、正面に向かう光束が減るためリング状の配光分布になる傾向があり、配光分布を十分に狭めなければ起伏が発生する。   When trying to spread the light distribution in the region outside the optical element 3, the light beam traveling from the light source 1 toward the annular zone 32 is angled with respect to the axis of symmetry of the optical element 3, so that there is little light beam traveling in the front direction. For this reason, since the light flux toward the front surface is reduced, there is a tendency to form a ring-shaped light distribution. If the light distribution is not sufficiently narrowed, undulations occur.

本実施例の構成であれば、上記の課題を解決することが可能である。第一の領域71の内側の領域711が、外側の領域712よりも輪帯32の入射面321の傾斜角度を浅くすることができ、中央側の領域711に入射した光束はリング状の配光分布になることなく比較的広い配光分布にすることが出来る。また、第一の領域71の外側の領域712では、正面側に比較的強く集光させることが出来るため最大光度を高くできる。第二の領域72では、輪帯32の入射角度は浅く、輪帯32の幅は比較的大きいので、出射効率は高い。したがって、本実施例の構成であれば、出射効率が高く、起伏がない良好な配光特性を有する光学素子3を提供できる。特に、配光分布の起伏を抑えるために配光を狭めなければならない制約を緩和するために好適な構成である。   With the configuration of this embodiment, the above-described problem can be solved. The inner region 711 of the first region 71 can make the inclination angle of the incident surface 321 of the annular zone 32 shallower than that of the outer region 712, and the light beam incident on the central region 711 is ring-shaped light distribution. A relatively wide light distribution can be achieved without becoming a distribution. In the region 712 outside the first region 71, the maximum luminous intensity can be increased because the light can be condensed relatively strongly on the front side. In the second region 72, the incident angle of the annular zone 32 is shallow, and the width of the annular zone 32 is relatively large, so that the emission efficiency is high. Therefore, with the configuration of the present embodiment, it is possible to provide the optical element 3 having high light emission efficiency and good light distribution characteristics with no undulations. In particular, this configuration is suitable for alleviating the restriction that the light distribution must be narrowed in order to suppress the undulation of the light distribution.

本実施例に係る光学素子3は、第1から2の実施例に記載のいずれかの光学素子3であって、出射面33にシボ加工が施されている光学素子3である。   The optical element 3 according to the present embodiment is any one of the optical elements 3 described in the first to second embodiments, and is an optical element 3 in which the exit surface 33 is subjected to graining.

本実施例の光学素子3は、透過率を高めるために入射面321の傾斜角度が浅く、輪帯32の幅が大きくなる。そのため、光源1からの一つの輪帯32に入射し、光学素子3から出射する光束は、少なくとも光学素子3の出射面33の近傍では、略輪帯32の幅のリング状の光束となっている。出射面33から十分に離れた位置を照射した場合には、配光分布に従った滑らかな照度分布になるが、十分に離れていない場合には、出射面33上のリン状の照度ムラが残る場合がある。本実施例の構成であれば、それぞれの輪帯32による出射面33上のリング状の照度分布が、光学素子3の表面33のシボによってぼけるため、照射面が出射面33から近くであっても、滑らかな配光分布の光学素子3を提供できる。   In the optical element 3 of this embodiment, the inclination angle of the incident surface 321 is shallow and the width of the annular zone 32 is increased in order to increase the transmittance. Therefore, the light beam incident on one annular zone 32 from the light source 1 and emitted from the optical element 3 becomes a ring-like light beam having a width substantially equal to the annular zone 32 at least in the vicinity of the emission surface 33 of the optical element 3. Yes. When a position sufficiently distant from the exit surface 33 is irradiated, a smooth illuminance distribution according to the light distribution is obtained. However, when it is not sufficiently distant, phosphorus-like illuminance unevenness on the exit surface 33 is generated. May remain. In the case of the configuration of the present embodiment, the ring-shaped illuminance distribution on the emission surface 33 by each annular zone 32 is blurred by the surface 33 of the optical element 3 so that the irradiation surface is close to the emission surface 33. However, the optical element 3 having a smooth light distribution can be provided.

本実施例に係る光学素子3は、第1から3の実施例に記載のいずれかの光学素子3であって、輪帯32の断面が直線で構成されている光学素子3である。   The optical element 3 according to the present embodiment is one of the optical elements 3 described in the first to third embodiments, and the optical element 3 in which the annular zone 32 has a straight section.

本実施例の光学素子3であれば、ある一つの輪帯32は、光源1を結像しない。したがって、光学素子3の出射光束が光源1の像を結ぶことが緩和され、照射面に光源1の配置、もしくは光源1の発光強度の分布を照射面に映し出さない滑らかな照度分布の光学素子3を提供することが出来る。   If it is the optical element 3 of a present Example, one certain annular zone 32 will not image the light source 1. FIG. Therefore, the light beam emitted from the optical element 3 is relaxed to form an image of the light source 1, and the optical element 3 having a smooth illuminance distribution that does not reflect the arrangement of the light source 1 on the irradiation surface or the light emission intensity distribution of the light source 1 on the irradiation surface. Can be provided.

本実施例に係る照明装置は、図1に示すように、第1から4に記載のいずれかの光学素子3と、反射部2と、光源1と、筐体4から構成される照明装置である。   As shown in FIG. 1, the illumination device according to the present embodiment is an illumination device including any one of the optical elements 3 described in the first to fourth aspects, the reflection unit 2, the light source 1, and the housing 4. is there.

本実施例の照明装置であれば、上述の実施例の光学素子3の特性を持つ照明装置を構成でき、特に光源1からの光束を集光し、配光を狭くする照明装置において、滑らかでかつ起伏がない良好な配光分布を保ちながら、高い最大光度の照明装置を提供できる。   If it is an illuminating device of a present Example, the illuminating device with the characteristic of the optical element 3 of the above-mentioned Example can be comprised, Especially in the illuminating device which condenses the light beam from the light source 1 and narrows light distribution, it is smooth. In addition, it is possible to provide a lighting device having a high maximum luminous intensity while maintaining a good light distribution without undulations.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…光源、11…光源基板、2…反射手段、3…光学素子、31…レンズ、32…輪帯、321…入射面、322…側面、33…出射面、4…筐体、5…ソケット、6…光線、71…第一の領域、711…第一の領域の内側の領域、712…第一の領域の外側の領域、72…第二の領域、8…入射面の傾斜角度の変化率のピーク DESCRIPTION OF SYMBOLS 1 ... Light source, 11 ... Light source board | substrate, 2 ... Reflection means, 3 ... Optical element, 31 ... Lens, 32 ... Ring zone, 321 ... Incident surface, 322 ... Side surface, 33 ... Output surface, 4 ... Housing | casing, 5 ... Socket , 6 ... light rays, 71 ... first area, 711 ... area inside the first area, 712 ... area outside the first area, 72 ... second area, 8 ... change in inclination angle of the incident surface. Rate peak

Claims (5)

光源に対向するよう配置され、複数の溝状の輪帯を備えた光学素子において、
各輪帯は入射面と、出射面に対して略垂直な側面とで構成され、前記各輪帯の入射面の立ち上がり角度が、光学素子の中央の輪帯では小さく、外周側に存在する輪帯では大きくなるように変化する第一の領域を備え、該第一の領域の外側に存在する、最も中央側の輪帯の入射面の立ち上がり角度が、第一の領域の最外周の輪帯の入射面の立ち上がり角度よりも小さい光学素子。
In an optical element that is arranged to face the light source and includes a plurality of groove-shaped annular zones,
Each annular zone is composed of an incident surface and a side surface substantially perpendicular to the exit surface, and the rising angle of the incident surface of each annular zone is small in the central annular zone of the optical element and exists on the outer peripheral side. The first zone has a first region that changes so as to increase, and the rising angle of the incident surface of the most central ring zone outside the first region is the outermost ring zone of the first region. An optical element smaller than the rising angle of the incident surface.
光源に対向するよう配置され、複数の溝状の輪帯を備えた光学素子において、各輪帯は入射面と、出射面に対して略垂直な側面とで構成され、前記各輪帯の入射面の立ち上がり角度が、光学素子の中央の輪帯では小さく、外周側に存在する輪帯では大きくなるように変化する第一の領域を備え、該第一の領域の外側に存在する、最も中央側の輪帯の入射面の立ち上がり角度が、第一の領域の最外周の輪帯の入射面の立ち上がり角度よりも小さいことを特徴とする光学素子であって、第一の領域の内部において、隣り合う輪帯の入射角度の変化率が正方向のピークを持つことを特徴とする光学素子。 In an optical element that is arranged to face a light source and has a plurality of groove-shaped annular zones, each annular zone is composed of an incident surface and a side surface that is substantially perpendicular to the exit surface. A first region that has a first region that changes so that the rising angle of the surface is small in the central annular zone of the optical element and large in the annular zone existing on the outer peripheral side, and exists outside the first region. The rising angle of the incident surface of the side annular zone is smaller than the rising angle of the incident surface of the outermost annular zone of the first region, and in the first region, An optical element characterized in that the rate of change in incident angle between adjacent annular zones has a peak in the positive direction. 請求項1または2に記載の光学素子であって、
出射面にシボ加工が施されていることを特徴とする光学素子。
The optical element according to claim 1 or 2,
An optical element characterized in that the exit surface is textured.
請求項1から3に記載のいずれかの光学素子であって、
輪帯の断面が直線で構成されていることを特徴とする光学素子。
The optical element according to any one of claims 1 to 3,
An optical element characterized in that the annular zone has a straight section.
請求項1から4に記載のいずれかの光学素子と、反射部と、光源と、筐体とを有する照明装置。 The illuminating device which has an optical element in any one of Claims 1-4, a reflection part, a light source, and a housing | casing.
JP2014206854A 2014-10-08 2014-10-08 Fresnel lens optical system and illumination device using the same Expired - Fee Related JP6591152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206854A JP6591152B2 (en) 2014-10-08 2014-10-08 Fresnel lens optical system and illumination device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206854A JP6591152B2 (en) 2014-10-08 2014-10-08 Fresnel lens optical system and illumination device using the same

Publications (2)

Publication Number Publication Date
JP2016075833A true JP2016075833A (en) 2016-05-12
JP6591152B2 JP6591152B2 (en) 2019-10-16

Family

ID=55951354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206854A Expired - Fee Related JP6591152B2 (en) 2014-10-08 2014-10-08 Fresnel lens optical system and illumination device using the same

Country Status (1)

Country Link
JP (1) JP6591152B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678558A (en) * 2016-08-31 2017-05-17 厦门益光照明科技股份有限公司 Upward mounted or downward mounted LED lens and LED illuminating lamp
JP2018006320A (en) * 2016-06-22 2018-01-11 三菱電機株式会社 Light source device
CN108916822A (en) * 2018-07-09 2018-11-30 上海彩丞新材料科技有限公司 A kind of Film Optics lens, design method and lighting device with micro-structure
CN110168277A (en) * 2017-01-13 2019-08-23 亮锐控股有限公司 Array with light emitting diode and variation lens
CN113446530A (en) * 2021-07-12 2021-09-28 深圳市中孚能电气设备有限公司 Lamp holder and miner's lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080198A1 (en) * 2007-06-29 2009-03-26 Dialight Lumidrives Limited Spatial luminance
JP2012204085A (en) * 2011-03-24 2012-10-22 Toshiba Lighting & Technology Corp Lighting fixture
JP2013057874A (en) * 2011-09-09 2013-03-28 Sharp Corp Fresnel lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080198A1 (en) * 2007-06-29 2009-03-26 Dialight Lumidrives Limited Spatial luminance
JP2012204085A (en) * 2011-03-24 2012-10-22 Toshiba Lighting & Technology Corp Lighting fixture
JP2013057874A (en) * 2011-09-09 2013-03-28 Sharp Corp Fresnel lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006320A (en) * 2016-06-22 2018-01-11 三菱電機株式会社 Light source device
CN106678558A (en) * 2016-08-31 2017-05-17 厦门益光照明科技股份有限公司 Upward mounted or downward mounted LED lens and LED illuminating lamp
CN106979502A (en) * 2016-08-31 2017-07-25 厦门益光照明科技股份有限公司 A kind of LED illumination lamp of formal dress or upside-down mounting lens
CN110168277A (en) * 2017-01-13 2019-08-23 亮锐控股有限公司 Array with light emitting diode and variation lens
CN110168277B (en) * 2017-01-13 2020-11-24 亮锐控股有限公司 Array with light emitting diodes and varying lenses
US11302732B2 (en) 2017-01-13 2022-04-12 Lumileds Llc Array with light emitting diodes and varying lens
CN108916822A (en) * 2018-07-09 2018-11-30 上海彩丞新材料科技有限公司 A kind of Film Optics lens, design method and lighting device with micro-structure
CN113446530A (en) * 2021-07-12 2021-09-28 深圳市中孚能电气设备有限公司 Lamp holder and miner's lamp

Also Published As

Publication number Publication date
JP6591152B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
KR101057064B1 (en) Led based lamp and method for manufacturing the same
JP5363864B2 (en) Light emitting device and light bulb type LED lamp
KR101053634B1 (en) Led based lamp and method for manufacturing the same
US9366410B2 (en) Reverse total internal reflection features in linear profile for lighting applications
US8764224B2 (en) Luminaire with distributed LED sources
US8678611B2 (en) Light emitting diode lamp with light diffusing structure
EP2655957B1 (en) Led light bulb with light scattering optics structure
JP6591152B2 (en) Fresnel lens optical system and illumination device using the same
JP2014524105A (en) Methods and apparatus relating to optical lenses for LEDs
KR101444521B1 (en) Lighting fixture
KR20120027222A (en) Reflector system for lighting device
TW201333382A (en) Lighting device and light collecting body used in the same
JP2015103323A (en) Luminaire
CN103562624A (en) LED-based lighting fixture with textured lens
KR101298576B1 (en) A led lighting lens having a reflection surface and a led lighting device having thereof
US20150167930A1 (en) Lighting apparatus and method for reducing discomfort glare
EP3108176B1 (en) Led luminaire
KR101837431B1 (en) Led lighting device for improving quality of lighting
JP2010219038A (en) Device for removing overlap or locus of shadow of point-like source of light
JP6583781B2 (en) Lighting device
JP6575909B2 (en) Lighting device
KR20160068062A (en) Lighting Apparatus having LED module and Fresnel lens
KR101315701B1 (en) Lighting module
KR101523609B1 (en) Led lighting for concentration light source with uniform
KR101272689B1 (en) Lighting module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190918

R150 Certificate of patent or registration of utility model

Ref document number: 6591152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees