JP2016046067A - Wide-angle diffusion optical system and luminaire using the same - Google Patents

Wide-angle diffusion optical system and luminaire using the same Download PDF

Info

Publication number
JP2016046067A
JP2016046067A JP2014168994A JP2014168994A JP2016046067A JP 2016046067 A JP2016046067 A JP 2016046067A JP 2014168994 A JP2014168994 A JP 2014168994A JP 2014168994 A JP2014168994 A JP 2014168994A JP 2016046067 A JP2016046067 A JP 2016046067A
Authority
JP
Japan
Prior art keywords
light
optical
source
light source
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014168994A
Other languages
Japanese (ja)
Other versions
JP6446202B2 (en
Inventor
誠治 村田
Seiji Murata
誠治 村田
別井 圭一
Keiichi Betsui
圭一 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014168994A priority Critical patent/JP6446202B2/en
Publication of JP2016046067A publication Critical patent/JP2016046067A/en
Application granted granted Critical
Publication of JP6446202B2 publication Critical patent/JP6446202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technology suitable to change the light distribution direction of a light source.SOLUTION: In an optical member arranged so as to face a light source, an emission surface of the optical member is shaped so that a curvature center C of the emission surface at a position P on the emission surface in a direction at a certain angle with respect to an optical axis of the light source exists at a position deviated from the optical axis; and an incident surface of the optical member has one or more shapes in order of at least a concave surface and a convex surface toward a direction at a certain angle with respect to the optical axis of the light source from the front face side of the light source.SELECTED DRAWING: Figure 1

Description

本発明は、光源の配光分布を変更する光学系に関するものである。   The present invention relates to an optical system that changes a light distribution of a light source.

背景技術としては、例えば、特許文献1がある。特許文献1の要約には、「照明器具の間接光を増大させる」ことを課題とし、解決手段として、「基板と、基板上の電極に実装された第1のLED光源および第2のLED光源と、第1のLED光源に対応する第1の光学部材と、第2のLED光源に対応する第2の光学部材と、第1の光学部材と第2の光学部材を繋ぐ光学部材接続部と、を有する照明装置であって第1の光学部材からの出射光の光度分布と、第2の光学部材からの出射光の光度分布とが異なり、第1の光学部材、光学部材接続部、および第2の光学部材で複合光学部材が構成され、複合光学部材は、電極の少なくても一部を覆う照明装置」が記載されている。   As background art, there exists patent document 1, for example. The summary of Patent Document 1 has an object of “increasing indirect light of a lighting fixture” and, as a solution, “a first LED light source and a second LED light source mounted on a substrate and electrodes on the substrate”. And a first optical member corresponding to the first LED light source, a second optical member corresponding to the second LED light source, and an optical member connecting portion connecting the first optical member and the second optical member. The luminous intensity distribution of the emitted light from the first optical member is different from the luminous intensity distribution of the emitted light from the second optical member, and the first optical member, the optical member connecting portion, and A composite optical member is configured by the second optical member, and the composite optical member describes an illumination device that covers at least a part of an electrode.

特開2014−13744号公報JP 2014-13744 A

シーリングライトやベース照明等の照明装置の光源として、環境への配慮や低消費電力化のために、従来の蛍光灯や白熱電球に代えてLED(Light Emitting Diode、発光ダイオード)が使用されつつある。LED光源は、従来の蛍光灯や白熱電球と異なる配光分布を有しており、光源の正面に向かって最も光度が高く、直交する方向、すなわち水平な方向に向かっては非常に暗い特徴がある。このように、LEDは指向性が高い光源であることから、従来の照明器具に搭載した際に、光り方が違うために、異なった照明環境になってしまう懸念がある。   As light sources for lighting devices such as ceiling lights and base lights, LEDs (Light Emitting Diodes) are being used in place of conventional fluorescent and incandescent bulbs for environmental considerations and low power consumption. . The LED light source has a light distribution different from that of conventional fluorescent lamps and incandescent lamps, has the highest luminous intensity toward the front of the light source, and is very dark in the orthogonal direction, that is, in the horizontal direction. is there. As described above, since the LED is a light source having high directivity, there is a concern that when it is mounted on a conventional lighting fixture, the lighting method is different, so that the lighting environment becomes different.

上記のように、指向性が強いLED光源を用いた場合、光源の正面ばかりが明るく照明され、別の方向には光がほとんど届かず、暗くなってしまう欠点があるため、光源の配置方向が重要になる。例えば、照明装置において、発光面は広い範囲で均一に発光することが好ましい。それを実現するためには、暗くなってしまう広い方向に向かって、光源が明るく光っている方向をそちらに向け、配置変更するなどの対策方法がある。ただし、光源の方向は光源が配置された光源基板の配置方向を制約してしまう。光源基板は、光源からの発熱を効率的に排熱する機能も兼ねていることが多く、光源基板は熱伝導に比較的優れた筐体やシャーシ、放熱フィンなどの構造物に広い接触面積で配置されていることが望ましい。   As described above, when an LED light source with high directivity is used, only the front surface of the light source is illuminated brightly, and there is a drawback that light hardly reaches in another direction and becomes dark. Become important. For example, in a lighting device, it is preferable that the light emitting surface emits light uniformly over a wide range. In order to realize this, there is a countermeasure method such as changing the arrangement in such a way that the direction in which the light source shines brightly is directed toward the wide direction where the light is dark. However, the direction of the light source restricts the arrangement direction of the light source substrate on which the light source is arranged. In many cases, the light source board also has a function of efficiently exhausting heat generated from the light source, and the light source board has a wide contact area with a structure such as a casing, chassis, and heat radiating fin that are relatively excellent in heat conduction. It is desirable that they are arranged.

このような事情を鑑みると、光源は面積が広い平面基板に配置されていることが望ましく、光源の配置方向を変更することは、光源基板の方向を変更することになるため、放熱性を考慮した配置が困難になり、放熱不足による照明装置の性能劣化や、放熱改善するために、光源基板の配置に特化した構造設計により、構造コストの上昇を引き起こす原因となりうる。このような理由から、放熱、製造コストを鑑みると、光源基板1は、平面基板で実現されていることが望ましい。   In view of such circumstances, it is desirable that the light source is arranged on a flat substrate having a large area, and changing the light source arrangement direction changes the direction of the light source substrate, so heat dissipation is considered. In order to improve the performance of the lighting device due to insufficient heat dissipation and to improve heat dissipation, the structural design specialized in the arrangement of the light source substrate may cause an increase in the structure cost. For these reasons, it is desirable that the light source substrate 1 be realized as a flat substrate in view of heat dissipation and manufacturing costs.

特許文献1には、光源の配置方向に関する技術がきさされているが、特許文献1に記載の構成であっても、光源の光軸近辺に出射する光束に対して拡散する機能は弱く、広い角度方向に向かう光束量を確保できていない課題がある。そのため、広い範囲を照明しようとする場合には、光源の配置が制約されてしまう。   Patent Document 1 discloses a technique related to the arrangement direction of the light source, but even with the configuration described in Patent Document 1, the function of diffusing the light beam emitted near the optical axis of the light source is weak and wide. There is a problem that the amount of light flux in the angular direction cannot be secured. Therefore, when it is intended to illuminate a wide range, the arrangement of the light sources is restricted.

本発明は、上記従来技術の課題に鑑みて為されたものであり、光源近傍の光学系の形状を中央部から周辺部にかけて複数回にわたって曲率変化させた形状にすることで、広い角度方向に光束を配分するために好適な技術を提供するものである。   The present invention has been made in view of the above-mentioned problems of the prior art, and by changing the shape of the optical system in the vicinity of the light source to a shape in which the curvature is changed a plurality of times from the central part to the peripheral part, in a wide angular direction. A technique suitable for distributing the luminous flux is provided.

本発明は特許請求の範囲に記載された構成を特徴とするものである。
より具体的には、本発明に係る光学系は、光源に対向するよう配置される光学部材において、
前記光学部材の出射面が、光源の光軸と角度をなす方向の出射面上の点Pにおける出射面の曲率中心Cが、光源の光軸上から外れた位置に存在する形状となっている光学部材であって、光学部材の入射面が、光源の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の形状を有することを特徴とする光学部材である。
The present invention is characterized by the structures described in the claims.
More specifically, the optical system according to the present invention is an optical member arranged to face the light source,
The exit surface of the optical member has a shape in which the center of curvature C of the exit surface at a point P on the exit surface in a direction that makes an angle with the optical axis of the light source exists at a position off the optical axis of the light source. An optical member, wherein an incident surface of the optical member has at least one pair of shapes in the order of at least a concave surface and a convex surface in a direction that is angled with respect to the optical axis of the light source from the front side of the light source. It is an optical member.

上記本発明の構成によれば、光源からの光束の大部分を広げることが可能であり、光源からの出射光束を広い方向に配光することができる。   According to the configuration of the present invention, most of the light flux from the light source can be expanded, and the light flux emitted from the light source can be distributed in a wide direction.

本発明に係る光学部材の第一の実施例を示す断面図。Sectional drawing which shows the 1st Example of the optical member which concerns on this invention. 本発明に係る光学部材の入射面の一構成例を示す断面図。Sectional drawing which shows one structural example of the entrance plane of the optical member which concerns on this invention. 第一の実施例に係る光学部材の光路を示す断面図。Sectional drawing which shows the optical path of the optical member which concerns on a 1st Example. 従来の光学系の一構成例を示す断面図。Sectional drawing which shows one structural example of the conventional optical system. 第五の実施例に係る光学ユニットの分解図。The exploded view of the optical unit which concerns on a 5th Example. 第五の実施例に係る光学ユニットの分解図。The exploded view of the optical unit which concerns on a 5th Example. 本発明の光学部材を備えた照明装置の一例。An example of the illuminating device provided with the optical member of this invention. 本発明の光学部材を備えた照明装置の断面図。Sectional drawing of the illuminating device provided with the optical member of this invention. 本発明の光学部材の正面図。The front view of the optical member of this invention.

以下、本発明の実施の形態について、添付の図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1を用いて、本発明の第一の実施例の構成を説明する。ここで、図1は、第一の実施例に係る導光体の断面図を示している。   The configuration of the first embodiment of the present invention will be described with reference to FIG. Here, FIG. 1 shows a cross-sectional view of the light guide according to the first embodiment.

図1に示されるように、本実施例に係る光学部材は、光源に対向するよう配置される光学部材において、前記光学部材の出射面が、光源の光軸と角度をなす方向の出射面上の点Pにおける出射面の曲率中心Cが、光源の光軸上から外れた位置に存在する形状となっている光学部材であって、光学部材の入射面が、光源の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の形状を有する光学部材である。   As shown in FIG. 1, the optical member according to the present embodiment is an optical member arranged so as to face the light source, and the light emitting surface of the optical member is on the light emitting surface in a direction that forms an angle with the optical axis of the light source. The center of curvature C of the exit surface at the point P is a shape that exists at a position off the optical axis of the light source, and the incident surface of the optical member is light from the light source from the front side of the light source. An optical member having a pair of shapes in the order of at least a concave surface and a convex surface in an angled direction with respect to an axis.

本光学部材は、光源を覆うように、または光源の出射面側に浮かせて配置されるものである。図1では、光源に電力を供給するための配線パターンを備えた光源基板11を含む構成を記載している。   This optical member is disposed so as to cover the light source or float on the light exit surface side of the light source. FIG. 1 shows a configuration including a light source substrate 11 having a wiring pattern for supplying power to a light source.

光源には、例えばLEDを用いることができ、光源に対向するように配置される光学部材2に向けて光束を出射させる。光源1には様々な種類の光源を選ぶことができるが、例えば白色光を出射する白色LEDを用いることができる。   For example, an LED can be used as the light source, and a light beam is emitted toward the optical member 2 disposed so as to face the light source. Various types of light sources can be selected as the light source 1, and for example, a white LED that emits white light can be used.

白色LEDの構成の一例を説明する。電力を受けて青色光を発光するLEDチップと、該LEDチップからの青色光のエネルギーを受けて励起され、緑色から赤色にかけた波長領域のスペクトルで発光する蛍光体から構成されている。蛍光体は、LEDチップを封止するための樹脂に混ぜられていても良い。また、蛍光体は、赤色と、緑色の光を発光するような、複数の蛍光体を混ぜ、それらが励起して発光した際に黄色に見える発光スペクトルを有するようにすることもできる。当然、蛍光体の発光スペクトルを変更して異なる色温度で発光するように調整されていても良い。さらに、1つのLEDにおいて、複数の発光チップを搭載した大光量タイプのLEDを利用してもよい。複数のLEDチップを搭載したLEDでは、LEDの発光面(光放出面)の中心を規準にして対称となるように、LEDチップを例えば矩形状、同心円状に配置することが好ましいが、配置はこれに限定されるものではない。   An example of the configuration of the white LED will be described. It is composed of an LED chip that emits blue light upon receiving electric power, and a phosphor that is excited by receiving the energy of blue light from the LED chip and emits light in a spectrum in a wavelength region from green to red. The phosphor may be mixed in a resin for sealing the LED chip. In addition, the phosphor may have a light emission spectrum that looks yellow when a plurality of phosphors that emit red and green light are mixed and excited to emit light. Of course, the emission spectrum of the phosphor may be changed so that light is emitted at different color temperatures. Further, in one LED, a large light amount type LED on which a plurality of light emitting chips are mounted may be used. In an LED equipped with a plurality of LED chips, it is preferable to arrange the LED chips in, for example, a rectangular shape or a concentric circle so as to be symmetrical with respect to the center of the light emitting surface (light emitting surface) of the LED. It is not limited to this.

また光源には、配光の調整や光の取り出し効率を改善するためのレンズやリフレクタなどの光学部品が備えられていてもよい。かかる光学部品として、例えば、透過性を有する材質で成形された凸レンズや、金属蒸着されたミラー、あるいは全反射を利用したリフレクタをチップ周辺部に設けるなどの構成をとることができる。   The light source may be provided with an optical component such as a lens or a reflector for adjusting the light distribution and improving the light extraction efficiency. As such an optical component, for example, a convex lens formed of a transmissive material, a metal-deposited mirror, or a reflector using total reflection can be provided at the periphery of the chip.

光源は光源基板に実装される。図1では光源基板上に光源を1つ実装している構成を図示しているが、必要に応じて複数の光源が実装されていてもよい。   The light source is mounted on the light source substrate. Although FIG. 1 illustrates a configuration in which one light source is mounted on a light source substrate, a plurality of light sources may be mounted as necessary.

また光源基板は、光源の他に、供給される電力を、所望の電力に調整して光源に供給するための駆動回路(ドライバ)と配線、または光源への電流量、あるいは電圧を制御するための制御回路などの電子部品や電気回路と接続されている。   In addition to the light source, the light source substrate controls a drive circuit (driver) and wiring for adjusting the supplied power to a desired power and supplying it to the light source, or a current amount or voltage to the light source. It is connected to electronic parts such as control circuits and electric circuits.

光源は、異なる性能を有する光源が複数配置されていても良い。例えば、発光色が異なる光源を複数有し、それぞれの発光色で独立した系統の回路で駆動できる構成とすれば、それぞれの系統に入力する電力を制御することによって、光学部材から出射する発光色ごとに光量を調整することが出来るようになるので、全体として発光色を調整可能な光学系を提供できる。   As the light source, a plurality of light sources having different performances may be arranged. For example, if there is a plurality of light sources with different emission colors and each of the emission colors can be driven by an independent system circuit, the emission color emitted from the optical member can be controlled by controlling the power input to each system. Since the amount of light can be adjusted every time, an optical system capable of adjusting the emission color as a whole can be provided.

光源基板の表面の光学特性は、吸収が少ないことが望ましい。光学部材は透明な材質で構成されているが、光源から出射して入射した光線は、光学部材と空気の屈折率が異なることが原因で、両者の境界面で発生するフレネル反射のため、一部の光束は反射されて全ての光束を透過させることができない。照明装置の効率改善のためには、光源からの出射光束の全てが光学部材を透過することが望ましいので、フレネル反射で透過しなかった光束を再び光学部材へ向かって入射させる仕組みがあると望ましい。光学部材と空気の界面で反射した光束を再び光学部材へ向かって入射させる仕組みとして、光源基板の表面特性を利用する方法がある。光源基板の表面に、反射性が高い材質を使用する事によって、光学部材で反射して戻ってきた光線を再び光学部材へ向かって反射させる機能を持たせることができる。光源基板の表面に、白色の反射性が高い塗料を用いてもよいし、光源基板に吸収が少ない、金属光沢面を露出させた構成であってもよい。その他の方法として、光源基板の表面の光学特性を利用するのではなく、高い反射率を有する反射シートを光源基板の表面に配置する構成であってもよい。この方法では、光源周辺部の基板が露出する面積が少なくなるような構成になるよう、反射シートの形状が加工されていることが望ましい。   It is desirable that the optical characteristics of the surface of the light source substrate have little absorption. Although the optical member is made of a transparent material, the light beam emitted from the light source is incident due to Fresnel reflection occurring at the interface between the optical member and the air due to the difference in refractive index between the optical member and air. The luminous flux of the part is reflected and cannot transmit all the luminous flux. In order to improve the efficiency of the illuminating device, it is desirable that all of the luminous flux emitted from the light source is transmitted through the optical member. Therefore, it is desirable that there is a mechanism for allowing the luminous flux that has not been transmitted by Fresnel reflection to enter the optical member again. . As a mechanism for causing the light beam reflected at the interface between the optical member and the air to enter the optical member again, there is a method using the surface characteristics of the light source substrate. By using a highly reflective material on the surface of the light source substrate, it is possible to have a function of reflecting the light beam reflected and returned by the optical member toward the optical member again. A white highly reflective paint may be used on the surface of the light source substrate, or a metal glossy surface that is less absorbed by the light source substrate may be used. As another method, a configuration in which a reflection sheet having a high reflectance is disposed on the surface of the light source substrate instead of using the optical characteristics of the surface of the light source substrate. In this method, it is desirable that the shape of the reflection sheet is processed so that the area where the substrate around the light source is exposed is reduced.

光学部材は、光源からの光束を入射面で屈折させながら光学部材の内部に導き、出射面で屈折させて出射する機能を有する。光源からの光束は、入射面から入射し、光学部材の内部を透過し、入射した光束の大部分を出射面から出射させる機能を持つ。   The optical member has a function of guiding the light beam from the light source to the inside of the optical member while refracting the light beam on the incident surface, and refracting the light beam on the light exit surface. The light beam from the light source is incident from the incident surface, passes through the inside of the optical member, and has a function of emitting most of the incident light beam from the output surface.

光学部材2は、光源に対向するように配置されている。
光学部材2の材質には、ガラスやプラスチックなどの光透過性を有する材質を利用でき、たとえば、生産性に優れたプラスチックを例に挙げると、ポリカーボネート、アクリルなどを利用することができる。光学部材を製造する方法として、たとえば、材料を熱して流動性を高めて金型に流し込み、これを冷やし固めて成型する射出成形を利用することができる。
The optical member 2 is disposed so as to face the light source.
As the material of the optical member 2, a light transmissive material such as glass or plastic can be used. For example, polycarbonate or acrylic can be used when plastic with excellent productivity is taken as an example. As a method for manufacturing the optical member, for example, injection molding in which a material is heated to increase fluidity and poured into a mold and then cooled and solidified can be used.

光学部材を射出成型する金型に、光学部材の形状を彫り込んでおけば、光学部材の表面に一体で光学部材を成型する事が出来る。この製造方法は一体成型できるため、製造工程が比較的少ないため製造コストを抑えることができる製造方法である。本光学部材の射出成型に用いる金型について、光学部材の光の入射面、出射面を成形する金型表面は鏡面研磨されていることが好ましい。それ以外の箇所には、サンドブラストなどの方法で表面を粗く仕上げ、いわゆるシボ面や梨地面となるようにしても良い。   If the shape of the optical member is engraved in a mold for injection molding the optical member, the optical member can be integrally molded on the surface of the optical member. Since this manufacturing method can be integrally molded, it is a manufacturing method that can suppress the manufacturing cost because there are relatively few manufacturing steps. As for the mold used for injection molding of the optical member, it is preferable that the light entrance surface and the mold surface for molding the exit surface of the optical member are mirror-polished. In other locations, the surface may be roughened by a method such as sand blasting to form a so-called textured surface or pear surface.

入射面、および出射面は、たとえば、球面、平面、またはその他の種類の曲面で構成されていても良い。   The entrance surface and the exit surface may be formed of, for example, a spherical surface, a flat surface, or other types of curved surfaces.

図2を用いて、光学部材2の入射面22について説明する。   The incident surface 22 of the optical member 2 will be described with reference to FIG.

入射面22は、光源1の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の形状を有することを示している。光源1の正面側には、凹面221があり、光源1の光軸に対して角度がつくにつれて、凹面と凸面の境界、2212を経由し凸面222と接続されている。さらに光源1の光軸から角度がつく方向には、凹面223と面224が接続されている。   The incident surface 22 indicates that it has at least one pair of shapes in the order of at least a concave surface and a convex surface from the front side of the light source 1 toward an angle with respect to the optical axis of the light source. On the front side of the light source 1, there is a concave surface 221, which is connected to the convex surface 222 via a boundary 2212 between the concave surface and the convex surface as the angle with respect to the optical axis of the light source 1 is increased. Further, a concave surface 223 and a surface 224 are connected in a direction that is angled from the optical axis of the light source 1.

次に、図3に光源1から出射した光線の光路について説明する。凹面221に入射した光線は、光源1の光軸に対して角度が広がる方向に屈折した後、光学部材2の内部を透過し、出射面211から出射する際に、光軸に対してさらに広がる方向に屈折される。図2では、出射面211を平坦な面として図示しているが、凸方向の曲率を持っていても良い。   Next, the optical path of the light beam emitted from the light source 1 will be described with reference to FIG. The light beam incident on the concave surface 221 is refracted in a direction in which the angle is increased with respect to the optical axis of the light source 1, then passes through the inside of the optical member 2, and further spreads with respect to the optical axis when exiting from the output surface 211. Refracted in the direction. In FIG. 2, the exit surface 211 is illustrated as a flat surface, but may have a convex curvature.

凸面222に入射した光線は、凸面222の曲率中心に向かう方向に屈折する。すなわち、光源1から凸面222に向かう、空気中での光束の発散角度よりも収斂された発散角度で光学部材2の内部を透過する。出射面212から出射する際には、光源の光軸に対して広がる方向に屈折されて出射する。出射面222は、光源の光軸から角度がついた方向に曲率中心を持っていることから、その方向を軸として光束を収斂させる機能を有している。前記の入射面222と、出射面212の組み合わせによって、光源1から凸面222に入射した光束は、凸面222の凸レンズの効果によって収斂され、比較的狭い発散角度で出射面212に導くことができる。そのため、凸面222に入射する光束は、発散角度が比較的狭い光束となっているので、凸面222からの出射光束も、比較的発散角度が狭い光束となっている。この光束の出射方向は、光源の光軸と角度を持った広い方向であるため、発散角度が狭く、かつ光軸から広い方向に向かうように、すなわち広い方向にエネルギーが集中させて光束を伝播でき、光源1からの出射光束を効率よく広げることができる。   The light beam incident on the convex surface 222 is refracted in the direction toward the center of curvature of the convex surface 222. That is, the light passes through the optical member 2 at a divergence angle converged from the divergence angle of the light beam in the air from the light source 1 toward the convex surface 222. When the light is emitted from the emission surface 212, the light is refracted in a direction extending with respect to the optical axis of the light source and emitted. Since the exit surface 222 has a center of curvature in a direction that is angled from the optical axis of the light source, it has a function of converging the luminous flux with the direction as an axis. Due to the combination of the entrance surface 222 and the exit surface 212, the light beam incident on the convex surface 222 from the light source 1 is converged by the effect of the convex lens of the convex surface 222 and can be guided to the exit surface 212 with a relatively narrow divergence angle. Therefore, since the light beam incident on the convex surface 222 has a relatively narrow divergence angle, the light beam emitted from the convex surface 222 also has a relatively narrow divergence angle. Since the direction of emission of this light beam is a wide direction having an angle with the optical axis of the light source, the divergence angle is narrow and the light beam propagates so that the energy is concentrated in a wide direction so as to go in a wide direction from the optical axis. It is possible to efficiently spread the light beam emitted from the light source 1.

また、凸面222よりも、光源1から角度がついた方向の面に、凹面223を設けても良い。光学部材は製造上の制約から、厚さや、光源1と光学部材の配置関係が制限される場合がある。そのときには、凹面221と凸面222だけでは光源1からの出射光束を全て捕らえることができない場合がある。凸面222が受光できない、光源1の光軸に対して広い角度の光束を受けるための面223や面224を設けても良い。面223は、光源1からの出射光束を受光できるよう、凹面であることが望ましい。面223が受光する光束は、元々広い方向に向いている光束であるため、出射方向を曲げる機能は比較的強くなくても良いので、光束を受け取ることを優先した構成であることが望ましい。凹面形状であれば、光源1を包むように覆うことが出来る形状であるので、光源1からの光束を受光しやすい。   Further, the concave surface 223 may be provided on a surface in a direction inclined from the light source 1 rather than the convex surface 222. The thickness of the optical member may be limited due to manufacturing restrictions, and the arrangement relationship between the light source 1 and the optical member may be limited. At that time, it may not be possible to capture all of the emitted light beam from the light source 1 with the concave surface 221 and the convex surface 222 alone. You may provide the surface 223 and the surface 224 for receiving the light beam of the wide angle with respect to the optical axis of the light source 1 which the convex surface 222 cannot receive. The surface 223 is desirably a concave surface so that the light beam emitted from the light source 1 can be received. Since the light beam received by the surface 223 is originally a light beam directed in a wide direction, the function of bending the emission direction does not have to be relatively strong. Therefore, it is desirable that the configuration prioritize receiving the light beam. Since it is a shape which can be covered so that the light source 1 may be wrapped if it is a concave surface shape, it is easy to receive the light beam from the light source 1.

また、面224を設けても良い。入射面223から入射した光束が平坦部23に入射する構造であった場合、平坦部23の法線に対して、臨界角度よりも大きな角度で平坦部23に入射する場合がある。その際には、図4に示すように平坦部23で全反射してしまうため、光学部材2の内部に光束が閉じ込められて出射効率が低下する原因となる。図3に示すように、光源1の出射面に対して角度を持たせた面224を設けると出射効率低下を防ぐことが出来る。   Further, a surface 224 may be provided. When the light beam incident from the incident surface 223 is configured to enter the flat portion 23, the light may enter the flat portion 23 at an angle larger than the critical angle with respect to the normal line of the flat portion 23. At that time, as shown in FIG. 4, since the light is totally reflected by the flat portion 23, the light beam is confined inside the optical member 2, which causes a decrease in emission efficiency. As shown in FIG. 3, when a surface 224 having an angle with respect to the emission surface of the light source 1 is provided, it is possible to prevent a decrease in emission efficiency.

面224に入射した光束は、屈折して光源1の光軸に近くなる方向に向かう。したがって、平坦部23ではなく、出射面212に入射しやすくなる。出射面212は、平坦部23と違って、光学部材2に光束を閉じ込める方向の面ではないため、面224から面212に入射した光束は、出射することができる。   The light beam incident on the surface 224 is refracted and travels in a direction closer to the optical axis of the light source 1. Therefore, it becomes easy to enter not the flat part 23 but the output surface 212. FIG. Unlike the flat portion 23, the exit surface 212 is not a surface in the direction of confining the light beam in the optical member 2, so that the light beam incident on the surface 212 from the surface 224 can be emitted.

入射した光束が、平坦部23で出射面212から光束を出射させるため、出射することができる。したがって、本構成であれば、光源1からの出射光束を光軸に対して効果的に広げながら、効率が高い光学部材を提供できる。   The incident light beam can be emitted because the light beam is emitted from the emission surface 212 at the flat portion 23. Therefore, with this configuration, it is possible to provide an optical member with high efficiency while effectively spreading the light beam emitted from the light source 1 with respect to the optical axis.

本実施例に係る導光体は、光源に対向するよう配置される光学部材において、光学部材の出射面が、光源の光軸と角度をなす方向の出射面上の点Pにおける出射面の曲率中心Cが、光源の光軸上から外れた位置に存在する形状となっている光学部材であって、光学部材の入射面が、光源の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の曲率が連続的に変化している形状を有している光学部材である。   In the optical member arranged to face the light source, the light guide according to the present embodiment has a curvature of the exit surface at a point P on the exit surface in a direction in which the exit surface of the optical member forms an angle with the optical axis of the light source. An optical member having a shape in which the center C is located at a position off the optical axis of the light source, and the incident surface of the optical member is angled with respect to the optical axis of the light source from the front side of the light source The optical member has a shape in which the curvature of one or more pairs continuously changes in the order of at least a concave surface and a convex surface.

本実施例では、図2に示すように、凹面221と、凸面222の境界2212が、一次微分で連続になるように構成されていれば、光源1から出射する光束は、導光体2の入射面22によって屈折されたとき、その屈折角度も連続的に変化する。したがって、光源1の配光分布が連続的に変化している場合、導光体2から出射した光束の配光分布も連続となる。このように、本実施例の構成の光学部材を使用すれば、その出射光束の配光分布は滑らかに変化しているので、照射先の照度分布も滑らかに変化していることから、照度ムラや輝度ムラが少なく、見た目の品質が高い照明環境を提供できる。光源と光学部材を組み合わせたものを複数搭載して照明装置を構成していてもよく、本照明装置では光学部材からの滑らかに変化する配光分布を重ね合わせていることから、空間周波数が高い輝度が急に高くなって見える輝線や、急に暗くなって見える暗線が発生しにくく、光方が均一な照明装置を提供できる。あるいは、光学部材からの出射光束を使用者に直接見せる表示装置、あるいは映像表示装置に用いる照明に使用することができ、見た目の輝度ムラを改善することができる。   In the present embodiment, as shown in FIG. 2, if the concave surface 221 and the boundary 2212 of the convex surface 222 are configured to be continuous in the first derivative, the light beam emitted from the light source 1 When the light is refracted by the incident surface 22, the refraction angle also changes continuously. Therefore, when the light distribution of the light source 1 is continuously changing, the light distribution of the light beam emitted from the light guide 2 is also continuous. In this way, when the optical member having the configuration of the present embodiment is used, the light distribution of the emitted light beam changes smoothly, and therefore the illuminance distribution of the irradiation destination also changes smoothly. In addition, it can provide a lighting environment with low brightness unevenness and high visual quality. A lighting device may be configured by mounting a plurality of combinations of a light source and an optical member. In this lighting device, since the light distribution distribution that smoothly changes from the optical member is superimposed, the spatial frequency is high. It is possible to provide an illuminating device in which bright lines that appear to suddenly increase in brightness and dark lines that appear to suddenly become dark are less likely to occur and the light is uniform. Or it can be used for the illumination used for the display apparatus which shows a user the emitted light beam from an optical member directly, or a video display apparatus, and the brightness | luminance unevenness of appearance can be improved.

本実施例では、第1または2の実施例の光学部材の出射面21を凸形状にした構成例を示す。出射面21が凸形状であれば、入射面22から到達した光束は出射面21から透過して出射する際には、収斂される方向に屈折する。そのため、面211から面23にわたって、出射面23から出射した光源1からの光束を互いに交錯しないように出射させることができる。その結果、光束の交錯を原因とする局所的に輝度が高くなるムラの発生を抑えることが出来る。   In the present embodiment, a configuration example in which the emission surface 21 of the optical member of the first or second embodiment is convex is shown. If the exit surface 21 is convex, the light beam that has arrived from the entrance surface 22 is refracted in the converged direction when it is transmitted through the exit surface 21 and exits. Therefore, the light beams from the light source 1 emitted from the emission surface 23 can be emitted from the surface 211 to the surface 23 so as not to cross each other. As a result, it is possible to suppress the occurrence of unevenness in which the brightness is locally increased due to the crossing of the light beams.

本実施例では、第1から3の実施例のいずれかの光学部材において、光源1から入射面22に設けられた凸面222の曲率中心を結ぶ方向の光線が、出射面において屈折され、光源の光軸に対して角度が開く構成例を示す。   In this embodiment, in the optical member of any one of the first to third embodiments, the light beam in the direction connecting the curvature center of the convex surface 222 provided on the incident surface 22 from the light source 1 is refracted on the output surface, and the light source The structural example which an angle opens with respect to an optical axis is shown.

光源1からの光束が、入射面22の凸面222に入射した光束は、光源1から凸面222の曲率中心に向かう入射した光線に対して集まるように収斂する方向に屈折される。前記光線が、出射面21で屈折されて光源1の光軸に対して広がる方向に屈折される構成であるので、その収斂した光束も前記光線の方向に集中した光束となっている。その結果、本実施例の構成の光学部材によれば、光源1からの出射光束を光源1の光軸に対して広がる方向に、かつ収斂されエネルギー密度が高い光束を伝播させることができ、広い方向に多くの光束を出射できる光学部材を提供できる。     The light beam from the light source 1 is refracted in a converging direction so that the light beam incident on the convex surface 222 of the incident surface 22 is converged with respect to the incident light beam from the light source 1 toward the center of curvature of the convex surface 222. Since the light beam is refracted in the direction that is refracted by the emission surface 21 and spreads with respect to the optical axis of the light source 1, the converged light beam is also a light beam concentrated in the direction of the light beam. As a result, according to the optical member having the configuration of the present embodiment, the luminous flux emitted from the light source 1 can be propagated in a direction that spreads with respect to the optical axis of the light source 1 and has a high energy density. An optical member that can emit many light beams in the direction can be provided.

次に、図5、6を用いて本発明の第五の実施例の一構成例を説明する。
ここで、図5、および6は、第五の実施に例に係る光学ユニットの分解図である。図5に示されるように、本実施例に係る光学系は、実施例1から4のいずれかに記載の光学部材と、光源を組み合わせている光学ユニットである。
Next, a configuration example of the fifth embodiment of the present invention will be described with reference to FIGS.
Here, FIGS. 5 and 6 are exploded views of the optical unit according to the fifth embodiment. As shown in FIG. 5, the optical system according to this example is an optical unit in which the optical member according to any one of Examples 1 to 4 and a light source are combined.

本実施例のように、実施例1から4のいずれかに記載の光学部材と光源とを組み合わせた光学ユニットであれば、光源1から出射した光束を光軸から離れる方向に拡散した配光分布を持つ光学ユニットを提供できる。光学ユニットは、光源1を覆うように、もしくは光源1の出射面の前方に光学部材2が配置され、光源1からの光束を受光できるようになっている。光学部材2が受光した光束は、光学部材2の入射面22と、出射面21で屈折さる。本実施例の光学部材は、実施例1から4のいずれかに記載された光学部材2であるので、光源1からの光束を光源1の光軸に対して広がる方向に積極的にエネルギーを集中させた、広い配光分布を持つ光束を出射する。このように、本実施例の構成であれば、効果的に広い方向に多くの光束を出射する光学ユニットを提供でき、広い範囲を明るく照射する照明装置や、光源1の光軸から開いた方向から光学部材を見たときに高い輝度で光らせる用途の表示器などに好適である。   As in this embodiment, if the optical unit is a combination of the optical member according to any one of Embodiments 1 to 4 and a light source, the light distribution is obtained by diffusing the light beam emitted from the light source 1 in the direction away from the optical axis. Can provide an optical unit. In the optical unit, the optical member 2 is disposed so as to cover the light source 1 or in front of the emission surface of the light source 1 so that the light beam from the light source 1 can be received. The light beam received by the optical member 2 is refracted by the entrance surface 22 and the exit surface 21 of the optical member 2. Since the optical member of the present embodiment is the optical member 2 described in any one of the first to fourth embodiments, energy is actively concentrated in the direction in which the light beam from the light source 1 spreads with respect to the optical axis of the light source 1. The light beam having a wide light distribution is emitted. As described above, according to the configuration of the present embodiment, an optical unit that emits a large amount of light beams in a wide direction can be provided effectively, and an illumination device that illuminates a wide range brightly, or a direction opened from the optical axis of the light source 1 Therefore, it is suitable for a display device that emits light with high luminance when the optical member is viewed from the top.

また、図6に示すように、光学部材2の形状は回転対象でなくても良い。図に示すように光学部材2の軸を一方だけ伸ばした場合、光源1と光学部材2の長軸方向の相対位置の変化に対して、光源1と光学部材2を組み合わせた光学ユニットの光学特性の変化が小さくなるように出来る。したがって、光源1と光学部材2の相対配置に対する光学ユニットの光学特性の変化感度が小さくなるように、相対配置がばらつきやすい方向に光学部材2の長軸を向けることで、誤差感度が鈍く安定した光学特性を示す光学ユニットを提供できる。   Further, as shown in FIG. 6, the shape of the optical member 2 may not be a rotation target. As shown in the figure, when the axis of the optical member 2 is extended only by one, the optical characteristics of the optical unit in which the light source 1 and the optical member 2 are combined with respect to a change in the relative position of the light source 1 and the optical member 2 in the major axis direction The change of can be made small. Therefore, the error sensitivity is dull and stable by directing the long axis of the optical member 2 in a direction in which the relative arrangement tends to vary so that the change sensitivity of the optical characteristics of the optical unit with respect to the relative arrangement of the light source 1 and the optical member 2 becomes small. An optical unit exhibiting optical characteristics can be provided.

次に、図7を用いて本発明の第六の実施例の一構成例を説明する。   Next, a configuration example of the sixth embodiment of the present invention will be described with reference to FIG.

ここで、図7は、第六の実施に例に係る照明装置に搭載する光学部材の一例である。   Here, FIG. 7 is an example of an optical member mounted on the illumination device according to the sixth embodiment.

図7に示されるように、本実施例に係る照明装置は、第1から4の実施例のいずれかに記載の光学部材2と、光源1を組み合わせた光学ユニットを少なくとも一つ以上備え、筐体4と、電源を備えた照明装置である。光源1は、電力を供給し固定するための光源基板11に電気的に接続され、光源基板11を覆うように光学部材2が設けられる。筐体4はアルミなどの電熱性能が高い材質で出来ていることが望ましく、光源基板11から発生した熱を伝熱し、放熱されることが望ましい。一般的に、光源1は温度が高くなる程効率が低下する性質があるため、光源1から発生する熱を光源基板11を介して放熱することにより、光源1の発光効率の低下を抑えることが出来る。光学部材2、光源基板11、筐体4は、それぞれねじ止めや勘合にとよって組みつけられる。図示していないが、光源基板11に電力を供給するための電源を備える。   As shown in FIG. 7, the illumination device according to the present embodiment includes at least one optical unit in which the optical member 2 described in any of the first to fourth embodiments and the light source 1 are combined, and includes a housing. It is the illuminating device provided with the body 4 and the power supply. The light source 1 is electrically connected to a light source substrate 11 for supplying and fixing electric power, and an optical member 2 is provided so as to cover the light source substrate 11. The housing 4 is preferably made of a material having high electric heating performance such as aluminum, and it is desirable that the heat generated from the light source substrate 11 is transferred and radiated. In general, since the light source 1 has a property that the efficiency decreases as the temperature increases, it is possible to suppress the decrease in the light emission efficiency of the light source 1 by radiating the heat generated from the light source 1 through the light source substrate 11. I can do it. The optical member 2, the light source substrate 11, and the housing 4 are assembled by screwing and fitting, respectively. Although not shown, a power source for supplying power to the light source substrate 11 is provided.

図8は本実施例の照明装置の断面図である。光源1か出射した光束は、光学部材2を通じて出射し、拡散性を有し、透過特性を有するセード5に向かう。図8に示すように、光学部材2から出射した光束は、光学部材2が有する、光源1の光軸から広く開く方向にも多くの光束を出射する効果によって、光源1から離れた箇所へも光を伝播している。したがって、セード5は光学部材2によって広い範囲を照射されるため、セード5の全体が明るく光る照明装置を提供できる。光源1から出射した光束は光源1の正面ばかりに集中し、光源1が存在しないセード5のエリアは暗くなってしまい、セード5上の照度分布がムラになってしまう課題があるが、本光学部材2を設けることにより、この課題を解決することができる。   FIG. 8 is a cross-sectional view of the illumination device of this embodiment. The light beam emitted from the light source 1 is emitted through the optical member 2 and travels toward the shade 5 having diffusibility and transmission characteristics. As shown in FIG. 8, the light beam emitted from the optical member 2 is also emitted to a place away from the light source 1 due to the effect that the optical member 2 emits a large amount of light beam in the direction of wide opening from the optical axis of the light source 1. Propagating light. Therefore, since the shade 5 is irradiated over a wide range by the optical member 2, it is possible to provide an illumination device in which the entire shade 5 shines brightly. The luminous flux emitted from the light source 1 is concentrated only in front of the light source 1, and the area of the shade 5 where the light source 1 does not exist becomes dark and the illuminance distribution on the shade 5 becomes uneven. By providing the member 2, this problem can be solved.

本実施例に係る光学系は、第6に実施例に記載の照明装置であって、複数の光学部材2が一体化されている照明装置である。図7には、光学部材2が一体成型されている様子を図示している。一体化した構造であれば、複数の光源1と光学部材2の相対的な配置位置を精度良く配置することが可能になり、また光源1の数だけ光学部材2を設ける場合でも、一体化していることで製造工程を削減できるため、製造時間の短縮や製造コストの低減に効果があるため、低コストの照明装置を提供できる。   The optical system according to the present embodiment is the illumination apparatus described in the sixth embodiment, and is an illumination apparatus in which a plurality of optical members 2 are integrated. FIG. 7 illustrates a state in which the optical member 2 is integrally molded. With an integrated structure, the relative arrangement positions of the plurality of light sources 1 and optical members 2 can be arranged with high accuracy, and even when the number of optical members 2 is provided as many as the number of light sources 1, they are integrated. Since the manufacturing process can be reduced, the manufacturing time can be shortened and the manufacturing cost can be reduced, so that a low-cost lighting device can be provided.

次に、図9を用いて本発明の第八の実施例の一構成例を説明する。   Next, a configuration example of the eighth embodiment of the present invention will be described with reference to FIG.

ここで、図9は、第八の実施例に係る照明装置の光学部材2の正面図である。
図9に示されるように、本実施例に係る照明装置は、第6から7の実施例に記載の照明装置であって、発光特性が異なる光源を2種類以上備え、少なくとも2つ以上の異なる形状の光学部材2を備えている照明装置である。図9には、本実施例として一体で成型されている光学部材2を示している。光学部材2は、同心円上に配置されているが、場合によっては格子状であったり、千鳥状であったり、また配置される領域は円ではなく矩形であっても良い。
Here, FIG. 9 is a front view of the optical member 2 of the illumination apparatus according to the eighth embodiment.
As shown in FIG. 9, the illumination device according to the present embodiment is the illumination device according to the sixth to seventh embodiments, and includes two or more types of light sources having different emission characteristics, and at least two or more different light sources. The illumination device includes the optical member 2 having a shape. FIG. 9 shows an optical member 2 that is integrally molded as the present embodiment. The optical members 2 are arranged on concentric circles. However, in some cases, the optical members 2 may have a lattice shape or a staggered shape, and the arranged region may be a rectangle instead of a circle.

それぞれの光源の配置位置が異なるため、照明装置としてムラがない発光を実現するためには、それぞれの光源からの光束を混ぜる必要がある。したがって、光源の配置位置に応じて複数種類の光学部材2を搭載すれば、それぞれの光源からの光束を効果的に混ぜることが出来る。例えば、図9では光学部材2Aと、光学部材2Bを使い分けている例を示している。例えば、光学部材2Aは中央に向かう方向に強く発光する配光分布を有し、2Bでは2Aよりも広く発光する配光分布とし、ムラなく全体を光らせることが可能である。光源が複数の発光特性を有する場合、例えば、発光色が異なる光源を搭載した場合について説明する。発光色が異なる複数の光源が搭載されていれば、それぞれの光源の発光強度を変更することによって、照明装置からの照射光の色を調整できる特性がある、例えば、昼白色の光源と、電球色の光源を組み合わせている場合であれば、それぞれの発光色の色温度の範囲で照明装置の発光色を調整可能でありながら、全体がきれいに光り色ムラを抑えた照明装置を提供できる。   Since the arrangement positions of the respective light sources are different, it is necessary to mix the light beams from the respective light sources in order to realize light emission without unevenness as the illumination device. Therefore, if a plurality of types of optical members 2 are mounted according to the arrangement positions of the light sources, the light beams from the respective light sources can be mixed effectively. For example, FIG. 9 shows an example in which the optical member 2A and the optical member 2B are properly used. For example, the optical member 2A has a light distribution that emits light strongly in the direction toward the center, and 2B has a light distribution that emits light wider than 2A. A case where a light source has a plurality of light emission characteristics, for example, a case where light sources having different emission colors are mounted will be described. If a plurality of light sources having different emission colors are mounted, the color of the light emitted from the lighting device can be adjusted by changing the light emission intensity of each light source. For example, a daylight white light source and a light bulb In the case where color light sources are combined, it is possible to provide an illuminating device in which the luminescent color of the illuminating device can be adjusted within the range of the color temperature of each luminescent color, while the entire device is neatly illuminated and color unevenness is suppressed.

本実施例に係る光学系は、第8の実施例に記載の照明装置であって、発光色が異なる光源を2種類以上備え、その発光色のうち一つが青色であることを特徴とする照明装置である。   The optical system according to the present embodiment is the illumination apparatus according to the eighth embodiment, and includes two or more types of light sources having different emission colors, and one of the emission colors is blue. Device.

人の目に存在する水晶体は、経年によって青色の透過率が低くなる。このような場合には、青色を識別しにくくなるという課題がある。この場合には、見たい対象物を照明する光に青色を強めにすることによって、視認性を高めることができる。本実施例の構成の照明装置であれば、照明装置に備えた青色の光源を発光させ、照明光の青色を強め、対象物の視認性を高められる。さらに、青色の光源の発光強度を調整するように制御することによって、使用者の要求に応じた、照明環境を提供することが出来る。また、本実施例の照明装置は、広い配光分布を実現する特性を有しているため、青色の光源の配置自由度が上がる。例えば、図9に示すように、光源への配線のしやすさや、他の色の光源配置の制約によって、例えば2Bにのみ青色光源を配置し、残りの光学部材がある箇所には別の色の光源を配置するように青色光源が局在していても、光学部材2によって、照明装置全体をきれいに光らせ、かつ色ムラを抑えて全体が同じ色に光って見える照明装置を提供できる。   The lens present in the human eye has a low blue transmittance with age. In such a case, there is a problem that it is difficult to identify blue. In this case, the visibility can be enhanced by enhancing the blue color of the light that illuminates the object to be viewed. If it is an illuminating device of the structure of a present Example, the blue light source with which the illuminating device was equipped will be light-emitted, the blue of illumination light will be strengthened, and the visibility of a target object will be improved. Furthermore, the lighting environment according to a user's request | requirement can be provided by controlling so that the light emission intensity of a blue light source may be adjusted. Moreover, since the illumination device of the present embodiment has a characteristic that realizes a wide light distribution, the degree of freedom of arrangement of the blue light source is increased. For example, as shown in FIG. 9, due to the ease of wiring to the light source and restrictions on the arrangement of light sources of other colors, for example, a blue light source is arranged only at 2B, and another color is provided at the place where the remaining optical members are present. Even if the blue light source is localized so as to arrange the light source, it is possible to provide an illumination device that makes the entire illumination device shine neatly by the optical member 2 and that the entire color shines with the color unevenness suppressed.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。たとえば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…光源、11…光源基板、2…光学部材、21…出射面、22…入射面、23…平坦面、3…電源、4…筐体、5…セード DESCRIPTION OF SYMBOLS 1 ... Light source, 11 ... Light source substrate, 2 ... Optical member, 21 ... Output surface, 22 ... Incident surface, 23 ... Flat surface, 3 ... Power supply, 4 ... Housing | casing, 5 ... Sade

Claims (9)

光源に対向するよう配置される光学部材において、
前記光学部材の出射面が、光源の光軸と角度をなす方向の出射面上の点Pにおける出射面の曲率中心Cが、光軸上から外れた位置に存在する形状となっている光学部材であって、
光学部材の入射面が、光源の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の形状を有する光学部材。
In the optical member arranged to face the light source,
An optical member in which the exit surface of the optical member has a shape in which the curvature center C of the exit surface at a point P on the exit surface in a direction that makes an angle with the optical axis of the light source exists at a position off the optical axis. Because
An optical member having an incident surface of the optical member having a pair of shapes in the order of at least a concave surface and a convex surface in a direction in which the incident surface is angled with respect to the optical axis of the light source from the front side of the light source.
光源に対向するよう配置される光学部材において、
前記光学部材の出射面が、光源の光軸と角度をなす方向の出射面上の点Pにおける出射面の曲率中心Cが、光軸上から外れた位置に存在する形状となっている光学部材であって、
光学部材の入射面が、光源の正面側から光源の光軸に対して角度がつく方向に向かって、少なくとも凹面、凸面の順に1対以上の曲率が連続的に変化している形状を有している光学部材。
In the optical member arranged to face the light source,
An optical member in which the exit surface of the optical member has a shape in which the curvature center C of the exit surface at a point P on the exit surface in a direction that makes an angle with the optical axis of the light source exists at a position off the optical axis. Because
The incident surface of the optical member has a shape in which a curvature of one or more pairs continuously changes in the order of at least a concave surface and a convex surface from the front side of the light source toward the direction that is angled with respect to the optical axis of the light source. Optical member.
請求項1から2のいずれかに記載の光学部材であって、出射面が凸形状であることを特徴とする光学部材。 3. The optical member according to claim 1, wherein the emission surface has a convex shape. 4. 請求項1から3のいずれかに記載の光学部材であって、
光源から入射面に設けられた凸面の曲率中心を結ぶ方向の光線が、出射面において屈折され、光源の光軸に対して角度が開くことを特徴とする光学部材。
The optical member according to any one of claims 1 to 3,
An optical member characterized in that a light beam in a direction connecting a center of curvature of a convex surface provided on an incident surface from a light source is refracted on an output surface and an angle is opened with respect to an optical axis of the light source.
請求項1から4のいずれかに記載の光学部材と、光源とを組み合わせて構成されていることを特徴とする光学ユニット。 An optical unit comprising the optical member according to any one of claims 1 to 4 and a light source. 請求項1から4のいずれかに記載の光学部材と、光源とを組み合わせた少なくとも一つの光学ユニットと、
筐体と、
電源とを備えた照明装置。
At least one optical unit in which the optical member according to any one of claims 1 to 4 and a light source are combined;
A housing,
A lighting device having a power source.
請求項6に記載の照明装置であって、複数の光学部材が一体化されていることを特徴とする照明装置。 The lighting device according to claim 6, wherein a plurality of optical members are integrated. 請求項6または7に記載の照明装置であって、発光特性が異なる光源を2種類以上備え、少なくとも2つ以上の異なる形状の光学部材を備えていることを特徴とする照明装置。 The lighting device according to claim 6 or 7, wherein two or more types of light sources having different light emission characteristics are provided, and at least two or more optical members having different shapes are provided. 請求項8に記載の照明装置であって、発光色が異なる光源を2種類以上備え、その発光色のうち一つが青色であることを特徴とする照明装置。 The lighting device according to claim 8, wherein two or more types of light sources having different emission colors are provided, and one of the emission colors is blue.
JP2014168994A 2014-08-22 2014-08-22 Wide-angle diffusion optical system and illumination device using the same Active JP6446202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168994A JP6446202B2 (en) 2014-08-22 2014-08-22 Wide-angle diffusion optical system and illumination device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168994A JP6446202B2 (en) 2014-08-22 2014-08-22 Wide-angle diffusion optical system and illumination device using the same

Publications (2)

Publication Number Publication Date
JP2016046067A true JP2016046067A (en) 2016-04-04
JP6446202B2 JP6446202B2 (en) 2018-12-26

Family

ID=55636446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168994A Active JP6446202B2 (en) 2014-08-22 2014-08-22 Wide-angle diffusion optical system and illumination device using the same

Country Status (1)

Country Link
JP (1) JP6446202B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036407A (en) * 2016-08-30 2018-03-08 株式会社エンプラス Luminous flux control member, light emitting device, surface light source device, and display device
JP2018147848A (en) * 2017-03-09 2018-09-20 鄭東全 LED lens and LED lighting module using the same
US10663120B2 (en) 2018-04-20 2020-05-26 Nichia Corporation Light source module
US11287622B2 (en) 2018-05-31 2022-03-29 Nichia Corporation Light source module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177028A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Optical lens, and road luminaire
US20100271708A1 (en) * 2009-04-28 2010-10-28 Ruud Lighting, Inc. Lens with controlled light refraction
JP2012104476A (en) * 2010-10-12 2012-05-31 Toshiba Lighting & Technology Corp Lighting device
WO2014196048A1 (en) * 2013-06-06 2014-12-11 クイックディール・リミテッド Optical lens, optical module, backlight assembly and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177028A (en) * 2009-01-29 2010-08-12 Panasonic Electric Works Co Ltd Optical lens, and road luminaire
US20100271708A1 (en) * 2009-04-28 2010-10-28 Ruud Lighting, Inc. Lens with controlled light refraction
JP2012104476A (en) * 2010-10-12 2012-05-31 Toshiba Lighting & Technology Corp Lighting device
WO2014196048A1 (en) * 2013-06-06 2014-12-11 クイックディール・リミテッド Optical lens, optical module, backlight assembly and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036407A (en) * 2016-08-30 2018-03-08 株式会社エンプラス Luminous flux control member, light emitting device, surface light source device, and display device
JP2018147848A (en) * 2017-03-09 2018-09-20 鄭東全 LED lens and LED lighting module using the same
US10663120B2 (en) 2018-04-20 2020-05-26 Nichia Corporation Light source module
US11287622B2 (en) 2018-05-31 2022-03-29 Nichia Corporation Light source module

Also Published As

Publication number Publication date
JP6446202B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US9366410B2 (en) Reverse total internal reflection features in linear profile for lighting applications
US8733970B2 (en) Lighting apparatus with light controlling reflective layer
JP5363864B2 (en) Light emitting device and light bulb type LED lamp
TWI512237B (en) Lighting system
WO2010001604A1 (en) Illumination device
JP2012514843A (en) Light source with LED, light guide and reflector
US20190186710A1 (en) Led light fixture with light shaping features
JP2015103323A (en) Luminaire
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
US10480721B2 (en) Light flux controlling member, light emitting device and illuminating device
JP2017228490A (en) Vehicular lighting fixture
US10190730B2 (en) Light flux controlling member, light emitting device and illuminating device
KR20150137959A (en) Secondary optical element and light source module
KR101069693B1 (en) LED lighting apparatus using aspherics
JP2008300298A (en) Plane lighting light source device and plane lighting device
WO2012144393A1 (en) Illumination apparatus and illumination appliance provided with same
JP2015162447A (en) Lighting device and light source cover
KR100991890B1 (en) Illuminator module using led
JP2012119265A (en) Underwater light
JP2008244220A (en) Light emitting device
WO2016181789A1 (en) Light beam control member, light-emitting device, and illumination device
KR101629464B1 (en) LED Lamp including Lampcap
CN110319375A (en) Lighting device
KR101167044B1 (en) Led safety illumination with reflector
TWI487865B (en) Led shade

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350