JP2016020731A - Method for estimating sliding surface temperature, seismic isolator, and building - Google Patents

Method for estimating sliding surface temperature, seismic isolator, and building Download PDF

Info

Publication number
JP2016020731A
JP2016020731A JP2014145474A JP2014145474A JP2016020731A JP 2016020731 A JP2016020731 A JP 2016020731A JP 2014145474 A JP2014145474 A JP 2014145474A JP 2014145474 A JP2014145474 A JP 2014145474A JP 2016020731 A JP2016020731 A JP 2016020731A
Authority
JP
Japan
Prior art keywords
sliding
temperature
slip
plate
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014145474A
Other languages
Japanese (ja)
Other versions
JP6341566B2 (en
Inventor
正寿 中村
Masatoshi Nakamura
正寿 中村
日比野 浩
Hiroshi Hibino
浩 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014145474A priority Critical patent/JP6341566B2/en
Publication of JP2016020731A publication Critical patent/JP2016020731A/en
Application granted granted Critical
Publication of JP6341566B2 publication Critical patent/JP6341566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating sliding surface temperature capable of easily estimating sliding surface temperature.SOLUTION: A method for estimating sliding surface temperature is provided with: a step S1 of performing an experiment by using a reduced model to calculate frictional heat Q to be generated on a sliding surface; a step S2 of performing finite element analysis of a sliding plate and a sliding bearing in one dimension along a cross section in a vertical direction to calculate an inflow ratio k; a step S3 of calculating contact ratios kof the respective points on the sliding surface; steps S4, 5 of calculating incident heat fluxes qbto be made incident on the respective points on the sliding surface, and performing the finite element analysis of the sliding plate in three dimensions by using the incident heat fluxes qbas a boundary condition to calculate temperature Tof sliding surfaces of the respective points on the sliding plate; and a step 6 of making temperature T of the sliding surface into a range larger than temperature Tmeasured by the experiment using the reduced model, and smaller than the temperature calculated by the step S5.SELECTED DRAWING: Figure 2

Description

本発明は、例えば、免震装置のすべり板のすべり面温度の推定方法、および、このすべり面温度推定方法により、すべり板の材質、大きさ、および形状が決定された免震装置、および、この免震装置を備える建物に関する。   The present invention is, for example, a method for estimating a slip surface temperature of a slip plate of a seismic isolation device, and a seismic isolation device in which the material, size, and shape of the slip plate are determined by the slip surface temperature estimation method, and The present invention relates to a building equipped with this seismic isolation device.

免震構造の建物では、下部構造である基礎の上に免震装置を設け、この免震装置を介して、上部構造である建物を支持する。この免震装置は、例えば、基礎上に設けられたすべり板と、このすべり板上を摺動するすべり支承と、を備える(特許文献1、2参照)。   In a building having a seismic isolation structure, a seismic isolation device is provided on a foundation that is a lower structure, and the building that is an upper structure is supported through the seismic isolation device. This seismic isolation device includes, for example, a sliding plate provided on a foundation and a sliding bearing that slides on the sliding plate (see Patent Documents 1 and 2).

以上の免震装置では、地震時に、建物に加わる地震力が大きい場合には、すべり支承がすべり板の上を摺動して、地震力を緩和する。   In the above seismic isolation device, when the seismic force applied to the building is large during an earthquake, the sliding bearing slides on the sliding plate to reduce the seismic force.

ここで、すべり支承に設けられたすべり材のすべり板に対する水平方向の移動量を、すべり量とする。このすべり量は、すべり板のすべり面の摩擦の影響を受けるが、すべり面が高温になると摩擦係数が常温時より低下することが判っている。したがって、免震構造の建物の設計に際しては、この摩擦係数の低下を考慮することが望ましい。   Here, the amount of movement of the sliding material provided on the sliding bearing in the horizontal direction with respect to the sliding plate is defined as the amount of sliding. This slip amount is affected by the friction of the sliding surface of the sliding plate, but it has been found that the friction coefficient decreases from that at normal temperature when the sliding surface becomes high temperature. Therefore, it is desirable to consider this reduction in the coefficient of friction when designing a building with a base isolation structure.

特開2006−144346号公報JP 2006-144346 A 特開2009−281559号公報JP 2009-281559 A

すべり面の摩擦係数を把握する方法としては、実大実験つまり実際の大きさの部材を用いた実験が最も正確である。しかしながら、試験装置の性能や実験コストの面から実験可能な規模には制限があり、縮小規模の実験しか実施できない場合がある。
縮小実験では、試験体の材料、鉛直方向の寸法、単位面積当たりの載荷荷重などについては、比較的容易に実大に一致させることができる。これに対し、水平方向の寸法、すなわち、すべり支承の径およびすべり量は、実大に一致させることは困難であり、縮小せざるを得ない。
The most accurate method for grasping the friction coefficient of the sliding surface is a full-scale experiment, that is, an experiment using a member having an actual size. However, there is a limit to the scale at which the experiment can be performed in terms of the performance of the test apparatus and the experimental cost, and only a reduced scale experiment may be performed.
In the reduction experiment, the material of the test specimen, the vertical dimension, the loaded load per unit area, and the like can be matched with each other relatively easily. On the other hand, it is difficult to match the horizontal dimension, that is, the diameter of the sliding bearing and the sliding amount to the actual size, and must be reduced.

水平方向の寸法を、実大に対して幾何学的に相似に縮小すると、発生する摩擦熱に対する外周方向への失熱の割合が大きくなるため、実大より低めの温度となる。
したがって、縮小実験による摩擦係数は、実大で予想される温度を用いて補正する必要がある。
When the dimension in the horizontal direction is reduced geometrically to the actual size, the ratio of the heat loss in the outer peripheral direction to the generated frictional heat increases, so that the temperature is lower than the actual size.
Therefore, it is necessary to correct the coefficient of friction by the reduction experiment using the actual and expected temperature.

この補正のために必要なすべり面温度は、縮小実験結果から得られた摩擦熱に基づいて、熱伝導解析などにより推定する必要がある。この場合、すべり板およびすべり支承は、形状、すべり方向、伝熱方向が三次元的に拡がりを持つため、三次元の熱伝導解析が必要であるが、モデル化に要する労力や計算時間の負担が大きい、という問題があった。   The slip surface temperature necessary for this correction needs to be estimated by heat conduction analysis based on the frictional heat obtained from the reduction experiment result. In this case, the slip plate and the slide support have a three-dimensional shape, slip direction, and heat transfer direction, so a three-dimensional heat conduction analysis is required. There was a problem that was big.

本発明は、実大相当のすべり面温度を容易に推定できるすべり面温度推定方法、免震装置、および建物を提供することを目的とする。   It is an object of the present invention to provide a slip surface temperature estimation method, a seismic isolation device, and a building that can easily estimate the actual slip surface temperature.

請求項1に記載のすべり面温度推定方法は、すべり板(例えば、後述のすべり板10)のすべり面(例えば、後述のすべり面11)上をすべり支承(例えば、後述の弾性すべり支承20)が摺動する免震装置(例えば、後述の免震装置1)について、前記すべり面の温度を推定するすべり面温度推定方法であって、前記すべり板および前記すべり支承の縮小模型を製作し、当該縮小模型を用いて実験を行って、前記すべり面に生じる摩擦熱(例えば、後述の摩擦熱Q)を求める第1ステップ(例えば、後述のステップS1)と、前記すべり板および前記すべり支承を鉛直方向断面に沿って一次元で有限要素解析を行って、前記すべり面で発生した摩擦熱が前記すべり板の内部に流入する割合を流入率(例えば、後述の流入率kin)として求める第2ステップ(例えば、後述のステップS2)と、前記すべり支承の直径と振幅に基づいて、前記すべり面上の各点が前記すべり支承と接触する時間的な割合を接触率(例えば、後述の接触率kct)として求める第3ステップ(例えば、後述のステップS3)と、前記摩擦熱、前記流入率、および前記接触率に基づいて前記すべり面上の各点に入射する入射熱流束(例えば、後述の入射熱流束qbXY)を求めて、当該入射熱流束を境界条件として、前記すべり板を三次元で有限要素解析を行って、すべり板上の各点のすべり面の温度(例えば、後述のすべり面の温度Tfcal)を求める第4ステップ(例えば、後述のステップS4、S5)と、前記すべり面の温度(例えば、後述の実大のすべり面の温度T)を、縮小模型を用いた実験で測定した温度(例えば、後述の縮小模型のすべり面の温度Trexp)よりも大きく、前記第4ステップで求めた温度よりも小さい範囲とする第5ステップ(例えば、後述のステップS6)と、を備えることを特徴とする。 The slip surface temperature estimation method according to claim 1 is a sliding bearing (for example, an elastic sliding bearing 20 described later) on a sliding surface (for example, a sliding surface 11 described later) of a sliding plate (for example, a sliding plate 10 described later). Is a slip surface temperature estimation method for estimating the temperature of the slip surface for a seismic isolation device (for example, a seismic isolation device 1 to be described later), which produces a reduced model of the slip plate and the slide support, An experiment is performed using the reduced model, and a first step (for example, step S1 to be described later) for obtaining frictional heat (for example, frictional heat Q to be described later) generated on the sliding surface, the sliding plate and the sliding support are determined. along the vertical cross section by performing a finite element analysis in one dimension, the ratio of frictional heat generated in the sliding surface flows inside the sliding plate as the inflow rate (for example, the inflow rate k in below) A second step (for example, step S2 to be described later) and, based on the diameter and amplitude of the sliding bearing, a time ratio at which each point on the sliding surface contacts the sliding bearing is determined as a contact rate (for example, A third step (for example, step S3 described later) to be obtained as a contact rate k ct described later, and an incident heat flux incident on each point on the slip surface based on the frictional heat, the inflow rate, and the contact rate. (For example, an incident heat flux qb XY described later) is obtained, and the sliding plate is subjected to three-dimensional finite element analysis using the incident heat flux as a boundary condition, and the temperature of the sliding surface at each point on the sliding plate ( For example, a fourth step (for example, steps S4 and S5 to be described later) for obtaining a slip surface temperature T fcal described later and a slip surface temperature (for example, a full-scale slip surface temperature T to be described later) are reduced. Use model The fifth step (for example, step S6 to be described later) is set to a range that is greater than the temperature measured in the previous experiment (for example, the temperature T rexp of the sliding surface of the reduced model described later) and smaller than the temperature obtained in the fourth step. And.

この発明によれば、第4ステップで、すべり板のみを三次元要素解析するので、解析に要する労力および計算時間を大幅に削減でき、すべり面の温度を容易に推定できる。
また、第5ステップにおいて、実大のすべり面の温度を所定の範囲で求めることができるので、すべり板を設計する際に、この所定範囲の最小値あるいは最大値を適宜用いて摩擦係数を算定すれば、容易に安全側で検討できる。
According to the present invention, in the fourth step, only the slip plate is subjected to three-dimensional element analysis. Therefore, labor and calculation time required for the analysis can be greatly reduced, and the temperature of the slip surface can be easily estimated.
Further, in the fifth step, the temperature of the actual sliding surface can be obtained within a predetermined range. Therefore, when designing the sliding plate, the friction coefficient is calculated by appropriately using the minimum value or the maximum value of the predetermined range. If so, it can be easily considered on the safety side.

また、すべり板に対して有限要素解析を行う場合、すべり面で発生した摩擦熱がすべり支承側とすべり板側のそれぞれに伝わる割合を設定する必要がある。しかし、これを厳密に設定しようとすると、すべり支承とすべり板の相対移動を考慮して、接触面を切り替えながら計算を行う必要があり、計算負担が増大する。   Further, when performing finite element analysis on the sliding plate, it is necessary to set the ratio at which the frictional heat generated on the sliding surface is transmitted to the sliding bearing side and the sliding plate side. However, if this is to be set strictly, it is necessary to perform the calculation while switching the contact surface in consideration of the relative movement of the sliding bearing and the sliding plate, which increases the calculation burden.

そこで、本発明では、このような厳密な計算を行わずに、事象を単純化して、すべり面上の各点がすべり支承と接触する時間的な割合を接触率とし、この接触率を用いて有限要素解析の境界条件を算定したので、計算負担をさらに低減できる。   Therefore, in the present invention, without performing such a strict calculation, the phenomenon is simplified, and the time ratio at which each point on the sliding surface contacts the sliding bearing is defined as the contact ratio, and this contact ratio is used. Since the boundary conditions of the finite element analysis are calculated, the calculation burden can be further reduced.

すべり支承はすべり面上を往復しているので、すべり面上のある一点は、実際には、すべり支承と接触した状態と、周囲空気に曝露された状態と、を周期的に繰り返す。このすべり支承との接触の有無を経時的に切り替えて計算するのは煩雑となるため、全加振時間に対するすべり支承との接触時間の割合を表す係数を接触率とし、この接触率を用いて有限要素解析の境界条件とする。   Since the sliding bearing reciprocates on the sliding surface, a certain point on the sliding surface actually repeats the state in contact with the sliding bearing and the state exposed to the ambient air periodically. Since it is cumbersome to calculate the presence or absence of contact with this sliding bearing over time, the coefficient representing the ratio of the contact time with the sliding bearing to the total excitation time is defined as the contact ratio. Boundary conditions for finite element analysis.

請求項2に記載のすべり面温度推定方法は、前記第2ステップにおいて、前記すべり板と前記すべり支承との境界面における温度が同一であるとして、有限要素解析を行うことを特徴とする。   The slip surface temperature estimation method according to claim 2 is characterized in that, in the second step, finite element analysis is performed on the assumption that the temperature at the boundary surface between the slip plate and the slide bearing is the same.

有限要素解析を行う際、すべり面の熱伝達係数の設定が必要となるが、すべり板とすべり支承の材質やすべり面の表面状態によって変化するため、正確な設定は困難である。
そこで、この発明では、すべり支承とすべり板との境界面における温度が同一であるとして、有限要素解析を行うことで、計算負担をさらに低減できる。なお、このようにしても、すべり支承の表面とすべり板の表面との温度差による伝熱量は、摩擦により発生する熱に比べて十分に小さく、計算結果に与える影響は無視できる。
When performing finite element analysis, it is necessary to set the heat transfer coefficient of the sliding surface, but it is difficult to set accurately because it changes depending on the material of the sliding plate and the sliding bearing and the surface state of the sliding surface.
Therefore, in the present invention, the calculation burden can be further reduced by performing the finite element analysis on the assumption that the temperature at the boundary surface between the sliding bearing and the sliding plate is the same. Even in this case, the amount of heat transfer due to the temperature difference between the surface of the sliding bearing and the surface of the sliding plate is sufficiently smaller than the heat generated by friction, and the influence on the calculation result can be ignored.

請求項3に記載の免震装置は、すべり板のすべり面上をすべり支承が摺動する免震装置であって、前記すべり板の材質、大きさ、および形状は、上述のすべり面温度推定方法により推定されたすべり面の温度に基づいて決定されていることを特徴とする。   The seismic isolation device according to claim 3 is a seismic isolation device in which a sliding bearing slides on the sliding surface of the sliding plate, and the material, size, and shape of the sliding plate are the above-described slip surface temperature estimations. It is determined based on the temperature of the slip surface estimated by the method.

請求項4に記載の建物(例えば、後述の建物3)は、すべり板のすべり面上をすべり支承が摺動する免震装置を備える建物であって、前記すべり面の摩擦係数(例えば、後述の摩擦係数M)が請求項1または2に記載のすべり面温度推定方法により推定されたすべり面の温度に基づいて設定され、当該摩擦係数に基づいて設計されたことを特徴とする。   A building according to claim 4 (for example, building 3 described later) is a building including a seismic isolation device in which a sliding bearing slides on a sliding surface of a sliding plate, and a friction coefficient (for example, described later) of the sliding surface. The friction coefficient M) is set on the basis of the slip surface temperature estimated by the slip surface temperature estimation method according to claim 1 or 2, and is designed based on the friction coefficient.

本発明によれば、すべり板のみを三次元要素解析するので、解析に要する労力および計算時間を大幅に削減でき、すべり面の温度を容易に推定できる。   According to the present invention, since only the slip plate is subjected to three-dimensional element analysis, labor and calculation time required for the analysis can be greatly reduced, and the temperature of the slip surface can be easily estimated.

本発明の一実施形態に係るすべり面温度推定方法が適用された免震装置の縦断面図である。It is a longitudinal cross-sectional view of the seismic isolation apparatus to which the slip surface temperature estimation method which concerns on one Embodiment of this invention was applied. 前記実施形態に係るすべり面温度推定方法を用いて、免震装置のすべり板のすべり面の温度を推定する手順のフローチャートである。It is a flowchart of the procedure which estimates the temperature of the slip surface of the slip board of a seismic isolation apparatus using the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、すべり面に生じる摩擦熱を算定するための縮小実験の模式図である。In the slip surface temperature estimation method according to the embodiment, it is a schematic diagram of a reduction experiment for calculating frictional heat generated on the slip surface. 前記実施形態に係るすべり面温度推定方法において、縮小実験により求めた摩擦熱の経時変化を示す図である。It is a figure which shows the time-dependent change of the frictional heat calculated | required by the reduction experiment in the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、すべり面上の温度を測定する手順を説明するための模式的な平面図である。FIG. 5 is a schematic plan view for explaining a procedure for measuring a temperature on a slip surface in the slip surface temperature estimation method according to the embodiment. 前記実施形態に係るすべり面温度推定方法において、すべり板およびすべり支承の鉛直方向断面をモデル化した模式図である。It is the schematic diagram which modeled the vertical direction cross section of the slip board and the slide support in the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、流入率の経時変化の具体例を示す図である。It is a figure which shows the specific example of the time-dependent change of an inflow rate in the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、接触率の分布の具体例を示す図である。It is a figure which shows the specific example of distribution of a contact rate in the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、接触率の分布を説明するためのすべり板の模式的な平面図である。In the slip surface temperature estimation method according to the embodiment, it is a schematic plan view of a slip plate for explaining the distribution of contact ratio. 前記実施形態に係るすべり面温度推定方法において、三次元有限要素解析の結果の具体例を示す図である。It is a figure which shows the specific example of the result of a three-dimensional finite element analysis in the slip surface temperature estimation method which concerns on the said embodiment. 前記実施形態に係るすべり面温度推定方法において、三次元有限要素解析の結果を説明するためのすべり板の模式的な平面図である。In the slip surface temperature estimation method according to the embodiment, it is a schematic plan view of a slip plate for explaining the result of three-dimensional finite element analysis. 前記実施形態に係るすべり面温度推定方法において、予測により求めたすべり面の温度および縮小模型を用いた実験により測定されたすべり面の温度の経時変化を示す図である。In the slip surface temperature estimation method according to the embodiment, it is a diagram showing a change with time in the temperature of the slip surface obtained by prediction and the temperature of the slip surface measured by an experiment using a reduced model.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係るすべり面温度推定方法が適用された免震装置1の側面図である。
免震装置1は、下部構造である基礎2に設けられて、上部構造である建物3を支持するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side view of a seismic isolation device 1 to which a slip surface temperature estimation method according to an embodiment of the present invention is applied.
The seismic isolation device 1 is provided on a foundation 2 that is a lower structure and supports a building 3 that is an upper structure.

基礎2の上面には、鉄筋コンクリート造の下部免震基礎4が構築され、建物3の下面には、鉄筋コンクリート造の上部免震基礎5が構築される。
免震装置1は、下部免震基礎4の上面に固定されたすべり板10と、このすべり板10のすべり面11の上に水平方向に摺動可能に設けられた弾性すべり支承20と、を備える。
弾性すべり支承20は、すべり板10の上に設けられたすべり材21と、このすべり材21の上に設けられた下部鋼板22と、下部鋼板22の上に設けられた積層ゴム23と、積層ゴム23の上に設けられた上部鋼板24と、を備える。
A reinforced concrete lower seismic isolation base 4 is constructed on the upper surface of the foundation 2, and a reinforced concrete upper seismic isolation foundation 5 is constructed on the lower surface of the building 3.
The seismic isolation device 1 includes a sliding plate 10 fixed to the upper surface of the lower seismic isolation base 4 and an elastic sliding bearing 20 provided on the sliding surface 11 of the sliding plate 10 so as to be slidable in the horizontal direction. Prepare.
The elastic sliding bearing 20 includes a sliding member 21 provided on the sliding plate 10, a lower steel plate 22 provided on the sliding member 21, a laminated rubber 23 provided on the lower steel plate 22, and a laminated material. And an upper steel plate 24 provided on the rubber 23.

以上の免震装置1は、基礎2に反力をとって建物3を下から支持しつつ、建物3が基礎2に対して水平方向に移動可能な状態を保持している。
そして、地震時において、建物3に加わる小さな地震力が加わった場合には、弾性すべり支承20の積層ゴム23が変形して、地震力を緩和し、大きな地震力が加わった場合には、弾性すべり支承20がすべり板10の上を摺動して、地震力を緩和する。
The above seismic isolation device 1 holds the state in which the building 3 can move in the horizontal direction with respect to the foundation 2 while supporting the building 3 from below by taking a reaction force on the foundation 2.
In the event of an earthquake, when a small seismic force applied to the building 3 is applied, the laminated rubber 23 of the elastic sliding bearing 20 is deformed to relieve the seismic force, and when a large seismic force is applied, it is elastic. The sliding support 20 slides on the sliding plate 10 to reduce the seismic force.

免震装置1のすべり板10のすべり面の温度を推定して、この推定した温度に基づいてすべり面11における摩擦係数Mを設定して、この摩擦係数Mに基づいて建物3が設計されている。
以下、建物3を設計する手順について、図2のフローチャートを参照して説明する。
The temperature of the sliding surface of the sliding plate 10 of the seismic isolation device 1 is estimated, the friction coefficient M on the sliding surface 11 is set based on the estimated temperature, and the building 3 is designed based on the friction coefficient M. Yes.
Hereinafter, the procedure for designing the building 3 will be described with reference to the flowchart of FIG.

ステップS1では、縮小模型を用いて、すべり面に生じる摩擦熱Qを算定するとともに、すべり面上の測定点の温度Trexpを測定する。
すなわち、図3に示すように、免震装置の縮小模型を製作し、実際に、縮小模型のすべり板上で、縮小模型のすべり支承を振動させる。この縮小実験では、垂直方向の寸法・材質、面圧、および単位時間当たりのすべり量を実大に一致させる。
In step S1, the frictional heat Q generated on the sliding surface is calculated using the reduced model, and the temperature T repp at the measurement point on the sliding surface is measured.
That is, as shown in FIG. 3, a reduced model of the seismic isolation device is manufactured, and the sliding support of the reduced model is actually vibrated on the reduced model sliding plate. In this reduction experiment, the size / material in the vertical direction, the surface pressure, and the amount of slip per unit time are made to coincide with each other.

例えば、以下の実験条件により縮小実験を行った。試験体の外径を300mmとし、鉛直一定軸力で水平動的に周期4秒の正弦波で加振する2軸載荷を行う。基準面圧は20N/mmとし、250回の連続加振とした。 For example, a reduction experiment was performed under the following experimental conditions. The outer diameter of the test body is set to 300 mm, and biaxial loading is performed in which a sine wave having a period of 4 seconds is vibrated horizontally with a constant vertical axial force. The reference surface pressure was 20 N / mm 2 and 250 consecutive vibrations were applied.

この縮小実験において、すべり支承に作用する水平力Hを測定する。すべり支承のすべり量をDとすると、すべり面に生じる単位面積当たりの摩擦熱Qは、以下の式(1)で求められる。   In this reduction experiment, the horizontal force H acting on the sliding bearing is measured. When the sliding amount of the sliding bearing is D, the frictional heat Q per unit area generated on the sliding surface is obtained by the following equation (1).

Q=H×D …(1)   Q = H × D (1)

図4は、縮小実験により求めた摩擦熱の経時変化を示す図である。この図4より、時間が経過するに従って摩擦熱Qが低下することが判る。   FIG. 4 is a diagram showing a change with time of frictional heat obtained by a reduction experiment. As can be seen from FIG. 4, the frictional heat Q decreases with time.

また、この縮小実験を行った際、図5に示すように、すべり板のすべり面上に格子状に測定点を設定し、各測定点の温度Trexpを測定しておく。 Further, when this reduction experiment is performed, as shown in FIG. 5, measurement points are set in a grid pattern on the slip surface of the slip plate, and the temperature T rexp at each measurement point is measured.

ステップS2では、一次元の有限要素解析により流入率kinを算定する。
図6に示すように、すべり板およびすべり支承を鉛直方向断面に沿ってモデル化する。すると、各要素が鉛直方向に一列に並んだ一次元となる。このモデルに対して有限要素解析を行って、摩擦熱Qがすべり板の内部に流入する割合を流入率kinとして求める。
なお、この有限要素解析では、 すべり支承とすべり板との境界面(すべり面)における温度は、同一に設定する。
図7は、流入率kinの経時変化の具体例を示す図である。
In step S2, calculating the flow rate k in the finite element analysis of a one-dimensional.
As shown in FIG. 6, the sliding plate and the sliding bearing are modeled along a vertical section. Then, each element becomes one-dimensional in a line in the vertical direction. Performing a finite element analysis with respect to this model, determine the rate of flow into the frictional heat Q is sliding plate as inflow rate k in.
In this finite element analysis, the temperature at the boundary surface (slip surface) between the slide bearing and the slide plate is set to be the same.
FIG. 7 is a diagram illustrating a specific example of the change over time of the inflow rate k in .

ステップS3では、実大について、接触率kctを算定する。
すべり支承は、すべり板のすべり面上を、所定の振幅、所定の周期で振動するものと仮定する。そして、すべり支承の直径および振幅に基づいて、すべり面上の各点がすべり支承と接触する時間的な割合を接触率kctとして求める。
In step S3, the contact ratio kct is calculated for the actual size.
It is assumed that the sliding bearing vibrates on the sliding surface of the sliding plate with a predetermined amplitude and a predetermined cycle. Then, based on the diameter and amplitude of the sliding bearing, a time ratio at which each point on the sliding surface comes into contact with the sliding bearing is obtained as a contact ratio kct .

図8は、接触率kctの分布の具体例を示す図であり、図9は、すべり板の模式的な平面図である。
図8は、図9に示すすべり板の一部(斜線部分)であり、図9のすべり板上にてすべり支承を図8中白抜き矢印方向に振動させた場合における、接触率kctの分布である。
図8に示すように、すべり板の中心に近い点ほど、すべり面にすべり支承が接触する時間が長期化するので、接触率kctは高くなっている。
FIG. 8 is a diagram illustrating a specific example of the distribution of the contact ratio kct , and FIG. 9 is a schematic plan view of the sliding plate.
FIG. 8 shows a part (shaded portion) of the sliding plate shown in FIG. 9, and the contact ratio k ct when the sliding support is vibrated in the direction of the white arrow in FIG. 8 on the sliding plate of FIG. Distribution.
As shown in FIG. 8, the closer to the center of the sliding plate, the longer it takes for the sliding support to contact the sliding surface, so the contact rate kct is higher.

ステップS4では、実大について、入射熱流束qbXYを算定する。
すべり支承がすべり面上を振動した場合に、摩擦熱Q、流入率kin、および接触率kctに基づいて、すべり面上の各点に入射する入射熱流束qbXYを、以下の式(2)に従って求める。
In step S4, the incident heat flux qb XY is calculated for the actual size.
When the sliding bearing vibrates on the sliding surface, the incident heat flux qb XY incident on each point on the sliding surface based on the frictional heat Q, the inflow rate k in , and the contact rate k ct is expressed by the following equation ( Obtain according to 2).

qbXY=kctinQ+h(1−kct)(T−TXY) …(2)
h:綜合熱伝達率
xy:計算時点における任意のすべり板表面の各測定点xyの温度
:周囲温度
qb XY = k ct k in Q + h (1-k ct) (T a -T XY) ... (2)
h: Sogo heat transfer coefficient T xy: temperature T a of each measurement point xy any sliding plate surface at a calculated point: ambient temperature

以上の式(2)の右辺において、第1項は、すべり面からすべり板に向かう熱を求めている。すなわち、ステップS1〜S3の計算結果である摩擦熱Q、流入率kin、接触率kctの積である。
一方、右辺の第2項は、すべり面から外部に放出される熱を求めている。つまり、すべり面の各点は、すべり支承が接していない状態では、周囲の空気により空冷されるので、この空冷による放射される熱を求める。
In the right side of the above equation (2), the first term calculates the heat from the sliding surface toward the sliding plate. That is, it is the product of the frictional heat Q, the inflow rate k in , and the contact rate k ct that are the calculation results of steps S1 to S3.
On the other hand, the second term on the right side calculates the heat released from the sliding surface to the outside. That is, each point of the slip surface is air-cooled by the surrounding air in a state where the slide support is not in contact, and thus the heat radiated by this air-cooling is obtained.

ステップS5では、三次元の有限要素解析により、すべり板上の各測定点のすべり面の温度Tfcalを求める。
ステップS4で求めた入射熱流束qbXYを境界条件として、すべり板を三次元で有限要素解析を行って、すべり板上の各測定点のすべり面の温度Tfcalを求める。
In step S5, the temperature T fcal of the slip surface at each measurement point on the slip plate is obtained by three-dimensional finite element analysis.
Using the incident heat flux qb XY obtained in step S4 as a boundary condition, the sliding plate is subjected to three-dimensional finite element analysis to obtain the temperature T fcal of the sliding surface at each measurement point on the sliding plate.

図10は、三次元有限要素解析の結果の具体例を示す図であり、図11は、すべり板の模式的な平面図である。
図10は、図11に示すすべり板の一部(斜線部分)であり、図11のすべり板上にてすべり支承を図11中白抜き矢印方向に振動させた場合における、三次元有限要素解析の結果である。
FIG. 10 is a diagram showing a specific example of the result of the three-dimensional finite element analysis, and FIG. 11 is a schematic plan view of the sliding plate.
FIG. 10 shows a part (shaded portion) of the sliding plate shown in FIG. 11, and a three-dimensional finite element analysis in the case where the sliding support is vibrated on the sliding plate of FIG. Is the result of

ステップS6では、実大のすべり面の温度をTとして、Tfcal>T>Trexpの範囲に設定する。
実大のすべり面の温度Tは、縮小模型のすべり面の温度Trexpよりも高くなる。その理由は、実大の方が、縮小模型よりも、発生する摩擦熱が外周方向に失熱する割合が小さいからである。
In step S6, the temperature of the actual sliding surface is set as T, and the range of T fcal >T> T rexp is set.
The temperature T of the actual sliding surface is higher than the temperature T rexp of the sliding surface of the reduced model. The reason is that the actual size is smaller in the rate at which the generated frictional heat is lost in the outer circumferential direction than the reduced model.

ステップS7では、この推定した実大のすべり面の温度Tに基づいてすべり面11における摩擦係数Mを設定する。
ステップS8では、この設定した摩擦係数Mに基づいて建物3を設計する。
In step S7, the friction coefficient M on the slip surface 11 is set based on the estimated actual temperature T of the slip surface.
In step S8, the building 3 is designed based on the set friction coefficient M.

また、実大のすべり面の温度Tは、ステップS5で求めたすべり面の温度Tfcalよりも低くなる。その理由は、以下の通りである。
すなわち、すべり支承の移動量が同じであっても、すべり面の温度が上昇するに従って、摩擦係数は低下し、単位面積当たりの摩擦熱も低下する。上述のように、縮小模型のすべり面の温度Trexpは、実大のすべり面の温度Tよりも低いため、縮小模型における摩擦熱Qは、実大の摩擦熱よりも高くなる。ステップS5では、縮小実験で求めた実大よりも高い摩擦熱Qを用いてすべり面の温度Tfcalを求めているので、ステップS5で求めたすべり面の温度Tfcalは、実大のすべり面の温度Tよりも高くなる。
In addition, the actual sliding surface temperature T is lower than the sliding surface temperature T fcal obtained in step S5. The reason is as follows.
That is, even if the amount of movement of the sliding bearing is the same, the friction coefficient decreases and the frictional heat per unit area also decreases as the sliding surface temperature increases. As described above, since the temperature T rexp of the sliding surface of the reduced model is lower than the temperature T of the actual sliding surface, the frictional heat Q in the reduced model is higher than the actual frictional heat. In step S5, the slip surface temperature T fcal is obtained using the frictional heat Q higher than the actual size obtained in the reduction experiment. Therefore, the slip surface temperature T fcal obtained in step S5 is the actual slip surface. The temperature T becomes higher.

図12は、予測により求めたすべり面の温度Tfcalと、縮小模型を用いた実験により測定されたすべり面の温度Trexpと、の経時変化を示す図である。図12において、実大のすべり面の温度Tは、TfcalとTrexpとで囲まれた領域となる。 Figure 12 is a diagram showing the temperature T fcal of the sliding surface obtained by the prediction, and the temperature T rexp the measured sliding surface Experiments using miniature, the time course of. In FIG. 12, the temperature T of the actual sliding surface is a region surrounded by T fcal and T rexp .

本実施形態によれば、以下のような効果がある。
ステップS5において、すべり板のみを三次元要素解析するので、解析に要する労力および計算時間を大幅に削減でき、すべり面温度を容易に推定できる。
また、実大のすべり面の温度TをTfcal>T>Trexpの範囲で求めたので、すべり板を設計する際に、この所定範囲の最小値(Trexp)あるいは最大値(Tfcal)を適宜用いて摩擦係数を算定すれば、容易に安全側で検討できる。
According to this embodiment, there are the following effects.
In step S5, since only the slip plate is subjected to three-dimensional element analysis, labor and calculation time required for the analysis can be greatly reduced, and the slip surface temperature can be easily estimated.
Further, since the temperature T of the actual sliding surface is obtained in the range of T fcal >T> T rexp , when designing the sliding plate, the minimum value (T rexp ) or the maximum value (T fcal ) of this predetermined range. If the coefficient of friction is calculated appropriately, it can be easily considered on the safety side.

事象を単純化して、すべり面上の各点がすべり支承と接触する時間的な割合を接触率kctとし、この接触率kctを用いて有限要素解析の境界条件である入射熱流束qbXYを算定したので、計算負担をさらに低減できる。 To simplify the event, the time proportions in contact with bearing slip each point on the sliding surface and contact ratio k ct, incident heat flux qb XY is a boundary condition of the finite element analysis using the contact ratio k ct The calculation burden can be further reduced.

ステップS2において、すべり支承とすべり板との境界面における温度が同一であるとして、一次元有限要素解析を行うことで、計算負担をさらに低減できる。   In step S2, assuming that the temperature at the boundary surface between the sliding bearing and the sliding plate is the same, the calculation burden can be further reduced by performing the one-dimensional finite element analysis.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…免震装置
2…基礎
3…建物
4…下部免震基礎
5…上部免震基礎
10…すべり板
11…すべり面
20…弾性すべり支承
21…すべり材
22…下部鋼板
23…積層ゴム
24…上部鋼板
D…すべり量
H…水平力
M…摩擦係数
Q…摩擦熱
T…実大のすべり面の温度
fcal…求めたすべり面の温度
rexp…縮小模型のすべり面の温度
ct…接触率
in…流入率
qbXY…入射熱流束
DESCRIPTION OF SYMBOLS 1 ... Base isolation device 2 ... Foundation 3 ... Building 4 ... Lower base isolation base 5 ... Upper base isolation base 10 ... Sliding board 11 ... Sliding surface 20 ... Elastic sliding bearing 21 ... Sliding material 22 ... Lower steel plate 23 ... Laminated rubber 24 ... Upper steel plate D ... Slip amount H ... Horizontal force M ... Friction coefficient Q ... Frictional heat T ... Full- scale slip surface temperature T fcal ... Slip surface temperature T rex ... Reduced model slide surface temperature k ct ... Contact Rate k in ... inflow rate qb XY ... incident heat flux

Claims (4)

すべり板のすべり面上をすべり支承が摺動する免震装置について、前記すべり面の温度を推定するすべり面温度推定方法であって、
前記すべり板および前記すべり支承の縮小模型を製作し、当該縮小模型を用いて実験を行って、前記すべり面に生じる摩擦熱を求める第1ステップと、
前記すべり板および前記すべり支承を鉛直方向断面に沿って一次元で有限要素解析を行って、前記すべり面で発生した摩擦熱が前記すべり板の内部に流入する割合を流入率として求める第2ステップと、
前記すべり支承の直径と振幅に基づいて、前記すべり面上の各点が前記すべり支承と接触する時間的な割合を接触率として求める第3ステップと、
前記摩擦熱、前記流入率、および前記接触率に基づいて前記すべり面上の各点に入射する入射熱流束を求めて、当該入射熱流束を境界条件として、前記すべり板を三次元で有限要素解析を行って、すべり板上の各点のすべり面の温度を求める第4ステップと、
前記すべり面の温度を、縮小模型を用いた実験で測定した温度よりも大きく、前記第4ステップで求めた温度よりも小さい範囲とする第5ステップと、を備えることを特徴とするすべり面温度推定方法。
For a seismic isolation device in which a sliding bearing slides on a sliding surface of a sliding plate, a slip surface temperature estimating method for estimating the temperature of the sliding surface,
Producing a reduced model of the sliding plate and the sliding support, performing an experiment using the reduced model, and determining a frictional heat generated on the sliding surface;
A second step of performing a one-dimensional finite element analysis of the sliding plate and the sliding bearing along a vertical cross-section and obtaining a rate at which the frictional heat generated on the sliding surface flows into the sliding plate as an inflow rate When,
A third step of determining, as a contact ratio, a time ratio at which each point on the sliding surface contacts the sliding bearing based on the diameter and amplitude of the sliding bearing;
Based on the frictional heat, the inflow rate, and the contact rate, an incident heat flux incident on each point on the slip surface is obtained, and the slip plate is defined as a three-dimensional finite element using the incident heat flux as a boundary condition. A fourth step of performing an analysis to determine the temperature of the sliding surface of each point on the sliding plate;
A slip surface temperature, characterized in that the slip surface temperature includes a fifth step in which the temperature of the slip surface is larger than the temperature measured in the experiment using the reduced model and smaller than the temperature obtained in the fourth step. Estimation method.
前記第2ステップにおいて、前記すべり板と前記すべり支承との境界面における温度が同一であるとして、有限要素解析を行うことを特徴とする請求項1に記載のすべり面温度推定方法。   2. The slip surface temperature estimation method according to claim 1, wherein in the second step, finite element analysis is performed on the assumption that the temperature at the boundary surface between the slip plate and the slide support is the same. すべり板のすべり面上をすべり支承が摺動する免震装置であって、
前記すべり板の材質、大きさ、および形状は、請求項1または2に記載のすべり面温度推定方法により推定されたすべり面の温度に基づいて決定されていることを特徴とする免震装置。
A seismic isolation device in which the sliding bearing slides on the sliding surface of the sliding plate,
The seismic isolation device according to claim 1, wherein a material, a size, and a shape of the slip plate are determined based on a slip surface temperature estimated by the slip surface temperature estimation method according to claim 1.
すべり板のすべり面上をすべり支承が摺動する免震装置を備える建物であって、
前記すべり面の摩擦係数が請求項1または2に記載のすべり面温度推定方法により推定されたすべり面の温度に基づいて設定され、当該摩擦係数に基づいて設計されたことを特徴とする建物。
A building having a seismic isolation device in which the sliding bearing slides on the sliding surface of the sliding plate,
The building according to claim 1, wherein the friction coefficient of the slip surface is set based on the temperature of the slip surface estimated by the slip surface temperature estimation method according to claim 1, and is designed based on the friction coefficient.
JP2014145474A 2014-07-15 2014-07-15 Slip surface temperature estimation method Active JP6341566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145474A JP6341566B2 (en) 2014-07-15 2014-07-15 Slip surface temperature estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145474A JP6341566B2 (en) 2014-07-15 2014-07-15 Slip surface temperature estimation method

Publications (2)

Publication Number Publication Date
JP2016020731A true JP2016020731A (en) 2016-02-04
JP6341566B2 JP6341566B2 (en) 2018-06-13

Family

ID=55265672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145474A Active JP6341566B2 (en) 2014-07-15 2014-07-15 Slip surface temperature estimation method

Country Status (1)

Country Link
JP (1) JP6341566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115600461A (en) * 2022-10-14 2023-01-13 中国矿业大学(Cn) Method for calculating temperature of composite protection square steel column of four-side fired lower clad plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084908A (en) * 2002-08-29 2004-03-18 Taisei Corp Friction evaluating method of sliding bearing
JP2009002118A (en) * 2007-06-25 2009-01-08 Takenaka Komuten Co Ltd Friction damper
JP2013545042A (en) * 2010-10-13 2013-12-19 マイナス ケー.テクノロジー,インコーポレイテッド Passive thermal control of negative rigid vibration separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084908A (en) * 2002-08-29 2004-03-18 Taisei Corp Friction evaluating method of sliding bearing
JP2009002118A (en) * 2007-06-25 2009-01-08 Takenaka Komuten Co Ltd Friction damper
JP2013545042A (en) * 2010-10-13 2013-12-19 マイナス ケー.テクノロジー,インコーポレイテッド Passive thermal control of negative rigid vibration separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115600461A (en) * 2022-10-14 2023-01-13 中国矿业大学(Cn) Method for calculating temperature of composite protection square steel column of four-side fired lower clad plate
CN115600461B (en) * 2022-10-14 2023-04-21 中国矿业大学 Method for calculating temperature of clad plate composite protection square steel column under four-side fire

Also Published As

Publication number Publication date
JP6341566B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
Oterkus et al. Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics
Cho et al. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method
TR201905261T4 (en) Methods and equipment for defining a supporting structure for a three-dimensional object to be made by stereolithography.
Chou et al. Overview and applicability of residual stress estimation of film–substrate structure
JP2016197080A (en) Notch factor estimation method, notch factor estimation system and notch factor estimation device
JP6341566B2 (en) Slip surface temperature estimation method
US11275005B2 (en) Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
CN105279304B (en) A kind of aircraft skin deviations analysis method based on N-2-1 positioning
KR101702873B1 (en) The weight measuring device using of natural frequency
US20180306689A1 (en) Information processing apparatus, information processing method, and program
JP2016109518A (en) Temperature measurement device and temperature measurement method
Wang et al. Online deflection estimation of X-axis beam on positioning machine
Curà et al. Mechanical and thermal parameters for high‐cycle fatigue characterization in commercial steels
JP6223294B2 (en) Correction method of stress value in infrared stress measurement system and infrared stress measurement system using the method
MX2014010784A (en) Method and tool for measuring the geometric structure of an optical component.
Kallolimath et al. Optimal shock pulse in a drop test simulation of standardized board for uniform shock response
Carl et al. Stress and free vibration analysis of functionally graded beams using static Green's functions
Huber et al. Improving the FE simulation of molded packages using warpage measurements
JP2016045836A (en) Calculation system and calculation program for constraint inherent deformation data, weld deformation predication system and weld deformation prediction program
KR20170075537A (en) Simultaneous detection of the nonlinear restoring and excitation of a forced nonlinear oscillation: an integral approach
JP2017026569A (en) Base isolation member response estimation device and base isolation member response estimation method
Lamba et al. Integral transform methods for inverse problem of heat conduction with known boundary of a thin rectangular object and its stresses
Reddy Vibration and buckling analysis of a cracked stepped column using finite element method
JP2010004910A5 (en)
JP2015158400A (en) stress measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180511

R150 Certificate of patent or registration of utility model

Ref document number: 6341566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150