JP2016017004A - Co selective methanization reactor - Google Patents

Co selective methanization reactor Download PDF

Info

Publication number
JP2016017004A
JP2016017004A JP2014139172A JP2014139172A JP2016017004A JP 2016017004 A JP2016017004 A JP 2016017004A JP 2014139172 A JP2014139172 A JP 2014139172A JP 2014139172 A JP2014139172 A JP 2014139172A JP 2016017004 A JP2016017004 A JP 2016017004A
Authority
JP
Japan
Prior art keywords
catalyst
concentration
temperature
inlet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014139172A
Other languages
Japanese (ja)
Other versions
JP6376494B2 (en
Inventor
東山 和寿
Kazuhisa Higashiyama
和寿 東山
敏広 宮尾
Toshihiro Miyao
敏広 宮尾
出来 成人
Shigeto Deki
成人 出来
渡辺 政廣
Masahiro Watanabe
政廣 渡辺
大 五十幡
Masaru Isohata
大 五十幡
浩也 山田
Hiroya Yamada
浩也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
University of Yamanashi NUC
Original Assignee
Tokyo Roki Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd, University of Yamanashi NUC filed Critical Tokyo Roki Co Ltd
Priority to JP2014139172A priority Critical patent/JP6376494B2/en
Publication of JP2016017004A publication Critical patent/JP2016017004A/en
Application granted granted Critical
Publication of JP6376494B2 publication Critical patent/JP6376494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a CO selective methanization reactor that can maintain the outlet CO concentration at a lower value over a long period of time even for the case where the inlet CO concentration is high.SOLUTION: According to the present invention, provided is a CO selective methanization reactor for methanizing CO in a hydrogen rich gas containing CO and COand in which the reactor includes a front stage catalyst and a rear stage catalyst in order from the upstream side of the hydrogen rich gas flow within the CO selective methanization reactor and said front stage catalyst has an optimal working temperature at inlet CO concentration of 0.5% higher than the rear stage catalyst.SELECTED DRAWING: Figure 4

Description

本発明は、家庭用固体高分子形燃料電池用燃料改質器などのCO除去工程に適用可能であるCO選択メタン化反応器に関する。   The present invention relates to a CO selective methanation reactor applicable to a CO removal process such as a fuel reformer for a household polymer electrolyte fuel cell.

固体高分子形燃料電池は80℃程度の低温で運転するため、燃料である水素リッチガス中に一酸化炭素が、あるレベル以上含まれていると、アノード白金触媒のCO被毒により、発電性能が低下したり遂には全く発電ができなくなったりするという問題が生じる。   Since the polymer electrolyte fuel cell is operated at a low temperature of about 80 ° C., if the hydrogen rich gas as the fuel contains carbon monoxide at a certain level or more, the power generation performance is reduced due to CO poisoning of the anode platinum catalyst. There will be a problem that it will drop or eventually no power can be generated at all.

このCO被毒を回避するため、都市ガス、LPガス又は灯油などを燃料改質器で水素リッチガスに転換して使用する家庭用固体高分子形燃料電池発電システムでは、燃料電池アノード入口ガスのCO濃度を常に10ppm以下に抑えることが望まれる。実システムの多くは、燃料改質プロセスの最終段階で生成ガスに空気を混合しガス中に含まれるCOをCOに酸化するCO選択酸化触媒を採用している。
CO + 1/2 O = CO (反応式1)
In order to avoid this CO poisoning, in a domestic polymer electrolyte fuel cell power generation system that uses city gas, LP gas, kerosene or the like after being converted to hydrogen-rich gas by a fuel reformer, CO in the fuel cell anode inlet gas It is desirable to always keep the concentration below 10 ppm. Many actual systems employ a CO selective oxidation catalyst that mixes air with the product gas at the final stage of the fuel reforming process and oxidizes CO contained in the gas to CO 2 .
CO + 1/2 O 2 = CO 2 (Scheme 1)

この触媒では反応式1に示すように外部から常に空気を取り込む必要があるため、空気ブロアやその制御システム、更には供給した空気を反応ガスと均一に混合するための複雑なガス混合構造体を燃料改質器に設置する必要がある。   In this catalyst, as shown in Reaction Formula 1, since it is necessary to constantly take in air from the outside, an air blower, its control system, and a complicated gas mixing structure for uniformly mixing the supplied air with the reaction gas are provided. It is necessary to install it in the fuel reformer.

最近、このCO選択酸化触媒に変わる新たな方法として、CO選択メタン化触媒が注目されている(例えば特許文献1〜2)。   Recently, a CO selective methanation catalyst has attracted attention as a new method to replace this CO selective oxidation catalyst (for example, Patent Documents 1 and 2).

特許文献1には、噴霧プラズマ法により作製した非化学量論組成のNi−Al複合酸化物前駆体にルテニウム塩を含浸担持し、還元処理を行うことで、従来触媒ではCOメタン化反応よりCOメタン化反応と逆水性シフト反応が支配的に進行する高温度領域においても選択的にCOメタン化反応を起こさせることができるCO選択メタン化触媒が開示されている。 In Patent Document 1, a non-stoichiometric Ni-Al composite oxide precursor produced by a spray plasma method is impregnated with a ruthenium salt and subjected to a reduction treatment. A CO selective methanation catalyst capable of selectively causing a CO methanation reaction even in a high temperature region where a 2- methanation reaction and a reverse aqueous shift reaction proceed predominantly is disclosed.

特許文献2には、一酸化炭素をメタン化する触媒の活性成分に、二酸化炭素の反応抑制剤であるハロゲン、無機酸、金属酸素酸から選ばれた少なくとも1種を吸着又は結合させることによって得られる、COメタン化反応の選択性に優れたCO選択メタン化触媒が開示されている。   In Patent Document 2, the active component of a catalyst for methanating carbon monoxide is obtained by adsorbing or binding at least one selected from halogen, an inorganic acid, and a metal oxyacid, which are carbon dioxide reaction inhibitors. A CO selective methanation catalyst excellent in selectivity of a CO methanation reaction is disclosed.

特許文献1〜2に開示された触媒は、COメタン化反応の選択性に優れたものであるが、このような触媒の実用化に向けてさらに研究を進めたところ、これらの文献の触媒を用いた場合、特に反応ガスの空間速度が大きい場合に、触媒が劣化(触媒活性が低下)しやすいことが分かった。また、CO選択酸化触媒を用いた場合の出口ガスのCO濃度(以下、「出口CO濃度」)は10ppm以下にすることが容易であったが、CO選択メタン化触媒を用いた場合には、非常に狭い温度範囲においてのみ、出口CO濃度を10ppm以下にすることができたので、このままでは実用化が容易でないという問題もあった。   The catalysts disclosed in Patent Documents 1 and 2 are excellent in the selectivity of the CO methanation reaction. However, when further research was carried out for practical use of such a catalyst, the catalysts of these documents were used. When used, it was found that the catalyst is likely to deteriorate (catalytic activity decreases) particularly when the space velocity of the reaction gas is large. In addition, when the CO selective oxidation catalyst was used, the CO concentration of the outlet gas (hereinafter referred to as “outlet CO concentration”) was easy to be 10 ppm or less, but when the CO selective methanation catalyst was used, Only in a very narrow temperature range, the outlet CO concentration could be reduced to 10 ppm or less.

このような問題を解決すべく、特許文献3では、担持金属触媒の表面を覆うように、多数の細孔を有する被覆層を設けて、担持金属触媒表面でのCO濃度を低下させている。これによって、触媒活性の低下が大幅に抑制されると共に、広い温度範囲に亘って出口CO濃度を10ppm以下にすることが可能になった。   In order to solve such a problem, in Patent Document 3, a coating layer having a large number of pores is provided so as to cover the surface of the supported metal catalyst, thereby reducing the CO concentration on the surface of the supported metal catalyst. As a result, the decrease in the catalytic activity is greatly suppressed, and the outlet CO concentration can be reduced to 10 ppm or less over a wide temperature range.

WO2010/122855号WO2010 / 122855 WO2011/142481号WO2011 / 142481 WO2014/038426号WO2014 / 038426

ところで、現行の家庭用燃料電池システムの燃料改質器に使用されるCO選択酸化触媒は、累積6万時間以上に亘り0.3〜0.5%のCO濃度を10ppm以下に浄化する耐久性を有している。CO選択メタン化触媒もこれを前提として材料開発が進められているが、6万時間の使用に耐える実用触媒は開発されておらず、特許文献3に開示されている触媒でも6万時間の使用に耐えることができない。   By the way, the CO selective oxidation catalyst used in the fuel reformer of the current household fuel cell system has a durability to purify a CO concentration of 0.3 to 0.5% to 10 ppm or less over a cumulative period of 60,000 hours or more. have. Development of materials for CO selective methanation catalysts is also under the premise of this, but no practical catalyst that can withstand 60,000 hours of use has been developed, and even the catalyst disclosed in Patent Document 3 can be used for 60,000 hours. Can't withstand

一方、処理できるCO濃度が0.5%から1.0%に上がれば、前段のCO変成触媒量が大幅に低減できるため、改質器の小型化と一層のコスト削減が見込めるため、次世代改質器用の触媒として期待されている。そのような高濃度CO下で性能を長時間維持できるCO選択メタン化触媒もまだ見出されていない。   On the other hand, if the CO concentration that can be processed is increased from 0.5% to 1.0%, the amount of CO conversion catalyst in the previous stage can be greatly reduced, so that the reformer can be downsized and further cost reduction can be expected. It is expected as a catalyst for reformers. A CO selective methanation catalyst capable of maintaining performance under such high concentration CO for a long time has not yet been found.

本発明はこのような事情に鑑みてなされたものであり、入口CO濃度が高い場合であっても、長期間に亘って出口CO濃度を低い値に維持することが可能であるCO選択メタン化反応器を提供するものである。   The present invention has been made in view of such circumstances, and even when the inlet CO concentration is high, the CO selective methanation that can maintain the outlet CO concentration at a low value over a long period of time. A reactor is provided.

本発明によれば、CO及びCOを含有する水素リッチガス中のCOをメタン化するCO選択メタン化反応器であって、前記CO選択メタン化反応器内での前記水素リッチガスの流れの上流側から順に前段触媒と後段触媒を備え、前記前段触媒は、入口CO濃度が0.5%での最適動作温度が前記後段触媒よりも高い、CO選択メタン化反応器が提供される。 According to the present invention, a CO selective methanation reactor for methanating CO in a hydrogen rich gas containing CO and CO 2 , upstream of the flow of the hydrogen rich gas in the CO selective methanation reactor Are provided with a pre-stage catalyst and a post-stage catalyst in order, and the pre-stage catalyst is provided with a CO selective methanation reactor having an optimum operating temperature higher than that of the post-stage catalyst at an inlet CO concentration of 0.5%.

特許文献3の製造例2にはNi/Al−VOx触媒表面上にメソポーラスシリカからなる被覆層を形成した触媒(以下、「MS被覆触媒」)が開示されており、この触媒の耐久性試験を行ったところ、図1(a)に示すように、空間速度2400h−1の条件で約5000時間、4800h−1の条件で約500時間の間、出口CO濃度が10ppm以下に維持された。
一方、特許文献3の段落70〜71には、メソポーラスシリカからなる担体にNi−Feを担持させた触媒(以下、「Ni−Fe/MS触媒」)が開示されており、この触媒の耐久性試験を行ったところ、図1(b)に示すように、空間速度10000h−1の条件でもほとんど劣化しないという結果が得られた。一方、出口CO濃度は約600ppmという比較的高い値であった。
そこで、CO除去率が高いというMS被覆触媒の利点と、寿命が長いというNi−Fe/MS触媒の利点の両方を利用すべく、MS被覆触媒の被覆層にNi−Feを担持した触媒(以下、「Ni−Fe/MS被覆触媒」」)を作製して評価を行った。Ni−Fe/MS被覆触媒の寿命は、MS被覆触媒よりも大幅に改善されることが期待されたが、実際には、図1(c)に示すように、空間速度4800h−1の条件で出口CO濃度が10ppmに到達するまでの時間が約1000時間にまで伸びただけであり、期待した寿命向上は達成できなかった。
Production Example 2 of Patent Document 3 discloses a catalyst in which a coating layer made of mesoporous silica is formed on the surface of a Ni / Al-VOx catalyst (hereinafter referred to as “MS-coated catalyst”). When went, as shown in FIG. 1 (a), about 5000 hours under the conditions of a space velocity 2400h -1, for about 500 hours under the conditions of 4800H -1, outlet CO concentration was maintained at 10ppm or less.
On the other hand, paragraphs 70 to 71 of Patent Document 3 disclose a catalyst in which Ni—Fe is supported on a support made of mesoporous silica (hereinafter referred to as “Ni—Fe / MS catalyst”). As a result of the test, as shown in FIG. 1B, a result was obtained that there was almost no deterioration even under the condition of a space velocity of 10,000 h −1 . On the other hand, the outlet CO concentration was a relatively high value of about 600 ppm.
Therefore, in order to take advantage of both the advantage of the MS-coated catalyst having a high CO removal rate and the advantage of the Ni-Fe / MS catalyst having a long lifetime, a catalyst having Ni-Fe supported on the coating layer of the MS-coated catalyst (hereinafter referred to as the catalyst) "Ni-Fe / MS coated catalyst")) was prepared and evaluated. The lifetime of the Ni—Fe / MS coated catalyst was expected to be significantly improved over that of the MS coated catalyst, but actually, as shown in FIG. 1 (c), the space velocity was 4800 h −1 . The time required for the outlet CO concentration to reach 10 ppm only increased to about 1000 hours, and the expected improvement in life could not be achieved.

触媒寿命が思うように伸びない原因を特定すべく、MS被覆触媒及びNi−Fe/MS触媒について、動作温度と出口CO濃度の関係を調べた。その結果を図2(a)〜(b)に示す。図2(a)〜(b)に示すように、MS被覆触媒とNi−Fe/MS触媒は、出口CO濃度が最小となる温度(つまり、CO除去率が最大となる温度)(以下、「最適動作温度」と称する。)Toptが大きく異なっていることが分かった。そして、これらの触媒の最適動作温度Toptが大きく異なっているために、両者を組み合わせたNi−Fe/MS被覆触媒においても、両方の触媒の利点を活かしきることができず、期待される寿命向上が達成されなかったことが分かった。 In order to identify the cause of the catalyst life not extending as expected, the relationship between the operating temperature and the outlet CO concentration was examined for the MS-coated catalyst and the Ni-Fe / MS catalyst. The results are shown in FIGS. As shown in FIGS. 2A to 2B, the MS-coated catalyst and the Ni—Fe / MS catalyst have a temperature at which the outlet CO concentration is minimized (that is, a temperature at which the CO removal rate is maximized) (hereinafter, “ This is referred to as “optimum operating temperature.”) It was found that T opt was significantly different. And since the optimum operating temperature T opt of these catalysts is greatly different, even in the Ni-Fe / MS coated catalyst that combines them, the advantages of both catalysts cannot be fully utilized, and the expected lifetime It was found that no improvement was achieved.

そこで、最適動作温度が互いに異なる複数種類の触媒を効果的に組み合わせる方法について鋭意検討を行ったところ、CO選択メタン化反応器には、この反応器内を流れる水素リッチガスの流れの上流側から下流側に向けて温度が低下する温度勾配が存在しており、最適動作温度が高い触媒を上流側に配置し、最適動作温度が低い触媒を下流側に配置することによって、両方の触媒をその最適動作温度又はその近傍の温度で動作させることができ、その結果、入口CO濃度が高い場合であっても、長期間に亘って出口CO濃度を低い値に維持することができることを見出し、本発明の完成に到った。   In view of this, the present inventors have intensively studied a method for effectively combining a plurality of types of catalysts having different optimum operating temperatures. As a result, the CO selective methanation reactor has a downstream flow from the upstream side to the downstream side of the flow of hydrogen rich gas flowing through the reactor. There is a temperature gradient that decreases towards the side, placing the catalyst with the highest optimum operating temperature on the upstream side and the catalyst with the lower optimum operating temperature on the downstream side. It is possible to operate at or near the operating temperature, and as a result, even when the inlet CO concentration is high, it has been found that the outlet CO concentration can be maintained at a low value over a long period of time. It was completed.

以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
好ましくは、前記後段触媒は、出口CO濃度が100ppmとなる条件でのCO選択率が0.5以上である。
好ましくは、前記前段触媒は、前記最適動作温度での出口CO濃度が0.2%以下となるように構成される。
好ましくは、前記前段触媒の活性金属は、Ni及びFeを含む。
好ましくは、前記後段触媒の活性金属は、Niを含み、前記後段触媒の担体は、V酸化物及びAl酸化物を含む。
本発明の別の観点によれば、CO及びCO2を含有する水素リッチガス中のCOをメタン化するCO選択メタン化反応器であって、前記CO選択メタン化反応器内での前記水素リッチガスの流れの上流側から順に前段触媒と後段触媒を備え、前記前段触媒の活性金属は、Ni及びFeを含み、前記後段触媒の活性金属は、Niを含み、前記後段触媒の担体は、V又はNiと、Alとを含む酸化物である、CO選択メタン化反応器が提供される。
好ましくは、Fe/Niの原子比は、0.01〜1である。
好ましくは、前記前段触媒の担体は、Siを含む酸化物である。
好ましくは、前記後段触媒は、活性金属表面でのCO濃度を低減するように構成された被覆層を備える。
好ましくは、前記前段触媒は、ハニカム基材上にコーティングされている。
好ましくは、前記ハニカム基材は、メタルハニカム基材である。
好ましくは、前記メタルハニカム基材の表面にα−アルミナ層を備える。
Hereinafter, various embodiments of the present invention will be exemplified. The embodiments described below can be combined with each other.
Preferably, the post-stage catalyst has a CO selectivity of 0.5 or more under the condition that the outlet CO concentration is 100 ppm.
Preferably, the upstream catalyst is configured such that the outlet CO concentration at the optimum operating temperature is 0.2% or less.
Preferably, the active metal of the pre-stage catalyst includes Ni and Fe.
Preferably, the active metal of the latter catalyst includes Ni, and the support of the latter catalyst includes V oxide and Al oxide.
According to another aspect of the present invention, a CO selective methanation reactor for methanating CO in a hydrogen rich gas containing CO and CO 2, wherein the flow of the hydrogen rich gas in the CO selective methanation reactor In order from the upstream side of the catalyst, the active catalyst of the former catalyst contains Ni and Fe, the active metal of the latter catalyst contains Ni, and the support of the latter catalyst is V or Ni. A CO selective methanation reactor, which is an oxide containing Al, is provided.
Preferably, the atomic ratio of Fe / Ni is 0.01-1.
Preferably, the support of the pre-stage catalyst is an oxide containing Si.
Preferably, the latter catalyst includes a coating layer configured to reduce the CO concentration on the active metal surface.
Preferably, the pre-stage catalyst is coated on a honeycomb substrate.
Preferably, the honeycomb substrate is a metal honeycomb substrate.
Preferably, an α-alumina layer is provided on the surface of the metal honeycomb substrate.

従来のCOメタン化触媒の構成及び寿命試験の結果を示し、(a)はMS被覆触媒、(b)はNi−Fe/MS触媒、(c)はNi−Fe/MS被覆触媒を示す。The structure of a conventional CO methanation catalyst and the result of a life test are shown, (a) shows an MS-coated catalyst, (b) shows a Ni-Fe / MS catalyst, and (c) shows a Ni-Fe / MS-coated catalyst. 最適動作温度Toptを説明するためのグラフであり、(a)はMS被覆触媒、(b)はNi−Fe/MS触媒についての結果を示す。It is a graph for demonstrating optimal operation temperature Topt , (a) shows the result about a MS covering catalyst, (b) shows the result about a Ni-Fe / MS catalyst. 水素製造システム全体の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the whole hydrogen production system. 図3中のCO選択メタン化反応器11の詳細を示す構成図である。It is a block diagram which shows the detail of the CO selective methanation reactor 11 in FIG. (A)〜(B)は、ハニカム基材の例を示す斜視図である。(A)-(B) is a perspective view which shows the example of a honeycomb base material. NiRu/Al−NiOxハニカム触媒の初期性能を示し、(a)〜(d)は、それぞれ、SV2400h−1において、入口CO濃度を0.2、0.5、0.8%と変えた時の出口CO濃度、出口CH濃度、CO除去率、COメタン化反応の選択率を示す。The initial performance of the NiRu / Al—NiOx honeycomb catalyst is shown. (A) to (d) are the results when the inlet CO concentration was changed to 0.2, 0.5, and 0.8% in SV2400h- 1 , respectively. The outlet CO concentration, outlet CH 4 concentration, CO removal rate, and CO methanation reaction selectivity are shown. NiRu/Al−NiOxハニカム触媒の長期試験結果を示す。The long-term test result of a NiRu / Al-NiOx honeycomb catalyst is shown. 図7の出口CO濃度の増加速度;Δ(CO)/Δt(ppm/100h)を入口CO濃度に対してプロットしたグラフであるFIG. 8 is a graph in which the rate of increase of the outlet CO concentration in FIG. 7; Δ (CO) / Δt (ppm / 100 h) is plotted against the inlet CO concentration. SV10000h−1、入口CO濃度0.8%におけるNi/Al−VOxハニカム触媒と粒状触媒の初期性能であるSV10000h −1 , initial performance of Ni / Al—VOx honeycomb catalyst and granular catalyst at inlet CO concentration of 0.8%. Ni/Al−VOx触媒ハニカム触媒の連続運転結果の入口CO濃度依存性を示す。The dependence of the continuous operation result of the Ni / Al-VOx catalyst honeycomb catalyst on the inlet CO concentration is shown. Ni/Al−VOx触媒ハニカム触媒の出口CO濃度増加速度の入口CO濃度依存性を示す。The dependence of the outlet CO concentration increase rate of the Ni / Al-VOx catalyst honeycomb catalyst on the inlet CO concentration is shown. メソポーラスシリカ/Ni/Al−VOxハニカム触媒の入口CO濃度0.5%、SV2400h−1での初期性能を示す。The initial performance of the mesoporous silica / Ni / Al-VOx honeycomb catalyst at the inlet CO concentration of 0.5% and SV2400h- 1 is shown. メソポーラスシリカ/Ni/Al−VOx粒状触媒の初期性能をSV2500h−1、各種入口CO濃度で測定した結果を示す。The initial performance of the mesoporous silica / Ni / Al-VOx particulate catalyst was measured at SV2500 h −1 and various inlet CO concentrations. メソポーラスシリカ/Ni/Al−VOx粒状触媒の190℃における長期試験結果を示す。The long-term test result in 190 degreeC of a mesoporous silica / Ni / Al-VOx granular catalyst is shown. 入口CO濃度0.2%及び0.5%におけるメソポーラスシリカ/Ni/Al−VOx粒状触媒の長期試験結果を示す。The long-term test result of the mesoporous silica / Ni / Al-VOx granular catalyst in the inlet CO concentration of 0.2% and 0.5% is shown. 図15の温度依存性曲線の時間変化を用いて、触媒の寿命を予測した結果を示す。The result of having predicted the lifetime of a catalyst using the time change of the temperature dependence curve of FIG. 15 is shown. メソポーラスシリカ/Ni/Al−VOxのメソポーラスシリカ被覆をメソポーラスジルコニアに変更した触媒の初期性能と連続運転後の性能を比較した結果を示す。The result of having compared the initial performance of the catalyst which changed the mesoporous silica coating of mesoporous silica / Ni / Al-VOx to mesoporous zirconia and the performance after continuous operation is shown. メソポーラスシリカ/Ni/Al−VOxのメソポーラスシリカ被覆をメソポーラスアルミナに変更した触媒の初期性能と連続運転後の性能を比較した結果を示す。The result of comparing the initial performance of the catalyst in which the mesoporous silica coating of mesoporous silica / Ni / Al-VOx is changed to mesoporous alumina and the performance after continuous operation is shown. 入口CO濃度0.5%、SV4800及び10000h−1で取得したNi−Fe/MS粒状触媒の初期性能を示す。The initial performance of Ni-Fe / MS granular catalysts obtained with an inlet CO concentration of 0.5%, SV4800 and 10000h- 1 is shown. Ni−Fe/SiO(乾式高熱法超微粒子シリカ)粒状触媒の入口CO濃度0.5%、SV10000h−1における初期性能を示す。The initial performance of the Ni—Fe / SiO 2 (dry high heat method ultrafine silica) granular catalyst at the inlet CO concentration of 0.5% and SV10000h −1 is shown. Ni−Fe/SiO(メソ多孔質球状シリカ)粒状触媒の入口CO濃度0.5%、SV10000h−1における初期性能を示す。The initial performance of the Ni—Fe / SiO 2 (mesoporous spherical silica) granular catalyst at an inlet CO concentration of 0.5% and SV10000h −1 is shown. Ni−Fe/SiO(メソ多孔質球状シリカ)メタルハニカム触媒の入口CO濃度0.5%、SV10000h−1における初期性能を示す。The initial performance of the Ni—Fe / SiO 2 (mesoporous spherical silica) metal honeycomb catalyst at the inlet CO concentration of 0.5% and SV10000h −1 is shown. CO濃度0.5%におけるNi−Fe/MS粒状触媒の長期試験の結果を示す。The result of the long-term test of the Ni-Fe / MS granular catalyst in CO concentration 0.5% is shown. CO濃度0.5%耐久評価前後でのNi−Fe/MS粒状触媒の活性変化を示す。The change in the activity of the Ni-Fe / MS granular catalyst before and after the endurance evaluation of 0.5% CO concentration is shown. Ni−Fe/MS粒状触媒を入口CO濃度1.0%、SV10000h−1の更に厳しい条件下で耐久性を評価した結果を示す。The result of having evaluated durability with the Ni-Fe / MS granular catalyst under the severer conditions of the inlet CO concentration of 1.0% and SV10000h- 1 is shown. CO濃度0.5%でのNi−Fe/SiO(乾式高熱法超微粒子シリカ)粒状触媒の耐久性能試験の結果を示す。Showing the Ni-Fe / SiO 2 (dry pyrogenic ultrafine silica) results of durability tests of granular catalysts in CO concentration of 0.5%. 図27(a)は初期、208時間、385時間更に535時間時点で取得した温度依存性曲線である。図27(b)は、更にその一部を拡大した図であるFIG. 27 (a) is a temperature dependence curve acquired at the initial time, 208 hours, 385 hours, and 535 hours. FIG. 27B is an enlarged view of a part thereof. Ni−Fe/SiO(乾式高熱法超微粒子シリカ)粒状触媒を入口CO濃度0.5%、反応温度235℃で連続運転した場合、出口CO濃度が0.20、0.21、0.22%それぞれに達するまでの時間を示す。When the Ni—Fe / SiO 2 (dry high heat method ultrafine silica) granular catalyst is continuously operated at an inlet CO concentration of 0.5% and a reaction temperature of 235 ° C., the outlet CO concentration is 0.20, 0.21, 0.22. % Shows the time to reach each. Ni−Fe/SiO(乾式高熱法超微粒子シリカ)粒状触媒を、SVを4800h−1(触媒量が2倍に相当)にして初期性能を計測した結果を示す。The results of measuring initial performance of Ni—Fe / SiO 2 (dry high heat method ultrafine silica) granular catalyst with SV of 4800 h −1 (corresponding to twice the amount of catalyst) are shown. 入口CO濃度0.5%、SV10000h−1、反応温度232℃におけるNi−Fe/SiO(メソ多孔質球状シリカ)粒状触媒の長期試験結果を示す。The long-term test result of the Ni—Fe / SiO 2 (mesoporous spherical silica) granular catalyst at an inlet CO concentration of 0.5%, SV10000 h −1 and a reaction temperature of 232 ° C. is shown. Ni−Fe/SiO(メソ多孔質球状シリカ)粒状触媒について、初期、400時間、800時間ごとに取得した温度依存性曲線を示す。For Ni-Fe / SiO 2 (mesoporous spherical silica) particulate catalyst at an initial, 400 hours, the temperature dependence curve obtained every 800 hours. Ni−Fe/SiO(メソ多孔質球状シリカ)メタルハニカム触媒の入口CO濃度0.5%、SV8000h−1又は10000h−1における初期性能を示す。The initial performance of Ni—Fe / SiO 2 (mesoporous spherical silica) metal honeycomb catalyst at the inlet CO concentration of 0.5%, SV8000h −1 or 10000h −1 is shown.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

1.システム全体の構成
図3は、原燃料(都市ガス等)から燃料電池(たとえば固体高分子形燃料電池(PEFCスタック))に供給する高い濃度の水素ガスを製造、精製するフロー及びシステム全体の概略構成を示すものである。破線で囲まれた部分が燃料改質装置(燃料処理装置)14に相当し、この中を、原燃料供給系4から供給される原燃料が流れ、各触媒層を通過する過程で改質とCOの除去を行い(10ppm以下)高い濃度の水素ガス(改質ガス:H約75%、CO約20%)を得る。
1. FIG. 3 shows a flow for producing and purifying high-concentration hydrogen gas supplied from a raw fuel (city gas, etc.) to a fuel cell (for example, a polymer electrolyte fuel cell (PEFC stack)) and an outline of the entire system. The configuration is shown. A portion surrounded by a broken line corresponds to the fuel reforming device (fuel processing device) 14, in which the raw fuel supplied from the raw fuel supply system 4 flows and passes through each catalyst layer. It performs the removal of CO (10 ppm or less) high concentration of hydrogen gas (reformed gas: H 2 to about 75%, CO 2 20%) obtained.

原燃料はまず脱硫器5で硫黄成分を除去した後,改質触媒層を含む改質器7において改質反応により水素(H)と一酸化炭素(CO)を生成し(水蒸気発生器6からの水蒸気を用いた水蒸気改質)、さらにCO変成触媒層を含むCO変成器8でCOをCOに変換する。 The raw fuel is first removed from the sulfur component by the desulfurizer 5, and then hydrogen (H 2 ) and carbon monoxide (CO) are generated by the reforming reaction in the reformer 7 including the reforming catalyst layer (steam generator 6). CO is converted to CO 2 by a CO converter 8 including a CO conversion catalyst layer.

図4に示すように、COメタン化触媒を含むCO選択メタン化反応器11内に流入する水素リッチガス19は、0.3〜1.0%程度のCO及び約20%のCOを含む。CO選択メタン化反応器11には、上流側から順に、前段触媒15と、後段触媒17が配置されている。前段触媒15によって水素リッチガス19中のCO濃度が例えば0.2%以下にまで低減され、後段触媒17によって水素リッチガス19中のCO濃度が例えば10ppm以下にまで低減される。CO濃度が十分に低減された高濃度Hガス(改質ガス)がPEFCスタック13に供給される。 As shown in FIG. 4, the hydrogen rich gas 19 flowing into the CO selective methanation reactor 11 including the CO methanation catalyst contains about 0.3 to 1.0% CO and about 20% CO 2 . A pre-stage catalyst 15 and a post-stage catalyst 17 are disposed in the CO selective methanation reactor 11 in order from the upstream side. The front catalyst 15 reduces the CO concentration in the hydrogen rich gas 19 to, for example, 0.2% or less, and the rear catalyst 17 reduces the CO concentration in the hydrogen rich gas 19 to, for example, 10 ppm or less. A high concentration H 2 gas (reformed gas) with a sufficiently reduced CO concentration is supplied to the PEFC stack 13.

2.COメタン化触媒
COメタン化触媒は、一般に、COのメタン化反応に加えて、COのメタン化反応も促進する。CO選択率は、これらのメタン化反応のうちのCOのメタン化反応の割合を示し、CO選択率=(COの反応モル流量)/(CHの生成モル流量)で定義される。仮に、COのメタン化反応が全く起こらなかった場合、COの反応モル流量=CHの生成モル流量となるので、CO選択率は1となる。一方、例えば、COのメタン化反応がCOのメタン化反応の2倍多く起こった場合、CO選択率は1/3となる。なお反応前後でのガス流量の変化が無視できる程小さい場合は、それぞれの流量は濃度で置き換える事ができる。
2. CO Methanation Catalysts CO methanation catalysts generally promote CO 2 methanation reactions in addition to CO methanation reactions. The CO selectivity indicates the proportion of CO methanation among these methanation reactions, and is defined as CO selectivity = (reaction molar flow rate of CO) / (generated molar flow rate of CH 4 ). If no CO 2 methanation reaction occurs, CO reaction molar flow rate = CH 4 production molar flow rate, so that the CO selectivity is 1. On the other hand, for example, when CO 2 methanation occurs twice as much as CO methanation, the CO selectivity becomes 1/3. If the change in gas flow rate before and after the reaction is so small that it can be ignored, each flow rate can be replaced with a concentration.

一般に、COは、COよりも触媒に吸着されて反応されやすいので、水素リッチガス中に十分なCOが存在しているときは触媒表面上の吸着サイトがCOによって占有されてCOのメタン化反応が起こりにくい。このため、COメタン化触媒のCO選択率は、通常、出口CO濃度が十分に高いときは比較的高い値を示し、出口CO濃度の低下に伴って低下する。COメタン化触媒の中には、出口CO濃度が1%程度にまで低下するとCO選択率が大幅に低下するものもあれば、出口CO濃度が100ppmとなる条件でもCO選択率が0.5以上になるような、出口CO濃度が低い条件でも高いCO選択率を示すものもある。本明細書において、COのメタン化反応を促進する触媒を「COメタン化触媒」と称し、その中でも、出口CO濃度が100ppmとなる条件でもCO選択率が0.5以上になるものを「CO選択メタン化触媒」と称する。CO選択率は、出口CO濃度の低下に伴って低下するので、出口CO濃度が100ppm以下の条件でCO選択率が0.5以上であれば、CO選択メタン化触媒であると言える。なお、各触媒についての「出口CO濃度」は、それぞれの触媒から排出される水素リッチガス中のCO濃度を意味する。 In general, CO is more easily adsorbed and reacted by the catalyst than CO 2 , and therefore, when sufficient CO is present in the hydrogen-rich gas, the adsorption sites on the catalyst surface are occupied by CO, and CO 2 methanation. The reaction is difficult to occur. For this reason, the CO selectivity of the CO methanation catalyst usually shows a relatively high value when the outlet CO concentration is sufficiently high, and decreases as the outlet CO concentration decreases. Some CO methanation catalysts have a CO selectivity that drops significantly when the outlet CO concentration is reduced to about 1%, and the CO selectivity is 0.5 or more even when the outlet CO concentration is 100 ppm. Some exhibit high CO selectivity even under conditions where the outlet CO concentration is low. In the present specification, a catalyst that promotes the methanation reaction of CO is referred to as a “CO methanation catalyst”. Among them, a catalyst that has a CO selectivity of 0.5 or more even under conditions where the outlet CO concentration is 100 ppm is referred to as “CO methanation catalyst”. This is referred to as “selective methanation catalyst”. Since the CO selectivity decreases with a decrease in the outlet CO concentration, if the CO selectivity is 0.5 or more under the condition that the outlet CO concentration is 100 ppm or less, it can be said to be a CO selective methanation catalyst. The “outlet CO concentration” for each catalyst means the CO concentration in the hydrogen-rich gas discharged from each catalyst.

CO被毒耐性が高く且つ低CO濃度(例:CO濃度100ppm以下)でのCO選択率が高い触媒が存在していれば、そのような触媒を用いれば、上述した課題の解決は容易であるが、現実には、そのような触媒は存在していない。そこで、本実施形態では、前段触媒15については、CO被毒耐性を優先して、CO被毒耐性が高いがCO除去率が比較的低く且つCO濃度の低下に伴ってCO選択率が低下しやすい触媒を用い、後段触媒17については、低CO濃度でのCO選択率を優先して、CO被毒耐性は比較的低いが低CO濃度でのCO選択率が非常に高い触媒を用いることによって、入口CO濃度が高い場合であっても、長期間に亘って出口CO濃度を低い値に維持することが可能であるCO選択メタン化反応器11を実現している。また、後段触媒17の入口CO濃度が低くなるほど、後段触媒17のCO被毒耐性が大きくなるので、前段触媒15によって水素リッチガス中のCO濃度を予め低減している。なお、CO除去率は、(入口COモル流量−出口COモル流量)/(入口COモル流量)で定義される。この場合も、反応前後での他ガス体積変化が無視できる程小さい場合は、モル流量を濃度で置き換える事ができる。   If there is a catalyst having high resistance to CO poisoning and high CO selectivity at a low CO concentration (eg, CO concentration of 100 ppm or less), the use of such a catalyst makes it easy to solve the above-described problems. However, in reality, no such catalyst exists. Therefore, in the present embodiment, the pre-catalyst 15 gives priority to the CO poisoning resistance, and the CO poisoning resistance is high, but the CO removal rate is relatively low, and the CO selectivity decreases as the CO concentration decreases. By using a catalyst that is easy to use and giving priority to the CO selectivity at a low CO concentration, a catalyst having a relatively low CO poisoning resistance but a very high CO selectivity at a low CO concentration is used. Even when the inlet CO concentration is high, the CO selective methanation reactor 11 capable of maintaining the outlet CO concentration at a low value over a long period of time is realized. Further, the lower the inlet CO concentration of the rear catalyst 17 is, the greater the resistance to CO poisoning of the rear catalyst 17 is. Therefore, the CO concentration in the hydrogen-rich gas is reduced in advance by the front catalyst 15. The CO removal rate is defined as (inlet CO molar flow rate−outlet CO molar flow rate) / (inlet CO molar flow rate). In this case as well, the molar flow rate can be replaced with the concentration when the change in the volume of other gases before and after the reaction is so small that it can be ignored.

ところで、CO選択メタン化反応器11には、この中を流れる水素リッチガス19の流れの上流側から下流側に向けて温度が低下する温度勾配が存在している。COメタン化触媒によるCOメタン化能には温度依存性があり、狭い温度範囲内においてのみ高いCO除去率が達成可能である。そこで、本実施形態では、前段触媒15の最適動作温度が後段触媒17よりも高くなるようにしている。このように構成することによって、両方の触媒をその最適動作温度又はその近傍の温度で動作させることができ、COを効率的にメタン化することが可能になっている。最適動作温度は、入口CO濃度が0.5%の条件で測定することができる。表1〜表2に示すように、前段触媒15及び後段触媒17の最適動作温度は触媒の構成によって変化し、前段触媒15の最適動作温度は、例えば、200〜280℃の範囲内の温度であり、後段触媒17の最適動作温度は、例えば、160〜240℃の範囲内の温度である。最適動作温度の差△T(前段触媒の最適動作温度−後段触媒の最適動作温度)は、例えば5〜70℃であり、10〜50℃が好ましく、20〜40℃がさらに好ましい。   By the way, the CO selective methanation reactor 11 has a temperature gradient in which the temperature decreases from the upstream side to the downstream side of the flow of the hydrogen-rich gas 19 flowing therethrough. The CO methanation ability of the CO methanation catalyst is temperature dependent, and a high CO removal rate can be achieved only within a narrow temperature range. Therefore, in the present embodiment, the optimum operating temperature of the front catalyst 15 is set higher than that of the rear catalyst 17. With this configuration, both catalysts can be operated at or near their optimum operating temperatures, and CO can be efficiently methanated. The optimum operating temperature can be measured under conditions where the inlet CO concentration is 0.5%. As shown in Tables 1 and 2, the optimum operating temperature of the front stage catalyst 15 and the rear stage catalyst 17 varies depending on the configuration of the catalyst, and the optimum operating temperature of the front stage catalyst 15 is, for example, a temperature within a range of 200 to 280 ° C. The optimum operating temperature of the rear catalyst 17 is, for example, a temperature within the range of 160 to 240 ° C. The difference ΔT in the optimum operating temperature (optimum operating temperature of the front stage catalyst−optimal operating temperature of the rear stage catalyst) is, for example, 5 to 70 ° C., preferably 10 to 50 ° C., and more preferably 20 to 40 ° C.

本実施形態では、最適動作温度が互いに異なる2種類のCOメタン化触媒を上流側から、最適動作温度が高いものから順に並べているが、最適動作温度が互いに異なる3種類以上のCOメタン化触媒を上流側から、最適動作温度が高いものから順に並べてもよい。   In the present embodiment, two types of CO methanation catalysts having different optimum operating temperatures are arranged in order from the upstream in order of highest optimum operating temperature, but three or more types of CO methanation catalysts having different optimum operating temperatures are arranged. You may arrange in order from an upstream with the highest optimal operating temperature.

2−1.前段触媒
前段触媒15は、以下の要件を具備することが望ましい。
・CO濃度0.3〜1.0%では劣化しないか少なくとも6万時間の耐久性を有すること。
・出口CO濃度を、後段触媒17が出口CO濃度を6万時間に亘って10ppm以下に維持できる濃度(例:0.2%)にまで低減すること。
・負荷変動による空間速度SV,入口CO濃度、ガス温度の変化に対して、適正な出口CO濃度範囲を維持し、かつ熱暴走しないこと。
2-1. Pre-stage catalyst The pre-stage catalyst 15 preferably has the following requirements.
-It does not deteriorate at a CO concentration of 0.3 to 1.0% or has a durability of at least 60,000 hours.
Reduce the outlet CO concentration to a concentration that allows the rear catalyst 17 to maintain the outlet CO concentration at 10 ppm or less over 60,000 hours (eg, 0.2%).
-Maintain the proper outlet CO concentration range and avoid thermal runaway against changes in space velocity SV, inlet CO concentration, and gas temperature due to load fluctuations.

ここで、前段触媒15での熱暴走について説明する。前段触媒15としては、CO除去率が比較的低く且つCO濃度の低下に伴ってCO選択率が低下しやすい触媒が用いられるので、水素リッチガス中のCO濃度が例えば0.1%を下回ると、COのメタン化反応が起こりやすくなる。COのメタン化反応は発熱反応であり、水素リッチガス中には多量のCOが含まれているので、COのメタン化反応は収束することなく、熱暴走に繋がりやすい。このような熱暴走の発生を防ぐために、前段触媒15の出口CO濃度を0.1%以上にすることが好ましい。 Here, the thermal runaway in the pre-stage catalyst 15 will be described. As the pre-catalyst 15, a catalyst having a relatively low CO removal rate and a CO selectivity that tends to decrease with a decrease in CO concentration is used. Therefore, when the CO concentration in the hydrogen-rich gas is less than 0.1%, for example, The methanation reaction of CO 2 tends to occur. Methanation reaction of CO 2 is an exothermic reaction, since the hydrogen rich gas contains a large amount of CO 2, without methanation reaction of CO 2 is to converge, easily lead to thermal runaway. In order to prevent the occurrence of such thermal runaway, the outlet CO concentration of the pre-stage catalyst 15 is preferably set to 0.1% or more.

前段触媒15は、粒状触媒として使用してもよく、ハニカム基材上にコーティングして使用してもよい。ハニカム基材の一例が図5(A)、図5(B)に示されている。図5(A)はコージェライト製のハニカム基材の例であり、図5(B)はメタルハニカム基材の例である。いずれにしても、筒体(円筒、角筒等)内部に、その長手方向に沿って配置された多数の縦、横、斜め、波形等の仕切り板(隔壁)が交叉して設けられ、隣接する仕切り板間がガスの通路となっている。これらの仕切り板の表面全体に前段触媒15がコーティングされる。断面が六角形のみならず、四角形、正弦波形、その他の形状のガス通路(流路)(セル)を有するハニカム構造のものを、この明細書では、単にハニカムまたはハニカム基材と呼ぶ。   The pre-stage catalyst 15 may be used as a granular catalyst, or may be used after being coated on a honeycomb substrate. An example of the honeycomb substrate is shown in FIGS. 5 (A) and 5 (B). FIG. 5A shows an example of a cordierite honeycomb substrate, and FIG. 5B shows an example of a metal honeycomb substrate. In any case, a large number of vertical, horizontal, diagonal, corrugated partition plates (partitions) arranged along the longitudinal direction of the cylinder (cylindrical, rectangular tube, etc.) are provided in an intersecting manner. A gas passage is provided between the partition plates. The pre-stage catalyst 15 is coated on the entire surface of these partition plates. A honeycomb structure having not only a hexagonal cross section but also gas passages (flow paths) (cells) having a quadrangular shape, a sinusoidal waveform, or other shapes is simply referred to as a honeycomb or a honeycomb substrate in this specification.

前段触媒15での熱暴走を抑制するには、前段触媒15は、熱伝導性に優れたメタルハニカム基材にコーティングして使用することが好ましい。このような構成によればCOのメタン化反応の反応熱が素早く取り除かれて熱暴走が抑制される。また、前段触媒15の密着性を高めるために、メタルハニカム基材の表面にα−アルミナ層を形成してもよい。 In order to suppress thermal runaway in the pre-stage catalyst 15, the pre-stage catalyst 15 is preferably used by coating on a metal honeycomb base material having excellent thermal conductivity. According to such a configuration, the reaction heat of the CO 2 methanation reaction is quickly removed, and thermal runaway is suppressed. In order to improve the adhesion of the pre-stage catalyst 15, an α-alumina layer may be formed on the surface of the metal honeycomb substrate.

前段触媒15の担体と活性金属の種類は、特に限定されず、COメタン化能を有するものであればよい。具体的には、例えば活性金属としては、Ni、Ru、Fe、Co、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Reおよびこれらの複合物が利用可能であり、担体としては、Al、V、Ti、Zr、Si、Mg、Ceの少なくとも一つ以上からなる酸化物、窒化物、炭化物が利用可能である。また、前段触媒15の活性金属がNi及びFeを含む場合に、触媒活性の劣化が極めて遅くなることが実験で明らかになったので、前段触媒15の活性金属は、Ni及びFeを含むことが好ましい。Fe/Niの原子比は、例えば0.01〜1であり、0.05〜0.5が好ましい。担体の例としては、シリカ、アルミナ、ジルコニア、チタニアなどが挙げられ、Siを含む酸化物(例:シリカ)が好ましい。Siを含む酸化物としては、メソポーラスシリカ、乾式高熱法超微粒子シリカ(例:日本アエロジル株式会社製AEROSIL(登録商標))、メソ多孔質球状シリカ(例:日産化学製ライトスター(登録商標))などが利用可能である。   The type of the support and active metal of the pre-stage catalyst 15 is not particularly limited as long as it has CO methanation ability. Specifically, for example, Ni, Ru, Fe, Co, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, and a composite thereof can be used as the active metal. Oxides, nitrides, and carbides composed of at least one of Al, V, Ti, Zr, Si, Mg, and Ce can be used. In addition, it has been clarified through experiments that when the active metal of the pre-stage catalyst 15 contains Ni and Fe, the deterioration of the catalytic activity becomes extremely slow. Therefore, the active metal of the pre-stage catalyst 15 may contain Ni and Fe. preferable. The atomic ratio of Fe / Ni is, for example, 0.01 to 1, and preferably 0.05 to 0.5. Examples of the carrier include silica, alumina, zirconia, titania and the like, and an oxide containing Si (eg, silica) is preferable. Examples of the oxide containing Si include mesoporous silica, dry high-temperature ultrafine silica (eg, AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.), and mesoporous spherical silica (eg, Lightstar (registered trademark) manufactured by Nissan Chemical Industries). Etc. are available.

2−2.後段触媒
CO選択メタン化反応器11に供給される水素リッチガス19は、CO濃度が前段触媒15である程度低減された後に、後段触媒17に供給される。このため、後段触媒17に要求されるCO被毒耐性は前段触媒15よりも低い。一方、後段触媒17は、CO選択メタン化反応器11から排出される水素リッチガス19中のCO濃度を非常に低い値(例:10ppm以下)にする必要があるので、後段触媒17に要求される低CO濃度でのCO選択率は、前段触媒15よりも高い。このため、後段触媒17としては、上述したCO選択メタン化触媒が用いられる。
2-2. Post-stage catalyst The hydrogen-rich gas 19 supplied to the CO selective methanation reactor 11 is supplied to the post-stage catalyst 17 after the CO concentration is reduced to some extent by the pre-stage catalyst 15. For this reason, the CO poisoning resistance required for the rear catalyst 17 is lower than that of the front catalyst 15. On the other hand, the post-stage catalyst 17 is required for the post-stage catalyst 17 because the CO concentration in the hydrogen rich gas 19 discharged from the CO selective methanation reactor 11 needs to be very low (eg, 10 ppm or less). The CO selectivity at a low CO concentration is higher than that of the front catalyst 15. For this reason, the above-mentioned CO selective methanation catalyst is used as the post-stage catalyst 17.

また、前段触媒15の出口CO濃度=後段触媒17の入口CO濃度であるので、前段触媒15の出口CO濃度は、後段触媒17が長期間に亘って活性を維持できる入口CO濃度の上限以下になるように設定される。例えば、後段触媒17が入口CO濃度0.2%以下の場合に長期間に亘って活性を維持できる場合には、前段触媒15の出口CO濃度は0.2%以下に設定される。   Further, since the outlet CO concentration of the front-stage catalyst 15 = the inlet CO concentration of the rear-stage catalyst 17, the outlet CO concentration of the front-stage catalyst 15 is equal to or lower than the upper limit of the inlet CO concentration at which the rear-stage catalyst 17 can maintain the activity for a long period. Is set to be For example, when the rear catalyst 17 can maintain the activity for a long time when the inlet CO concentration is 0.2% or less, the outlet CO concentration of the front catalyst 15 is set to 0.2% or less.

後段触媒17は、粒状触媒として使用してもよく、ハニカム基材上にコーティングして使用してもよい。ハニカム基材については、前段触媒15についての説明が、後段触媒17にも当てはまる。   The latter stage catalyst 17 may be used as a granular catalyst, or may be used after being coated on a honeycomb substrate. Regarding the honeycomb substrate, the description of the front catalyst 15 also applies to the rear catalyst 17.

後段触媒17を構成する担持金属触媒の担体と活性金属の種類は、特に限定されず、特許文献1〜3に記載されているようなCOメタン化能を有するものであればよい。具体的には、例えば活性金属としては、Ni、Ru、Fe、Co、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Reおよびこれらの複合物が利用可能であり、担体としては、Al、Ni,V、Ti、Zr、Si、Mg、Ceの少なくとも一つ以上からなる酸化物、窒化物、炭化物が利用可能である。具体例としてはゼオライトやシリカアルミナなどが挙げられる。このような担持金属触媒は、COのメタン化反応を選択的に抑制するメタン化反応抑制剤を含んでいることが好ましい。メタン化反応抑制剤としては、前記活性金属の表面電荷をδ+側にする材料、又はCOメタン化活性を抑制する効果のある種々の材料が適用できるが、特に、F、Cl、Br、I等のハロゲン、HCl、HNO、HSO、HPO等の無機酸、ホウ酸、バナジウム酸、タングステン酸、クロム酸などの金属酸素酸のいずれか又は二つ以上を含むことが望ましい。触媒上での存在形態としては、その作製工程に依存するため、前記化合物に限定されるものではなく、その前駆体、反応物、分解生成物でも良い。活性金属は、Ni、又はNiとVの合金又は混合物が好ましい。担体は、V又はNiと、Alとを含む酸化物が好ましく、具体的には、NiとAlの複合酸化物やVとAlの複合酸化物が好ましい。このような構成の担持金属触媒は、長期間に亘ってCOを選択的にメタン化可能であることが特許文献1に記載の実験などから明らかになったからである。 The type of the support metal catalyst and the active metal constituting the rear catalyst 17 is not particularly limited as long as it has a CO methanation ability as described in Patent Documents 1 to 3. Specifically, for example, Ni, Ru, Fe, Co, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, and a composite thereof can be used as the active metal. Oxides, nitrides, and carbides made of at least one of Al, Ni, V, Ti, Zr, Si, Mg, and Ce can be used. Specific examples include zeolite and silica alumina. Such a supported metal catalyst preferably contains a methanation reaction inhibitor that selectively suppresses the methanation reaction of CO 2 . As the methanation reaction inhibitor, a material that brings the surface charge of the active metal to the δ + side or various materials that have an effect of suppressing CO 2 methanation activity can be applied, and in particular, F, Cl, Br, I Or any one or more of inorganic acids such as halogen, HCl, HNO 3 , H 2 SO 4 , H 3 PO 4 , and metal oxygen acids such as boric acid, vanadate acid, tungstic acid, chromic acid, etc. desirable. Since the existence form on the catalyst depends on the production process, it is not limited to the above compound, but may be a precursor, a reaction product, or a decomposition product thereof. The active metal is preferably Ni or an alloy or mixture of Ni and V. The support is preferably an oxide containing V or Ni and Al, and specifically, a composite oxide of Ni and Al or a composite oxide of V and Al is preferable. This is because it has become clear from the experiment described in Patent Document 1 that the supported metal catalyst having such a configuration can selectively methanate CO over a long period of time.

後段触媒17は、活性金属表面でのCO濃度を低減する機能を有する被覆層を備えてもよい。担持金属触媒上に被覆層が形成され、それによって、担持金属触媒上でのCO濃度が反応ガス中のCO濃度に比べて低減されるので、担持金属触媒の劣化が抑制される。また、別の観点では、被覆層を備えることによって後段触媒17が長期間に亘って活性を維持できる入口CO濃度の上限値を上昇させることができるので、前段触媒15の出口CO濃度の上限値が緩和されるという利点が得られる。   The rear catalyst 17 may include a coating layer having a function of reducing the CO concentration on the active metal surface. A coating layer is formed on the supported metal catalyst, whereby the CO concentration on the supported metal catalyst is reduced as compared with the CO concentration in the reaction gas, so that deterioration of the supported metal catalyst is suppressed. In another aspect, by providing the coating layer, the upper limit value of the inlet CO concentration at which the rear catalyst 17 can maintain the activity over a long period of time can be increased. The advantage that is reduced.

被覆層を設けることによって担持金属触媒表面でのCO濃度が低減される原理としては、通常、拡散抵抗による濃度勾配とメタン化反応による濃度勾配の少なくとも一方が関係する。拡散抵抗による濃度勾配は、被覆層内の細孔内ではCOの拡散が制限されるために、担持金属触媒表面でのメタン化によるCOの消費速度よりも担持金属触媒表面へのCOの供給速度が小さくなる場合に形成される濃度勾配である。メタン化反応による濃度勾配は、細孔の壁面に担持された被覆層金属によってCOがメタン化されることによって形成される濃度勾配である。被覆層金属としては、例えば、Ni−Feが利用可能である。   The principle of reducing the CO concentration on the surface of the supported metal catalyst by providing the coating layer usually involves at least one of a concentration gradient due to diffusion resistance and a concentration gradient due to methanation reaction. Since the concentration gradient due to diffusion resistance is limited in the diffusion of CO in the pores in the coating layer, the CO supply rate to the surface of the supported metal catalyst is higher than the CO consumption rate due to methanation on the surface of the supported metal catalyst. Is a concentration gradient formed when. The concentration gradient due to the methanation reaction is a concentration gradient formed when CO is methanated by the coating layer metal supported on the wall surfaces of the pores. For example, Ni-Fe can be used as the coating layer metal.

本実施形態では、被覆層は、メソポーラス構造を有する。本明細書において、「メソポーラス構造」とは、直径が1〜50nmである細孔(メソ孔)を多数有する構造である。細孔の構造は、限定されず、規則的な構造であっても、ランダムな構造であってもよい。メソポーラス構造であるかどうかは、電子顕微鏡像で観察される細孔の直径が1〜50nmの範囲内に入っているかどうかによって決定することができる。   In the present embodiment, the coating layer has a mesoporous structure. In the present specification, the “mesoporous structure” is a structure having a large number of pores (mesopores) having a diameter of 1 to 50 nm. The structure of the pores is not limited, and may be a regular structure or a random structure. Whether or not it has a mesoporous structure can be determined by whether or not the diameter of the pores observed in the electron microscope image is in the range of 1 to 50 nm.

被覆層の材料としては、メソポーラスシリカ、メソポーラスジルコニアなどが挙げられる。被覆層の厚さは、例えば1〜200nmであり、5〜50nmが好ましい。   Examples of the material for the coating layer include mesoporous silica and mesoporous zirconia. The thickness of the coating layer is, for example, 1 to 200 nm, and preferably 5 to 50 nm.

本発明の効果を実証すべく、以下に示す種々の実験を行った。   In order to demonstrate the effect of the present invention, various experiments shown below were conducted.

1.後段触媒の製造と評価
1−1 NiRu/Al−NiO触媒の調製
本発明の後段触媒の一合成例として、減圧型噴霧プラズマ法による方法を最初に説明する。
まずNiとAlの複合酸化物粉末を合成した。原料溶液として蒸留水100mLに対して硝酸ニッケル六水和物(Ni(NO・6HO)4.67gと硝酸アルミニウム九水和物(Al(NO・9HO)17.66gを溶解し、Ni/Alモル比が0.34の混合水溶液を作製した。減圧高周波熱プラズマ装置の減圧空間に出力100kW、4MHzで点火されたアルゴンプラズマトーチ内に,酸素5%のアルゴン混合ガスを用いてこの混合水溶液を噴霧、搬送した。プラズマトーチを経て生成した粉末はフィルターによって捕集し、合計500gの粉末が得られるまで実施した。
1. Production and Evaluation of Post-stage Catalyst 1-1 Preparation of NiRu / Al—NiO x Catalyst As a synthesis example of the post-stage catalyst of the present invention, a method using a reduced pressure spray plasma method will be described first.
First, a composite oxide powder of Ni and Al was synthesized. Nickel nitrate hexahydrate against distilled water 100mL as a raw material solution (Ni (NO 3) 2 · 6H 2 O) 4.67g of aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O) 17 .66 g was dissolved to prepare a mixed aqueous solution having a Ni / Al molar ratio of 0.34. This mixed aqueous solution was sprayed and conveyed in an argon plasma torch ignited at an output of 100 kW and 4 MHz in a reduced pressure space of a reduced pressure high frequency thermal plasma apparatus using an argon mixed gas of 5% oxygen. The powder produced through the plasma torch was collected by a filter and carried out until a total of 500 g of powder was obtained.

次にNiとAlの複合酸化物粉末にRuを1wt%担持した。先に合成した粉末8.0gに脱イオン水100gを加え、10分間攪拌した。同様に、担持後の金属ルテニウムの含有率が1wt%になる量のニトロシル硝酸ルテニウム(III)に脱イオン水28gを加え、10分間攪拌した。ビュレットを用いてニトロシル硝酸ルテニウム(III)溶液を、粉末懸濁液に約20分で全量を添加し、その後更に10分間攪拌した。懸濁液をナス型フラスコに導入した後、35〜40℃の湯浴中で30分間攪拌した後、一旦室温まで冷却し35℃〜40℃でエバポレーターにかけ、水分を蒸発させた。得られた粉末を120℃で一晩乾燥させた後、空気中500℃で5時間焼成した。   Next, 1 wt% of Ru was supported on the Ni and Al composite oxide powder. 100 g of deionized water was added to 8.0 g of the previously synthesized powder and stirred for 10 minutes. Similarly, 28 g of deionized water was added to ruthenium (III) nitrosyl nitrate in such an amount that the metal ruthenium content after loading was 1 wt%, and the mixture was stirred for 10 minutes. The total amount of the nitrosyl ruthenium (III) nitrate solution was added to the powder suspension in about 20 minutes using a burette, and then stirred for another 10 minutes. After the suspension was introduced into the eggplant-shaped flask, the mixture was stirred for 30 minutes in a hot water bath at 35 to 40 ° C., then cooled to room temperature, and then subjected to an evaporator at 35 to 40 ° C. to evaporate water. The obtained powder was dried at 120 ° C. overnight and then calcined in air at 500 ° C. for 5 hours.

本方法で得た粉末は、以下の方法でメタルハニカム触媒に加工した。メタルハニカム(新日鐵住金マテリアルズ製、材質15Cr−4Alステンレス鋼NSSCHOM)は、セル数400cpsi、セル壁厚30μm、外径25.4mm(1インチφ)、長さ15mmを用いた。高温酸化処理により表面には緻密なα−Al層が析出している。1wt%Ru担持NiAl複合酸化物粉末3gに対してアルミナゾル(日産化学工業製、アルミナゾル520)6g、純水25gの割合で加え、攪拌・混合してコーティング用スラリーを作製した。メタルハニカムをこのコーティング用スラリーに浸漬し、引き上げた後エアーポンプによりセル内部・外壁面の余分なスラリーを除去した。電気炉で空気中500℃1時間の焼成後、コーティングしたハニカムを秤量する。正味のコーティング量がハニカム1リットル当たり300gになるまでこの操作を繰り返して各セルの内壁に触媒層が均一に形成されたハ二カム触媒を得た。 The powder obtained by this method was processed into a metal honeycomb catalyst by the following method. A metal honeycomb (manufactured by Nippon Steel & Sumikin Materials Co., Ltd., material 15Cr-4Al stainless steel NSSCHOM) having a cell number of 400 cpsi, a cell wall thickness of 30 μm, an outer diameter of 25.4 mm (1 inch φ), and a length of 15 mm was used. A dense α-Al 2 O 3 layer is deposited on the surface by the high-temperature oxidation treatment. A coating slurry was prepared by adding 6 g of alumina sol (manufactured by Nissan Chemical Industries, alumina sol 520) and 25 g of pure water to 3 g of 1 wt% Ru-supported NiAl composite oxide powder, and stirring and mixing. The metal honeycomb was dipped in this slurry for coating, pulled up, and then excess slurry on the inside and outside walls of the cell was removed by an air pump. After firing in air at 500 ° C. for 1 hour in an electric furnace, the coated honeycomb is weighed. This operation was repeated until the net coating amount reached 300 g per liter of honeycomb to obtain a honeycomb cam in which a catalyst layer was uniformly formed on the inner wall of each cell.

本方法でメタルハニカムにコーティングされた1wt%Ru担持NiAl複合酸化物は、水素ガスによる還元処理を経て後段触媒としての性能を発現する。その構成は、NiとAlの複合酸化物担体の表面に担持したRu微粒子と担体から析出した微細Ni粒子がCOメタン化活性成分として分散している。   The 1 wt% Ru-supported NiAl composite oxide coated on the metal honeycomb by this method exhibits the performance as a post-stage catalyst through reduction treatment with hydrogen gas. The structure is such that Ru fine particles supported on the surface of a composite oxide support of Ni and Al and fine Ni particles precipitated from the support are dispersed as a CO methanation active component.

1−2 触媒の初期特性評価
触媒の初期活性評価の条件と手順を以下に説明する。
メタルハニカム触媒(1インチφ−15mmL)は、内径27mmの石英反応管に設置した。反応管壁とハニカム壁の隙間を反応ガスが流れないよう周囲を石英ウールで充填した。また後述する粒状触媒(サイズ1.2〜2.0mm)の場合は、別途充填容量2mlの触媒を計り取り、内径12mmの石英反応管中央に設けた目皿上にそのまま充填した。シース熱電対の先端を触媒層の上端から約5mmの位置に挿入し触媒層の温度測定を行った。
1-2 Initial Characteristic Evaluation of Catalyst Conditions and procedures for evaluating the initial activity of the catalyst will be described below.
The metal honeycomb catalyst (1 inch φ-15 mmL) was installed in a quartz reaction tube having an inner diameter of 27 mm. The periphery was filled with quartz wool so that the reaction gas did not flow through the gap between the reaction tube wall and the honeycomb wall. In the case of a granular catalyst (size 1.2 to 2.0 mm), which will be described later, a catalyst having a filling capacity of 2 ml was separately measured and packed as it was on a scale plate provided in the center of a quartz reaction tube having an inner diameter of 12 mm. The temperature of the catalyst layer was measured by inserting the tip of the sheath thermocouple at a position about 5 mm from the upper end of the catalyst layer.

反応管に設置した触媒は、触媒性能を評価する前に、以下の手順で水素中での還元処理を施した。反応管内部の空気をNで十分パージした後、H 500mL/minを流通し、20℃/minで500℃まで昇温した。500℃で1時間温度保持することで、酸化物として存在していたRuやNiは金属に還元され活性成分として作用する。還元終了後、HからNにガスを切り替え5分間流しHをパージした。その後、触媒の活性評価を行う温度まで降温した。 The catalyst installed in the reaction tube was subjected to reduction treatment in hydrogen by the following procedure before evaluating the catalyst performance. After sufficiently purging the air inside the reaction tube with N 2 , H 2 was flowed at 500 mL / min, and the temperature was raised to 500 ° C. at 20 ° C./min. By holding the temperature at 500 ° C. for 1 hour, Ru and Ni existing as oxides are reduced to metals and act as active components. After the reduction, the gas was switched from H 2 to N 2 for 5 minutes to purge H 2 . Thereafter, the temperature was lowered to a temperature at which the activity of the catalyst was evaluated.

触媒温度が目的の反応温度に達したら、水蒸気を反応管内に導入しはじめ、5分後に反応ガスを導入した。水蒸気供給速度は水蒸気/CO=34(モル比)に相当する値とし、イオン交換水をマイクロポンプで200℃に保った気化器に送り、発生した水蒸気をNキャリアで反応管に導入した。各反応ガスはマスフローコントローラーにより反応管に導入し、組成はドライベースでCO 0.5vol%、CO 19vol%、H balanceとした。CO濃度は0.5%以外にも必要に応じて種々変化させた。空間速度SVは2000〜10000h−1範囲から選定した。反応管出口ガスの分析は、CO、CO、CHについては非分散型赤外分析計を、Hについては熱伝導度式分析計(いずれも堀場製作所製)をそれぞれ用いた。当初設定温度でのガス分析が終了した後、順次触媒温度を上げ、各温度でのガス分析を実施した。 When the catalyst temperature reached the target reaction temperature, water vapor was introduced into the reaction tube, and the reaction gas was introduced after 5 minutes. The water vapor supply rate was set to a value corresponding to water vapor / CO = 34 (molar ratio), ion exchange water was sent to a vaporizer maintained at 200 ° C. with a micropump, and the generated water vapor was introduced into the reaction tube with N 2 carrier. Each reaction gas was introduced into the reaction tube by a mass flow controller, and the composition was CO 0.5 vol%, CO 2 19 vol%, and H 2 balance on a dry basis. In addition to 0.5%, the CO concentration was variously changed as required. The space velocity SV was selected from the range of 2000 to 10000h- 1 . For the analysis of the reaction tube outlet gas, a non-dispersive infrared analyzer was used for CO, CO 2 , and CH 4 , and a thermal conductivity analyzer (all manufactured by Horiba, Ltd.) was used for H 2 . After the gas analysis at the initial set temperature was completed, the catalyst temperature was sequentially increased, and the gas analysis was performed at each temperature.

実施例1−1のNiRu/Al−NiOxハニカム触媒の初期特性評価結果を図6に示す。図6(a)〜(d)では、SV2400h−1において、入口CO濃度を0.2、0.5、0.8%と変えた時の出口CO濃度、出口CH濃度、CO除去率、CO選択率をそれぞれ比較した。
後段触媒には、(1)COメタン化反応の低温活性が高いこと、(2)CO除去率が高いこと、(3)COメタン化反応が特に高温度で良く抑制されていること、が望まれる。本発明では(1)を表す数値として出口CO濃度が最小値を示す温度「最適動作温度;Topt(℃)」を既に定義した。Toptの値は小さいほど良い。(2)の指標については、最適動作温度における出口CO濃度COminを用いることとした。当然その値は、小さいほど良い。一方、(3)の指標については次の様にした。先ず出口CHモル流量が入口COモル流量の2倍になる温度、つまりCO選択率が50%の温度をTη=50%(℃)とする。この温度と最適動作温度の差ΔT=Tη=50%−Toptを(3)の指標として用いることとした。各触媒において出口CO濃度が最も減少した温度からどれだけ高い温度までCOメタン化反応の進行を抑制するかをΔTは示しており、その値は大きいほど良い。
NiRu/Al−NiOxハニカム触媒のそれぞれの数値を、本発明の実施例に示す他の後段触媒と共に表1にまとめて示した。NiRu/Al−NiOxハニカム触媒では、入口CO濃度の低下と伴にTopt、COminは減少、ΔTは増大し、いずれの指標も触媒性能が向上している事を示している。これはCO選択メタン化触媒の性能に対するCO濃度依存性の一般的な知見とも一致しており、指標の妥当性を裏付けている。
FIG. 6 shows the initial characteristic evaluation results of the NiRu / Al—NiOx honeycomb catalyst of Example 1-1. 6A to 6D, in SV2400h- 1 , the outlet CO concentration, outlet CH 4 concentration, CO removal rate when the inlet CO concentration is changed to 0.2, 0.5, and 0.8%, Each CO selectivity was compared.
In the latter stage catalyst, (1) the low temperature activity of the CO methanation reaction is high, (2) the CO removal rate is high, and (3) the CO 2 methanation reaction is well suppressed particularly at high temperatures. desired. In the present invention, the temperature “optimum operating temperature; T opt (° C.)” at which the outlet CO concentration exhibits the minimum value has already been defined as a numerical value representing (1). A smaller value of T opt is better. For the index (2), the outlet CO concentration CO min at the optimum operating temperature was used. Of course, the smaller the value, the better. On the other hand, the index of (3) is as follows. First, the temperature at which the outlet CH 4 molar flow rate becomes twice the inlet CO molar flow rate, that is, the temperature at which the CO selectivity is 50% is defined as T η = 50% (° C.). The difference between this temperature and the optimum operating temperature ΔT = T η = 50% −T opt was used as an index for (3). ΔT indicates how much the CO 2 methanation reaction is suppressed from the temperature at which the outlet CO concentration is reduced to the highest temperature in each catalyst, and the larger the value, the better.
The respective numerical values of the NiRu / Al—NiOx honeycomb catalyst are shown together in Table 1 together with other subsequent stage catalysts shown in the examples of the present invention. In the NiRu / Al—NiOx honeycomb catalyst, T opt and CO min decrease and ΔT increases as the inlet CO concentration decreases, indicating that both indicators show improved catalyst performance. This is consistent with the general knowledge of the CO concentration dependence on the performance of the CO selective methanation catalyst, confirming the validity of the index.

1−3 触媒の長期試験
実施例1−2の触媒の初期特性評価終了後、引き続き触媒の長期試験を行った。触媒を一定温度に保持し、数千時間に亘って反応を継続した。その間、触媒出口ガス中のCO、CH濃度の変化量から触媒性能の長期安定性を確認した。
1-3 Long-term test of the catalyst After the initial characteristic evaluation of the catalyst of Example 1-2 was completed, a long-term test of the catalyst was subsequently performed. The catalyst was held at a constant temperature and the reaction was continued for thousands of hours. Meanwhile, the long-term stability of the catalyst performance was confirmed from the amount of change in the CO and CH 4 concentrations in the catalyst outlet gas.

耐久性に非常に優れた触媒や反応条件が緩やかな場合には、運転が数千時間に及んでも出口ガス組成にほとんど変化が認められない事がある。このような場合は、連続運転200時間ないしは400時間ごとに、実施例1−2の初期特性評価と同様の手順により、150℃付近から長期試験運転温度までの範囲内で温度を順次変化させ、低温性能を計測した。この方法は、連続運転の過程で、反応速度が遅い低温での性能も併せて評価することになるため、出口ガス組成に大きな変化が認められなくても触媒の性能低下を迅速・高感度に確認する事ができる。   If the catalyst has excellent durability and the reaction conditions are mild, there may be little change in the outlet gas composition even if the operation takes thousands of hours. In such a case, the temperature is sequentially changed within a range from about 150 ° C. to the long-term test operation temperature by the same procedure as the initial characteristic evaluation of Example 1-2 every 200 hours or 400 hours of continuous operation. Low temperature performance was measured. This method evaluates the performance at low temperatures with a slow reaction rate in the course of continuous operation, so that even if there is no significant change in the outlet gas composition, the catalyst performance can be reduced quickly and with high sensitivity. You can check it.

図7にNiRu/Al−NiOxハニカム触媒の長期試験結果を示した。入口CO濃度0.2、0.3、0.5、0.8%において、それぞれの最適動作温度で運転した場合の出口CO濃度の変化を比較した。反応開始100時間付近までは比較的大きなCO濃度の増加を示すが、それ以降はほぼ直線的にCO濃度が増加、つまり触媒性能が低下することを示した。その直線の傾きは入口CO濃度が高くなるに従い大きくなるという傾向を示した。   FIG. 7 shows the long-term test results of the NiRu / Al—NiOx honeycomb catalyst. When the inlet CO concentrations were 0.2, 0.3, 0.5, and 0.8%, the changes in the outlet CO concentrations when operating at the respective optimum operating temperatures were compared. A relatively large increase in CO concentration was observed until about 100 hours after the start of the reaction, but thereafter, the CO concentration increased almost linearly, that is, the catalyst performance decreased. The slope of the straight line tended to increase as the inlet CO concentration increased.

1−4 触媒劣化速度と入口CO濃度の関係
図8は、図7の出口CO濃度の増加速度;Δ(CO)/Δt(ppm/100h)を入口CO濃度に対してプロットしたものである。入口CO濃度が0.5、0.8%では劣化は20〜30ppm/100hの早い速度で進むが、0.3%になると3ppm/100hと急に減少し、0.2%では最適操作温度の170℃だけでなく20℃高い190℃でも劣化速度は1ppm/100h以下の極めて低い値に抑えられることがわかった。同じ触媒であっても、入口CO濃度が0.3%以下望ましくは0.2%以下で使用することができれば長時間に亘って低い出口CO濃度を維持できる事が示された。
1-4 Relationship between Catalyst Degradation Rate and Inlet CO Concentration FIG. 8 is a plot of the rate of increase of the outlet CO concentration; Δ (CO) / Δt (ppm / 100 h) in FIG. 7 versus the inlet CO concentration. Degradation proceeds at a rapid rate of 20-30 ppm / 100 h when the inlet CO concentration is 0.5 and 0.8%, but rapidly decreases to 3 ppm / 100 h when it reaches 0.3%, and the optimum operating temperature is 0.2%. It was found that the deterioration rate was suppressed to an extremely low value of 1 ppm / 100 h or less not only at 170 ° C. but also at 190 ° C. which was 20 ° C. higher. It has been shown that even if the same catalyst can be used at an inlet CO concentration of 0.3% or less, preferably 0.2% or less, a low outlet CO concentration can be maintained for a long time.

1−5 Ni/Al−VOx触媒の調製と性能評価
次に後段触媒の他の合成例として、共沈法による方法を説明する。
まず共沈法により触媒担体であるAl−VOx触媒粉末を調製した。バナジウム酸アンモニウム(NHVO 0.60gを純水61mLに入れ、加温し溶解させた。また、硝酸アルミニウム44.1gを純水235mLに溶解させた。これら二つの溶液を混合した後、2Lのビーカーに移し2500rpmで撹拌しながら炭酸アンモニウム水溶液を約15分でpH=8になるように滴下した。その後、30分撹拌を継続した。析出した沈殿は、0.2μmのメンブレンフィルターで濾過し、1Lの純水で洗浄した。得られた沈殿は室温で半日減圧乾燥後、110℃の乾燥炉で12時間乾燥した。得られたゲルは、磨砕した後、空気中500℃で3時間焼成した。これによりAl:V=0.96:0.04のモル比の酸化物担体を得た。
1-5 Preparation of Ni / Al-VOx Catalyst and Performance Evaluation Next, as another synthesis example of the latter catalyst, a method by a coprecipitation method will be described.
First, an Al-VOx catalyst powder as a catalyst carrier was prepared by a coprecipitation method. 0.60 g of ammonium vanadate (NH 4 ) 2 VO 3 was placed in 61 mL of pure water and heated to dissolve. In addition, 44.1 g of aluminum nitrate was dissolved in 235 mL of pure water. After mixing these two solutions, the solution was transferred to a 2 L beaker, and an aqueous ammonium carbonate solution was added dropwise so that pH = 8 in about 15 minutes while stirring at 2500 rpm. Thereafter, stirring was continued for 30 minutes. The deposited precipitate was filtered through a 0.2 μm membrane filter and washed with 1 L of pure water. The obtained precipitate was dried under reduced pressure at room temperature for half a day and then dried in a drying furnace at 110 ° C. for 12 hours. The obtained gel was ground and then fired in air at 500 ° C. for 3 hours. As a result, an oxide carrier having a molar ratio of Al: V = 0.96: 0.04 was obtained.

上記Al−VOx触媒粉末6.26gを純水50mLに投入し縣濁液とした。また硝酸ニッケルNi(NO・6HO(関東化学社製)12.8gを純水50mLに溶解した。酸化物担体の懸濁液を撹拌しながら硝酸ニッケル水溶液をビュレットを用いて約20分間で全量投入した。室温で30分、45℃の湯浴中で30分攪拌した後、一度室温まで冷却した。その後、35〜50℃の湯浴中でエバポレーターにかけ、水分を全て飛ばした。得られた粉末を、110℃で12時間乾燥させた後、500℃で3時間焼成し、金属換算でNi30wt%を担持した30wt%Ni/Al−VOx触媒粉末を得た。
本方法で得た粉末は、1−1で述べた手順に従いメタルハニカム基材にコーティングした。また、触媒粉末の一部は油圧式成形器により外径20mm、厚さ約1.5mmのタブレットに成形し、その後、粉砕と篩分を経て1.2〜2.0mmサイズの粒状触媒も作製した。これらは所定条件で水素還元処理した後、後段触媒としての性能を評価した。
6.26 g of the Al-VOx catalyst powder was added to 50 mL of pure water to prepare a suspension. The dissolved nickel nitrate Ni (NO 3) 2 · 6H 2 O ( Kanto Chemical) 12.8 g of pure water 50 mL. While stirring the suspension of the oxide carrier, a total amount of nickel nitrate aqueous solution was added using a burette in about 20 minutes. The mixture was stirred at room temperature for 30 minutes and in a 45 ° C. water bath for 30 minutes, and then cooled to room temperature once. Then, it was applied to an evaporator in a hot water bath at 35 to 50 ° C. to remove all moisture. The obtained powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. for 3 hours to obtain a 30 wt% Ni / Al-VOx catalyst powder supporting Ni 30 wt% in terms of metal.
The powder obtained by this method was coated on a metal honeycomb substrate according to the procedure described in 1-1. Part of the catalyst powder is formed into a tablet with an outer diameter of 20 mm and a thickness of about 1.5 mm using a hydraulic molding machine, and then a granular catalyst with a size of 1.2 to 2.0 mm is produced through grinding and sieving. did. These were subjected to hydrogen reduction treatment under a predetermined condition, and then evaluated as a post-stage catalyst.

図9は入口CO濃度0.8%におけるハニカム触媒と粒状触媒の初期性能である。ハニカム触媒のSVは2400h−1、粒状触媒のSVは10000h−1である。表1で三つの指標を同じ条件(入口CO濃度0.8%,SV2400h−1)で評価した実施例1−1のハニカム触媒と比較すると、Toptは20℃増加し悪化したものの、COminは86ppmが65ppmまで減少し、ΔTは3℃が12℃まで増加し、それぞれ改善が認められた。これは本触媒にCOメタン化抑制剤であるバナジウムが添加されているためである。図10及び図11はハニカム触媒の連続運転結果とCO増加速度の入口CO濃度依存性である。実施例1−1の触媒と同様、実施例1−5の触媒も出口CO濃度は時間に比例して増加し、その増加速度は入口CO濃度に強く依存している。この触媒の場合も入口CO濃度が0.2%になると1ppm/100h以下の値に抑えられている。 FIG. 9 shows the initial performance of the honeycomb catalyst and the granular catalyst at the inlet CO concentration of 0.8%. The SV of the honeycomb catalyst is 2400 h −1 , and the SV of the granular catalyst is 10000 h −1 . Compared to the honeycomb catalyst of Example 1-1 in which the three indicators in Table 1 were evaluated under the same conditions (inlet CO concentration 0.8%, SV2400 h −1 ), T opt increased by 20 ° C., but CO min Decreased from 86 ppm to 65 ppm, and ΔT increased from 3 ° C. to 12 ° C., and improvements were observed for each. This is because vanadium which is a CO 2 methanation inhibitor is added to the catalyst. 10 and 11 show the result of continuous operation of the honeycomb catalyst and the dependency of the CO increase rate on the inlet CO concentration. Similar to the catalyst of Example 1-1, the outlet CO concentration of the catalyst of Example 1-5 also increases in proportion to time, and the rate of increase strongly depends on the inlet CO concentration. Also in the case of this catalyst, when the inlet CO concentration is 0.2%, the value is suppressed to 1 ppm / 100 h or less.

1−6 メソポーラスシリカ/Ni/Al−VOx触媒の調製と性能評価
1−2で作製した30wt%Ni/Al−VOx触媒粉末上に、以下の方法で、微量のTiを含有したメソポーラスシリカ層を構築した。
1-6 Preparation and Performance Evaluation of Mesoporous Silica / Ni / Al-VOx Catalyst A mesoporous silica layer containing a trace amount of Ti was formed on the 30 wt% Ni / Al-VOx catalyst powder prepared in 1-2 by the following method. It was constructed.

30wt%Ni/Al−VOx粉末5.00gと28%アンモニア水(関東化学社製)2.00gを超純水150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)40mLと超純水6mLの混合液に入れ溶解した。次にテトラエチルオルトシリケート(関東化学社製)1.20gとチタンイソプロポキシド(関東化学社製)0.05gおよびアセチルアセトン(関東化学社製)0.25gをエタノール8mLに加えアルコキシド溶液とした。30wt%Ni/Al−VOxの懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールで残留物を洗浄した。得られた残留物を室温で減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、厚さ15nmのメソポーラスシリカ層を表面に構築したMS/30wt%Ni/Al−VOx触媒粉末を得た。   5.00 g of 30 wt% Ni / Al-VOx powder and 2.00 g of 28% ammonia water (manufactured by Kanto Chemical Co., Inc.) were added to 150 mL of ultrapure water to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in a mixed solution of 40 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 6 mL of ultrapure water. Next, 1.20 g of tetraethylorthosilicate (manufactured by Kanto Chemical Co., Inc.), 0.05 g of titanium isopropoxide (manufactured by Kanto Chemical Co., Ltd.) and 0.25 g of acetylacetone (manufactured by Kanto Chemical Co., Ltd.) were added to 8 mL of ethanol to obtain an alkoxide solution. While stirring the 30 wt% Ni / Al-VOx suspension, the entire amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. The suspension was then filtered and the residue was washed with 400 mL ethanol. The obtained residue was dried at room temperature under reduced pressure, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a 15 nm thick mesoporous silica layer on the surface of MS / 30 wt% Ni / Al-VOx catalyst powder was obtained.

本触媒粉末は、1−1で述べた手順によりメタルハニカム基材にコーティングした。一方、触媒粉末の一部は油圧式成形器により外径20mm、厚さ約1.5mmのタブレットに成形し、その後、粉砕と篩分を経て1.2〜2.0mmサイズの粒状触媒も作製した。   The catalyst powder was coated on a metal honeycomb substrate by the procedure described in 1-1. On the other hand, a part of the catalyst powder is formed into a tablet with an outer diameter of 20 mm and a thickness of about 1.5 mm by a hydraulic molding machine, and then a granular catalyst of 1.2 to 2.0 mm size is produced through grinding and sieving. did.

図12にメソポーラスシリカ/Ni/Al−VOxハニカム触媒の入口CO濃度0.5%、SV2400h−1での初期性能を示した。表1のNiRu/Al−NiOxハニカム触媒(No1)は、同じCO0.5%、SV2400h−1で評価しているため比べてみると、Toptは24℃上昇したものの、COminは減少しΔTは増加しており、いずれも大きく性能が向上している。Ni/Al−VOxハニカム触媒(No3)は、入口CO濃度が0.8%と高いため対等の比較はできないが、三つの指標がそろって大きく向上している。 FIG. 12 shows the initial performance of the mesoporous silica / Ni / Al—VOx honeycomb catalyst at an inlet CO concentration of 0.5% and SV2400h- 1 . The NiRu / Al—NiOx honeycomb catalyst (No. 1) in Table 1 was evaluated with the same CO of 0.5% and SV2400h −1 . Therefore, when compared, T opt increased by 24 ° C., but CO min decreased and ΔT Are increasing, both of which have greatly improved performance. The Ni / Al-VOx honeycomb catalyst (No. 3) has a high inlet CO concentration of 0.8%, and therefore, comparison is not possible. However, the three indicators are greatly improved.

図13は粒状触媒の初期性能をSV2500h−1、各種入口CO濃度で測定した結果である。同一条件で測定した粒状触媒がないため、厳密な比較はできないものの、表1のなかでは3つの指標が揃って優れた触媒である。図13から明らかなように、この触媒も入口CO濃度の低下と伴に初期性能が向上する傾向は同じである。特にこの触媒の場合、入口CO濃度が0.2%になると、実機で求められる出口CO濃度の目標値<10ppmを30℃という広い温度範囲で実現している。この結果は、図16の結果と併せて本発明に至る動機の一つとなっている。 FIG. 13 shows the results of measuring the initial performance of the granular catalyst at SV2500 h −1 and various inlet CO concentrations. Although there is no granular catalyst measured under the same conditions, a strict comparison cannot be made. As is apparent from FIG. 13, this catalyst has the same tendency to improve the initial performance as the inlet CO concentration decreases. In particular, in the case of this catalyst, when the inlet CO concentration is 0.2%, the target value <10 ppm of the outlet CO concentration obtained by an actual machine is realized in a wide temperature range of 30 ° C. This result, together with the result of FIG. 16, is one of the motives leading to the present invention.

図14は本触媒の190℃における長期試験結果である。図7,図10の他の触媒の長期試験結果と異なり、本触媒ではいずれの入口CO濃度でも初期から出口CO濃度が上昇する事は無く、一定ないしは若干低下する傾向を示した。その期間は入口CO濃度が高ければ短くCO濃度が低いほど長期間継続する傾向を示した。その期間が過ぎるとCO濃度はこれまで同様上昇しはじめるがその傾きは直線ではなく指数関数的に増加している。図14(a)において、入口CO濃度0.2%の場合、連続運転時間が2600時間を越えてもCO濃度の上昇は認められなかった。このため、実施例1−3「触媒の長期試験」で述べた連続運転中に取得した温度依存性データを用いて低温度における性能低下の有無を確認した。結果を図15に示した。なお、出口CH濃度はCO濃度の変化とは異なり、いずれの入口CO濃度においてもほぼ単調に低下した。CO濃度の上昇とCH濃度の減少は、いずれも本触媒はじめNiを活性成分に含む触媒の劣化原因によるもので、高濃度CO条件下で反応が継続するとNi活性サイト上にC,Hを含む析出物(炭素種)が堆積し、CO及びCOのメタン化反応速度を共に低下させるためである。 FIG. 14 shows the long-term test results of this catalyst at 190 ° C. Unlike the long-term test results of the other catalysts shown in FIGS. 7 and 10, the present catalyst showed no tendency to increase the outlet CO concentration from the initial stage at any inlet CO concentration, and showed a tendency to be constant or slightly decreased. During this period, the higher the inlet CO concentration, the shorter the CO concentration. After that period, the CO concentration begins to rise as before, but the slope increases exponentially instead of a straight line. In FIG. 14A, when the inlet CO concentration was 0.2%, no increase in CO concentration was observed even if the continuous operation time exceeded 2600 hours. For this reason, the presence or absence of performance degradation at low temperatures was confirmed using the temperature dependence data acquired during continuous operation described in Example 1-3 “Long-term test of catalyst”. The results are shown in FIG. Note that, unlike the change in CO concentration, the outlet CH 4 concentration decreased almost monotonously at any inlet CO concentration. Both the increase in CO concentration and the decrease in CH 4 concentration are due to the deterioration of the catalyst including Ni as an active component, including this catalyst. When the reaction continues under high concentration CO conditions, C and H are added to the Ni active site. This is because precipitates (carbon species) that are contained are deposited, and both the CO and CO 2 methanation reaction rates are reduced.

図15(a)は、入口CO濃度0.5%の連続運転の途中、各時間に測定したCO濃度の温度依存性曲線を示したものである。連続時間の経過と伴に温度依存性曲線は高温側にシフトしている。例えば、反応開始時には最適運転温度Toptは172℃であったが、1880時間では188℃まで上昇した。図14(a)の連続運転では、1800時間付近まで出口CO濃度の増加は全く認められなかったが、Toptの顕著な増加が示す様に、触媒の劣化は明らかに進行していることが分かった。図15(b)は入口CO濃度が0.2%の場合の温度依存性曲線の時間変化である。この場合も温度依存性曲線はわずかながら高温側にシフトする傾向にある。しかしその程度は0.5%に比較すると極めてわずかである事が分かる。図16はこれらの温度依存性曲線の時間変化を用いて、触媒の寿命を予測した結果である。図16の縦軸は、各温度依存性曲線のToptではなくCO濃度が20ppmを示す温度T(CO=20ppm)である。温度依存性を測定した連続運転時間t(h)の対数に対してこのT(CO=20ppm)をそれぞれプロットすると、ほぼ直線に乗ることが分かる。この直線を外挿してT(CO=20ppm)が反応温度である190℃に達するまでの時間がこの触媒の寿命と言うことができる。T(CO=10ppm)とすれば、触媒が実用上必要な濃度である<10ppmを維持できる時間が算出できるが、入口CO濃度0.5%では出口CO濃度が10ppmを下回らないため、ここでは便宜上20ppmを寿命とした。入口CO濃度0.2%の場合、直線を10万時間まで外挿してもT(CO=20ppm)は190℃に達しなかった。
このことは、実施例1−6の触媒を入口CO濃度0.2%で使用すれば、先に述べたように出口CO濃度<10ppmの温度領域を広く確保できると共に、実用触媒に求められる6万時間の寿命も同時に達成できる事を示している。
FIG. 15A shows a temperature dependence curve of the CO concentration measured at each time during the continuous operation at the inlet CO concentration of 0.5%. As the continuous time elapses, the temperature dependence curve shifts to the high temperature side. For example, the optimum operating temperature T opt was 172 ° C. at the start of the reaction, but increased to 188 ° C. in 1880 hours. In continuous operation of FIG. 14 (a), but was not observed an increase in the outlet CO concentration at all to around 1800 hours, as indicated by a marked increase in T opt, that deterioration of the catalyst is clearly progressed I understood. FIG. 15B shows the time change of the temperature dependence curve when the inlet CO concentration is 0.2%. Also in this case, the temperature dependence curve tends to shift slightly toward the high temperature side. However, it can be seen that the degree is extremely small compared to 0.5%. FIG. 16 shows the result of predicting the life of the catalyst using the time change of these temperature dependence curves. The vertical axis in FIG. 16 is not T opt of each temperature dependence curve but a temperature T (CO = 20 ppm) at which the CO concentration indicates 20 ppm . When this T (CO = 20 ppm) is plotted against the logarithm of the continuous operation time t (h) in which the temperature dependency is measured, it can be seen that it is almost in a straight line. Extrapolating this straight line, the time until T (CO = 20 ppm) reaches the reaction temperature of 190 ° C. can be said to be the life of the catalyst. If T (CO = 10 ppm) , the time during which the catalyst can maintain <10 ppm, which is a practically necessary concentration, can be calculated. However, at the inlet CO concentration of 0.5%, the outlet CO concentration does not fall below 10 ppm. For convenience, the life was set to 20 ppm. When the inlet CO concentration was 0.2%, T (CO = 20 ppm) did not reach 190 ° C. even if the straight line was extrapolated to 100,000 hours.
This means that if the catalyst of Example 1-6 is used at an inlet CO concentration of 0.2%, a wide temperature range with an outlet CO concentration of <10 ppm can be secured as described above, and 6 required for a practical catalyst. It shows that a life of 10,000 hours can be achieved at the same time.

1−7 その他のメソポーラス材被覆型触媒の調製と性能評価
1−3では30wt%Ni/Al−VOx触媒上にMS層を被覆した触媒の例を示したが、ここではシリカ以外のメソポーラス材を被覆した後段触媒の例を示す。
1-7 Preparation and Performance Evaluation of Other Mesoporous Material-Catalyzed Catalyst In 1-3, an example of a catalyst in which an MS layer was coated on a 30 wt% Ni / Al-VOx catalyst was shown. Here, a mesoporous material other than silica is used. An example of the latter catalyst coated is shown.

最初はメソポーラスジルコニアを被覆した例である。1−2で作製したコアの触媒粉末5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLに入れ溶解した。次にジルコニウムテトラn−ブトキシド(関東化学社製)2.12gをエタノール10mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールで残留物を洗浄した。得られた残留物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスジルコニア層をコア触媒の表面に構築した粉末状のメソポーラスジルコニア被覆触媒を得た。メソポーラスジルコニア層には、2〜50nm程度の細孔がランダムに形成されていた。また、走査透過型電子顕微鏡エネルギー分散X線分光(STEM−EDS)から、Zrがコアの触媒粒子表面にほぼ一様に分布していることが認められた。   The first is an example in which mesoporous zirconia is coated. 5.00 g of the core catalyst powder prepared in 1-2 was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical). Next, 2.12 g of zirconium tetra-n-butoxide (manufactured by Kanto Chemical Co., Inc.) was added to 10 mL of ethanol to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. The suspension was then filtered and the residue was washed with 400 mL ethanol. The obtained residue was dried under reduced pressure at 50 ° C. for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous zirconia layer on the surface of the core catalyst. A mesoporous zirconia-coated catalyst was obtained. In the mesoporous zirconia layer, pores of about 2 to 50 nm were randomly formed. Further, it was confirmed from scanning transmission electron microscope energy dispersive X-ray spectroscopy (STEM-EDS) that Zr was distributed almost uniformly on the surface of the core catalyst particles.

次はメソポーラスチタニア層を被覆した例である。コアの触媒粉末5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLと超純水5.3mLの混合液に入れ溶解した。次にチタニウムテトライソプロポキシド(関東化学社製)1.57gをエタノール10mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールで残留物を洗浄した。得られた残留物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスチタニア層をコア触媒の表面に構築した粉末状のメソポーラスチタニア被覆触媒を得た。   The following is an example in which a mesoporous titania layer is coated. 5.00 g of the core catalyst powder was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 5.3 mL of ultrapure water. Next, 1.57 g of titanium tetraisopropoxide (manufactured by Kanto Chemical Co., Inc.) was added to 10 mL of ethanol to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. The suspension was then filtered and the residue was washed with 400 mL ethanol. The obtained residue was dried at 50 ° C. under reduced pressure for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous titania layer on the surface of the core catalyst. A mesoporous titania-coated catalyst was obtained.

以下はメソポーラスアルミナ層を被覆した例である。コアの触媒粉末5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLと超純水5.3mLの混合液に入れ溶解した。次にアルミニウムトリイソプロポキシド(関東化学社製)1.12gをトルエン15mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールで残留物を洗浄した。得られた残留物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスアルミナ層をコア触媒の表面に構築した粉末状のメソポーラスアルミナ被覆触媒を得た。   The following is an example in which a mesoporous alumina layer is coated. 5.00 g of the core catalyst powder was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 5.3 mL of ultrapure water. Next, 1.12 g of aluminum triisopropoxide (manufactured by Kanto Chemical Co., Inc.) was added to 15 mL of toluene to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. The suspension was then filtered and the residue was washed with 400 mL ethanol. The obtained residue was dried at 50 ° C. under reduced pressure for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous alumina layer on the surface of the core catalyst. A mesoporous alumina-coated catalyst was obtained.

これらの触媒粉末は、加圧成型器により外径20mm、厚さ約1.5mmのタブレットに成形し、その後、粉砕と篩分を経て1.2〜2.0mmサイズの粒状触媒に整粒した。   These catalyst powders were molded into a tablet with an outer diameter of 20 mm and a thickness of about 1.5 mm by a pressure molding machine, and then sized and granulated into 1.2 to 2.0 mm granular catalysts through pulverization and sieving. .

図17と図18はメソポーラスシリカ/Ni/Al−VOxのメソポーラスシリカ被覆をメソポーラスジルコニアとメソポーラスアルミナに変更した触媒の初期性能と連続運転後の性能をそれぞれ比較したものである。各触媒の連続運転の840時間と1400時間は、それぞれ出口CO濃度が上昇し始めた時間に相当する。表1からも明らかなように被覆層の材料を変更しても同等の性能が得られる事が分かった。   FIG. 17 and FIG. 18 compare the initial performance of the catalyst in which the mesoporous silica coating of mesoporous silica / Ni / Al-VOx is changed to mesoporous zirconia and mesoporous alumina, and the performance after continuous operation, respectively. 840 hours and 1400 hours of continuous operation of each catalyst correspond to times when the outlet CO concentration starts to increase. As is clear from Table 1, it was found that equivalent performance could be obtained even if the material of the coating layer was changed.

2.前段触媒の製造と評価
2−1 メソポーラスシリカを担体に用いた前段触媒の調製と性能評価
最初にTiを微量含むメソポーラスシリカを担体として用いた前段触媒を作製した。以下にその方法を示す。
2. Production and Evaluation of Pre-stage Catalyst 2-1 Preparation and Performance Evaluation of Pre-stage Catalyst Using Mesoporous Silica as a Support First, a pre-stage catalyst using mesoporous silica containing a small amount of Ti as a support was prepared. The method is shown below.

まず、ゾルゲル法によって、メソポーラスシリカ粉末(Ti/Siの原子比が0.03)を作製した。   First, mesoporous silica powder (Ti / Si atomic ratio was 0.03) was prepared by a sol-gel method.

具体的には、ヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)2.9gをエタノール(関東化学社製)298mLと超純水24mLの混合液に入れ溶解した。次に28%アンモニア水(関東化学社製)8.1gと超純水537mLを混合し、上記の溶液に添加した。次にテトラエチルオルトシリケート(関東化学社製)5.92gとチタンイソプロポキシド(関東化学社製)0.18gおよびアセチルアセトン(関東化学社製)1.26gに加えアルコキシド溶液とした。次にヘキサデシルトリメチルアンモニウム臭化物溶液を撹拌しながらアルコキシド溶液をピペットを用いて3分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールでろ物を洗浄した。得られたろ物を室温で減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスシリカ粉末を得た。調製したメソポーラスシリカ粉末をTEMで観察したところ、直径がほぼ300nmにそろった球状粒子が観察された。球状粒子中心から粒子表面に向かって約3nm周期の規則的構造が確認できることから、ほぼ均一のナノ細孔が中心部から外表面に向かって樹枝状に形成されているものと思われる。   Specifically, 2.9 g of hexadecyltrimethylammonium bromide (manufactured by Across) was dissolved in a mixed solution of 298 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 24 mL of ultrapure water. Next, 8.1 g of 28% ammonia water (manufactured by Kanto Chemical Co., Inc.) and 537 mL of ultrapure water were mixed and added to the above solution. Next, 5.92 g of tetraethyl orthosilicate (manufactured by Kanto Chemical Co., Inc.), 0.18 g of titanium isopropoxide (manufactured by Kanto Chemical Co., Ltd.) and 1.26 g of acetylacetone (manufactured by Kanto Chemical Co., Ltd.) were added to obtain an alkoxide solution. Next, while stirring the hexadecyltrimethylammonium bromide solution, the entire amount of the alkoxide solution was added using a pipette in 3 minutes, followed by stirring at room temperature for 16 hours. Thereafter, the suspension was filtered, and the residue was washed with 400 mL of ethanol. The obtained filtrate was dried at room temperature under reduced pressure, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to obtain mesoporous silica powder. When the prepared mesoporous silica powder was observed with TEM, spherical particles having a diameter of approximately 300 nm were observed. Since a regular structure having a period of about 3 nm from the spherical particle center toward the particle surface can be confirmed, it is considered that almost uniform nanopores are formed in a dendritic shape from the central portion toward the outer surface.

次に、この粉末上にNi−Feを担持させて、Ni−Fe/MS触媒を得た。この担持は、Niの担持量が10wt%となるように行った。Niに対するFeの原子比は、0.1とした。これらの金属の担持は、含浸法(インシピエントウェットネス法)によって行った。具体的にはメソポーラスシリカ粉末5gに対して、Ni:Feの原子比を1:0.1に調製した酢酸Ni水和物(関東化学社製)と酢酸鉄水和物(関東化学社製)の混合水溶液4mLをピペットで滴下し、110℃で5時間、500℃で3時間焼成した。この工程を3回繰り返しNi−Fe/MS粉末を得た。得られた触媒粉末を水素中で還元した後TEMで観察したが、Ni−Fe粒子は明瞭には観察されず、MS細孔内に高分散担持されているものと思われる。   Next, Ni—Fe was supported on the powder to obtain a Ni—Fe / MS catalyst. This loading was performed so that the loading amount of Ni was 10 wt%. The atomic ratio of Fe to Ni was 0.1. These metals were supported by an impregnation method (incipient wetness method). Specifically, Ni acetic acid Ni hydrate (manufactured by Kanto Chemical Co., Ltd.) and iron acetate hydrate (manufactured by Kanto Chemical Co., Ltd.) prepared by adjusting the atomic ratio of Ni: Fe to 1: 0.1 with respect to 5 g of mesoporous silica powder. 4 mL of the mixed aqueous solution was dropped with a pipette and baked at 110 ° C. for 5 hours and at 500 ° C. for 3 hours. This process was repeated three times to obtain Ni-Fe / MS powder. The obtained catalyst powder was reduced in hydrogen and then observed with TEM. However, the Ni—Fe particles were not clearly observed, and are considered to be highly dispersed and supported in the MS pores.

作製したNi−Fe/MS触媒粉末は、これまでと同様の方法で1.2〜2.0mmの粒状触媒に成形し、初期性能、耐久性能を評価した。図19に入口CO濃度0.5%、SV4800及び10000h−1で取得したNi−Fe/MS粒状触媒の初期性能を示した。また表2には本発明実施例に示す他の前段触媒と共に4つの性能指標(1)Topt、(2)COmin、(3)Tη=50%、(4)ΔTをまとめて示した。 The produced Ni-Fe / MS catalyst powder was formed into a 1.2 to 2.0 mm granular catalyst by the same method as before, and the initial performance and durability performance were evaluated. FIG. 19 shows the initial performance of the Ni—Fe / MS granular catalyst obtained at an inlet CO concentration of 0.5%, SV4800 and 10,000 h −1 . Table 2 summarizes four performance indicators (1) T opt , (2) CO min , (3) T η = 50% , and (4) ΔT together with other pre-stage catalysts shown in the examples of the present invention. .

本実施例で開示する前段触媒に共通の特徴は、Toptが高く、COminも大きいと言う事である。本実施例のNi−Fe/MS粒状触媒の場合、入口CO濃度0.5%、SV4800h−1でのToptは219℃で、その温度における出口CO濃度COminは289ppmである。これらの値を表1の後段触媒と比較するとその差が顕著であることが分かる。 A feature common to the pre-stage catalyst disclosed in this example is that T opt is high and CO min is also large. In the case of the Ni—Fe / MS granular catalyst of this example, the inlet CO concentration is 0.5%, the top opt at SV4800h −1 is 219 ° C., and the outlet CO concentration CO min at that temperature is 289 ppm. When these values are compared with the latter catalyst in Table 1, it can be seen that the difference is remarkable.

図23は長期試験の結果である。SV10000h−1は反応温度250℃で、SV4800h−1は220℃でそれぞれ実施した。図23(a)は出口CO濃度の時間変化を示しているが、いずれのSVでも出口CO濃度は、初期100時間程度を除きほぼ一定に保たれている。図23(b)の出口CH濃度も同様に一定値を維持している。図24は、長期試験前後での温度依存性曲線を比較したものである。SV10000h−1で300h運転した後の温度依存性曲線は初期とほとんど変わっていない。SV4800h−1ではむしろ初期性能よりやや性能が向上している。この原因は現状不明であるが、いずれにしろ、図23,図24の結果は、本実施例の前段触媒が高い劣化耐性を有している事を示している。 FIG. 23 shows the results of the long-term test. SV10000h- 1 was carried out at a reaction temperature of 250 ° C, and SV4800h- 1 was carried out at 220 ° C. FIG. 23 (a) shows the time variation of the outlet CO concentration, but the outlet CO concentration is maintained almost constant except for the initial 100 hours in any SV. Similarly, the outlet CH 4 concentration in FIG. 23B also maintains a constant value. FIG. 24 compares the temperature dependence curves before and after the long-term test. The temperature dependence curve after 300 hours of operation at SV10000h- 1 is almost unchanged from the initial state. In SV4800h- 1 , the performance is slightly improved rather than the initial performance. The cause of this is unknown at present, but in any case, the results shown in FIGS. 23 and 24 indicate that the pre-stage catalyst of this example has high deterioration resistance.

先にも述べたように、本条件における触媒の出口CO濃度は後段触媒に比べると著しく高く、決してCO除去性能に優れた触媒とは言えない。しかし例えば後段触媒として開示したメソポーラス/Ni/Al−VOx粒状触媒がCO 0.5%、SV2400h−1の条件下で図15(a)に示す速度で劣化しているのに対し、本触媒はSVが2倍の4800h−1(同一処理ガス量に対して触媒が1/2になることに相当)と4倍の10000h−1(触媒が1/4になることに相当)の厳しい条件にもかかわらず、ほとんど劣化しないことは特筆すべき特徴である。 As described above, the outlet CO concentration of the catalyst under these conditions is significantly higher than that of the subsequent catalyst, and it cannot be said that the catalyst is excellent in CO removal performance. However, for example, the mesoporous / Ni / Al-VOx granular catalyst disclosed as the latter stage catalyst deteriorates at the rate shown in FIG. 15 (a) under the conditions of 0.5% CO and SV2400h- 1 , whereas this catalyst SV is doubled to 4800h -1 (equivalent to halving the catalyst for the same amount of processing gas) and 4 times 10000h -1 (equivalent to ¼ catalyst). Nevertheless, it is a remarkable feature that it hardly deteriorates.

図25は本触媒を入口CO濃度1.0%、SV10000h−1の更に厳しい条件下で耐久性を評価した結果である。出口CO濃度は、初期に0.21%(2100ppm)であったが約250時間には0.3%(3000ppm)弱まで増加した。しかし、その後はCO濃度の増加は止まり、一定の値を示すに至った。出口CH濃度も初期に低下したが200時間以降は一定の値を示した。 FIG. 25 shows the results of evaluating the durability of the present catalyst under more severe conditions of an inlet CO concentration of 1.0% and SV10000h- 1 . The outlet CO concentration was initially 0.21% (2100 ppm) but increased to less than 0.3% (3000 ppm) in about 250 hours. However, after that, the increase in the CO concentration stopped and reached a constant value. The outlet CH 4 concentration also decreased in the initial stage, but showed a constant value after 200 hours.

この結果は、現行の改質器で使用されるCO除去触媒(CO選択酸化触媒)の入口には0.3〜0.5%のCOが上流から流入する様設計されているが、本前段触媒を使用すればCO除去触媒へ流入するCO濃度を1.0%まで上げても前段触媒の激しい劣化無しにCO濃度を0.2〜0.3%に低減できることを意味している。流入CO濃度の増加はそのまま、上流に設置したCO変成触媒量の削減に結びつくことから経済的な効果は大きい。本発明で開示するCOメタン化反応器は流入CO濃度が0.5%だけでなく1.0%においても適用できることを本図の結果は明らかにしている。   This result is designed so that 0.3 to 0.5% of CO flows from the upstream to the inlet of the CO removal catalyst (CO selective oxidation catalyst) used in the current reformer. If the catalyst is used, it means that even if the CO concentration flowing into the CO removal catalyst is increased to 1.0%, the CO concentration can be reduced to 0.2 to 0.3% without severe deterioration of the preceding catalyst. Since the increase in the inflow CO concentration is directly connected to the reduction of the amount of the CO shift catalyst installed upstream, the economic effect is great. The results of this figure reveal that the CO methanation reactor disclosed in the present invention can be applied not only at 0.5% inflow CO concentration but also at 1.0%.

2−2 乾式高熱法超微粒子シリカを担体に用いた前段触媒の調製と性能評価
ここではメソポーラスシリカや後述するメソ多孔質球状シリカの様にメソ細孔を有しない無孔性超微粒子SiOを担体として使用した。このSiOは、乾式高熱法により工業的に製造されたものである。本担体にNi−Feを担持する方法を以下に示す。
2-2 dry pyrogenic ultrafine silica as a carrier having no nonporous ultrafine particles SiO 2 mesopores as meso porous spherical silica mesoporous silica or later Preparation and performance evaluation in the individual pre-catalyst used in the carrier used. This SiO 2 is industrially produced by a dry high heat method. A method for supporting Ni—Fe on the carrier will be described below.

酢酸ニッケル(II)四水和物(Ni(CHCOO)・4HO、関東化学株式会社製)を純水29.86gに溶解した後200mLにメスアップし、0.6M酢酸ニッケル水溶液を調製した。また酢酸鉄(II) (Fe(CHCOO)、株式会社ワコーケミカル製)0.22gを純水に溶解し25mLにメスアップし0.05mol/L酢酸Fe水溶液を調製した。それぞれ硝酸Ni水溶液6.50mLと硝酸Fe水溶液7.80mLを計り取って混合し、Ni−Fe混合水溶液を得た。次にSiO粉末(AEROSIL(登録商標)380、日本アエロジル株式会社製)2.06gを秤量し、ビーカーの純水50mlに加え攪拌羽根で撹拌した。10分程撹拌したSiO懸濁液に先に調製したNi−Fe混合水溶液を少量ずつ滴下し、更に30分間撹拌した。Ni−Fe溶液を加えたSiO2懸濁液をナス型フラスコに移して45℃で30分間撹拌した後、温度を35℃まで下げエバポレーターで吸引しながら水を除去した。得られた粉末を110℃で一晩乾燥した後、空気中500℃で3時間焼成した。 Nickel acetate (II) tetrahydrate (Ni (CH 3 COO) 2 .4H 2 O, manufactured by Kanto Chemical Co., Inc.) was dissolved in 29.86 g of pure water and then made up to 200 mL, and a 0.6 M nickel acetate aqueous solution. Was prepared. Further, 0.22 g of iron (II) acetate (Fe (CH 3 COO) 2 , manufactured by Wako Chemical Co., Ltd.) was dissolved in pure water and made up to 25 mL to prepare a 0.05 mol / L Fe acetate aqueous solution. 6. Nitric acid Ni aqueous solution 6.50mL and Fe nitric acid aqueous solution 7.80mL were measured and mixed, respectively, and Ni-Fe mixed aqueous solution was obtained. Next, 2.06 g of SiO 2 powder (AEROSIL (registered trademark) 380, manufactured by Nippon Aerosil Co., Ltd.) was weighed, added to 50 ml of pure water in a beaker, and stirred with a stirring blade. The Ni-Fe mixed aqueous solution prepared previously was dropped little by little to the SiO 2 suspension stirred for about 10 minutes, and further stirred for 30 minutes. The SiO2 suspension with the Ni-Fe solution added was transferred to an eggplant-shaped flask and stirred at 45 ° C for 30 minutes, and then the temperature was lowered to 35 ° C and water was removed while sucking with an evaporator. The obtained powder was dried at 110 ° C. overnight and then calcined in air at 500 ° C. for 3 hours.

得られた触媒粉末は、これまでの手順に従い粒状触媒に成形した後、初期性能と耐久性能を評価した。   The obtained catalyst powder was molded into a granular catalyst according to the procedure so far, and then the initial performance and durability performance were evaluated.

図20に本触媒の入口CO 0.5%、SV10000h−1における初期性能を示した。本触媒は高温域までデータが取得できていないため、表2の各指標は正確に算出できなかったが、Toptが高く、COminが大きいと云う特徴は同じであった。図26は入口CO 0.5%、SV10000h−1、反応温度235℃における連続運転の結果を示した。500時間の連続運転において、初期、208時間、385時間(矢印)にそれぞれ反応温度より低い温度領域で低温活性を測定した。低温活性を測定した直後、出口CO濃度は一旦低下を示し、またCH濃度は増加を示した。しかしその後、いずれも直ちに一定値に戻った。低温活性測定後にCO濃度が一旦低下する原因は現状不明であるが、低温に保持され反応が遅くなることで、触媒表面に生成する炭素種前駆体あるいは中間体の濃度が減少し、劣化が一時的に回復したのではないかと予想される。いずれにしろ本触媒においてもSVが10000h−1と厳しい条件にも係わらず、触媒が大きく劣化する事無く、0.5%のCOを0.2%以下に安定して維持できる事が示された。 FIG. 20 shows the initial performance of the catalyst at an inlet CO of 0.5% and SV10000h- 1 . Since the data for this catalyst could not be obtained up to the high temperature range, each index in Table 2 could not be calculated accurately, but the characteristics of high T opt and large CO min were the same. FIG. 26 shows the results of continuous operation at an inlet CO of 0.5%, an SV of 10000 h −1 , and a reaction temperature of 235 ° C. In the continuous operation for 500 hours, the low temperature activity was measured in the temperature range lower than the reaction temperature at the beginning, 208 hours, and 385 hours (arrows). Immediately after measuring the low-temperature activity, the outlet CO concentration once decreased and the CH 4 concentration increased. However, after that, all returned to a constant value immediately. The reason why the CO concentration once decreases after the low-temperature activity measurement is unknown, but the concentration of the carbon species precursor or intermediate produced on the catalyst surface decreases because the reaction is slowed by being kept at a low temperature, and the deterioration temporarily occurs. Is expected to have recovered. In any case, it is shown that 0.5% CO can be stably maintained at 0.2% or less without significant deterioration of the catalyst in spite of severe conditions of SV of 10,000 h −1 in this catalyst. It was.

図27(a)は初期、208時間、385時間更に535時間時点で取得した温度依存性曲線である。図27(b)は、更にその一部を拡大した図である。この図を用いて実施例1−6の図15及び図16で行った触媒寿命の予測を行った。結果を図28に示した。図28は、本触媒を入口CO濃度0.5%、反応温度235℃で連続運転した場合、出口CO濃度が0.20、0.21、0.22%それぞれに達するまでの時間を示している。触媒出口CO濃度が0.20%に達するまでの時間は約1.8万時間、0.21%では6.5万時間、更に0.22%では10万時間を越える事が分かった。本触媒の前段触媒としての耐久性はほぼ実用レベルにあることを意味している。   FIG. 27 (a) is a temperature dependence curve acquired at the initial time, 208 hours, 385 hours, and 535 hours. FIG. 27B is an enlarged view of a part thereof. The catalyst life prediction performed in FIGS. 15 and 16 of Example 1-6 was performed using this figure. The results are shown in FIG. FIG. 28 shows the time required for the outlet CO concentration to reach 0.20, 0.21, and 0.22% when the catalyst is continuously operated at an inlet CO concentration of 0.5% and a reaction temperature of 235 ° C. Yes. It was found that the time required for the catalyst outlet CO concentration to reach 0.20% was about 18,000 hours, 0.21% over 65,000 hours, and 0.22% over 100,000 hours. This means that the durability of the catalyst as a pre-stage catalyst is almost at a practical level.

図29は本触媒のSVを4800h−1(SV10000h−1に対して触媒量が約2倍に相当)にして初期性能を計測した結果である。2400h−1に比較してToptは218℃と20℃以上低くなり、COminも1/3の500ppmまで減少した。しかし241℃まで昇温した時点で熱暴走が発生し、触媒温度が急激に40℃上昇すると伴にCOメタン化反応により生じたCHが10%まで増加した。反応管を加熱する電気炉は停止しているにも係わらず反応ガスを停止するまで触媒の温度は340℃付近まで上昇した。今回はSVを低下したことで熱暴走が生じたが、入口CO濃度を低下させても同様に熱暴走が発生する可能性がある。これはCOメタン化反応速度が高い高温において、入口CO濃度が低下したり、SVが下がり反応ガスと触媒の接触時間が増加することで触媒層内部のCO濃度が大きく低下したことによる。CO濃度が0.1%を大きく下回るようになると、Ni活性サイト上に空サイトが発生し、そこで副反応のCOメタン化反応が急速に進行するためである。
前段触媒を適用する上では、この熱暴走の抑制に特に留意する必要がある。その方法については後述する。
Figure 29 shows the results of measuring the initial performance in the the SV of the catalyst (catalyst amount equivalent to approximately 2 times the SV10000h -1) 4800h -1. Compared to 2400 h −1 , T opt decreased by 218 ° C. and 20 ° C. or more, and CO min also decreased to 1/3, 500 ppm. However, thermal runaway occurred when the temperature was raised to 241 ° C., and when the catalyst temperature rapidly increased by 40 ° C., CH 4 generated by the CO 2 methanation reaction increased to 10%. The temperature of the catalyst rose to around 340 ° C. until the reaction gas was stopped although the electric furnace for heating the reaction tube was stopped. This time, the thermal runaway occurred because the SV was lowered, but the thermal runaway may occur similarly even if the inlet CO concentration is lowered. This is due to the fact that the CO concentration in the catalyst layer is greatly reduced due to a decrease in the inlet CO concentration at a high temperature at which the CO methanation reaction rate is high, or because the SV decreases and the contact time between the reaction gas and the catalyst increases. This is because when the CO concentration is significantly lower than 0.1%, empty sites are generated on the Ni active sites, and the CO 2 methanation reaction as a side reaction proceeds rapidly there.
In applying the pre-stage catalyst, it is necessary to pay particular attention to the suppression of this thermal runaway. The method will be described later.

2−3 メソ多孔質球状シリカを担体に用いた前段触媒の調製と性能評価
先に合成したメソポーラスシリカは約3nmの規則的なメソ細孔を有していたが、本実施例では平均細孔径が約16nmのメソ細孔を有するSiOを担体に用いた。
2-3 Preparation and Performance Evaluation of Pre-Catalyst Using Mesoporous Spherical Silica as Support The previously synthesized mesoporous silica had regular mesopores of about 3 nm. SiO 2 having mesopores of about 16 nm was used as the support.

触媒として使用する担体を得るために、固体SiO 25gに相当するシリカゾル(日産化学製ライトスター)を磁性皿に入れて200℃に熱したホットプレート上で水分を飛ばした。この際にゾル表面に膜が張らないようにスパチュラで混合した。水分が無くなった後、更に130℃で12h乾燥した。乾燥後のSiO粉末を乳鉢で粉砕し、更に空気雰囲気下で500℃まで3hで昇温し3h保持して焼成した。 In order to obtain a carrier to be used as a catalyst, silica sol (Nissan Chemical Light Star) corresponding to 25 g of solid SiO 2 was put in a magnetic dish and water was blown off on a hot plate heated to 200 ° C. At this time, the mixture was mixed with a spatula so that the film was not stretched on the sol surface. After the water disappeared, it was further dried at 130 ° C. for 12 hours. The dried SiO 2 powder was pulverized in a mortar, further heated to 500 ° C. for 3 hours in an air atmosphere, held for 3 hours and fired.

次にNi−Feを以下の手順で担持した。イオン交換水を用いて希釈した0.6M酢酸Ni水溶液78.8mLと、イオン交換水:酢酸=3:2の混合溶液を用いて希釈した0.05M酢酸Fe水溶液94.7mLを所定量混合して5分間撹拌した。この時のNi水溶液量を金属Ni重量:シリカ重量=10:90、Fe水溶液量はNi物質量の1/10のFe物質量に相当する量を投入した。焼成したシリカ粉末25gに、Incipient wetness impregnation法でNi−Fe混合溶液を担持した。目安として一回の担持工程で15〜20mgの混合溶液をパスツールで滴下しながらダマにならないようにスパチュラで押しつぶしながら混合した。その後空気中300℃の炉に入れ、30分乾燥した。取り出して放冷後、混合溶液がなくなるまで担持―乾燥工程を繰り返した(8−9回)。その後空気中、500℃に3hで昇温し3h保持して焼成した。焼成後、得られた触媒を乳鉢で粉砕した。得られた触媒粉末は、これまでの手順に従い粒状触媒に成形した後、初期性能と耐久性能を評価した。   Next, Ni—Fe was supported by the following procedure. A predetermined amount of 78.8 mL of 0.6 M Ni acetate aqueous solution diluted with ion-exchanged water and 94.7 mL of 0.05 M Fe acetate aqueous solution diluted with a mixed solution of ion-exchanged water: acetic acid = 3: 2 were mixed. And stirred for 5 minutes. The amount of Ni aqueous solution at this time was metal Ni weight: silica weight = 10: 90, and the amount of Fe aqueous solution was 1/10 of the amount of Ni substance. The Ni-Fe mixed solution was supported on 25 g of the calcined silica powder by the incipient wetness impregnation method. As a guide, 15 to 20 mg of the mixed solution was dropped with a pasteur in one loading step, and mixed while being crushed with a spatula so as not to become lumps. Thereafter, it was put in a furnace at 300 ° C. in air and dried for 30 minutes. After taking out and allowing to cool, the supporting-drying process was repeated until the mixed solution disappeared (8-9 times). Thereafter, the mixture was heated to 500 ° C. in air for 3 hours and held for 3 hours for firing. After calcination, the obtained catalyst was pulverized in a mortar. The obtained catalyst powder was molded into a granular catalyst according to the procedure so far, and then the initial performance and durability performance were evaluated.

図21に本触媒の入口CO 0.5%、SV10000h−1における初期性能を示した。表2の性能指標は、実施例2−1と2−2の中間的な値を示している。入口CO濃度0.5%、SV10000h−1、反応温度232℃における本触媒の長期試験結果を図30に示した。その際、初期、400時間、800時間ごとに取得した温度依存性曲線を図31に比較して示した。図30(a)に示す様に、本触媒の出口CO濃度は増加を続け、800時間までには一定値に収束しなかったものの、その増加速度は徐々に低下していることがわかった。図30(b)のCH濃度も同様な傾向を示した。 FIG. 21 shows the initial performance of the catalyst at an inlet CO of 0.5% and SV10000h- 1 . The performance index in Table 2 shows an intermediate value between Examples 2-1 and 2-2. FIG. 30 shows the long-term test results of the present catalyst at an inlet CO concentration of 0.5%, SV10000 h −1 , and a reaction temperature of 232 ° C. At that time, the temperature dependence curves acquired at the initial stage, every 400 hours, and every 800 hours are shown in FIG. As shown in FIG. 30 (a), it was found that the outlet CO concentration of the catalyst continued to increase and did not converge to a constant value by 800 hours, but the rate of increase gradually decreased. The CH 4 concentration in FIG. 30 (b) showed a similar tendency.

2−4 メタルハニカム触媒化の効果
実施例2−3で作製したNi−Fe/SiO触媒粉末をメタルハニカム基材にウォッシュコートする工程を以下に示す。
2-4 Effect of making metal honeycomb catalyst The process of wash-coating the Ni-Fe / SiO 2 catalyst powder produced in Example 2-3 on a metal honeycomb substrate is shown below.

Ni−Fe/SiO触媒粉末15.0gとシリカバインダー(日産化学製STO40)4.2gと水40gを撹拌・混合してコーティング用スラリーを作製した。この時の触媒とバインダー固形分の比率は90:10とした。メタルハニカムは新日鉄住金マテリアルズ製の外径25.4mm(1インチφ)、長さ15mmのステンレス鋼(YUS205M1)製で表面を高温酸化処理したものである。セル数は400cpsi、セル壁の厚さは30μmとした。メタルハニカムをコーティング用スラリーに浸漬し、引き上げた後にハニカムに付着する余分なスラリーをエアブローで除去した。この際、壁面に付着したスラリーをふき取った。その後電気炉により空気中500℃で15分焼成した。取り出して放冷後、乾燥重量を計測した。その後目的触媒付着量150g/Lまで本操作を繰り返した(5回)。最後に空気中500℃で1h保持し本焼成を行った。 Ni-Fe / SiO 2 catalyst powder 15.0 g, silica binder (Nissan Chemical STO40) 4.2 g, and water 40 g were stirred and mixed to prepare a slurry for coating. The ratio of catalyst and binder solid content at this time was 90:10. The metal honeycomb is made of Nippon Steel & Sumikin Materials made of stainless steel (YUS205M1) having an outer diameter of 25.4 mm (1 inch φ) and a length of 15 mm, and the surface thereof is subjected to high temperature oxidation treatment. The number of cells was 400 cpsi, and the cell wall thickness was 30 μm. The metal honeycomb was dipped in the coating slurry, and the excess slurry adhering to the honeycomb after being pulled up was removed by air blow. At this time, the slurry adhering to the wall surface was wiped off. Thereafter, it was fired in an air at 500 ° C. for 15 minutes. After taking out and allowing to cool, the dry weight was measured. Thereafter, this operation was repeated until the target catalyst adhesion amount was 150 g / L (5 times). Finally, the main calcination was carried out by holding in air at 500 ° C. for 1 h.

得られたメタルハニカム触媒は、これまでと同様、固定床常圧流通式反応評価装置により触媒活性を評価した。なお反応管には外径32mm(内径28mm)の石英製を使用した。反応管中央位置にハニカム触媒をセットし、反応管内壁とハニカムの間には石英ウールを密に充填し、固定とともにガスがハニカム外周を流れないようにした。反応に先立ち試料の水素還元を行った。還元は反応管に500mL/minのHガスを流し、20℃/minで触媒層温度を500℃まで昇温した後、1時間の温度保持をする。還元終了後、反応温度域まで降温し、反応ガスを導入した。反応ガスの組成はドライベースでCO 0.5%、CO 20%、水蒸気キャリアN 6%、H 73.5%とした。水蒸気/CO=34(モル比)に相当する水蒸気を添加する。反応ガスの空間速度は10000h−1とした。 The obtained metal honeycomb catalyst was evaluated for catalytic activity by a fixed bed normal pressure flow reaction evaluation apparatus as before. The reaction tube was made of quartz having an outer diameter of 32 mm (inner diameter: 28 mm). A honeycomb catalyst was set at the center of the reaction tube, and quartz wool was tightly packed between the inner wall of the reaction tube and the honeycomb to prevent gas from flowing around the outer periphery of the honeycomb while being fixed. Prior to the reaction, the sample was subjected to hydrogen reduction. In the reduction, 500 mL / min of H 2 gas is allowed to flow through the reaction tube, and the temperature of the catalyst layer is raised to 500 ° C. at 20 ° C./min. After completion of the reduction, the temperature was lowered to the reaction temperature range and the reaction gas was introduced. The composition of the reaction gas was 0.5% CO, 20% CO 2 , 6% steam carrier N 2 and 73.5% H 2 on a dry basis. Water vapor corresponding to water vapor / CO = 34 (molar ratio) is added. The space velocity of the reaction gas was set to 10,000 h- 1 .

図22及び図32にメタルハニカム触媒の初期性能を示す。本ハニカム触媒は空間1Lに150gの触媒粉末が存在する。1Lの空間に約1kgの触媒が存在する粒状触媒に比較すると極めて少ない。SV10000h−1ではCOminは0.2%を下回らなかったが、SVを8000h−1まで下げると0.2%以下の領域が現れた。このようにハニカム触媒では触媒コーティング量の調整によりCOminをはじめToptを比較的自由に調整可能である。加えてメタルハニカム触媒は300℃まで昇温しても熱暴走を生じる事は無く、安全に使用できるという観点から、前段触媒に好適な形態である。 22 and 32 show the initial performance of the metal honeycomb catalyst. This honeycomb catalyst has 150 g of catalyst powder in 1 L of space. Compared to a granular catalyst in which about 1 kg of catalyst is present in a 1 L space, it is extremely small. In SV10000h- 1 , CO min did not fall below 0.2%, but when SV was lowered to 8000h- 1, a region of 0.2% or less appeared. Thus relatively freely adjustable Introduction T opt the CO min by adjusting the catalyst coating amount is in the honeycomb catalyst. In addition, the metal honeycomb catalyst does not cause thermal runaway even when the temperature is raised to 300 ° C., and is a suitable form for the pre-stage catalyst from the viewpoint that it can be used safely.

後段触媒は入口CO濃度を0.2%以下で使用できれば劣化を著しく抑制し実用触媒に求められる6万時間以上の耐久性を発現できると云う事を前半の実施例で示した。一方、前段触媒は、0.5あるいは1.0%の入口CO濃度を、自身はほとんど劣化することなく出口CO濃度0.2%以下に低減できる事を後半の実施例により示した。以上の結果、前段触媒と後段触媒を設置する事で、全体として触媒性能を低下させず0.5〜1.0%の入口CO濃度を安定に10ppm以下に低減できることが示された。   In the first half of the example, it was shown that if the post-stage catalyst can be used at an inlet CO concentration of 0.2% or less, the deterioration can be remarkably suppressed and the durability of 60,000 hours or more required for a practical catalyst can be expressed. On the other hand, the latter example showed that the upstream catalyst can reduce the inlet CO concentration of 0.5 or 1.0% to an outlet CO concentration of 0.2% or less with almost no deterioration. As a result, it was shown that by installing the front stage catalyst and the rear stage catalyst, the inlet CO concentration of 0.5 to 1.0% can be stably reduced to 10 ppm or less without reducing the catalyst performance as a whole.

Claims (12)

CO及びCOを含有する水素リッチガス中のCOをメタン化するCO選択メタン化反応器であって、
前記CO選択メタン化反応器内での前記水素リッチガスの流れの上流側から順に前段触媒と後段触媒を備え、
前記前段触媒は、入口CO濃度が0.5%での最適動作温度が前記後段触媒よりも高い、CO選択メタン化反応器。
A CO selective methanation reactor methanation of CO in the hydrogen-rich gas containing CO and CO 2,
A pre-stage catalyst and a post-stage catalyst in order from the upstream side of the flow of the hydrogen-rich gas in the CO selective methanation reactor,
The pre-stage catalyst is a CO selective methanation reactor in which the optimum operating temperature at an inlet CO concentration of 0.5% is higher than that of the post-stage catalyst.
前記後段触媒は、出口CO濃度が100ppmとなる条件でのCO選択率が0.5以上である、請求項1に記載のCO選択メタン化反応器。 2. The CO selective methanation reactor according to claim 1, wherein the second stage catalyst has a CO selectivity of 0.5 or more under a condition that an outlet CO concentration is 100 ppm. 前記前段触媒は、前記最適動作温度での出口CO濃度が0.2%以下となるように構成される、請求項1又は請求項2に記載のCO選択メタン化反応器。 The CO selective methanation reactor according to claim 1 or 2, wherein the upstream catalyst is configured such that an outlet CO concentration at the optimum operating temperature is 0.2% or less. 前記前段触媒の活性金属は、Ni及びFeを含む、請求項1〜請求項3の何れか1つに記載のCO選択メタン化反応器。 The CO selective methanation reactor according to any one of claims 1 to 3, wherein the active metal of the pre-stage catalyst contains Ni and Fe. 前記後段触媒の活性金属は、Niを含み、前記後段触媒の担体は、V酸化物及びAl酸化物を含む、請求項1〜請求項4の何れか1つに記載のCO選択メタン化反応器。 5. The CO selective methanation reactor according to claim 1, wherein the active metal of the latter catalyst includes Ni, and the support of the latter catalyst includes a V oxide and an Al oxide. . CO及びCOを含有する水素リッチガス中のCOをメタン化するCO選択メタン化反応器であって、
前記CO選択メタン化反応器内での前記水素リッチガスの流れの上流側から順に前段触媒と後段触媒を備え、
前記前段触媒の活性金属は、Ni及びFeを含み、前記後段触媒の活性金属は、Niを含み、前記後段触媒の担体は、V又はNiと、Alとを含む酸化物である、CO選択メタン化反応器。
A CO selective methanation reactor methanation of CO in the hydrogen-rich gas containing CO and CO 2,
A pre-stage catalyst and a post-stage catalyst in order from the upstream side of the flow of the hydrogen-rich gas in the CO selective methanation reactor,
The active metal of the former catalyst contains Ni and Fe, the active metal of the latter catalyst contains Ni, and the carrier of the latter catalyst is an oxide containing V or Ni and Al. Reactor.
Fe/Niの原子比は、0.01〜1である、請求項4〜請求項6の何れか1つに記載のCO選択メタン化反応器。 The CO selective methanation reactor according to any one of claims 4 to 6, wherein the atomic ratio of Fe / Ni is 0.01-1. 前記前段触媒の担体は、Siを含む酸化物である、請求項4〜請求項7の何れか1つに記載のCO選択メタン化反応器。 The CO selective methanation reactor according to any one of claims 4 to 7, wherein the support of the pre-stage catalyst is an oxide containing Si. 前記後段触媒は、活性金属表面でのCO濃度を低減するように構成された被覆層を備える、請求項1〜請求項8に記載のCO選択メタン化反応器。 9. The CO selective methanation reactor according to claim 1, wherein the latter catalyst comprises a coating layer configured to reduce the CO concentration on the active metal surface. 前記前段触媒は、ハニカム基材上にコーティングされている、請求項1〜請求項9の何れか1つに記載のCO選択メタン化反応器。 The CO selective methanation reactor according to any one of claims 1 to 9, wherein the upstream catalyst is coated on a honeycomb substrate. 前記ハニカム基材は、メタルハニカム基材である、請求項10に記載のCO選択メタン化反応器。 The CO selective methanation reactor according to claim 10, wherein the honeycomb substrate is a metal honeycomb substrate. 前記メタルハニカム基材の表面にα−アルミナ層を備える、請求項11に記載のCO選択メタン化反応器。 The CO selective methanation reactor according to claim 11, comprising an α-alumina layer on a surface of the metal honeycomb substrate.
JP2014139172A 2014-07-04 2014-07-04 CO selective methanation reactor Active JP6376494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139172A JP6376494B2 (en) 2014-07-04 2014-07-04 CO selective methanation reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139172A JP6376494B2 (en) 2014-07-04 2014-07-04 CO selective methanation reactor

Publications (2)

Publication Number Publication Date
JP2016017004A true JP2016017004A (en) 2016-02-01
JP6376494B2 JP6376494B2 (en) 2018-08-22

Family

ID=55232493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139172A Active JP6376494B2 (en) 2014-07-04 2014-07-04 CO selective methanation reactor

Country Status (1)

Country Link
JP (1) JP6376494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013135A1 (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Method for producing carbonate esters, and catalytic structure for producing carbonate esters
WO2022065468A1 (en) * 2020-09-28 2022-03-31 三井金属鉱業株式会社 Core-shell particles for carbon dioxide methanation catalyst

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222428A (en) * 1983-05-31 1984-12-14 Kobe Steel Ltd Apparatus for highly efficient methanation
JPS635034A (en) * 1986-06-26 1988-01-11 Agency Of Ind Science & Technol Conversion of carbon monoxide
JP2003277013A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd Carbon monoxide removing method and polymer electrolyte fuel cell system
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2008056539A (en) * 2006-08-31 2008-03-13 Catalysts & Chem Ind Co Ltd Carbon monoxide methanation method
US20080221227A1 (en) * 2005-09-02 2008-09-11 Claus Hviid Christensen Process and Catalyst For Hydrogenation of Carbon Oxides
CN101373839A (en) * 2007-08-20 2009-02-25 北京科技大学 Method and apparatus for removing CO, electrification method and system for fuel battery with proton exchange film
US20090259076A1 (en) * 2008-04-09 2009-10-15 Simmons Wayne W Process for converting a carbonaceous material to methane, methanol and/or dimethyl ether using microchannel process technology
WO2011142481A1 (en) * 2010-05-13 2011-11-17 国立大学法人山梨大学 Fuel reforming device, method for selective methanisation of carbon monoxide, catalyst for selective methanisation of carbon monoxide, and manufacturing method for same
WO2014038426A1 (en) * 2012-09-04 2014-03-13 国立大学法人山梨大学 Co-selective methanation catalyst
JP2015196610A (en) * 2014-03-31 2015-11-09 大阪瓦斯株式会社 Carbon monoxide removal method and solid polymer fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222428A (en) * 1983-05-31 1984-12-14 Kobe Steel Ltd Apparatus for highly efficient methanation
JPS635034A (en) * 1986-06-26 1988-01-11 Agency Of Ind Science & Technol Conversion of carbon monoxide
JP2003277013A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd Carbon monoxide removing method and polymer electrolyte fuel cell system
JP2006239551A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Ind Ltd Co methanizing catalyst, co removing catalyst device and fuel cell system
US20080221227A1 (en) * 2005-09-02 2008-09-11 Claus Hviid Christensen Process and Catalyst For Hydrogenation of Carbon Oxides
JP2008056539A (en) * 2006-08-31 2008-03-13 Catalysts & Chem Ind Co Ltd Carbon monoxide methanation method
CN101373839A (en) * 2007-08-20 2009-02-25 北京科技大学 Method and apparatus for removing CO, electrification method and system for fuel battery with proton exchange film
US20090259076A1 (en) * 2008-04-09 2009-10-15 Simmons Wayne W Process for converting a carbonaceous material to methane, methanol and/or dimethyl ether using microchannel process technology
WO2011142481A1 (en) * 2010-05-13 2011-11-17 国立大学法人山梨大学 Fuel reforming device, method for selective methanisation of carbon monoxide, catalyst for selective methanisation of carbon monoxide, and manufacturing method for same
WO2014038426A1 (en) * 2012-09-04 2014-03-13 国立大学法人山梨大学 Co-selective methanation catalyst
JP2015196610A (en) * 2014-03-31 2015-11-09 大阪瓦斯株式会社 Carbon monoxide removal method and solid polymer fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013135A1 (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Method for producing carbonate esters, and catalytic structure for producing carbonate esters
CN112424155A (en) * 2018-07-10 2021-02-26 日本制铁株式会社 Method for producing carbonate ester and catalyst structure for producing carbonate ester
JPWO2020013135A1 (en) * 2018-07-10 2021-08-02 日本製鉄株式会社 Carbonate ester production method and catalyst structure for carbonic acid ester production
WO2022065468A1 (en) * 2020-09-28 2022-03-31 三井金属鉱業株式会社 Core-shell particles for carbon dioxide methanation catalyst

Also Published As

Publication number Publication date
JP6376494B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5691098B2 (en) Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
JP6160005B2 (en) CO selective methanation catalyst
JP5810421B2 (en) Fuel reformer, carbon monoxide selective methanation method, carbon monoxide selective methanation catalyst, and production method thereof
JP5096712B2 (en) Carbon monoxide methanation method
JP2006346598A (en) Steam reforming catalyst
Brackmann et al. LaCoO3 perovskite on ceramic monoliths–pre and post reaction analyzes of the partial oxidation of methane
Zhang et al. Ni/Y2B2O7 (BTi, Sn, Zr and Ce) catalysts for methane steam reforming: on the effects of B site replacement
CN101330973B (en) Process conditions for Pt-Re bimetallic water gas shift catalysts
JPWO2016140227A1 (en) Carbon nanotube-coated catalyst particles
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
MX2008006912A (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP6376494B2 (en) CO selective methanation reactor
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
Guo et al. Direct synthesis of CuO–ZnO–CeO2 catalyst on Al2O3/cordierite monolith for methanol steam reforming
JP6350898B2 (en) CO selective methanation catalyst
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP6168519B2 (en) Catalyst, method for producing catalyst, method for producing hydrogen-containing gas, hydrogen production apparatus and fuel cell system
JP2006297194A (en) Fuel reforming catalyst
Phan et al. Insights on the Highly Stable and Coke-Resistant Nickel/Zirconia Nanocatalyst for the Methanation of Carbon Dioxide
JP2011183346A (en) Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen
JP2000007303A (en) Reforming reactor
JP2004121960A (en) Shift catalyst
JP2007090172A (en) Shift catalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6376494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250