JP2015523234A - Non-excavated pipeline repair method - Google Patents

Non-excavated pipeline repair method Download PDF

Info

Publication number
JP2015523234A
JP2015523234A JP2015511389A JP2015511389A JP2015523234A JP 2015523234 A JP2015523234 A JP 2015523234A JP 2015511389 A JP2015511389 A JP 2015511389A JP 2015511389 A JP2015511389 A JP 2015511389A JP 2015523234 A JP2015523234 A JP 2015523234A
Authority
JP
Japan
Prior art keywords
tube
chamber
roller
traction
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015511389A
Other languages
Japanese (ja)
Inventor
ギ チャン,チュン
ギ チャン,チュン
Original Assignee
金田 光司
金田 光司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020120134407A priority Critical patent/KR101291611B1/en
Priority to KR10-2012-0134407 priority
Application filed by 金田 光司, 金田 光司 filed Critical 金田 光司
Priority to PCT/KR2013/010781 priority patent/WO2014081267A1/en
Publication of JP2015523234A publication Critical patent/JP2015523234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • B29C63/36Lining or sheathing of internal surfaces using tubular layers or sheathings being turned inside out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/163Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a ring, a band or a sleeve being pressed against the inner surface of the pipe
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • F16L55/1651Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section the flexible liner being everted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/06Methods of, or installations for, laying sewer pipes
    • E03F2003/065Refurbishing of sewer pipes, e.g. by coating, lining

Abstract

本発明はチューブの移送推力を強化してチャンバーの内部でのサイクル当たりチューブ移送量を増加させて管路補修工程の全作業時間を縮めさせることができる非掘削式管路補修工法を提供することを目的とする。本発明は、内面に熱硬化性樹脂または光硬化性樹脂を含浸したチューブ材をツイン回転ローラー式牽引機構の0?から270?までの回転によって、チャンバーの外部のチューブをチャンバーの内部に牽引し、チャンバーの入口を密閉するとともにチャンバーの出口を開放した状態で反転室の内部に高圧の流体を注入し、その流体圧の力によって前記チャンバー内に牽引されたチューブを反転室の外部に反転させながら管路の内部に移送し、高温の流体の熱または光の照射によってチューブを管路の内壁に密着して固定させる。The present invention provides a non-excavated pipeline repair method capable of reducing the total work time of the pipeline repair process by increasing the tube transport thrust and increasing the tube transport amount per cycle inside the chamber. With the goal. In the present invention, a tube material impregnated with a thermosetting resin or a photocurable resin on the inner surface is pulled from 0 ° to 270 ° of a twin rotary roller type pulling mechanism to pull the tube outside the chamber to the inside of the chamber. The high pressure fluid is injected into the reversing chamber with the chamber inlet sealed and the chamber outlet open, and the tube pulled inside the chamber is reversed outside the reversing chamber by the force of the fluid pressure. Then, the tube is transferred to the inside of the pipeline, and the tube is brought into close contact with the inner wall of the pipeline by heat or light irradiation of a high-temperature fluid.

Description

本発明は非掘削式管路補修工法に係り、特に内面に熱硬化性樹脂または光硬化性樹脂を含浸したライニングチューブ材(以下、‘チューブ材’と言う)を、反転移送装置のチャンバーの内部に牽引した後、反転移送装置のチャンバーの内部を気密にした状態でチャンバーの内部に導入されたチューブ材を高圧の流体圧で反転させて地下の老朽した管路(以下、‘管路’と言う)内に移送させ、反転されたチューブ材を流体圧で膨脹させて管路の内壁に密着させるとともにチューブ材の熱硬化性樹脂または光硬化性樹脂を硬化させることによって管路の内壁にライニング層を形成する非掘削式管路補修工法に関するものである。   The present invention relates to a non-excavated pipeline repair method, and in particular, a lining tube material impregnated with a thermosetting resin or a photocurable resin on its inner surface (hereinafter referred to as “tube material”) is provided inside a chamber of a reversing transfer device. The tube material introduced into the chamber with the inside of the chamber of the reversing transfer device being airtight is reversed with a high pressure fluid pressure, and an underground pipeline (hereinafter referred to as 'pipe') Lining the inner wall of the pipe line by inflating the inverted tube material with fluid pressure and bringing it into close contact with the inner wall of the pipe line and curing the thermosetting resin or photocurable resin of the tube material The present invention relates to a non-excavated pipeline repair method for forming a layer.

地中に埋設された老朽した下水管または上水管などの管路を補修するとき、その管路を掘削しないで、内側面に熱硬化性接着樹脂が含浸した補修用ライニングチューブ(チューブ材)を管路内に反転させて移送させ、反転されるライニング材の外側面を管路の内壁に高温の気流で密着させながら外側面の熱硬化性接着樹脂で管路の内壁に密着硬化させることで補修する非掘削式管路補修ライニング工法が広く適用されている。   When repairing a pipeline such as an old sewer or water pipe buried in the ground, a repair lining tube (tube material) impregnated with thermosetting adhesive resin on the inner surface is not excavated. Inverted and transferred to the inside of the pipeline, the outer surface of the inverted lining material is adhered to the inner wall of the pipeline with the thermosetting adhesive resin on the outer surface while closely contacting the inner wall of the pipeline with a high-temperature air flow. Non-excavated pipeline repair lining method to repair is widely applied.

このような非掘削式管路補修ライニング工法としては、大韓民国特許公報第10−0551199B1号に開示されたものがある。   As such a non-excavated pipeline repair lining method, there is one disclosed in Korean Patent Publication No. 10-0551199B1.

前記従来技術の場合、反転室内部の気流圧でチューブ材を反転させるとともに連続的に移送させるために、反転室の入口にゲート(特許文献1の図2の21)のような開閉式手段を使っている。すなわち、従来においては、反転室のチューブ材を反転させて移送させるために、ただ流体圧の力のみを使ったので、反転及び移送の効率が低かった。   In the case of the prior art, in order to reverse the tube material by the air flow pressure in the reversing chamber and continuously transfer the tube material, an openable means such as a gate (21 in FIG. 2 of Patent Document 1) is provided at the entrance of the reversing chamber. using. That is, in the prior art, in order to invert and transfer the tube material in the reversing chamber, only the force of the fluid pressure is used, so that the inversion and transfer efficiency is low.

また、従来の非掘削式管路補修工法においては、チューブ材を中断なしに連続的に移送させることはできるが、チューブ材の移送の際、チューブ材が反転室入口の開閉機構(ゲート)を必ず通過しなければならない。そのため、反転室を完全に遮断することができなくて反転室の気密構造が不完全になり、その結果、圧縮空気の気流の圧力によるチューブ材の移送効率が低くなることになる。その結果、チューブ材を管路内に移送させる作業時間が長くなって管路補修工程の全時間が長くなる欠点があった。   In the conventional non-excavated pipeline repair method, the tube material can be continuously transferred without interruption. However, when the tube material is transferred, the tube material is provided with an opening / closing mechanism (gate) at the inversion chamber inlet. You must pass. For this reason, the reversing chamber cannot be completely shut off, and the airtight structure of the reversing chamber becomes incomplete, and as a result, the transfer efficiency of the tube material due to the pressure of the compressed air flow is lowered. As a result, there is a drawback that the work time for transferring the tube material into the pipe line becomes long and the total time of the pipe repair process becomes long.

したがって、本発明は前述したように気流圧のみでチューブ材を連続的に反転して移送させる従来技術が持った欠点を解消するために、反転室の入出口を通じての気流の漏洩を完全に遮断することで気流のチューブ材反転移送推力を強化するとともに、反転室の内部へのチューブ材の単位移送量を増加させて補修管路の内部へのチューブ材の単位反転移送距離を増加させることにより、管路補修の全工程時間を減らして補修作業の作業効率を向上させることができる非掘削式管路補修工法を提供することに目的がある。   Therefore, as described above, the present invention completely blocks the leakage of the airflow through the reversing chamber in order to eliminate the disadvantages of the prior art in which the tube material is continuously reversed and transferred only by the airflow pressure. By strengthening the tube material reversal transfer thrust of the air flow and increasing the unit reversal transfer distance of the tube material into the repair pipeline by increasing the unit transfer amount of the tube material into the reversing chamber An object of the present invention is to provide a non-excavated pipeline repair method capable of reducing the total process time of pipeline repair and improving the work efficiency of repair work.

また、本発明は、地中管路内に反転して移送されたチューブ材を光で硬化させることができるようにすることにより、チューブ材の硬化工程を縮め、補修作業の効率性を高めることができる非掘削式管路補修工法を提供することに他の目的がある。   In addition, the present invention reduces the hardening process of the tube material and increases the efficiency of repair work by enabling the tube material reversed and transferred into the underground pipeline to be cured by light. Another object is to provide a non-excavated pipeline repair method that can be used.

前記目的を達成するための本発明の非掘削式管路補修工法は、
内側面に熱硬化性樹脂を含浸したチューブ材を準備する段階;
準備したチューブ材の先端を反転移送装置のチャンバーと反転室を順に貫通させた後、反転室の出口で反転させ、反転された状態で反転室の出口先端に固定してチューブ材を装着するチューブ材装着段階;
入口開閉器具でチャンバーの入口を開放し、同時に出口開閉器具でチャンバーの出口を閉鎖した状態で、ツイン回転ローラー式牽引機構を回転させることで、回転量に対応する長さの分だけ外部のチューブ材をチャンバーの内部に牽引する段階;
ツイン回転ローラー式牽引機構を牽引方向の反対方向に逆回転させ、牽引ローラーの周囲に巻き取られたチューブ材を繰り出し、チャンバーの内部に無張力状態で保管する段階;
入口開閉器具でチャンバーの入口を密閉し、出口開閉器具でチャンバーの出口を開放した状態で、反転室の内部に高圧の流体を注入し、流体圧によって前記チャンバーの内部のチューブ材を反転室の外部に反転させながら、チューブ材の後端が管路の作業区間の終了地点に到逹するまで管路の内部に移送させる反転移送段階;及び
管路の補修作業区間にわたって反転して移送されたチューブ材内の熱硬化性樹脂または光硬化性樹脂を流体の熱または光で硬化させてチューブ材を管路の内壁に密着して固定させるチューブ材硬化段階;を含むことを特徴とする。
In order to achieve the above object, the non-excavated pipeline repair method of the present invention is:
Preparing a tube material impregnated with a thermosetting resin on the inner surface;
A tube in which the tip of the prepared tube material is sequentially passed through the chamber and the reversing chamber of the reversing transfer device, then reversed at the outlet of the reversing chamber, and fixed in the inverted tip of the reversing chamber in the reversed state. Material mounting stage;
With the inlet opening / closing device opening the chamber inlet and simultaneously closing the chamber outlet with the outlet opening / closing device, the twin rotary roller traction mechanism is rotated, so that the external tube is the length corresponding to the amount of rotation. Pulling the material into the chamber;
Rotating the twin-rotating roller type traction mechanism in the opposite direction of the traction direction, feeding out the tube material wound around the traction roller, and storing it in the chamber without tension;
With the inlet opening / closing device sealing the chamber inlet and the outlet opening / closing device opening the chamber outlet, a high-pressure fluid is injected into the reversing chamber, and the tube material inside the chamber is injected into the reversing chamber by the fluid pressure. The reversal transfer stage in which the rear end of the tube material is transferred to the inside of the pipe line until it reaches the end point of the work section of the pipe line while being reversed outside; A tube material curing step of curing the thermosetting resin or the photocurable resin in the tube material with the heat or light of the fluid to fix the tube material in close contact with the inner wall of the conduit.

前記チューブ材牽引段階は、前記ツイン回転ローラー式牽引機構が、チャンバー内のチューブ材の下側で回転中心軸を中心に旋回可能に設置された第1下部牽引ローラーと、前記チューブ材の上側に前記第1下部牽引ローラーに対向するように配置され、前記回転中心軸方向に前記第1下部牽引ローラーと一緒に一体に旋回する第1上部牽引ローラーとからなった第1ツイン回転ローラーを備え、前記第1ツイン回転ローラーを前記回転中心軸を中心に時計方向に0°から270°に旋回させることにより、第1上/下部牽引ローラーの周囲にチューブ材を巻き取りながらチューブ材をチャンバー内に牽引し、次に第1上/下部牽引ローラーを反時計方向に逆回転させることで、第1上/下部牽引ローラーに巻き取られていたチューブ材をチャンバー内に無張力状態で繰り出し、第1上/下部牽引ローラーで巻き取った長さの分だけチューブ材をチャンバー内に牽引することを特徴とする。   In the tube material pulling step, the twin rotary roller type pulling mechanism is installed on the upper side of the tube material, a first lower pulling roller installed on the lower side of the tube material in the chamber so as to be pivotable about the rotation center axis. A first twin rotary roller that is arranged to face the first lower pulling roller and includes a first upper pulling roller that rotates together with the first lower pulling roller in the rotation central axis direction; By rotating the first twin rotary roller clockwise from 0 ° to 270 ° around the rotation center axis, the tube material is wound into the chamber while winding the tube material around the first upper / lower pulling roller. Pull the tube material that has been wound around the first upper / lower traction roller by rotating the first upper / lower traction roller counterclockwise. The tube material is drawn into the chamber in a tension-free state, and the tube material is pulled into the chamber by the length taken up by the first upper / lower pulling roller.

また、前記ツイン回転ローラー式牽引機構は、チューブ材の下側にチューブ材移送方向に沿って前記第1下部牽引ローラーの前方に配置され、前記回転中心軸を中心に旋回可能に設置された第2下部牽引ローラーと、チューブ材の上側にチューブ材移送方向に沿って前記第1上部牽引ローラーの後方に配置され、前記回転中心軸を中心に前記第2下部牽引ローラーに対向するように配置され、前記回転中心軸を中心に前記第2下部牽引ローラーと一体に回転する第2上部牽引ローラーとからなった第2ツイン回転ローラーをさらに備える。前記第2上/下部牽引ローラーが180°から270°に旋回するとき、第1上/下部牽引ローラーに後続してチューブ材をさらにチャンバーの内部に牽引することを特徴とする。   The twin rotary roller type traction mechanism is disposed below the tube material in front of the first lower traction roller along the tube material transfer direction, and is installed so as to be pivotable about the rotation center axis. 2 lower pulling rollers, arranged on the upper side of the tube material behind the first upper pulling roller along the tube material transfer direction, and so as to face the second lower pulling roller around the rotation center axis And a second twin rotary roller including a second upper pulling roller that rotates integrally with the second lower pulling roller about the rotation center axis. When the second upper / lower traction roller pivots from 180 ° to 270 °, the tube material is further pulled into the chamber following the first upper / lower traction roller.

また、前記チャンバーの入口開閉器具及び出口開閉器具は軟質のシリコンゴムから成形され、入口と出口にそれぞれチューブ材移送方向に対して横方向に設置された固定パッドと、軟質のシリコンゴムから成形され、上下に昇降するアクチュエーターの先端に固定された可動パッドとからなり、アクチュエーターの作動によって前記可動パッドが固定パッドに密着して結合するとかあるいは分離することでチャンバーの入口と出口を独立的に開閉する。   Also, the inlet opening / closing device and the outlet opening / closing device of the chamber are molded from soft silicone rubber, and are formed from a soft silicone rubber and a fixed pad installed at the inlet and the outlet respectively in a direction transverse to the tube material transfer direction. It consists of a movable pad fixed to the tip of the actuator that moves up and down, and the movable pad is in close contact with the fixed pad by the operation of the actuator, or the chamber inlet and outlet are opened and closed independently. To do.

前記固定パッドと可動パッドはいずれか一方が突起を備え、他方は突起を収容する溝を備え、結合の際に突起と溝が噛み合ってチャンバーの入口と出口を密閉することを特徴とする。   One of the fixed pad and the movable pad is provided with a protrusion, and the other is provided with a groove for accommodating the protrusion, and the protrusion and the groove are engaged with each other at the time of coupling to seal the inlet and the outlet of the chamber.

前述した本発明の非掘削式管路補修工法によれば、チューブ材を反転移送装置の反転室の外部に流体圧力で反転移送させるに先立ち、補修材を反転移送装置のチャンバーの内部に所定長さだけ機械的に牽引するので、チャンバーの内部に牽引されるチューブ材の牽引量が一定になって管路の内部に反転して移送されるチューブ材の反転移送量を一定に維持することができる。   According to the above-described non-excavated pipeline repair method of the present invention, prior to the tube material being reversely transferred to the outside of the reverse chamber of the reverse transfer device by fluid pressure, the repair material is put into the chamber of the reverse transfer device by a predetermined length. Since it is mechanically pulled, it is possible to maintain the constant reversal transfer amount of the tube material that is reversed and transferred to the inside of the pipe line by keeping the pull amount of the tube material pulled inside the chamber constant. it can.

そして、チューブ材をチャンバーの内部に牽引する牽引機構のツイン回転ローラーが1回転当たり最大270°まで旋回しながらチューブ材を牽引するので、牽引機構の1回転当たりのチューブ材牽引量、さらに牽引機構の1回作動当たりの反転移送量を最大に増加させることができ、その結果、管路補修作業の全工程時間を縮めることができる。   And since the twin rotating roller of the pulling mechanism that pulls the tube material into the chamber pulls the tube material while turning up to 270 ° per rotation, the pulling amount of the tube material per rotation of the pulling mechanism, and the pulling mechanism The reversal transfer amount per operation can be increased to the maximum, and as a result, the entire process time of the pipe repair work can be shortened.

また、チューブ材を反転して移送させるために流体が注入されるチャンバーの入口と出口の気密性を高めて流体の漏洩を遮断することにより、流体圧による反転移送効率を高めることができる。   In addition, the reversal transfer efficiency by the fluid pressure can be improved by enhancing the airtightness of the inlet and outlet of the chamber into which the fluid is injected in order to invert and transfer the tube material, thereby blocking the leakage of the fluid.

本発明によって地下の管路を補修する過程を概略的に示す図である。It is a figure which shows roughly the process of repairing an underground pipe line by this invention. 本発明の管路補修工法において反転移送装置の構造を示し、この反転移送装置の内部にチューブ材を装着した状態を示す図である。It is a figure which shows the state where the structure of the inversion transfer apparatus was shown in the pipe line repair method of this invention, and the tube material was mounted | worn inside this inversion transfer apparatus. 四つの牽引ローラーからなった牽引機構が0°から270°だけ回転しながら外部のチューブ材を反転移送装置のチャンバーの内部に牽引する過程を、90°、180°、270°の段階別に区分して示す図である(1)。The process of pulling the external tube material into the chamber of the reversing transfer device while the pulling mechanism consisting of four pulling rollers rotates from 0 ° to 270 ° is divided into 90 °, 180 °, and 270 ° stages. It is a figure shown (1). 四つの牽引ローラーからなった牽引機構が0°から270°だけ回転しながら外部のチューブ材を反転移送装置のチャンバーの内部に牽引する過程を、90°、180°、270°の段階別に区分して示す図である(2)。The process of pulling the external tube material into the chamber of the reversing transfer device while the pulling mechanism consisting of four pulling rollers rotates from 0 ° to 270 ° is divided into 90 °, 180 °, and 270 ° stages. (2). 四つの牽引ローラーからなった牽引機構が0°から270°だけ回転しながら外部のチューブ材を反転移送装置のチャンバーの内部に牽引する過程を、90°、180°、270°の段階別に区分して示す図である(3)。The process of pulling the external tube material into the chamber of the reversing transfer device while the pulling mechanism consisting of four pulling rollers rotates from 0 ° to 270 ° is divided into 90 °, 180 °, and 270 ° stages. (3). 四つの牽引ローラーからなった牽引機構が0°から270°だけ回転しながら外部のチューブ材を反転移送装置のチャンバーの内部に牽引する過程を、90°、180°、270°の段階別に区分して示す図である(4)。The process of pulling the external tube material into the chamber of the reversing transfer device while the pulling mechanism consisting of four pulling rollers rotates from 0 ° to 270 ° is divided into 90 °, 180 °, and 270 ° stages. It is a figure shown (4). 四つの牽引ローラーからなった牽引機構が0°から270°だけ回転しながら外部のチューブ材を反転移送装置のチャンバーの内部に牽引する過程を、90°、180°、270°の段階別に区分して示す図である(5)。The process of pulling the external tube material into the chamber of the reversing transfer device while the pulling mechanism consisting of four pulling rollers rotates from 0 ° to 270 ° is divided into 90 °, 180 °, and 270 ° stages. (5). 図7の段階を遂行した後、チャンバーの入口を閉鎖し出口を開放した状態でチャンバーの内部に注入した圧縮空気でチャンバー内に一定の長さだけ牽引されたチューブ材を反転室を通じて反転移送させる過程を概略的に示す図である。After the step of FIG. 7 is performed, the tube material pulled by a certain length into the chamber by the compressed air injected into the chamber with the inlet of the chamber closed and the outlet opened is reversed and transferred through the reversing chamber. It is a figure which shows a process roughly.

図1は本発明によって管路補修する過程を概略的に示す概略図である。   FIG. 1 is a schematic view schematically showing a process of repairing a pipeline according to the present invention.

図1及び図2に示したように、本発明の非掘削式管路補修工法は、内側面10aと外側面10bを持ち、内側面10aに熱硬化性樹脂を含浸したライニングチューブ材10(以下、簡単に“チューブ材”と言う)を積載台に積載して準備するチューブ材準備段階(A);積載台に積載されたチューブ材10を反転移送装置100のチャンバー100Aと反転室100Bを順に通過させた後、反転室100Bの出口103で先端部を反転させた状態で反転室100Bの出口103の先端に固定してチューブ材10を反転移送装置100に装着するチューブ材装着段階(B);反転移送装置100のチャンバー100Aの内部に備えられたツイン回転ローラー式牽引機構200の牽引ローラー201、202、203、204を一方向(時計方向)に回転作動させて外部のチューブ材10をチャンバー100Aの内部に一定の長さだけ牽引するチューブ材牽引段階(C);反転移送装置100の反転室100Bの内部に高圧の流体、例えば圧縮空気を注入してチューブ材10をチャンバー100Aの内部に貯蔵した長さの分だけ反転室100Bの外部に反転移送させるチューブ材反転移送段階(D);及びチューブ材10を管路Pの全作業区間にわたって反転移送してから、反転移送装置100の反転室100Bを通じて高温高圧の水蒸気をチューブ材10の内部に注入してチューブ材10の熱硬化性接着樹脂を硬化させることでチューブ材10を管路Pの内壁に密着固定させるチューブ材硬化段階(E);を含む。   As shown in FIGS. 1 and 2, the non-excavated pipe repair method of the present invention has an inner side surface 10a and an outer side surface 10b, and the inner side surface 10a is impregnated with a thermosetting resin (hereinafter referred to as a lining tube material 10). Tube material preparation stage (A) in which the tube material 10 is loaded on the loading table for preparation (A); the tube material 10 loaded on the loading table is sequentially transferred to the chamber 100A and the reversing chamber 100B of the reversing transfer device 100. A tube material mounting stage (B) in which the tube material 10 is fixed to the tip of the outlet 103 of the reversing chamber 100B and the tube material 10 is mounted on the reversing transfer device 100 in a state where the tip is reversed at the outlet 103 of the reversing chamber 100B. The traction rollers 201, 202, 203, and 204 of the twin rotary roller traction mechanism 200 provided in the chamber 100A of the reverse transfer device 100 are moved in one direction (clockwise); A tube material pulling step (C) for pulling the external tube material 10 into the chamber 100A by a certain length by rotating the tube 10A; a high-pressure fluid, for example, compressed air, is introduced into the reverse chamber 100B of the reverse transfer device 100; A tube material reversal transfer stage (D) in which the tube material 10 is inverted and transferred to the outside of the reversing chamber 100B by the length of the tube material 10 stored and stored in the chamber 100A. After the reversal transfer, high-temperature and high-pressure water vapor is injected into the tube material 10 through the reversal chamber 100B of the reversal transfer device 100 to cure the thermosetting adhesive resin of the tube material 10, thereby the tube material 10 is connected to the pipe line P. A tube material curing step (E) for tightly fixing the inner wall of the tube material.

図1に示したように、前記反転移送装置100は、移動性を考慮して車両に搭載された車両搭載型が好ましい。本発明の工法に使われる反転移送装置100は、図2に示したように、入口101及び出口102を持つチャンバー100A、前記チャンバー100Aの出口102に連続して備えられる反転室100B、前記チャンバー100Aの内部に装着されたチューブ材10を、チャンバー100Aの内部で回転中心軸205を中心に旋回する多数の牽引ローラー201、202、203、204の周囲に巻き取り、外部のチューブ材10をチャンバー100Aの内部に牽引する牽引機構200、前記チャンバー100Aの内部に圧縮空気を注入する圧縮空気注入口110、及びチューブ材を反転して移送させるために反転室100B内に高温/高圧の水蒸気を供給する水蒸気注入口120を含む。また、前記チャンバー100Aの入口101は入口開閉機構104によって開閉され、出口102は出口開閉機構107によって開閉するようになっている。前記反転室100Bとチャンバー100Aはチャンバー100Aの出口102を介して互いに連通するようになっている。   As shown in FIG. 1, the reverse transfer device 100 is preferably a vehicle-mounted type mounted on a vehicle in consideration of mobility. As shown in FIG. 2, the reversing transfer device 100 used in the method of the present invention includes a chamber 100A having an inlet 101 and an outlet 102, a reversing chamber 100B continuously provided at the outlet 102 of the chamber 100A, and the chamber 100A. The tube material 10 mounted inside is wound around a large number of pulling rollers 201, 202, 203, and 204 that rotate around the rotation center axis 205 inside the chamber 100A, and the external tube material 10 is wound around the chamber 100A. A high-temperature / high-pressure water vapor is supplied into the reversing chamber 100B for reversing and transporting the tube material. A water vapor inlet 120 is included. The inlet 101 of the chamber 100A is opened and closed by an inlet opening / closing mechanism 104, and the outlet 102 is opened and closed by an outlet opening / closing mechanism 107. The inversion chamber 100B and the chamber 100A communicate with each other via the outlet 102 of the chamber 100A.

そして、前記チューブ材牽引段階において、外部のチューブ材10を反転移送装置100のチャンバー100Aの内部に牽引する牽引機構200は、第1ツイン回転ローラーと第2ツイン回転ローラーとからなる。   In the tube material pulling stage, the pulling mechanism 200 that pulls the external tube material 10 into the chamber 100A of the reverse transfer device 100 includes a first twin rotary roller and a second twin rotary roller.

前記第1ツイン回転ローラーは、チャンバー100A内に装着されたチューブ材10の下側に配置され、回転中心軸205を中心に旋回可能に設置された第1下部牽引ローラー201と、チューブ材10の上側で回転中心軸205方向に前記第1下部牽引ローラー201に対向するように配置され、前記回転中心軸205を中心に前記第1下部牽引ローラー201と一体に旋回する第1上部牽引ローラー202とからなる。前記第2ツイン回転ローラーは、チューブ材10の下側でチューブ材移送方向に沿って前記第1下部牽引ローラー201の前方に配置され、前記回転中心軸205を中心に旋回可能に設置された第2下部牽引ローラー203と、チューブ材10の上側でチューブ材の移送方向に沿って前記第1上部牽引ローラー202の後方に配置され、前記回転中心軸205方向に前記第2下部牽引ローラー203に対向するように配置され、前記回転中心軸205を中心に前記第2下部牽引ローラー203と一体に旋回する第2上部牽引ローラー204とを含む。   The first twin rotating roller is disposed below the tube material 10 mounted in the chamber 100A, and is provided with a first lower pulling roller 201 installed so as to be rotatable around a rotation center shaft 205, and the tube material 10 A first upper traction roller 202 disposed on the upper side in the direction of the rotation center axis 205 so as to face the first lower traction roller 201 and pivoting integrally with the first lower traction roller 201 about the rotation center axis 205; Consists of. The second twin rotary roller is disposed below the tube material 10 in front of the first lower pulling roller 201 along the tube material transfer direction, and is installed so as to be pivotable about the rotation center shaft 205. 2 Lower pulling roller 203 and disposed behind the first upper pulling roller 202 along the tube material transfer direction above the tube material 10 and facing the second lower pulling roller 203 in the direction of the rotation center axis 205 And a second upper traction roller 204 that pivots integrally with the second lower traction roller 203 about the rotation center shaft 205.

そして、前記四つの牽引ローラー201、202、203、204は軸方向両側先端にそれぞれ一つの連結アーム206を介して回転中心軸205に旋回可能に連結され、駆動モーターM1によって回転中心軸205の周囲を時計方向または反時計方向に旋回する。   The four pulling rollers 201, 202, 203, 204 are pivotally connected to the rotation center shaft 205 via one connection arm 206 at both ends in the axial direction, respectively, and around the rotation center shaft 205 by the drive motor M1. Turn clockwise or counterclockwise.

以下、前述した本発明の非掘削式管路補修工法を段階別に区分して説明する。   Hereinafter, the non-excavation type pipe repair method of the present invention described above will be described in stages.

(A)チューブの材準備段階
本発明の非掘削式管路補修工法に使われるチューブ材10は不織布から製造され、内側面10aと外側面10bを持ち、内側面10aにエポキシ樹脂組成物などの熱硬化性樹脂を含浸させて製造する。このように製造されたチューブ材10を、補修しようとする管路Pの長さに合わせて十分な長さに準備して巻取ローラーに巻き取るとか積載台に積層しておく。
(A) Tube material preparation stage The tube material 10 used in the non-excavation type pipe repair method of the present invention is manufactured from a non-woven fabric and has an inner side surface 10a and an outer side surface 10b, and an epoxy resin composition or the like is formed on the inner side surface 10a. Manufactured by impregnating with thermosetting resin. The tube material 10 manufactured in this way is prepared in a sufficient length according to the length of the pipe line P to be repaired and wound on a winding roller or stacked on a loading table.

(B)チューブ材を反転移送装置に装着する段階
チューブ材10を高圧の圧縮空気によって反転(内側面が外側に露出するように内外を裏返して反転させること)させると同時に圧縮空気の力によって反転されたチューブ材10を移送させる反転移送装置100を、補修しようとする老朽した管路(以下、“管路”と言う)の入口(マンホール)近くに移動させて配置する。(図1参照)
積載台に積載されたチューブ材10の先端を前記反転移送装置100のチャンバー入口101、前記牽引機構200の第1及び第2上部牽引ローラー202、204と第1及び第2下部牽引ローラー201、203との間、チャンバー100Aの出口102、及び反転室100Bを順に通過させることで、反転室100Bの出口103で内側面10aは外側に外側面10bは内側に向かうように反転させた後、その反転されたチューブ材10の先端を反転室100Bの出口103に締結手段で固定してチューブ材10を反転移送装置100に装着(loading)する。(図2の状態)
(C)外部のチューブ材を反転移送装置の内部に牽引する段階
反転移送装置100にチューブ材10を装着した後、外部のチューブ材10がチャンバー100Aの入口101を通過するようにチャンバー100Aの入口101を入口開閉機構104で開放し、牽引機構200でチューブ材10をチャンバー100Aの内部に牽引するとき、チャンバー100Aの出口102側のチューブ材がチャンバー100A内に牽引されないようにチャンバー100Aの出口102を出口開閉機構107で閉鎖する(図3の状態)。
(B) The stage in which the tube material is attached to the reversal transfer device The tube material 10 is reversed by high-pressure compressed air (inverted inside out so that the inner surface is exposed to the outside) and simultaneously reversed by the force of the compressed air. The reverse transfer device 100 for transferring the tube material 10 is moved and arranged near the entrance (manhole) of an old pipeline (hereinafter referred to as “pipe”) to be repaired. (See Figure 1)
The tip of the tube material 10 loaded on the loading table is connected to the chamber inlet 101 of the reverse transfer device 100, the first and second upper traction rollers 202, 204 of the traction mechanism 200, and the first and second lower traction rollers 201, 203. Between the chamber 102A and the reversing chamber 100B, the inner surface 10a is reversed outside and the outer surface 10b is directed inward at the outlet 103 of the reversing chamber 100B. The distal end of the tube material 10 is fixed to the outlet 103 of the reversing chamber 100B by fastening means, and the tube material 10 is loaded onto the reversing transfer device 100. (State of FIG. 2)
(C) Step of pulling the external tube material to the inside of the reverse transfer device After the tube material 10 is mounted on the reverse transfer device 100, the inlet of the chamber 100A so that the external tube material 10 passes through the inlet 101 of the chamber 100A. 101 is opened by the inlet opening / closing mechanism 104, and when the tube material 10 is pulled into the chamber 100A by the pulling mechanism 200, the outlet 102 of the chamber 100A is prevented from being pulled into the chamber 100A. Is closed by the outlet opening / closing mechanism 107 (state shown in FIG. 3).

その後、牽引機構200の四つの牽引ローラー201、202、203、204を回転中心軸205を中心に時計方向に0°から270°に旋回させれば、0°から180°の旋回角度では第1下部牽引ローラー201と第1上部牽引ローラー202がその周囲にチューブ材10を巻き取ってチャンバー100Aの内部に牽引し、ついで180°から270°に旋回するときには、第2下部牽引ローラー203と第2上部牽引ローラー204がその周囲にチューブ材10をさらに巻き取り、そのさらに巻き取った長さの分だけチューブ材10をさらにチャンバー100Aの内部に牽引する(図3〜図6)。   Thereafter, if the four pulling rollers 201, 202, 203, 204 of the pulling mechanism 200 are swung clockwise from 0 ° to 270 ° around the rotation center axis 205, the first swivel angle is 0 ° to 180 °. When the lower pulling roller 201 and the first upper pulling roller 202 wind the tube material 10 around the lower pulling roller 201 and pull the tube material 10 inside the chamber 100A and then turn from 180 ° to 270 °, the second lower pulling roller 203 and the second upper pulling roller 203 The upper pulling roller 204 further winds the tube material 10 around it, and the tube material 10 is further pulled inside the chamber 100A by the length of the further wound length (FIGS. 3 to 6).

前述したように、四つの牽引ローラー201、202、203、204を0°から270°に旋回させてチューブ材10をチャンバー100Aの内部に牽引した後、四つの牽引ローラー201、202、203、204を反時計方向に逆旋回させて四つの牽引ローラー201、202、203、204の周囲に巻き取られたチューブ材10を順に繰り出してチャンバー100Aの内部に無張力状態で保管する(図7の状態)。   As described above, after the four pulling rollers 201, 202, 203, 204 are swung from 0 ° to 270 ° to pull the tube material 10 into the chamber 100A, the four pulling rollers 201, 202, 203, 204 are moved. Is rotated counterclockwise and the tube material 10 wound around the four pulling rollers 201, 202, 203, 204 is sequentially drawn out and stored in the chamber 100A in a non-tensioned state (state shown in FIG. 7). ).

(D)反転移送装置のチャンバーの内部に牽引されたチューブ材を反転させながら反転移送装置の外部に移送させる段階
チャンバー100Aの内部に注入された高圧の圧縮空気がチャンバー100Aの入口101を通じて漏洩しないで出口102を通じて反転室100Bにだけ提供されるように、チャンバー100Aの入口101を入口開閉機構104で閉鎖し、チャンバー100Aの出口102を出口開閉機構107で開放する。この際、入口開閉機構104のシリコン材の固定パッド106に備えられた突起とシリコン材の可動パッド105に備えられた溝が噛み合って結合することによって入口101を完全に気密にする。
(D) A step of transferring the tube material pulled inside the chamber of the reverse transfer device to the outside of the reverse transfer device while inverting the high-pressure compressed air injected into the chamber 100A does not leak through the inlet 101 of the chamber 100A. Then, the inlet 101 of the chamber 100A is closed by the inlet opening / closing mechanism 104 and the outlet 102 of the chamber 100A is opened by the outlet opening / closing mechanism 107 so as to be provided only to the reversing chamber 100B through the outlet 102. At this time, the protrusion 101 provided in the silicon material fixed pad 106 of the inlet opening / closing mechanism 104 and the groove provided in the silicon material movable pad 105 are engaged with each other, and thereby the inlet 101 is completely airtight.

その後、反転移送装置100のチャンバー100Aに結合された圧縮空気注入口110を通じて高圧の圧縮空気をチャンバー100Aの内部に注入すれば、この圧縮空気はチャンバー100Aの出口102を通じて反転室100Bの内部に供給され、反転室100Bの出口に固定されたチューブ材10の先端を反転室100Bの外部に押し出しながら、チャンバー100Aの内部に牽引されたチューブ材10が完全に反転室100Bの外部への反転移送完了時まで圧縮空気を注入する(図8参照)。   Thereafter, when high-pressure compressed air is injected into the chamber 100A through the compressed air inlet 110 coupled to the chamber 100A of the reversing transfer device 100, the compressed air is supplied into the reversing chamber 100B through the outlet 102 of the chamber 100A. The tube material 10 pulled inside the chamber 100A is completely transferred to the outside of the reversing chamber 100B while pushing the tip of the tube material 10 fixed to the outlet of the reversing chamber 100B to the outside of the reversing chamber 100B. Compressed air is injected until time (see FIG. 8).

このように、反転移送装置100のチャンバー100Aの入口101が入口開閉機構104の固定パッド106と可動パッド105の噛み合いによって閉鎖されることによってチャンバー100Aの内部の圧縮空気の漏洩を完全に遮断するので、チャンバー100A内に注入された圧縮空気のチューブ材の反転移送効率を極大化することができる。   As described above, since the inlet 101 of the chamber 100A of the reverse transfer device 100 is closed by the engagement of the fixed pad 106 and the movable pad 105 of the inlet opening / closing mechanism 104, the leakage of the compressed air inside the chamber 100A is completely blocked. The reversal transfer efficiency of the tube material of the compressed air injected into the chamber 100A can be maximized.

(E)前記(C)〜(D)段階を繰り返してチューブ材を管路の補修作業区間にわたって反転して移送させ、管路P内で圧縮空気の圧力でチューブ材10を膨脹させて管路Pの内壁に密着させる。   (E) The steps (C) to (D) are repeated, the tube material is inverted and transferred over the repair work section of the pipeline, and the tube material 10 is expanded in the pipeline P by the pressure of the compressed air. Adhere to the inner wall of P.

一方、チューブ材が反転して移送され、端部がチャンバー100Aの入口101を通過するに先立ち、支持ワイヤWをチューブ材10の端部に連結し、チューブ材10が管路Pの補修作業区間の終端に延びるまでチューブ材10の端部を支持する。図面符号Rは支持ワイヤWを巻き取る巻取ローラー、図面符号M2は巻取ローラーの駆動モーターである。前記巻取ローラー駆動モーターM2は支持ワイヤWの繰り出し速度を制御し、チューブ材10を一定の張力を維持したままで管路Pの内部に供給する役目をする。   On the other hand, the tube material is reversed and transferred, and the support wire W is connected to the end portion of the tube material 10 before the end portion passes through the inlet 101 of the chamber 100A. The end of the tube material 10 is supported until it extends to the end of the tube. Reference numeral R denotes a winding roller for winding the support wire W, and reference numeral M2 denotes a driving motor for the winding roller. The winding roller drive motor M2 controls the feeding speed of the support wire W, and serves to supply the tube material 10 to the inside of the pipe P while maintaining a constant tension.

(F)チューブ材の硬化接着段階
チューブ材10を管路Pの全作業区間にわたって反転して移送した後、チャンバー100Aの出口102を出口開閉機構107で密閉し、高温高圧の水蒸気注入口120を通じて反転室100Bの内部に高温/高圧の水蒸気を注入する。この高温/高圧の水蒸気は反転室100Bを通り、管路Pの内壁と密着しているチューブ材10の内部に注入され、チューブ材10の熱硬化性樹脂を硬化させることによってチューブ材10を管路Pの内壁に密着して固定する。
(F) Curing and Bonding Stage of Tube Material After the tube material 10 is reversed and transferred over the entire work section of the pipe P, the outlet 102 of the chamber 100A is sealed by the outlet opening / closing mechanism 107 and passed through the high-temperature and high-pressure steam inlet 120. High temperature / high pressure water vapor is injected into the reversing chamber 100B. The high-temperature / high-pressure water vapor passes through the reversing chamber 100B and is injected into the tube material 10 that is in close contact with the inner wall of the pipe P, and the tube material 10 is piped by curing the thermosetting resin of the tube material 10. Fix closely to the inner wall of the road P.

前述した実施例においては、熱硬化性樹脂を含浸したチューブ材10が使われるものを説明したが、熱硬化性樹脂の代わりにあるいは熱硬化性樹脂と一緒に、光硬化性樹脂を含浸したチューブ材を使うことができる。この場合にも、チューブ材の移送及び反転は、熱硬化性樹脂を含浸したチューブ材の場合と同様な方式で行われる。ただ、この場合、チューブ材の先端に連結される支持ワイヤWの端部に光硬化性樹脂を硬化させるための紫外線(UV)などの光を照射する光照射器具を電線で連結して使用する。反転されたチューブ材が管路Pの補修作業区間の終了点に到逹するまでチューブ材の端部と一緒に光照射器具を移送させた後、管路補修作業区間の終了点に到逹すれば、チューブ材の端部に連結された支持ワイヤからチューブ材の端部を分離した後、支持管路の入口側に後退させれば、支持ワイヤの先端に連結された光照射器具も一緒に後退しながら、管路の内壁に密着して固定されたチューブ材の内面に紫外線(UV)などの光を照射してチューブ材を光硬化させる。   In the above-described embodiment, the tube material 10 impregnated with the thermosetting resin is used. However, the tube impregnated with the photocurable resin instead of the thermosetting resin or together with the thermosetting resin. You can use wood. Also in this case, the transfer and inversion of the tube material is performed in the same manner as the tube material impregnated with the thermosetting resin. However, in this case, a light irradiation device that irradiates light such as ultraviolet rays (UV) for curing the photocurable resin to the end of the support wire W connected to the distal end of the tube material is used by being connected with an electric wire. . After the inverted tube material reaches the end point of the repair work section of the pipe line P, the light irradiation tool is transferred together with the end of the tube material, and then the end point of the pipe repair work section is reached. For example, after separating the end of the tube material from the support wire connected to the end of the tube material and then retracting it to the inlet side of the support pipe, the light irradiation device connected to the tip of the support wire is also brought together While retreating, the tube material is photocured by irradiating light such as ultraviolet rays (UV) onto the inner surface of the tube material fixed in close contact with the inner wall of the conduit.

10 チューブ材
10a チューブ材の内側面
10b 外側面
100 反転移送装置
100A チャンバー
100B 反転室
101 チャンバー入口
102 チャンバー出口
103 反転室の出口
104 チャンバー入口開閉機構
105 可動パッド
106 固定パッド
107 チャンバー出口開閉装置
108 可動パッド
109 固定パッド
110 圧縮空気注入口
115、116 案内ローラー
120 水蒸気注入口
200 ツイン回転ローラー式牽引機構
201 第1下部牽引ローラー
202 第1上部牽引ローラー
203 第2下部牽引ローラー
204 第2上部牽引ローラー
205 回転中心軸
300 圧縮空気及び水蒸気発生装置
DESCRIPTION OF SYMBOLS 10 Tube material 10a Inner side surface of tube material 10b Outer side surface 100 Reverse transfer apparatus 100A Chamber 100B Reversing chamber 101 Chamber inlet 102 Chamber outlet 103 Reversing chamber outlet 104 Chamber inlet opening / closing mechanism 105 Movable pad 106 Fixed pad 107 Chamber outlet opening / closing device 108 Movable Pad 109 Fixed pad 110 Compressed air inlet 115, 116 Guide roller 120 Water vapor inlet 200 Twin rotary roller traction mechanism 201 First lower traction roller 202 First upper traction roller 203 Second lower traction roller 204 Second upper traction roller 205 Rotation center shaft 300 Compressed air and water vapor generator

Claims (5)

内側面に熱硬化性樹脂を含浸したチューブ材を準備する段階;
準備したチューブ材の先端を反転移送装置のチャンバーと反転室を順に貫通させた後、反転室の出口で反転させ、反転された状態で反転室の出口先端に固定してチューブ材を装着するチューブ材装着段階;
入口開閉器具でチャンバーの入口を開放し、同時に出口開閉器具でチャンバーの出口を閉鎖した状態で、ツイン回転ローラー式牽引機構を回転させることで、回転量に対応する長さの分だけ外部のチューブ材をチャンバーの内部に牽引する段階;
ツイン回転ローラー式牽引機構を牽引方向の反対方向に逆回転させ、牽引ローラーの周囲に巻き取られたチューブ材を繰り出し、チャンバーの内部に無張力状態で保管する段階;
入口開閉器具でチャンバーの入口を密閉し、出口開閉器具でチャンバーの出口を開放した状態で、反転室の内部に高圧の流体を注入し、流体圧によって前記チャンバーの内部のチューブ材を反転室の外部に反転させながら、チューブ材の後端が管路の作業区間の終了地点に到逹するまで管路の内部に移送させる反転移送段階;及び
管路の補修作業区間にわたって反転して移送されたチューブ材内の熱硬化性樹脂または光硬化性樹脂を流体の熱または光で硬化させてチューブ材を管路の内壁に密着して固定させるチューブ材硬化段階;を含むことを特徴とする、非掘削式管路補修工法。
Preparing a tube material impregnated with a thermosetting resin on the inner surface;
A tube in which the tip of the prepared tube material is sequentially passed through the chamber and the reversing chamber of the reversing transfer device, then reversed at the outlet of the reversing chamber, and fixed in the inverted tip of the reversing chamber in the reversed state. Material mounting stage;
With the inlet opening / closing device opening the chamber inlet and simultaneously closing the chamber outlet with the outlet opening / closing device, the twin rotary roller traction mechanism is rotated, so that the external tube is the length corresponding to the amount of rotation. Pulling the material into the chamber;
Rotating the twin-rotating roller type traction mechanism in the opposite direction of the traction direction, feeding out the tube material wound around the traction roller, and storing it in the chamber without tension;
With the inlet opening / closing device sealing the chamber inlet and the outlet opening / closing device opening the chamber outlet, a high-pressure fluid is injected into the reversing chamber, and the tube material inside the chamber is injected into the reversing chamber by the fluid pressure. The reversal transfer stage in which the rear end of the tube material is transferred to the inside of the pipe line until it reaches the end point of the work section of the pipe line while being reversed outside; A tube material curing step of curing a thermosetting resin or a photocurable resin in the tube material with heat or light of a fluid so that the tube material is adhered and fixed to the inner wall of the pipe line; Excavated pipeline repair method.
前記チューブ材牽引段階は、
前記ツイン回転ローラー式牽引機構が、チャンバー内のチューブ材の下側で回転中心軸を中心に旋回可能に設置された第1下部牽引ローラーと、前記チューブ材の上側に前記第1下部牽引ローラーに対向するように配置され、前記回転中心軸方向に前記第1下部牽引ローラーと一緒に一体に旋回する第1上部牽引ローラーとからなった第1ツイン回転ローラーを備え、
前記第1ツイン回転ローラーを前記回転中心軸を中心に時計方向に0°から270°に旋回させることにより、第1上/下部牽引ローラーの周囲にチューブ材を巻き取りながらチューブ材をチャンバー内に牽引し、次に、第1上/下部牽引ローラーを反時計方向に逆回転させることで、第1上/下部牽引ローラーに巻き取られていたチューブ材をチャンバー内に無張力状態で繰り出し、第1上/下部牽引ローラーで巻き取った長さの分だけチューブ材をチャンバー内に牽引することを特徴とする、請求項1に記載の非掘削式管路補修工法。
The tube material pulling step includes:
The twin rotary roller type traction mechanism includes a first lower traction roller installed to be rotatable around a rotation center axis below the tube material in the chamber, and the first lower traction roller above the tube material. A first twin rotary roller that is arranged to face each other and includes a first upper pulling roller that swirls together with the first lower pulling roller in the direction of the rotation center axis;
By rotating the first twin rotary roller clockwise from 0 ° to 270 ° around the rotation center axis, the tube material is wound into the chamber while winding the tube material around the first upper / lower pulling roller. Next, by rotating the first upper / lower traction roller counterclockwise in the counterclockwise direction, the tube material wound around the first upper / lower traction roller is fed into the chamber in a non-tensioned state. 2. The non-excavated pipeline repair method according to claim 1, wherein the tube material is pulled into the chamber by the length wound by the upper / lower traction roller.
前記ツイン回転ローラー式牽引機構は、チューブ材の下側にチューブ材移送方向に沿って前記第1下部牽引ローラーの前方に配置され、前記回転中心軸を中心に旋回可能に設置された第2下部牽引ローラーと、チューブ材の上側にチューブ材移送方向に沿って前記第1上部牽引ローラーの後方に配置され、前記回転中心軸を中心に前記第2下部牽引ローラーに対向するように配置され、前記回転中心軸を中心に前記第2下部牽引ローラーと一体に回転する第2上部牽引ローラーとからなった第2ツイン回転ローラーをさらに備え、
前記第2上/下部牽引ローラーが180°から270°に旋回するとき、第1上/下部牽引ローラーに後続してチューブ材をさらにチャンバーの内部に牽引することを特徴とする、請求項2に記載の非掘削式管路補修工法。
The twin rotary roller type traction mechanism is disposed on the lower side of the tube material in front of the first lower traction roller along the tube material transfer direction, and is installed so as to be pivotable about the rotation center axis. A traction roller, disposed above the first upper traction roller along the tube material transfer direction on the upper side of the tube material, and disposed so as to face the second lower traction roller around the rotation center axis; A second twin rotary roller comprising a second upper pulling roller that rotates integrally with the second lower pulling roller around a rotation center axis;
The tube material is further pulled to the inside of the chamber following the first upper / lower traction roller when the second upper / lower traction roller pivots from 180 ° to 270 °. Non-excavated pipeline repair method described.
前記チャンバーの入口開閉器具及び出口開閉器具は軟質のシリコンゴムから成形され、入口と出口にそれぞれチューブ材移送方向に対して横方向に設置された固定パッドと、軟質のシリコンゴムから成形され、上下に昇降するアクチュエーターの先端に固定された可動パッドとからなり、アクチュエーターの作動によって前記可動パッドが固定パッドに密着して結合するとかあるいは分離することでチャンバーの入口と出口を独立的に開閉することを特徴とする、請求項1に記載の非掘削式管路補修工法。   The inlet opening / closing device and the outlet opening / closing device of the chamber are molded from soft silicone rubber, and are formed from a soft pad rubber and a fixed pad installed at the inlet and the outlet in a direction transverse to the tube material transfer direction. The movable pad is fixed to the tip of the actuator that moves up and down, and the movable pad is in close contact with the fixed pad or separated by the operation of the actuator, so that the inlet and outlet of the chamber can be opened and closed independently. The non-excavated pipeline repair method according to claim 1, characterized in that: 前記固定パッドと可動パッドはいずれか一方が突起を備え、他方は突起を収容する溝を備え、結合の際に突起と溝が噛み合ってチャンバーの入口と出口を密閉することを特徴とする、請求項4に記載の非掘削式管路補修工法。
One of the fixed pad and the movable pad is provided with a protrusion, and the other is provided with a groove for accommodating the protrusion, and the protrusion and the groove are engaged with each other at the time of coupling to seal the inlet and the outlet of the chamber. Item 5. The non-excavated pipeline repair method according to Item 4.
JP2015511389A 2012-11-26 2013-11-26 Non-excavated pipeline repair method Pending JP2015523234A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020120134407A KR101291611B1 (en) 2012-11-26 2012-11-26 Trenchless pipe repairing method using rotating twin rollers and silicon pad for sealing air stream
KR10-2012-0134407 2012-11-26
PCT/KR2013/010781 WO2014081267A1 (en) 2012-11-26 2013-11-26 Trenchless pipe repairing method

Publications (1)

Publication Number Publication Date
JP2015523234A true JP2015523234A (en) 2015-08-13

Family

ID=49219604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015511389A Pending JP2015523234A (en) 2012-11-26 2013-11-26 Non-excavated pipeline repair method

Country Status (4)

Country Link
JP (1) JP2015523234A (en)
KR (1) KR101291611B1 (en)
CN (1) CN103831981B (en)
WO (1) WO2014081267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193130A (en) * 2016-04-21 2017-10-26 株式會社北海特車サービス Lining device and lining method of existing duct line
US10919212B1 (en) * 2019-08-14 2021-02-16 Sak Construction Llc Mechanized inverter for pipe liners

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386453B1 (en) 2013-10-07 2014-04-17 주식회사 지성이엔지 Reversing apparatus for repairing pipeline having sealing device
KR101686548B1 (en) * 2015-09-22 2016-12-16 (주)나스텍이앤씨 Tube reversing apparatus of increased winding volume
KR101955776B1 (en) 2016-12-30 2019-05-30 최재현 Large sewage tube traction device and method
KR101791011B1 (en) * 2017-01-23 2017-10-27 (주)명보이엔지 A Tube Reversing Apparatus for Non-Excavating Pipe Repair
KR102269518B1 (en) * 2020-07-30 2021-06-25 정지훈 Tube reversing apparatus with tube feeding device and conduct repairing method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125703A (en) * 2005-11-01 2007-05-24 Shonan Plastic Mfg Co Ltd Reversal device of lining material
JP2012516251A (en) * 2009-11-19 2012-07-19 バンドー コンストラクション カンパニー リミテッド Tube material reversing device for pipe repair
KR101173433B1 (en) * 2012-05-03 2012-08-16 반도건설주식회사 Tube pulling device of a tube turning over apparatus for repairing pipeline under ground
KR101193760B1 (en) * 2011-10-18 2012-10-26 한국수자원공사 Turning round apparatus for pipe repair

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281940B2 (en) * 1992-11-29 2002-05-13 旭テック株式会社 Underground pipe repair method
KR20040100004A (en) * 2003-05-21 2004-12-02 주식회사 동국하이텍 Reversing apparatus of tube used in repairing water supply pipe, drainpipe and industrial pipe
KR101267482B1 (en) * 2010-12-15 2013-05-31 한국라이텍개발(주) The Inserting Method of Wet-tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125703A (en) * 2005-11-01 2007-05-24 Shonan Plastic Mfg Co Ltd Reversal device of lining material
JP2012516251A (en) * 2009-11-19 2012-07-19 バンドー コンストラクション カンパニー リミテッド Tube material reversing device for pipe repair
KR101193760B1 (en) * 2011-10-18 2012-10-26 한국수자원공사 Turning round apparatus for pipe repair
KR101173433B1 (en) * 2012-05-03 2012-08-16 반도건설주식회사 Tube pulling device of a tube turning over apparatus for repairing pipeline under ground

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193130A (en) * 2016-04-21 2017-10-26 株式會社北海特車サービス Lining device and lining method of existing duct line
US10919212B1 (en) * 2019-08-14 2021-02-16 Sak Construction Llc Mechanized inverter for pipe liners

Also Published As

Publication number Publication date
WO2014081267A1 (en) 2014-05-30
CN103831981A (en) 2014-06-04
CN103831981B (en) 2016-05-04
KR101291611B1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP2015523234A (en) Non-excavated pipeline repair method
US7108456B2 (en) Steam cure of cured in place liner
JP4590413B2 (en) Field curable liner with inverted outer impermeable layer and manufacturing method
JP4583380B2 (en) Resin-impregnated tower for on-site curing type liners
KR101433182B1 (en) Apparatus for reversing tube of pipe line repair and method for repairing pipe line using the same
KR102062265B1 (en) Method for installation of uv irradiation device and repair underground water pine by non shrinkable type for maintaining expandability
KR101926227B1 (en) Liner inversion device, liner installation apparatus having the same, and liner installation method using the same
EP2208920B1 (en) Method of sealing a pipeline and a sealing system
US7926516B2 (en) Internal composite repair apparatus
CN110043747A (en) A kind of pipeline non-excavation rehabilitation device and pipeline trenchless repairing method
KR100871311B1 (en) Steam backflow prevention device and pipeline reversal development method
KR20170085264A (en) Apparatus and method for repairing conduits
JP4318951B2 (en) Repair material for mounting pipe, repair method and repair device using the same
KR101955776B1 (en) Large sewage tube traction device and method
KR101173433B1 (en) Tube pulling device of a tube turning over apparatus for repairing pipeline under ground
JP2003165158A (en) Pipe lining work method
JP5993606B2 (en) Lining heating device and underground pipe repair method
KR101164586B1 (en) Apparatus for reversing tube of pipe line repair
CN203941332U (en) Optical cable erecting equipment
CN203941333U (en) Optical cable erecting equipment
CN203773124U (en) Optical cable installation equipment
KR20140000806A (en) Apparatus for reversing tube of pipe line repair and method for repairing pipe line using the same
KR101745484B1 (en) A method for reparing pipe
CN213982497U (en) Pipeline non-excavation inside lining upset prosthetic devices
JP3827348B2 (en) Repair material, fixing structure of repair material, and repair method of pipeline

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112